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Abstract

The problem of fully distributed detection of an unknown
deterministic signal observed by a wireless sensor network
(WSN) is addressed. We propose a two-step distributed
consensus-based detection algorithm where in the first
step the sensor nodes (SNs) collaborate with their neigh-
bors through error-free, orthogonal channels (the SNs
exchange quantized information matched to the channel
capacity of each link). In the second step, local 1-bit
decisions generated in the first step are shared among
neighbors to yield a consensus. Simulations show that our
proposed quantized two-step distributed detection algo-
rithm approaches the performance of the unquantized
centralized (fusion center) detector.

1. Introduction

Composed of low-cost tiny sensor nodes (SNs) with lim-
ited processing capabilities and on-board power, wireless
sensor networks (WSNs) spatially deployed over some geo-
graphic region (see Fig. 1) are tasked to decide on a global
activity from locally collected measurements. Some strate-
gies consider the centralized solution of a fusion center
(FC) where the noisy observations from distributed SNs
are collected and the FC is able to compute the test statis-
tic in a single shot [1–5]. Recent publications [6,7] consider
SN collaboration in the context of distributed estimation
where after the exchange of information the SNs report
to the FC. However, these WSNs may not be practical as
they rely on the integrity of the FC.

Alternatively, fully distributed strategies [8–13] (i.e.,
without a FC) where the SNs exchange local information
iteratively with their neighbors, are shown to be capa-
ble of reaching a global optimum decision. Reference [8]
adopts the diffusion LMS approach while [10–13] adopt
the distributed consensus algorithm [14]. All these works
assume ideal exchange of information among the SNs, but
as the SNs are battery operated (i.e., limited energy) this
assumption is unrealistic. Furthermore, practical WSN
scenarios suffer from channel impairments such as fading
and attenuation.

So the main contribution of this work is to provide
a fully distributed two-step consensus-based detection

framework with quantized test statistic exchange (SNs
implement a low complexity uniform quantizer and the
number of quantization bits is constrained to match
the channel capacity of each link). We show that this
approach (a) converges to a global decision across the
network, (b) approaches the optimum centralized detec-
tor performance, and (c) achieves the global decision
in a finite number of iterations. The main idea of the
proposed two-step detection algorithm is to arrive at an
optimum global decision at each SN by taking advan-
tage of the spatially distributed information across the
network while combating flat fading.

In Section 2 we formulate the detection problem and intro-
duce some basic definitions from graph theory. Section
3 details the general fully distributed approach analysis
and Section 4 presents the proposed two-step distributed
algorithm. Then, Section 5 gives simulation results and in
Section 6 we draw conclusions.

2. Problem formulation

Consider the problem of detecting the presence of an
unknown deterministic signal s(n) by a WSN consist-
ing of M spatially distributed SNs. The measurement
at each SN (si(n)) is further corrupted by AWGN
(wi(n) ∼ N (0, σi

2)) and so the detection problem can be
formulated as the following binary hypotheses test:

H0 : yi (n) = wi (n) (1)

H1 : yi (n) = si (n) + wi (n) (2)

where N samples of the observed signal are gathered and
energy estimation is performed by each SN. So the ith SN
evaluates

T̃i =

N∑
n=1

(yi(n))
2
, i = 1, 2, . . . ,M (3)

which for large N , has a distribution that can be approx-
imated by a Gaussian [15]. Furthermore, the noise sam-
ples are assumed to be identically and independently dis-
tributed (i.i.d.) across time and space. It is not difficult
to show that

E
{
T̃i|H0

}
= Nσ2

i , Var
{
T̃i|H0

}
= 2Nσ4

i

E
{
T̃i|H1

}
=Nσ2

i (1 + ξi) ,Var
{
T̃i|H1

}
=2Nσ4

i (1+2ξi) (4)
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where ξi =
N∑

n=1
s2i (n) /Nσ2

i . The case where spatially

distributed SNs report to the FC (i.e., the centralized
approach) via dedicated parallel access channels (PAC)
is investigated in [3, 5]. Here, (equal) linear soft decision
combining at the FC gives:

Tf =

M∑
i=1

T̃i. (5)

Upon receiving the local test statistics (T̃i, ∀i), the FC
takes the final decision:

if Tf < Λf , decide H0

if Tf ≥ Λf , decide H1

}
(6)

where Λf is the FC detection threshold. The probability of
detection (Pd) for a fixed probability of false alarm (Pfa)
is [16]:

Pd=Q

(
Q−1 (Pfa)

√
Var {Tf |H0}−E {Tf |H1}+E {Tf |H0}√

Var {Tf |H1}

)
.

(7)

Now, as (1) and (2) are only the local hypotheses, our goal
is to perform reliably (i.e., with detection probability (7))
the (global) detection across M limited bandwidth SNs.
More precisely, we will investigate the fully distributed
approach (i.e., without a FC) where each SN (tasked with
the detection) shares iteratively its (current) test statistic
(quantized to qi bits) with its neighbors. The interaction
among SNs is determined by the communication topology
which is given by an undirected graph G = (V, E), where
V ={1, 2, . . . ,M} represents the set of M SNs and E ⊆
V×V is the set of edges {i, j}. The graph properties can be
represented by an adjacency matrix E ∈ R

M×M whose
entries are defined as

eij = eji =

{
1, if j ∈ Δi

0, otherwise.
(8)

We denote the ith SN neighbor set as Δi and |Δi| is the
cardinality/number of neighbors. The definition of the
graph Laplacian matrix (L ∈ R

M×M ) is L=D − E with
D=diag(|Δ1|, . . . , |ΔM |).
3. Fully distributed approach analysis

The centralized approach (where M SNs report to FC)
is susceptible to FC failure. Furthermore, forwarding the
data to a single processing unit would require the FC
to process a very large amount of information, especially
when the network is composed of large numbers of SNs.
Hence, distributed solutions are very attractive as the
computational load splits across the network. Further-
more, the global decision can be taken at each individ-
ual SN and the system is robust against SN failure. Even
though there are different distributed algorithms in the
literature (average consensus, diffusion and gossip-type
algorithms, to name just a few), here we will stick to the
average consensus algorithm [14].

3.1 Consensus algorithm with soft information exchange

The consensus algorithm allows us to initiate some global
action or decision in a fault-tolerant environment on-the-
fly, without choosing a SN in advance to act as a FC
(which would introduce a single point of failure). It main-
tains consistency in a distributed network and when some
of the SNs crash or start sending corrupted data due to
a hardware failure, the algorithm guarantees robustness.
At iteration k + 1, each SN i updates its test statistic
(Ti[k + 1]) as follows [14]:

Ti[k+1]=Ti[k]−ε
M∑
j=1

eij (Ti[k]−Tj [k]) , k≥0, i=1, · · · ,M

(9)
where 0 < ε < 1/dmax with dmax = max(|Δ1|, . . . , |ΔM |)
and Ti[0] = T̃i in (3). The time evolution in (9) can be
written as

T[k] = WkT[0], k ≥ 1 (10)

where W = I − εL and T[k] = [T1[k], T2[k], . . . , TM [k]]T .
The decision can be taken locally at the ith SN at the kth

iteration as follows:

if Ti[k] < Λi[k], decide H0

if Ti[k] ≥ Λi[k], decide H1

}
(11)

where Λi[k] is the threshold for the ith SN at the kth

iteration. The expectation and the variance under both
hypotheses are given as:

E {Ti[k]|Hp}p={0,1} = (WkE {T[0]|Hp})i (12)

Var {Ti[k]|Hp}p={0,1} = (Cov {T[k]|Hp})ii
= (WkCov(T[0]|Hp)W

k)ii (13)

where1 (a)i denotes the i
th element of vector a and (A)ij

denotes the (i, j) element of matrix A. For a fixed prob-
ability of false alarm (i.e., P i

fa[k] = Pfa, ∀i and ∀k) we

estimate the threshold for the ith SN at the kth iteration
as

Λi[k] = Q−1(Pfa)
√
Var {Ti[k]|H0}+E {Ti[k]|H0} (14)

and we can write probability of detection as before [16]:

P i
d[k]=

Q

(
Q−1(Pfa)

√
Var{Ti[k]|H0}+E{Ti[k]|H0}−E{Ti[k]|H1}√

Var{Ti[k]|H1}

)
.

(15)

Now, (15) establishes a relationship between the proba-
bility of detection (P i

d[k]) and the iteration number k at

1For a random vector x, E {x} denotes expectation
and Cov {x}=E[(x−E {x})(x−E {x})T ] is the covariance
matrix.
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the ith SN. It can be shown [14] that as k gets larger for
a connected network2, the performance of the distributed
detector (11) approaches that of the centralized detector
(6) (i.e., limk→∞ P i

d[k] = Pd, ∀i, see (7) and (15)).

3.2 Quantized consensus algorithm framework with lim-
ited bandwidth

Until now, we have considered distributed detection
assuming ideal exchange of information between SNs.
However, the communication rate in a WSN is limited
due to the fact that SNs are battery operated devices.
Here we propose a scheme, where SN i encodes the data
(using a simple uniform quantizer with qi bits) prior to
information exchange3. We also propose to establish a
link between any two SNs i and j based on the (known)
SNR at node j, i.e.

if SNRij < Υ, eij = eji = 0

if SNRij ≥ Υ, eij = eji = 1.

}
(16)

Now eij is defined in (8), Υ is a SNR threshold parameter
(see later) and SNRij is the received signal-to-noise ratio
(at SN j) defined as:

SNRij =
ptijh

2
ij

ζ0d
γ
ij

. (17)

Here ptij denotes the ith to jth SN transmit power, hij

is the flat-fading gain4 between the ith and jth SN, ζ0 is
the variance of the AWGN at each receiving SN (assumed
to be the same for simplicity), γ is the path loss coeffi-
cient and dij is the physical distance between SN i and
j (assumed to be known). We propose to quantize with
qi bits at SN i before transmitting to SN j and to satisfy
the capacity constraint between SNs i and j we require:

qi ≤ 1

2
log2 (1 + Υ) bits (18)

where we let qi = q, ∀i. Now, Υ establishes a relation-
ship between the number of bits that each SN is able to
transmit to its neighbors and also the topology of the
network that defines the connections between the SNs
(see (16)-(18)). A large Υ means fewer communication
links (see (16)) and so slower information diffusion across
the network. However, this will be counterbalanced by an

2A connected network is any network where there is a
path between every pair of SNs in the network.

3We assume that SNs transmit their observations
through a parallel access channel (PAC). This assumption
is reasonable for a small-scale WSNs.

4We assume that the channel coefficients are suffi-
ciently slowly varying to be considered constant for the
time interval necessary for the network to converge, within
a prescribed accuracy. This assumption is reasonable as
our proposed algorithm converges sufficiently fast.

increase in the number of bits that each SN can transmit
to its neighbors (see (18)). As a consequence, the quan-
tization noise variance (20) becomes negligible. On the
other hand, a small Υ establishes a more connected graph
and dictates a faster information diffusion across the net-
work. However, this allows less transmission bits resulting
in an increase in the quantization noise variance. It is now
clear that Υ establishes a relationship between transmis-
sion bits and the graph connectivity. With quantization,
the time evolution in (9) now becomes:

T̄i[k + 1]= T̄i[k]− ε
M∑
j=1

eij
(
T̄i[k]−[T̄j [k]]Q

)

= T̄i[k]−ε

M∑
j=1

eij
(
T̄i[k]−T̄j [k]−bj [k]

)
, k≥0, i=1, ...,M

(19)

with T̄i[0] = T̃i in (3). Now [T̄j [k]]Q = T̄j [k] + bj [k] rep-
resents quantization and bj [k] is the quantization noise
independent of wi (n) in (1), j = 1, 2, · · · M , ∀i and ∀n.
Assuming T̄j [k] ∈ [0, 2U ] and uniform quantization then:

Var {bj [k]} = σ2
bj =

U2

3× 22q
(20)

with E {bj [k]} = 0. Definingψ[k] = [ψ1[k], ψ2[k], . . . .ψM [k]]
T

with ψi[k] =
M∑
j=1

eijbj [k], then (19) becomes:

T̄[k] = WkT̄[0] + ε

k∑
z=1

Wz−1ψ[k − z], k ≥ 1 (21)

where T̄[k] is defined similar to T[k] in (10). The decision
for the ith SN at the kth iteration is again given in (11).
The expectation and the variance for the ith SN at the
kth iteration under both hypotheses is given as:

E
{
T̄i[k]|Hp

}
p={0,1} =

(
WkE

{
T̄[0]|Hp

})
i

(22)

Var
{
T̄i[k]|Hp

}
p={0,1} =

(
WkCov

{
T̄[0]|Hp

}
(Wk)︸ ︷︷ ︸

(A)

)
ii

+ ε2

(
k∑

z=1

Wz−1Cov {ψ[k − z]} (W z−1)

︸ ︷︷ ︸
(B)

)
ii

(23)

where Cov{ψ[k−z]} = U2

3 diag
(

|Δ1|
22q , |Δ2|

22q , · · · , |ΔM |
22q

)
.

Now, the detection performance for the ith SN at the kth

iteration can be evaluated using (15) (replacing Ti[k] by
T̄i[k]) by substituting the expressions from (22) and (23).
Note that as the dynamic system (21) evolves, the term
(B) in (23) accumulates. Next we show how the detection
performance for the ith SN at the kth iteration evolves
by analyzing the variance term (Var

{
T̄i[k]

}
) in (23).
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Proposition 1. From (23), the “scaled total variance”

1
M−1

M∑
i=1

Var
{
T̄i[k]

}

≤ Varmax
k

(
1

M−1
+ λ2k

2 (W)

)
+ ε2σ2

max

(
k

M−1
+

1−λ2k
2 (W)

1−λ2
2(W)

)
(24)

where Varmax
k = max(Var

{
T̄1[k]

}
, · · · ,Var{T̄M [k]

}
), σ2

max =

max(Var {ψ1[k]} , · · · ,Var {ψM [k]}) and λi(W), i = 1, · · · ,M
are the eigenvalues of W satisfying λM≤λM−1≤· · ·<λ1=
1.

Proof. The proof can be found in Appendix A.

As k becomes large, it is clear that the second term of (24)
grows and the performance of the distributed algorithm
using quantized test statistics does not converge across
the network to its counterpart of the centralized quantized
detector [3] (i.e., limk→∞ P i

d[k] �= Pd in (13) of [3], ∀i).
Now, it is also clear that the value of k establish a trade-
off between the local SNs test statistic improvement and
the quantization error degradation. There is a finite k to
stop the SNs collaboration (see later), wheres after that
value the quantization error overcomes the improvement
gain from this collaboration. So using this framework
(i.e., the consensus algorithm with quantization matched
to the channel capacity) we will now propose a two-
step approach (still using quantized test statistics shared
among SNs) that will now approach the performance of
the optimum centralized detector (6) (i.e., when using a
FC) and what is more important, it will converge across
the whole network.

4. Proposed two-step fully distributed detection

(i) FIRST STEP: We will run the quantized consensus
algorithm in (21) to improve the local version of the
test statistic at each SN. But now we will terminate the
algorithm at k = K1 (where the optimum5 value of K1

is found later from simulation results). We now have{
T̄ [K1]

}M

i=1
from (21) and we will use this to generate a

binary indicator random variable Ii[0] as follows

if T̄i[K1] < Λ1, Ii[0] = 0

if T̄i[K1] ≥ Λ1, Ii[0] = 1

}
(25)

where Λ1 is a local (first step) detection threshold that
is the same for all M SNs. We will adopt the following
global decision rule

if T̄f [K1] �= M, decide H0

if T̄f [K1] = M, decide H1

}
(26)

5Based on the simulation results, we find a finite K1

(to stop the collaboration) that is “optimum” in the sense
that Pd in (7) (i.e., effective upper bound) is sufficiently
well approximated (i.e., using T̄[K1]) and after that (i.e.,
for larger K1) this approximation degrades.

where T̄f [K1] =
M∑
i=1

Ii[0]. But the problem is now how to

evaluate T̄f [K1] in a distributed manner across the SNs.
This will be explained in step 2.
(ii) SECOND STEP: Here we will use [17] to show how

to effectively evaluate (26) by first sharing
{
Ii[0]

}M

i=1
and

then iteratively updating across the SNs as follows:

Ii[k+1] = Ii[k]
∧( ∧

j∈Δi

Ij [k]

)
, k = 0, 1, 2, · · · ,K2−1,

i = 1, 2, · · · ,M (27)

where K2 is the diameter of network6,“
∧

” denotes the
logical “and” operation and Δi is defined for (8). Note
that no quantization is needed and all Ii[K2] converge to
either 1 or 0. So now we can easily show:

If Ii[K2] = 0, ∀i ⇒ T̄f [K1] �= M, decide H0

If Ii[K2] = 1, ∀i ⇒ T̄f [K1] = M, decide H1.

}
(28)

and so Ii[K2] (at any SN) can be used to implement the
decision rule (26). Overall, the proposed two-step fully
distributed algorithm requires a finite (K1+K2) iterations
in total.

5. Simulations results

Here we will analyze the performance of our proposed
two-step distributed detection algorithm. First we have a
WSN with M SNs with arbitrary SN geometry, where the
distances dij in (17) between SNs i and j are assumed to
be known. The other parameters in (17) are ptij = 300,

γ = 2, ζ0 = 0.1 and h2
ij is an exponential random vari-

able (r.v.). Using the r.v. SNRij of (17) in (16), we then
construct two example topologies for different values of Υ
(see Fig. 1). These topologies will be used later for Fig.
4 and Fig. 5. We now generate the test statistics T̄i[K1]
in (25), via (21) for k = K1. As previously explained,
any Ii[K2] in (28) can be used to decide either H0 or
H1, and this will define the new global detection and
false alarm probabilities (i.e., P g

d and P g
fa respectively).

Here we use 105 Monte-Carlo simulations. Finally, ξa =

10 log10

(
1
M

M∑
i=1

ξi

)
= -9.5 dB (with all σ2

i terms different

for each ξi) in Figs 2-5.

Fig. 2 shows the global detection performance (P g
d ) for a

fixed probability of false alarm (P g
fa) parametrized against

Υ. It is clear that as the number (M) of SNs increases P g
d

improves. Furthermore, it is interesting to observe that
there exists an optimum Υ such that P g

d can be maximized

6The geodesic distance between two nodes in a (con-
nected) graph is the number of the edges (i.e., links) in
the shortest path connecting these two nodes. The diam-
eter of a graph is the maximum geodesic distance taken
over all possible pairs of nodes in the graph.
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Figure 1. Two different communication topologies (generated via
((16) and (17)), with the quantization bits following (18): (left)
M = 17, Υ = 20, q = 2 bits; (right) M = 13, Υ = 72, q = 3 bits.

0 20 40 60 80
0.55

0.6

0.65

0.7

0.75

Gl
ob
al
pro
bo
f
de
tec
tio
n,
Pg d

M=13
M=15
M=17

M = 13

M = 15

M = 17
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Figure 3. Receiver operating characteristic for the proposed two
step distributed scheme with Υ = 20 in (16), U = 2, N = 20 and
K1 = 10.

for any M . In Fig. 3, we examine the receiver operating
characteristic (ROC) parametrized against M for the pro-
posed two-step algorithm, illustrating how P g

d improves
as M increases. The ROC performance7 among different
schemes is illustrated in Fig. 4 and Fig. 5, where Fig.
4 shows the advantage of our proposed distributed two-
step scheme over only the first step part (at SN 6). Also,
if Υ is carefully chosen the two-step proposed scheme
performance approaches that of the centralized detector

7SN 6 (Fig. 4) and SN 3 (Fig. 6) were chosen for com-
parison purposes as they possess the best performances
among M SNs for each case.
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(i.e., with FC and no quantization) in (6). Fig. 5 shows
the behavior of the proposed distributed two-step algo-
rithm compared to the quantized (2 bits) equal combin-
ing scheme in [3]. As expected, there is an optimum K1

that maximizes P g
d and after that P g

d decreases. Finally,
Fig. 6 shows the P g

d performance characterization against
the average SNR (ξa) for 4 different schemes showing the
performance improvement of our proposed scheme.
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6. Conclusion

In this paper, we propose a fully distributed two-step
consensus-based detection algorithm via SNs sharing
with their neighbors a quantized version of the received
energy test statistic. We relate the communication topol-
ogy with the number of bits to be shared among SNs and
through numerical results we show that there is an opti-
mum topology (for a fixed first step number of iterations
(K1)) such that P g

d (the global probability of detection)
is maximized. In addition, we show that there is an opti-
mum K1 to terminate the first step SN collaboration (for
any arbitrary topology) and after that the P g

d perfor-
mance declines. When K1 and Υ (SNR threshold in (16))
are appropriately chosen, the detection performance of
the proposed quantized two-step detector approaches the
centralized unquantized equal combining scheme per-
formance of (6).Overall, our algorithm requires a finite
number of iterations, (K1 +K2). While the assumed pro-
posal was based on the (non-optimal) equal combining
strategy of (5), future work will develop a similar two-
step approach based on optimal linear combining of the
test statistics.

A Appendix. Proof of Proposition 1

Consider (24):

1

M − 1

M∑
i=1

Var
{
T̄i[k]

}
=

1

M − 1
tr

(
Cov

{
T̄[k]|Hp

}
{p=0,1}

)

=
1

M − 1
tr

(
(WkCov(T̄[0]|Hp)W

k

)

+
ε2

M − 1
tr

(
k∑

z=1

Wz−1Var {ψ[k − z]}Wz−1

)

≤ 1

M − 1

(
Varmax

k tr
(
W2k

)
+ ε2σ2

maxtr
( k∑

z=1

W2z−2
))

(29)

where tr(.) denotes the trace operator, Varmax
k =

max(Var
{
T̄1[k]

}
,Var

{
T̄2[k]

}
, · · · ,Var{T̄M [k]

}
) and

σ2
max = max(Var {ψ1[k]} , · · · ,Var {ψM [k]}). Now we can

show that

1

M − 1

(
Varmax

k tr
(
W2k

)
+ ε2σ2

maxtr
( k∑

z=1

W2z−2
))

≤ Varmax
k

(
1

M − 1
+ λ2k

2 (W)

)

+ ε2σ2
max

(
k

M − 1
+

1− λ2k
2 (W)

1− λ2
2(W)

)
(30)

where λi(W), for i = 1, 2, · · · ,M are the eigenvalues of
W satisfying λM ≤ λM−1 ≤ · · · < λ1 = 1 and we have

used tr(W) =
M∑
i=1

λi(W) and

k∑
z=1

λz
i (W) =

⎧⎪⎨
⎪⎩

λi(W)− λk+1
i (W)

1− λi(W)
, for i = 2, 3, · · · ,M

k, for i = 1.
(31)
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