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ABSTRACT
We consider the decentralized detection of an unknown deter-
ministic signal in a spatially uncorrelated distributed wireless
sensor network. N samples from the signal of interest are
gathered by each of the M spatially distributed sensors, and
the energy is estimated by each sensor. The sensors send their
quantized information over orthogonal channels to the fusion
center (FC) which linearly combines them and makes a final
decision. We show how by maximizing the modified deflec-
tion coefficient we can calculate the optimal transmit power
allocation for each sensor and the optimal number of quanti-
zation bits to match the channel capacity.

Index Terms— Distributed detection, soft decision, wire-
less sensor networks.

1. INTRODUCTION

Wireless sensor networks (WSNs) spatially deployed over a
field can monitor many phenomena. Because of their rela-
tively low cost and robustness to node failures they are receiv-
ing significant attention. A typical wireless sensor network
consists of a fusion center (FC) and a number of geograph-
ically distributed sensors. Each individual sensor makes an
estimate of a particular quantity (in our case, the energy of
the received signal), and then sends a quantized version to the
(FC), where all the sensor outputs are optimally combined to
arrive at a global detection decision. WSNs have been con-
sidered for different applications such as localizing and track-
ing acoustic targets, voice activity detection, and spectrum
sensing for cognitive radios. In such applications, accurate
distributed observations are fundamental to reduce detection
errors.

The problem of decentralized detection (and estimation)
in a WSN assuming error-free communication has been ex-
tensively tackled in [2], [3], [4] to name just a few. For a target
MSE performance, the authors in [3] proposed the minimiza-
tion of the summation of sensor transmit powers, while [4]
suggested minimization of the Euclidean norm of the trans-
mit powers. In both [3] and [4] the number of bits used for

quantization to transmit data from each sensor to the FC is
constrained to be less than channel capacity.

In [10] asymptotic results are provided for distributed de-
tection on joint power constraint in wireless sensor networks
while in [11] a finite number of sensors with both individ-
ual and joint power constraints is considered for distributed
detection over MIMO channels. A decentralized strategy for
optimizing the estimation MSE subject to a network rate con-
straint is presented in [5]. A more recent work in [6] proposed
optimum training and data power allocation with inhomoge-
neous sensors using binary phase shift keying modulated de-
cisions at the FC for distributed detection.

In this work (for a finite number of sensors) we derive
analytically the optimal transmit power and number of quan-
tization bits for each sensor, and investigate the detection per-
formance of the sensor network over flat fading transmission
links. Our work differs from [3] in that instead of sending the
quantized version of the sensor observations, we propose to
send the quantized local test statistics (i.e., the sample energy)
to the fusion center. In [3] the authors assume full knowl-
edge of the deterministic signal (s) to be detected, while here
we derive a scheme to detect an unknown deterministic sig-
nal. Moreover, our proposed optimal power and bit alloca-
tion scheme is a function of the local SNR at each individual
node. We employ a linear fusion rule at the FC and adopt
the modified deflection coefficient (MDF) [7] as the detection
performance criterion, while [3] uses a matched filter.

2. SYSTEM MODEL

Consider the problem of detecting the presence of an un-
known deterministic signal s(n) by a sensor network con-
sisting of M sensors. N samples of the observed signal are
gathered and the energy estimation is performed by each
sensor. The measurement at each sensor si(n) is further
corrupted by AWGN wi(n) ∼ N (0, σi

2). Each node then
sends its information (quantized to Li bits) to the FC for soft
decision combining. There are two hypotheses:
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H0 : xi (n) = wi (n)

H1 : xi (n) = si (n) + wi (n)

for i = 1, 2, . . . ,M and n = 1, 2, . . . , N. (1)

The ith sensor evaluates

Ti =

N∑
n=1

(xi (n))2 i = 1, 2, . . . ,M (2)

which for large N can be approximated by a Gaussian distri-
bution [8]. It is not difficult to show that

E {Ti|H0} = Nσ2
i , Var {Ti/H0} = 2Nσ4

i

E {Ti|H1}=Nσ2
i (1 + ξi) ,Var {Ti|H1}=2Nσ4

i (1+2ξi) (3)

where ξi =
N∑
n=1

s2i (n) /Nσ2
i .

3. QUANTIZED SOFT DECISION COMBINING

Here we will investigate linear soft decision combining at the
FC. This has superior performance to the hard decision ap-
proach, but it entails additional complexity at the FC. Soft
decision combining also puts additional demands on both the
limited power resources of the sensors and effective utiliza-
tion of the sensor to FC channel capacity. So here we propose
a scheme, where each individual sensor has to quantize its
observed test statistic (Ti) to Li bits. To satisfy the capacity
constraint on each sensor to FC channel, we require:

Li ≤
1

2
log2

(
1 +

pih
2
i

ζ0

)
bits (4)

where pi denotes the transmit power of sensor i, hi is the flat
fading gain between sensor node i and the FC, and ζ0 is the
variance of the AWGN at the FC. The quantized test statistic
(T̂i) at the ith sensor can be modeled as

T̂i = Ti + vi (5)

where vi is quantization noise independent of wi (n) in (1).
Assuming uniform quantization with Ti ∈ [0, 2U ], then

σ2
vi =

U2

3× 22Li
. (6)

Linearly combining
{
T̂i

}M
i=1

at the FC gives

Tf =

M∑
i=1

αiT̂i (7)

where the weights
{
αi
}M
i=1

will be optimized in section 4.

Again, for large M , Tf will be approximately Gaussian
and we can show that:

E {Tf |H0} =

M∑
i=1

αi
(
Nσ2

i + U
)

E {Tf |H1} =

M∑
i=1

αi
(
Nσ2

i (1 + ξi) + U
)

Var {Tf |H0} =

M∑
i=1

α2
i

(
2Nσ4

i + σ2
vi

)
Var {Tf |H1} =

M∑
i=1

α2
i

[
2Nσ4

i (1 + 2ξi) + σ2
vi

]
. (8)

The FC makes the following decisions:

if Tf < Λf , decide H0

if Tf > Λf , decide H1

}
(9)

where Λf is the FC detection threshold. The probabilities of
false alarm and detection at the FC are respectively:

Pfa = Pr (Tf > Λf |H0) = Q

(
Λf − E {Tf |H0}√

Var {Tf |H0}

)

Pd = Pr (Tf > Λf |H1) = Q

(
Λf − E {Tf |H1}√

Var {Tf |H1}

)
(10)

whereQ(.) is theQ-function. And from (10) we can write [9]

Pd = Q

(
Q−1 (Pfa)

√
Var {Tf |H0} −Ψ√

Var {Tf |H1}

)
(11)

where

Ψ = E {Tf |H1} − E {Tf |H0} = N

M∑
i=1

αi
(
σ2
i ξi
)
. (12)

So using (4), (6) and (8) in (11) we get

Pd=Q


Q−1 (Pfa)

√√√√√ M∑
i=1

α2
i

2Nσ4
i + U2

3

(
1+

pih
2
i

ζ0

)
−Ψ

√√√√√ M∑
i=1

α2
i

2Nσ4
i (1 + 2ξi) + U2

3

(
1+

pih
2
i

ζ0

)



.

(13)

The formula in (13) imposes a relationship between the prob-
ability of detection, the power allocated to each transmission
(sensor to the FC) link and the weight (αi in (7)) for each
individual link.

4. OPTIMUM WEIGHT COMBINING AND POWER
ALLOCATION

In this section, we would like to find the optimum weighting
vector (αopt) and the optimum power allocation vector (popt)
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that maximize (13) (see definiton later), under the constraint
of a maximum transmit power budget (Pt). However, max-
imizing (13) w.r.t. α and p is difficult and no closed form
solution can be found. So we will approximate the optimal
solution by adopting the modified deflection coefficient [7] as
an alternative function to be maximized. This is given as:

d̃2 (α,p) =

(
E {Tf |H1} − E {Tf |H0}√

Var {Tf |H1}

)2

=

(
rTα

)2
αTGα

(14)
where

r = [Nσ2
1ξ1, Nσ

2
2ξ2, ......, Nσ

2
MξM ]T

α = [α1, α2, . . . , αM ]T , p = [p1, p2, . . . , pM ]T

G= 2Ndiag

(
σ4
1 (1+2ξ1)+

σ2
v1

2N , ..., σ
4
M (1+2ξM )+

σ2
vM

2N

)
.

Note that the dependence of d̃2 (α,p) on the transmit power
vector p enters (14) through the

{
σ2
vi

}M
i=1

terms via (4) and
(6). Now, our optimization problem is:(
αopt,popt

)
= arg max

α,p

(
d̃2 (α,p)

)
subject to

M∑
i=1

pi ≤ Pt for pi ≥ 0, i = 1, 2, . . . ,M.

(P1)

We assume that the fusion center (FC) has full knowledge of
quantities such as the channel gains (hi) from sensors to FC,
sensing noise variances (σ2

i ) at the different sensors, and the
test statistics

{
Ti
}

in order to be able to obtain the ξi quantity.
In the case where the conditions affecting the network do not
change fast, the above assumptions are realistic. Furthermore,
in the cases where we know the position of the target (i.e.,
we know where the phenomenon to be detected happens), the
assumption for ξi is a valid assumption. Our proposed scheme
can be used to detect a spatial resonance in a bridge, to detect
a fire event in a factory to name just a few.

4.1. Weight combining optimization

Further, via the transformation β = G1/2α, the deflection
coefficient (14) becomes:

d̃2 (β,0) =
βTMβ

||β||2
, M = G−T/2rrTG−1/2. (15)

So,αopt = G−1/2βopt, and βopt is the normalized eigenvec-
tor corresponding to the maximum eigenvalue of M . We no-
tice that the matrixM defined in (15) is also a rank 1 matrix.
The optimum unnormalized weighting vector can be calcu-
lated as: αopt = c

[
G−1/2(G

−1/2
)Tr
]

= c
(
G−1r

)
. Now

it can be easily shown thatαopt can be expressed as a function

of local quantities:

αopt = c



Nσ2
1ξ1

2Nσ4
1(1+2ξ1)+σ2

v1
Nσ2

2ξ1
2Nσ4

2(1+2ξ1)+σ2
v2

...
Nσ2

MξM
2Nσ4

M (1+2ξM )+σ2
vM


(16)

Now (16) establishes a relationship between the optimum
weighting vector (αopt) and the sensor transmit power (p)
through the σ2

vi quantity ( see definition (6)).

4.2. Optimum power allocation

We now substitute αopt into (14) with c = 1 for simplicity
and we then have the following optimization problem to ob-
tain popt:

popt = arg max
p

(
d̃2 (αopt,p)

)
subject to

M∑
i=1

pi ≤ Pt for pi ≥ 0, i = 1, 2, . . . ,M

which is easily shown to be equivalent to (P3):

maximize
p

M∑
i=1

N2σ4
i ξ

2
i

2Nσ4
i (1 + 2ξi) + U2

3

(
1+

pih
2
i

ζi

)


subject to

M∑
i=1

pi ≤ Pt, pi ≥ 0, i = 1, 2, . . . ,M.

(P3)

The aim of solving the above optimization problem is to dis-
tribute in an optimum way the total power budget among M
distributed sensors such that the probability of detection is
maximized. We consider the total power budget constraint
in order to investigate the following: given a constant total
power budget (fixed cost of our network) how we can maxi-
mize the probability of detection at the fusion center by con-
trolling the sensor transmit power (i.e., the number of active
sensors)? As it will be shown later in the simulations results
by controlling the transmit power in an optimum way we can
select a number of active sensors while keeping those that
have very poor sensor to FC channels in sleeping mode. In
this way, the sensors that require very high power will not
transmit and so provide longer battery life. After justifying
our constrain choice, (P3) can be solved analytically using
the Lagrangian function :

M∑
i=1

N2σ4
i ξ

2
i

2Nσ4
i (1 + 2ξi) + U2

3

(
1+

pih
2
i

ζi

)

−λ0

(
M∑
i=1

pi − Pt

)
+

M∑
i=1

µipi



and imposing the Karush-Kuhn-Tucker (K.K.T) conditions
[13]:

N2σ4
i ξ

2
i2Nσ4

i (1+2ξi)+
U2

3

(
1+

pih
2
i

ζi

)
2
×

U2 × h2
i

ζi

3
(

1+
pih2

i

ζi

)2 −λ0+µi = 0

(17)

λ0

(
M∑
i=1

pi − Pt

)
= 0

M∑
i=1

pi − Pt ≤ 0

λ0 ≥ 0, µipi = 0, i = 1, 2, . . . ,M

µi ≥ 0, pi ≥ 0, i = 1, 2, . . . ,M. (18)

Solving the K.K.T conditions in (17) and (18) gives:

pi,opt=

[
1√
λ0

(
ξiU
√

3

6σ2
i (1+2ξi)

√
h2
i

ζi

)
− U2

6Nσ4
i (1+2ξi)

h2
i

ζi

− ζi
h2i

]+
(19)

where [x]
+ equals 0 if x < 0, otherwise it equals x, and λ0

can be evaluated in similar way as in [4] by imposing equality

in the constraint
M∑
i=1

pi = Pt in (P3) .

5. SIMULATION RESULTS

We will now present some simulations to examine the ef-
fectiveness of our approach. For all simulations, we esti-
mate Λf in (9) by substituting a fixed value for Pfa. We
let all the σ2

i terms at each sensor be different, such that

10 log10

(
M∑
i=1

ξi

)
= -3 dB, where ξi =

N∑
n=1

s2i (n)

Nσ2
i

. In ad-

dition we let ζ0 = 0.1 in (4). We will also refer to “equal
weight” combining in (7) ( i.e., αi = 1√

M
,∀i) and use this as

a benchmark. Finally, we choose Li with equality in (4). In
Fig. 1, the two lower plots show the sensor transmit power
pi and the number of bits allocated to quantize Ti for the ith

sensor to the FC channel respectively. The actual channel
coefficients (randomly chosen for M = 10) are in the up-
per plot. Clearly with optimum linear weighting in (7) we
allocate more power and bits to the best channels unlike the
non-optimum equal weighting. In the case of the optimum
combining, nodes that have very bad channels (i.e.,nodes that
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Fig. 1. Equal weight and optimal weight combining transmit
power and channel quantization bits allocation for Pfa = 0.1,
Pt = 10 and M = 10.
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Fig. 2. Probability of detection (Pd) for Pfa = 0.1 and opti-
mum weight combining .
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Fig. 3. Probability of detection (Pd) for Pfa = 0.1, Pt = 10
and optimum weight combining .

require very high power to transmit) will be censored (i.e.,
will not transmit even one bit). In Fig. 2, as expected,
increasing either the number of received samples (N ) or the
maximum power (Pt), improves Pd. In Fig. 3, we illus-
trate how Pd improves with increasing the number of sensors
(M ). And in Fig. 4, we re-examine Fig. 3 for M = 10
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Fig. 4. Probability of detection (Pd) for two different weight-
ing schemes for Pfa = 0.1 and Pt = 10 .
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Fig. 5. Receiver operating characteristic with Pt=10 and
M = 10 for two different weighting schemes.

and compare optimal and non-optimal weighting, showing
the advantage of optimal weighting over equal weighting in
(7). Finally, Fig. 5 shows the receiver operating characteristic
(ROC) parametrized against the number of samples (N ) for
both optimal and equal weighting.

6. CONCLUSION

We have shown how to perform distributed detection, via sen-
sors transmitting a quantized version of the received energy
test statistic to the FC. In addition we have calculated the op-
timal linear combining coefficients at the FC and the optimal
transmit power for each sensor in order to maximize Pd. Al-
though we maximized the modified deflection coefficient (as
an approximation to maximizing Pd), the simulations have
shown that this approach still allocates sensor transmit pow-
ers and quantization bits in a intuitively optimal way. Future
work will investigate a general (non-linear) optimal combin-
ing strategy at the FC.
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