
State-Regularized Policy Search for Linearized Dynamical Systems

Hany Abdulsamad1 Oleg Arenz2 Jan Peters1,3 Gerhard Neumann4

1: IAS, TU Darmstadt, Darmstadt, Germany
2: CLAS, TU Darmstadt, Darmstadt, Germany
3: Max Planck Institute, Tübingen, Germany

4: L-CAS, University of Lincoln, Lincoln, United Kingdom

Abstract
Trajectory-Centric Reinforcement Learning and Trajectory
Optimization methods optimize a sequence of feedback-
controllers by taking advantage of local approximations of
model dynamics and cost functions. Stability of the policy up-
date is a major issue for these methods, rendering them hard
to apply for highly nonlinear systems. Recent approaches
combine classical Stochastic Optimal Control methods with
information-theoretic bounds to control the step-size of the
policy update and could even be used to train nonlinear deep
control policies. These methods bound the relative entropy
between the new and the old policy to ensure a stable pol-
icy update. However, despite the bound in policy space, the
state distributions of two consecutive policies can still differ
significantly, rendering the used local approximate models in-
valid. To alleviate this issue we propose enforcing a relative
entropy constraint not only on the policy update, but also on
the update of the state distribution, around which the dynam-
ics and cost are being approximated. We present a derivation
of the closed-form policy update and show that our approach
outperforms related methods on two nonlinear and highly dy-
namic simulated systems.

Introduction
Policy Search is a powerful class for learning optimal con-
trol policies of complex systems (Deisenroth, Neumann, and
Peters 2013). By allowing a very broad description of a task,
it is suitable for solving challenging applications, where
expert knowledge is scarce or can not be easily analyti-
cally encoded (Kober, Bagnell, and Peters 2013; Rosenstein
and Barto 2001). Trajectory-Centric Policy Search (TCPS)
methods optimize a sequence of feedback-controllers by tak-
ing advantage of local approximations of model dynamics
and cost function. They have been particularly successful in
training deep neural network representations of policies for
complex tasks (Levine et al. 2016).

Many TCPS methods rely on Stochastic Optimal Con-
trol (SOC) with learned linearized dynamics. SOC with lin-
earized dynamics is an established Trajectory Optimization
method for controlling nonlinear systems. By alternating be-
tween linearizing the system dynamics and optimizing local
Linear-Quadratic Regulators (LQR) in closed-form, it of-
fers a general scheme for finding locally optimal solutions

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and approaching control problems from a classical model-
based perspective. Fundamental work on SOC includes the
Differential Dynamic Programming (DDP) algorithm (Ja-
cobson and Mayne 1970), the Approximate Inference Con-
trol (AICO) algorithm (Toussaint 2009; Rawlik, Toussaint,
and Vijayakumar 2012), the iterative Linear Quadratic Gaus-
sian (iLQG) algorithm (Todorov and Li 2005; Tassa, Erez,
and Todorov 2012), iLQG with a regularized cost function
(Rueckert et al. 2014), and a maximum entropy formulation
of iLQG (Levine and Abbeel 2014). A key element in the
stability of such procedure is a mechanism to control the
step size of the policy update in a principled manner. Too
aggressive policy updates often lead the trajectory distribu-
tion into regions where the used local approximations of the
dynamics model are invalid, causing oscillations or even di-
vergence of such algorithms. The aforementioned methods
confront this problem by using a number of regularizations
to guarantee stable learning.

The maximum entropy version of iLQG (maxEnt-iLQG),
introduced in the Guided Policy Search (GPS) algorithm
(Levine and Koltun 2013; Levine and Abbeel 2014), uses
a relative entropy bound on the trajectory distribution to
regularize the policy update. This regularization improves
the robustness of learning and has been very successful for
training neural network policies. It is trivial to show that a
bound on the trajectory distribution is equivalent to an over-
all bound on the policy update for the whole trajectory. Al-
though such a bound significantly improves the learning be-
havior, it still does not directly limit the step-size in the state
distributions of the update. However, as the state distribu-
tions are used to obtain a new local approximation of the sys-
tem model, the stability of the policy update can only be con-
trolled indirectly. In order to guarantee consistent learning,
these methods implicitly assume that small changes in the
policy induce only small changes in the state-action distribu-
tion, under which the linearization of dynamics and quadra-
tization of cost take place. Hence, we are either restricted to
close-linear dynamical systems, or overly conservative pol-
icy updates must be enforced.

In this article, we introduce a new bound for regulariz-
ing Stochastic Optimal Control methods that are based on
local linearization of the system dynamics and quadratiza-
tion of the cost function. By applying a relative entropy
constraint on the resulting state distributions, we limit the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/82961119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

state distribution from changing drastically, resulting in tra-
jectories that stay within the narrow validity scope of the
approximated local models. We present a unifying deriva-
tion for iLQG algorithms with information-theoretical con-
straints and show that our method allows for more effec-
tive policy updates and finds solutions of higher quality. In
our experimental evaluation we use two simulated multi-link
systems for comparison with state of the art under a range of
different conditions.

Notation
In the scope of this article we concentrate on finite-horizon
Markov Decision Processes (MDP). A finite-MDP is a math-
ematical abstraction of an environment defined over a state
space S ⊆ Rds and an action space A ⊆ Rda with a fixed
number of time steps T . The probability of a state transi-
tion from state s to state s′ by applying action a is gov-
erned by the Markovian time-independent density function
P(s′|s, a). The cost ct(s, a) is a time-variant function of the
state s and action a. The policy πt(a|s) from which the ac-
tions are drawn is a time-variant function determining the
probability of an action a given a state s at a time step t < T .

The general objective of a finite-horizon Optimal Con-
trol problem is to minimize the sum of expected cost∑T−1
t=1

∫
s

∫
a
ct(s, a)µt(s)πt(a|s)dads, where µt(s) is the

state distribution induced under the current policy distri-
bution πt(a|s). General solutions to this problem are rare
and restricted to a small class of systems. Aside from dis-
crete systems, the most important exception are systems
with linear-Gaussian dynamicsP(s′|s, a) = N (s′|As+ba+
c,Σs) and quadratic cost functions in the state and action
ct(s, a) = sTRs+aTHa+sT r+aTh+sTWa+c0. Ziebart,
Bagnell, and Dey show that the optimal controller for a sys-
tem adhering to these so called LQG assumptions can be
derived in closed-form by applying Dynamic Programming
(DP) (Bellman 1956) to compute the optimal state and state-
action value functions, Vt(s) andQt(s, a). The resulting op-
timal policy is a time-varying linear-Gaussian distribution
πt(a|s) = N (a|Kts+ kt,Σt,a).

Related Work
In the following section we list the contributions of the most
fundamental and successful approaches in Stochastic Opti-
mal Control under linearized dynamics and motivate our fur-
ther inquiry into the subject.

Differential Dynamic Programming
Jacobson and Mayne (1970) introduce Differential Dynamic
Programing. It follows the main scheme of SOC methods.
By applying Dynamic Programming on the perturbations of
the state-action value functionQt(δs, δa), the authors derive
an optimal local linear controller δa∗t that minimizes the ex-
pected cost-to-go

δa∗t = argmin
δa

Qt(δs, δa)

= −Q−1aa,t(Qa,t +Qas,tδs) = Ktδs+ kt,

where Qa,t, Qaa,t and Qas,t are the Jacobians and Hessians
ofQt(δs, δa). Applying the new policy to the nonlinear sys-
tem to get a new trajectory completes one cycle of DDP.
This formulation greedily exploits the local dynamics and
produces policies that can be arbitrarily different between
iterations, undermining the locality of the linearization. In
most cases this leads to divergence of the learning. The au-
thors address this issue by introducing a hand-tuned regular-
ization µ to the action-Hessian Q̃aa,t = Qaa,t + µI, which
is equivalent to applying an additional cost term for straying
away from the policy inducing the current trajectory.

Iterative Linear Quadratic Gaussian
Iterative Linear Quadratic Gaussian aims to correct the
shortcomings of DDP by proposing several improvements.
Tassa, Erez, and Todorov (2012) artificially introduce a new
regularization on the state cost, that punishes moving far
from the last mean trajectory. Furthermore, they introduce
a parameter α ∈ [0, 1] to the updated policy a∗t = Ktδs +
αkt + at. The parameter α scales down the exploitation of
local approximations in the action space and is optimized
based on a heuristic that takes into consideration the dis-
crepancy between the expected and actual cost.

Maximum Entropy iLQG
Levine and Abbeel (2014) introduce Maximum Entropy
iLQG as an equivalent to iLQG in a completely stochastic
Policy Search setup. However, the authors discard the state
regularization introduced in earlier iLQG work. Maximum
Entropy iLQG was originally formulated with a Kullback-
Leibler-Divergence (KLD) constraint on the update of the
trajectory distribution p(τ), where τ is a set of consecutive
states and actions {s1, a1, ..., aT−1, sT }. For the purpose of
this article we transform the optimization problem into a
state-action notation. As a result the original KLD constraint
can be rewritten as follows

(1)

∫
τ

p(τ) log
p(τ)

q(τ)
dτ

=

∫
τ

p(τ) log
µ1(s)

∏T−1
t=1 P(s′|s, a)πt(a|s)

µ1(s)
∏T−1
t=1 P(s′|s, a)qt(a|s)

dτ.

It becomes trivial to show that such a constraint is equivalent
to an overall expected upper bound on the update of the pol-
icy distribution. Thus, the whole optimization problem can
be reformulated as follows

argmin
πt(a|s)

T−1∑
t=1

∫
s

∫
a

ct(s, a)µt(s)πt(a|s)dads, (2a)

s.t.
∫
s

∫
a

µt(s)πt(a|s)P(s′|s, a)dads = µt+1(s′), (2b)

T−1∑
t=1

∫
s

µt(s)

∫
a

πt(a|s) log
πt(a|s)
qt(a|s)

dads ≤ ε, (2c)∫
a

πt(a|s)da = 1, µ1(s) = p1(s), (2d)

where qt(a|s) is the policy distribution of the last iteration
and ε is the bound hyperparameter. A forward pass con-
straint, Eq(2b), propagates the initial state distribution µ1(s)
under the approximated transition dynamics P(s′|s, a) and
current policy πt(a|s) to obtain the state distribution µt(s) at
each time step. This constraint can be calculated in closed-
form under linear-Gaussian dynamics and policy. Finally,
the relative entropy constraint, Eq(2c), is transformed into
the sum of expected KLD between πt(a|s) and qt(a|s) un-
der the distribution µt(s).

By solving the primal problem using the method of La-
grangian multipliers (Boyd and Vandenberghe 2004), the op-
timal closed-form policy update is a softmax distribution

π∗t (a|s) ∝ exp
(Qt(s, a)

α

)
. (3)

Qt(s, a) is the state-action value function, which includes a
policy-dependent term that augments the effective cost opti-
mized by maxEnt-iLQG as given in the equation

(4)
Qt(s, a) = ct(s, a) + α log qt(a|s)

+

∫
s′
Vt+1(s′)P(s′|s, a)ds′.

The state value function Vt(s) and α are Lagrangian multi-
pliers associated with the transition dynamics and KLD con-
straints respectively. By plugging the optimal policy update,
Eq(3), back into the primal problem we get the following
dual objective

(5)
G =

∫
s

V1(s)p1(s)ds−
T∑
t=1

∫
s′
Vt(s

′)µt(s
′)ds′ + αε

+

T−1∑
t=1

∫
s

αµt(s) log

∫
a

exp
(Qt(s, a)

α

)
dads

By taking the gradient of G w.r.t. µt(s) and Vt(s), we obtain
two optimality conditions, a backward and a forward pass,
for calculating the optimal state value function V ∗t (s) and
state distribution µ∗t (s) in closed-form

V ∗t (s) = α log

∫
a

exp
(Qt(s, a)

α

)
da, (6a)

µ∗t+1(s′) =

∫
s

∫
a

µt(s)πt(a|s)P(s′|s, a)dads, (6b)

whereas the gradient w.r.t. α reflects the original bound

∂G
∂α

= ε−
T−1∑
t=1

∫
s

µt(s)

∫
a

πt(a|s) log
πt(a|s)
qt(a|s)

dads, (7)

allowing us to optimize α by applying gradient ascent on the
dual objective, that finally simplifies to

G(µ, V, α) =

∫
s

V ∗1 (s)µ1(s)ds+ αε, (8)

when the optimality conditions Eq(6a) and Eq(6b) are met.

State Action Relative Entropy Regularization
While enforcing a policy KLD bound grants us some con-
trol over the exploration process, it still avoids the main
issue regarding learning with approximate models. Partic-
ularly, it ignores that these approximations are valid only in
a very small region around the current state distribution. Ap-
proaches, like maxEnt-iLQG, that regularize only the action
are prone to greedy exploitation of the state, which intro-
duces considerable errors into the dynamics and cost unless
conservative updates are applied.

To address this issue we propose the introduction of a new
relative entropy constraint on the update of the state distribu-
tion. Such a constraint gives an explicit guarantee regarding
the integrity of the linear or quadratic approximation. Fur-
thermore, we suggest spreading the previous action bound
over the whole trajectory, by setting an explicit upper bound
for every time step instead of the expected overall bound
maxEnt-iLQG enforces. In the following we write the full
optimization problem with all constraints

argmin
πt(a|s)

T−1∑
t=1

∫
s

∫
a

ct(s, a)µt(s)πt(a|s)dads, (9a)

s.t.
∫
s

∫
a

µt(s)πt(a|s)P(s′|s, a)dads = µt+1(s′), (9b)

∀t < T

∫
s

µt(s)

∫
a

πt(a|s) log
πt(a|s)
qt(a|s)

dads ≤ εt, (9c)

∀t < T

∫
s

µt(s) log
µt(s)

qt(s)
ds ≤ ηt, (9d)

∀t < T

∫
a

πt(a|s)da = 1, µ1(s) = p1(s), (9e)

where qt(s) is the state distribution induced by the policy
qt(a|s) and ηt are the state bound hyperparameters. The
modification of the policy bound has two conflicting impli-
cations. On the one hand, it is important for imposing the
state constraint, as it introduces more Lagrangian multipli-
ers that provide the optimization with more degrees of free-
dom to find a local solution to satisfy both constraints. On
the other hand, it makes the policy updates more conserva-
tive, since it limits the possibility of modulating the action
updates on the trajectory-level and may thus inhibit explo-
ration in regions of the trajectory associated with lower cost.
However, this issue can be ultimately elevated by optimizing
the bound hyperparameters accordingly. We also mention
the possibility of setting a softer state bound by transform-
ing Eq(9d) to constrain the overall sum of state distribution
divergences over all time steps.

We solve this optimization analogously to our reformula-
tion of maxEnt-iLQG by starting from the primal problem
with the Lagrangian function. The resulting optimal policy
update retains its form, Eq(3), while the state-action value
function Qt(s, a) gains a new state-dependent cost term re-
flecting the newly introduced state constraints

(10)
Qt(s, a) = ct(s, a) + α log qt(a|s)− γt log

µt(s)

qt(s)

− γt +

∫
s′
Vt+1(s′)P(s′|s, a)ds′,

Algorithm 1: State Action Relative Entropy Regulariza-
tion for Trajectory Optimization (STATO)

input : εt, ηt, P , ct, µ1, qt
output: π∗t , µ∗t , V ∗t
initialize: αt, γt
while dual objective G not at maximum do

pt ← qt
do

Vt, πt ← backwardPass(pt, qt,P, ct, αt, γt)
µt ← forwardPass(µ1,P, πt)
pt ← µt

while KLD(pt||µt) > δ
G ← updateDual(Vt, µt, αt, γt, εt, ηt)
∂G
∂αt

,
∂G
∂γt
← dualGradient(µt, πt, qt, εt, ηt)

αt ← αt +
∂G
∂αt

, γt ← γt +
∂G
∂γt

end

where γt are the Lagrangian multipliers associated with state
constraint. By taking the gradients of the dual function w.r.t.
µt(s), we get a backward pass, whose form corresponds to
Eq(6a), and computes the optimal state value function

V ∗t (s) = αt log

∫
a

exp
(Qt(s, a)

αt

)
da. (11)

In addition, we get to the necessary gradients for optimizing
the multipliers αt and γt by gradient ascent to maximize
dual objective assuming that the aforementioned optimality
conditions are met

G =

∫
s

V ∗1 (s)µ1(s)ds+

T−1∑
t=1

(
αtεt + γtηt + γt

)
, (12a)

∂G
∂αt

= εt −
∫
s

∫
a

µt(s)πt(a|s) log
πt(a|s)
qt(a|s)

dads, (12b)

∂G
∂γt

= ηt −
∫
s

µt(s) log
µt(s)

qt(s)
ds. (12c)

As a result of the new state bound a circular dependency
arises between µt(s), the state distribution induced by the
current policy πt(a|s), and the state value function Vt(s),
as implied by Eq(11) and (10). This dependency is a natu-
ral product of an optimization that aims to optimize a pol-
icy πt(a|s), a function of Vt(s), to limit the relative diver-
gence of the resulting state distribution µt(s) induced un-
der πt(a|s). In order to resolve this dependency, we devise
a scheme that alternates between updating Vt(s) and µt(s)
using the backward and forward passes. The complete pro-
cedure is shown in Algorithm 1.

However, this iterative process introduces significant
computational complexity to the optimization, considering
that Vt(s) and µt(s) have to be constantly updated while
optimizing αt and γt. In our evaluations we found that ap-
plying block coordinate ascent on the dual variables Vt(s),
µt(s), αt and γt leads to great reduction of the computa-
tional effort. This approach decouples the computation of

Algorithm 2: STATO with Batch Coordinate Ascent
input : εt, ηt, P , ct, µ1, qt
output: π∗t , µ∗t , V ∗t
initialize: αt, γt
while dual objective G not at maximum do

pt ← qt
do

Vt, πt ← backwardPass(pt, qt,P, ct, αt, γt)
µt ← forwardPass(µ1,P, πt)
pt ← µt

while KLD(pt||µt) > δ

while sec. dual objective Ĝ not at maximum do
V̂t, π̂t ← modBackwardPass(qt,P, ct, αt, γt)
µ̂t ← modForwardPass(V̂t, Vt, γt)
Ĝ ← updateDual(V̂t, µ̂t, Vt, αt, γt, εt, ηt)
∂Ĝ
∂αt

,
∂Ĝ
∂γt
← dualGradient(µ̂t, π̂t, qt, εt, ηt)

αt ← αt +
∂Ĝ
∂αt

, γt ← γt +
∂Ĝ
∂γt

end
end

Vt(s) and µt(s) from the optimization of αt and γt, which
now takes place under the secondary dual objective

(13)

Ĝ =

∫
s

V1(s)p1(s)ds−
T−1∑
t=1

γt

∫
s

µ̂t(s) log µ̂t(s)

−
T∑
t=1

∫
s′
Vt(s

′)µ̂t(s
′)ds′ +

T−1∑
t=1

(
αtεt + γtηt

)
+

T−1∑
t=1

∫
s

αtµ̂t(s) log

∫
a

exp
(Q̂t(s, a)

αt

)
dads,

where the term Q̂t(s, a) stands for the modified state-action
value function without a dependency on µt(s)

(14)
Q̂t(s, a) = ct(s, a) + αt log qt(a|s) + γt log qt(s)

− γt +

∫
s′
Vt+1(s′)P(s′|s, a)ds′,

and its corresponding state value function V̂t(s) is computed
according to Eq(11), while µ̂t(s) is the modified state distri-
bution derived from the following equation

(15)γt log µ̂t(s) = V̂t(s)− Vt(s)− γt.
A description of our algorithm with batch coordinate as-

cent is shown in Algorithm 2.

Experimental Validation
We validate our approach, State Action Relative Entropy
Trajectory Optimization (STATO), on two multi-link dy-
namical systems and compare it to maxEnt-iLQG. In the ex-
periments we focus on two aspects to quantify the difference

−2 −1 0 1 2
−2

−1

0

1

2

x [m]

y
[m

]

Figure 1: Illustration of the double-link swing-up task. The
optimal policy (STATO) successfully achieves a full swing-
up in two seconds, while subject to torque limits, friction
and a non-quadratic cost function.

in performance between the two algorithms. The first aspect
is related to the degree of complexity and nonlinearity of the
multi-link system dynamics, while the second is concerned
with applying both quadratic non-quadratic cost functions.

The general objective in both tasks is to achieve an
under-torqued swing-up and stabilization on a fully actu-
ated double- and quad-link system. Figures 1 and 2 illustrate
trajectories resulting from the learned controllers. Both sys-
tems possess highly nonlinear dynamics, although the quad-
link is considerably more challenging. The state space con-
sists of the joints and joint velocities, while the actions are
the torques applied directly to the joints. Although we al-
low the state cost to become non-quadratic, the action cost
is quadratic at all time steps and is summed up over the en-
tire trajectory. All hyperparameters of both algorithms are
optimized individually for each experiment to get the best
results possible under the specified conditions. During all
experiments we average over 10 trials to minimize statisti-
cal bias in the results. Furthermore, both algorithms use the
same optimization toolbox under identical conditions.

At each iteration of the learning process, we draw a vary-
ing but sufficient number of samples under the current pol-
icy. We use these samples to fit linear-Gaussian dynamics
at each time step of the current trajectory, which consists of
100 time steps in all experiments. In addition to approximat-
ing the linear dynamics, we also use the same sample batch
to fit a quadratic cost function.

Double-Link To make the task challenging we apply
torque limits, friction and a large initial distribution. The
policy has two seconds, divided to 100 time steps, to finish.
The first experiment implements a quadratic cost function in
the joint space, while the second implements a cost defined
in the task space by specifying only the target position of
the end-effector. Figures 3 and 4 show STATO clearly out-
performing maxEnt-iLQG regarding the quality of the final
policy and overall efficiency, which is reflected in a lower
number of iterations and total number of samples.

−4 −2 0 2 4
−4

−2

0

2

4

x [m]

y
[m

]

Figure 2: Illustration of the quad-link swing-up task.
STATO’s learned policy is able to achieve a full under-
torqued swing-up in four seconds, while subject to highly
nonlinear dynamics and a quadratic cost function.

5 10 15 20
0

1

2

3

4

5

Iterations

E
xp

ec
te

d
C

os
t[
1
0
6
]

maxEnt-iLQG
STATO

Figure 3: Double-Link swing-up results with a quadratic
cost. STATO and maxEnt-iLQG learn comparable policies.
However, STATO proves to have higher sample efficiency.

5 10 15 20 25

0

1

2

3

Iterations

E
xp

ec
te

d
C

os
t[
1
0
6
]

maxEnt-iLQG
STATO

Figure 4: Double-Link swing-up results with a non-
quadratic cost. STATO’s final policy clearly outperforms
maxEnt-iLQG, achieving a lower cost in less iterations.

10 20 30 40 50
0

1

2

3

Iterations

E
xp

ec
te

d
C

os
t[
1
0
6
] maxEnt-iLQG

STATO

Figure 5: Quad-Link swing-up results with a quadratic cost.
STATO’s final policy is significantly better and more sample
efficient compared to maxEnt-iLQG, even in a challenging
task with soft joint limits and high nonlinearities.

Quad-Link We compare STATO and maxEnt-iLQG in a
swing-up task with both with quadratic and non-quadratic
cost defined in the task space of the end-effector. Each ex-
periment lasts for 4 seconds. Furthermore, instead of clip-
ping the torques, we apply soft joint limits that become ac-
tive if the absolute joint value exceeds 2π/3. The results are
depicted in Figures 5 and 6 and show that STATO is more
capable of dealing with both the nonlinear dynamics of the
quad-link and the approximation errors of the cost in com-
parison to maxEnt-iLQG. This is reflected in a lower ex-
pected final cost and considerably lower number of samples.

Conclusion
We proposed a new Trajectory Optimization algorithm with
a novel relative entropy constraint on the update of the state
distribution. By combining both the policy and state con-
straints, we offer an explicit measure of the divergence of
the state-action distribution and a principled approach for
updating the policy in a Stochastic Optimal Control setup.
Our contribution proves its significance in guaranteeing the
validity of approximate local models of cost and dynamics
and the stability of learning. By validating our approach on
two highly dynamic and nonlinear system, we showed that it
outperforms state-of-the-art maxEnt-iLQG in both the qual-
ity of the final policy and sample efficiency, being able to
learn better controllers in less number of iterations. Given
its sample efficiency, our algorithm has a considerable ad-
vantage in robotic applications, where the number of trials
drawn from the real system is crucial. Furthermore, we will
investigate the behavior of our algorithm in the presence of
high dimensional state input and explore its impact on the
training of highly complex policies such as neural networks.

Acknowledgments
This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement # 645582 (RoMaNS) and grant
agreement # 640554 (SKILLS4ROBOTS).

20 40 60 80 100
0

25

50

75

100

125

Iterations

E
xp

ec
te

d
C

os
t[
1
0
5
] maxEnt-iLQG

STATO

Figure 6: Quad-Link swing-up results with a non-quadratic
cost. Once again STATO tops maxEnt-iLQG regarding the
performance of the final policy and learning speed.

References
Bellman, R. 1956. Dynamic programming and lagrange multipli-
ers. National Academy of Sciences 42(10):767–769.
Boyd, S., and Vandenberghe, L. 2004. Convex optimization.
Deisenroth, M. P.; Neumann, G.; and Peters, J. 2013. A survey
on policy search for robotics. Foundations and Trends in Robotics
2(1–2):1–142.
Jacobson, D. H., and Mayne, D. Q. 1970. Differential dynamic
programming.
Kober, J.; Bagnell, J. A.; and Peters, J. 2013. Reinforcement learn-
ing in robotics: A survey. The International Journal of Robotics
Research.
Levine, S., and Abbeel, P. 2014. Learning neural network policies
with guided policy search under unknown dynamics. In Advances
in Neural Information Processing Systems, 1071–1079.
Levine, S., and Koltun, V. 2013. Guided policy search. In Interna-
tional Conference on Machine Learning, 1–9.
Levine, S.; Finn, C.; Darrell, T.; and Abbeel, P. 2016. End-to-end
training of deep visuomotor policies. Journal of Machine Learning
Research 17(39):1–40.
Rawlik, K.; Toussaint, M.; and Vijayakumar, S. 2012. On stochas-
tic optimal control and reinforcement learning by approximate in-
ference. Proceedings of Robotics: Science and Systems VIII.
Rosenstein, M. T., and Barto, A. G. 2001. Robot weightlifting by
direct policy search. In International Joint Conference on Artificial
Intelligence, 839–846.
Rueckert, E.; Mindt, M.; Peters, J.; and Neumann, G. 2014. Ro-
bust policy updates for stochastic optimal control. In IEEE-RAS
International Conference on Humanoid Robots, 388–393.
Tassa, Y.; Erez, T.; and Todorov, E. 2012. Synthesis and stabiliza-
tion of complex behaviors through online trajectory optimization.
In IEEE/RSJ International Conference on Intelligent Robots and
Systems, 4906–4913.
Todorov, E., and Li, W. 2005. A generalized iterative lqg
method for locally-optimal feedback control of constrained nonlin-
ear stochastic systems. In American Control Conference, 300–306.
Toussaint, M. 2009. Robot trajectory optimization using approxi-
mate inference. In International Conference on Machine Learning,
1049–1056.
Ziebart, B. D.; Bagnell, J. A.; and Dey, A. K. 2010. Modeling
interaction via the principle of maximum causal entropy. In Inter-
national Conference on Machine Learning, 1247–1254.

