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Abstract

In many statistical problems, a more coarse-grained model may be suitable for
population-level behaviour, whereas a more detailed model is appropriate for ac-
curate modelling of individual behaviour. This raises the question of how to in-
tegrate both types of models. Methods such as posterior regularization follow
the idea of generalized moment matching, in that they allow matching expec-
tations between two models, but sometimes both models are most conveniently
expressed as latent variable models. We propose latent Bayesian melding, which
is motivated by averaging the distributions over populations statistics of both the
individual-level and the population-level models under a logarithmic opinion pool
framework. In a case study on electricity disaggregation, which is a type of single-
channel blind source separation problem, we show that latent Bayesian melding
leads to significantly more accurate predictions than an approach based solely on
generalized moment matching.

1 Introduction

Good statistical models of populations are often very different from good models of individuals.
As an illustration, the population distribution over human height might be approximately normal,
but to model an individual’s height, we might use a more detailed discriminative model based on
many features of the individual’s genotype. As another example, in social network analysis, simple
models like the preferential attachment model [3] replicate aggregate network statistics such as
degree distributions, whereas to predict whether two individuals have a link, a social networking
web site might well use a classifier with many features of each person’s previous history. Of course
every model of an individual implies a model of the population, but models whose goal is to model
individuals tend to be necessarily more detailed.

These two styles of modelling represent different types of information, so it is natural to want to
combine them. A recent line of research in machine learning has explored the idea of incorporating
constraints into Bayesian models that are difficult to encode in standard prior distributions. These
methods, which include posterior regularization [9], learning with measurements [16], and the gen-
eralized expectation criterion [18], tend to follow a moment matching idea, in which expectations of
the distribution of one model are encouraged to match values based on prior information.

Interestingly, these ideas have precursors in the statistical literature on simulation models. In partic-
ular, Bayesian melding [21] considers applications in which there is a computer simulation M that
maps from model parameters θ to a quantity φ = M(θ). For example, M might summarize the
output of a deterministic simulation of population dynamics or some other physical phenomenon.
Bayesian melding considers the case in which we can build meaningful prior distributions over both
θ and φ. These two prior distributions need to be merged because of the deterministic relationship;
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this is done using a logarithmic opinion pool [5]. We show that there is a close connection between
Bayesian melding and the later work on posterior regularization, which does not seem to have been
recognized in the machine learning literature. We also show that Bayesian melding has the addi-
tional advantage that it can be conveniently applied when both individual-level and population-level
models contain latent variables, as would commonly be the case, e.g., if they were mixture models
or hierarchical Bayesian models. We call this approach latent Bayesian melding.

We present a detailed case study of latent Bayesian melding in the domain of energy disaggregation
[11, 20], which is a particular type of blind source separation (BSS) problem. The goal of the
electricity disaggregation problem is to separate the total electricity usage of a building into a sum of
source signals that describe the energy usage of individual appliances. This problem is hard because
the source signals are not identifiable, which motivates work that adds additional prior information
into the model [14, 15, 20, 25, 26, 8]. We show that the latent Bayesian melding approach allows
incorporation of new types of constraints into standard models for this problem, yielding a strong
improvement in performance, in some cases amounting to a 50% error reduction over a moment
matching approach.

2 The Bayesian melding approach

We briefly describe the Bayesian melding approach to integrating prior information in deterministic
simulation models [21], which has seen wide application [1, 6, 23]. In the Bayesian modelling
context, denote Y as the observation data, and suppose that the model includes unknown variables
S, which could include model parameters and latent variables. We are then interested in the posterior

p(S|Y ) = p(Y )−1p(Y |S)pS(S). (1)

However, in some situations, the variables S may be related to a new random variable τ by a de-
terministic simulation function f(·) such that τ = f(S). We call S and τ input and output vari-
ables. For example, in the energy disaggregation problem, the total energy consumption variable
τ =

∑T
t=1 S

T
t µ where St are the state variables of a hidden Markov model (one-hot encoding) and

µ is a vector containing the mean energy consumption of each state (see Section 5.2). Both τ and
S are random variables, and so in the Bayesian context, the modellers usually choose appropriate
priors pτ (τ) and pS(S) based on prior knowledge. However, given pS(S), the map f naturally
introduces another prior for τ , which is an induced prior denoted by p∗τ (τ). Therefore, there are
two different priors for the same variable τ from different sources, which might not be consistent.
In the energy disaggregation example, p∗τ is induced by the state variables St of the hidden Markov
model which is the individual model of a specific household, and pτ could be modelled by using
population information, e.g. from a national survey — we can think of this as a population model
since it combines information from many households. The Bayesian melding approach combines
the two priors into one by using the logarithmic pooling method so that the logarithmically pooled
prior is p̃τ (τ) ∝ p∗τ (τ)αpτ (τ)1−α where 0 ≤ α ≤ 1. The prior p̃τ melds the prior information
of both S and τ . In the model (1), the prior pS does not include information about τ . Thus it is
required to derive a melded prior for S. If f is invertible, the prior for S can be obtained by using
the change-of-variable technique. If f is not invertible, Poole and Raftery [21] heuristically derived
a melded prior

p̃S(S) = cαpS(S)
(
pτ (f(S))
p∗τ (f(S))

)1−α

(2)

where cα is a constant given α such that
∫
p̃S(S)dS = 1. This gives a new posterior p̃(S|Y ) =

p̃(Y )−1p(Y |S)p̃S(S). Note that it is interesting to infer α [22, 7], however we use a fixed value in
this paper. So far we have been assuming there are no latent variables in pτ . We now consider the
situation when τ is generated by some latent variables.

3 The latent Bayesian melding approach

It is common that the variable τ is modelled by a latent variable ξ, see the examples in Section 5.2.
So we could assume that we have a conditional distribution p(τ |ξ) and a prior distribution pξ(ξ).
This defines a marginal distribution pτ (τ) =

∫
pξ(ξ)p(τ |ξ)dξ. This could be used to produce the
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melded prior (2) of the Bayesian melding approach

p̃S(S) = cαpS(S)
(∫

pτ (f(S)|ξ)pξ(ξ)dξ
p∗τ (f(S))

)1−α

. (3)

The integration in (3) is generally intractable. We could employ the Monte Carlo method to approx-
imate it for a fixed τ . However, importantly we are also interested in inferring the latent variable ξ
which is meaningful for example in the energy disaggregation problem. When we are interested in
finding the maximum a posteriori (MAP) value of the posterior where p̃S(S) was used as the prior,
we propose to use a rough approximation

∫
pξ(ξ)pτ (τ |ξ)dξ ≈ maxξ pξ(ξ)pτ (τ |ξ). This leads to an

approximate prior

p̃S(S) ≈ max
ξ
p̃S,ξ(S, ξ) = max

ξ
cαpS(S)

(
pτ (f(S)|ξ)pξ(ξ)

p∗τ (f(S))

)1−α

. (4)

To obtain this approximate prior for S, the joint prior p̃S,ξ(S, ξ) has to exist, and so we show that it
does exist under certain conditions by the following theorem. We assume that S and ξ are continuous
random variables, and that both p∗τ and pτ are positive and share the same support. Also, EpS(S)[·]
denotes the expectation with respect to pS .

Theorem 1. If EpS(S)

[
pτ (f(S))
p∗τ (f(S))

]
< ∞, then a constant cα < ∞ exists such that∫

p̃S,ξ(S, ξ)dξdS = 1, for any fixed α ∈ [0, 1].

The proof can be found in the supplementary materials. In (4) we heuristically derived an approx-
imate joint prior p̃S,ξ. Interestingly, if ξ and S are independent conditional on τ , we can show as
follows that p̃S,ξ is a limit distribution derived from a joint distribution of ξ and S induced by τ . To
see this, we derive a joint prior for S and ξ,

pS,ξ(S, ξ) =
∫
p(S, ξ|τ)pτ (τ)dτ =

∫
p(S|τ)p(ξ|τ)pτ (τ)dτ

=
∫
p(τ |S)pS(S)

p∗τ (τ)
p(τ |ξ)pξ(ξ)
pτ (τ)

pτ (τ)dτ = pS(S)pξ(ξ)
∫
p(τ |S)

p(τ |ξ)
p∗τ (τ)

dτ.

For a deterministic simulation τ = f(S), the distribution p(τ |S) = p(τ |S, τ = f(S)) is ill-defined
due to the Borel’s paradox [24]. The distribution p(τ |S) depends on the parameterization. We
assume that τ is uniform on [f(S) − δ, f(S) + δ] conditional on S and δ > 0, and the distribution
is then denoted by pδ(τ |S). The marginal distribution is pδ(τ) =

∫
pδ(τ |S)pS(S)dS. Denote

g(τ) = p(τ |ξ)
p∗τ (τ) and gδ(τ) = p(τ |ξ)

pδ(τ) . Then we have the following theorem.

Theorem 2. If limδ→0 pδ(τ) = p∗τ (τ), and gδ(τ) has bounded derivatives in any order, then
limδ→0

∫
pδ(τ |S)gδ(τ)dτ = g(f(S)).

See the supplementary materials for the proof. Under this parameterization, we denote p̂S,ξ(S, ξ) =
pS(S)pξ(ξ) limδ→0

∫
pδ(τ |S)gδ(τ)dτ = pS(S)pξ(ξ)

p(f(S)|ξ)
p∗τ (f(S)) . By applying the logarithmic pool-

ing method, we have a joint prior

p̃S,ξ(S, ξ) = cα (pS(S))α (p̂S,ξ(S, ξ))
1−α = cαpS(S)

(
pτ (f(S)|ξ)pξ(ξ)

p∗τ (f(S))

)1−α

.

Since the joint prior blends the variable S and the latent variable ξ, we call this approxi-
mation the latent Bayesian melding (LBM) approach, which gives the posterior p̃(S, ξ|Y ) =
p̃(Y )−1p(Y |S)p̃S,ξ(S, ξ). Note that if there are no latent variables, then latent Bayesian meld-
ing collapses to the Bayesian melding approach. In section 6 we will apply this method to an energy
disaggregation problem for integrating population information with an individual model.

4 Related methods

We now discuss possible connections between Bayesian melding (BM) and other related methods.
Recently in machine learning, moment matching methods have been proposed, e.g., posterior regu-
larization (PR) [9], learning with measurements [16] and the generalized expectation criterion [18].
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These methods share the common idea that the Bayesian models (or posterior distributions) are con-
strained by some observations or measurements to obtain a least-biased distribution. The idea is
that the system we are modelling is too complex and unobservable, and thus we have limited prior
information. To alleviate this problem, we assume we can obtain some observations of the system
in some way, e.g., by experiments, for example those observations could be the mean values of
the functions of the variables. Those observations could then guide the modelling of the system.
Interestingly, a very similar idea has been employed in the bias correction method in information
theory and statistics [12, 10, 19], where the least-biased distribution is obtained by optimizing the
Kullback-Leibler divergence subject to the moment constraints. Note that the bias correction method
in [17] is different to others where the bias of a consistent estimator was corrected when the bias
function could be estimated.

We now consider the posteriors derived by PR and BM. In general, given a function f(S) and values
bi, PR solves the constrained problem

minimizeep KL(p̃(S)||p(S|Y )) subject to Eep (mi(f(S)))− bi ≤ δi, ||δi|| ≤ ε; i = 1, 2, · · · , I.

where mi could be any function such as a power function. This gives an optimal posterior
p̃PR(S) = Z(λ)−1p(Y |S)p(S)

∏I
i=1 exp(−λimi(f(S))) where Z(λ) is the normalizing con-

stant. BM has a deterministic simulation f(S) = τ where τ ∼ pτ . The posterior is then

p̃BM (S) = Z(α)−1p(Y |S)p(S)
(
pτ (f(S))
p∗τ (f(S))

)1−α
. They have a similar form and the key difference is

the last factor which is derived from the constraints or the deterministic simulation. p̃PR and p̃BM
are identical, if −

∑I
i=1 λimi(f(S)) = (1− α) log pτ (f(S))

p∗τ (f(S)) .

The difference between BM and LBM is the latent variable ξ. We could perform BM by integrating
out ξ in (3), but this is computationally expensive. Instead, LBM jointly models S and ξ allowing
possibly joint inference, which is an advantage over BM.

5 The energy disaggregation problem

In energy disaggregation, we are given a time series of energy consumption readings from a sensor.
We consider the energy measured in watt hours as read from a household’s electricity meter, which is
denoted by Y = (Y1, Y2, · · · , YT ) where Yt ∈ R+. The recorded energy signal Y is assumed to be
the aggregation of the consumption of individual appliances in the household. Suppose there are I
appliances, and the energy consumption of each appliance is denoted byXi = (Xi1, Xi2, · · · , XiT )
where Xit ∈ R+. The observed aggregate signal is assumed to be the sum of the component
signals so that Yt =

∑I
i=1Xit + εt where εt ∼ N (0, σ2). Given Y , the task is to infer the

unknown component signals Xi. This is essentially the single-channel BSS problem, for which
there is no unique solution. It can also be useful to add an extra component U = (U1, U2, · · · , UT )
to model the unknown appliances to make the model more robust as proposed in [15]. The prior
of Ut is defined as p(U) = 1

v2(T−1) exp
{
− 1

2v2

∑T−1
t=1 |Ut+1 − Ut|

}
. The model then has a new

form Yt =
∑I
i=1Xit + Ut + εt. A natural way to represent this model is as an additive factorial

hidden Markov model (AFHMM) where the appliances are treated as HMMs [15, 20, 26]; this is
now described.

5.1 The additive factorial hidden Markov model

In the AFHMM, each component signal Xi is represented by a HMM. We suppose there are Ki

states for each Xit, and so the state variable is denoted by Zit ∈ {1, 2, · · · ,Ki}. Since Xi is a
HMM, the initial probabilities are πik = P (Zi1 = k) (k = 1, 2, · · · ,Ki) where

∑Ki
k=1 πik = 1;

the mean values are µi = {µ1, µ2, · · · , µKi} such that Xit ∈ µi; the transition probabilities are
P (i) = (p(i)

jk ) where p(i)
jk = P (Zit = j|Zi,t−1 = k) and

∑Ki
j=1 p

(i)
jk = 1. We denote all these

parameters {πi, µi, P (i)} by θ. We assume they are known and can be learned from the training
data. Instead of using Z, we could use a binary vector Sit = (Sit1, Sit2, · · · , SitKi)T to represent
the variable Z such that Sitk = 1 when Zit = k and for all Sitj = 0 when j 6= k. Then we are
interested in inferring the states Sit instead of inferring Xit directly, since Xit = STitµi. Therefore
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we want to make inference over the posterior distribution

P (S,U, σ2|Y, θ) ∝ p(Y |S,U, σ2)P (S|θ)p(U)p(σ2)

where the HMM defines the prior of the states P (S|θ) ∝
∏I
i=1

∏Ki
k=1 π

Si1k
ik ×∏T

t=2

∏I
i=1

∏
k,j

(
p

(i)
kj

)SitkSi,t−1,j

, the inverse noise variance is assumed to be a Gamma dis-

tribution p(σ−2) ∝ (σ−2)α−1 exp
{
−βσ−2

}
, and the data likelihood has the Gaussian form

p(Y |S,U, σ2, θ) = |2πσ2|−T2 exp
{
− 1

2σ2

∑T
t=1

(
Yt −

∑I
i=1 S

T
itµi − Ut

)2
}

. To make the MAP

inference over S, we relax the binary variable Sitk to be continuous in the range [0, 1] as in [15, 26].
It has been shown that incorporating domain knowledge into AFHMM can help to reduce the iden-
tifiability problem [15, 20, 26]. The domain knowledge we will incorporate using LBM is the
summary statistics.

5.2 Population modelling of summary statistics

In energy disaggregation, it is useful to provide a summaries of energy consumption to the users.
For example, it would be useful to show the householders the total energy they had consumed in
one day for their appliances, the duration that each appliance was in use, and the number of times
that they had used these appliances. Since there already exists data about typical usage of different
appliances [4], we can employ these data to model the distributions of those summary statistics.

We denote those desired statistics by τ = {τi}Ii=1, where i denotes the appliances. For appliance
i, we assume we have measured some time series from different houses for many days. This is
always possible because we can collect them from public data sets, e.g., the data reviewed in [4].
We can then empirically obtain the distributions of those statistics. The distribution is represented by
pm(τim|Γim, ηim) where Γim represents the empirical quantities of the statistic m of the appliance
i which can be obtained from data and ηim are the latent variables which might not be known. Since
ηim are variables, we can employ a prior distribution p(ηim).

We now give some examples of those statistics. Total energy consumption: The total energy
consumption of an appliance can be represented as a function of the states of HMM such that τi =∑T
t=1 S

T
itµi. Duration of appliance usage: The duration of using the appliance i can also be

represented as a function of states τi = ∆t
∑T
t=1

∑Ki
k=2 Sitk where ∆t represents the sampling

duration for a data point of the appliances, and we assume that Sit1 represents the off state which
means the appliance was turned off. Number of cycles: The number of cycles (the number of times
an appliance is used) can be counted by computing the number of alterations from OFF state to ON
such that τi =

∑T
t=2

∑Ki
k=2 I(Sitk = 1, Si,t−1,1 = 0).

Let the binary vector ξi = (ξi1, ξi2, · · · , ξic, · · · , ξiCi) represent the number of cycles, where ξic =
1 means that the appliance i had been used c cycles, and

∑Ci
c=1 ξic = 1. (Note ξi is an example of ηi

in this case.) To model these statistics in our LBM framework, the latent variable that we use is the
number of cycles ξ. The distributions of τi could be empirically modelled by using the observation
data. One approach is to assume a Gaussian mixture density such that p(τi|ξi) =

∑Ci
c=1 p(ξic =

1)pc(τi|Γi), where
∑Ci
c=1 p(ξic = 1) = 1 and pc is the Gaussian component density. Using the

mixture Gaussian, we basically assume that, for an appliance, given the number of cycles the total
energy consumption is modelled by a Gaussian with mean µic and variance σ2

ic. A simpler model
would be a linear regression model such that τi =

∑Ci
c=1 ξicµic + εi where εi ∼ N (0, σ2

i ). This
model assumes that given the number of cycles the total energy consumption is close to the mean
µic. The mixture model is more appropriate than the regression model, but the inference is more
difficult.

When τi represents the number of cycles for appliance i, we can use τi =
∑Ci
c=1 cicξic where cic

represents the number of cycles. When the state variables Si are relaxed to [0, 1], we can then
employ a noise model such that τi =

∑Ci
c=1 cicξic + εi where ε ∼ N (0, σ2

i ). We model ξi with a
discrete distribution such that P (ξi) =

∏Ci
c=1 p

ξic
ic where pic represents the prior probability of the

number of cycles for the appliance i, which can be obtained from the training data. We now show
that how to use the LBM to integrate the AFHMM with these population distributions.
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6 The latent Bayesian melding approach to energy disaggregation

We have shown that the summary statistics τ can be represented as a deterministic function of the
state variable of HMMs S such that τ = f(S), which means that the τ itself can be represented as
a latent variable model. We could then straightforwardly employ the LBM to produce a joint prior

over S and ξ such that p̃S,ξ(S, ξ) = cαpS(S)
(
pτ (f(S)|ξ)p(ξ)
p∗τ (f(S))

)1−α
. Since in our model f is not

invertible, we need to generate a proper density for p∗τ . One possible way is to generate N random
samples {S(n)}Nn=1 from the prior pS(S) which is a HMM, and then p∗τ can be modelled by using
kernel density estimation. However, this will make the inference difficult. Instead, we employ a
Gaussian density p∗τim(τim) = N (µ̂im, σ̂2

im) where µ̂im and σ̂2
im are computed from {S(n)}Nn=1.

The new posterior distribution of LBM thus has the form

p(S,U,Σ|Y, θ) ∝ p(Σ)p(U)p̃S,ξ(S, ξ)p(Y |S,U, σ2)

= p(Σ)p(U)cαpS(S)
(
pτ (f(S)|ξ)p(ξ)
p∗τ (f(S))

)1−α

p(Y |S,U, σ2)

where Σ represents the collection of all the noise variances. All the inverse noise variances employ
the Gamma distribution as the prior. We are interested in inferring the MAP values. Since the vari-
ables S and ξ are binary, we have to solve a combinatorial optimization problem which is intractable,
so we solve a relaxed problem as in [15, 26]. Since log pS(S) is not convex, we employ the relax-
ation method of [15]. So a newKi×Ki variable matrixHit = (hitjk) is introduced such that hitjk = 1
when Si,t−1,k = 1 and Sitj = 1 and otherwise hitjk = 0. Under these constraints, we then obtain

log pS(S) = log p(S,H) =
∑I
i=1 S

T
i1 log πi +

∑
i,t,k,j h

it
jk log p(i)

jk ; this is now linear. We optimize
the log-posterior which is denoted by L(S,H,U,Σ, ξ). The constraints for those variables are repre-
sented as setsQS =

{∑Ki
k=1 Sitk = 1, Sitk ∈ [0, 1],∀i, t

}
,Qξ =

{∑Ci
c=1 ξic = 1, ξic ∈ [0, 1],∀i

}
,

QH,S =
{∑Ki

l=1H
it
l. = STi,t−1,

∑Ki
l=1H

it
.l = Sit, h

it
jk ∈ [0, 1],∀i, t

}
, and QU,Σ ={

U ≥ 0,Σ ≥ 0, σ2
im < σ̂2

im,∀i,m
}

. Denote Q = QS ∪ Qξ ∪ QH,S ∪ QU,Σ. The relaxed
optimization problem is then

maximize
S,H,U,Σ,ξ

L(S,H,U,Σ, ξ) subject to Q.

We oberved that every term in L is either quadratic or linear when Σ are fixed, and the solutions
for Σ are deterministic when the other variables are fixed. The constraints are all linear. Therefore,
we optimize Σ while fixing all the other variables, and then optimize all the other variables simulta-
neously while fixing Σ. This optimization problem is then a convex quadratic program (CQP), for
which we use MOSEK [2]. We denote this method by AFHMM+LBM.

7 Experimental results

We have incorporated population information into the AFHMM by employing the latent Bayesian
melding approach. In this section, we apply the proposed model to the disaggregation problem. We
will compare the new approach with the AFHMM+PR [26] using the set of statistics τ described
in Section 5.2. The key difference between our method AFHMM+LBM and AFHMM+PR is that
AFHMM+LBM models the statistics τ conditional on the number of cycles ξ.

7.1 The HES data

We apply AFHMM, AFHMM+PR and AFHMM+LBM to the Household Electricity Survey (HES)
data1. This data set was gathered in a recent study commissioned by the UK Department of Food and
Rural Affairs. The study monitored 251 households, selected to be representative of the population,
across England from May 2010 to July 2011 [27]. Individual appliances were monitored, and in
some households the overall electricity consumption was also monitored. The data were monitored

1The HES dataset and information on how the raw data was cleaned can be found from
https://www.gov.uk/government/publications/household-electricity-survey.
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Table 1: Normalized disaggregation error (NDE), signal aggregate error (SAE), duration aggregate
error (DAE), and cycle aggregate error (CAE) by AFHMM+PR and AFHMM+LBM on synthetic
mains in HES data.

METHODS NDE SAE DAE CAE TIME (S)
AFHMM 1.45± 0.88 1.42± 0.39 1.56±0.23 1.41±0.31 179.3±1.9

AFHMM+PR 0.87± 0.21 0.86± 0.39 0.83±0.53 1.57±0.66 195.4±3.2
AFHMM+LBM 0.89± 0.49 0.87± 0.37 0.76±0.32 0.79±0.35 198.1±3.1

Table 2: Normalized disaggregation error (NDE), signal aggregate error (SAE), duration aggregate
error (DAE), and cycle aggregate error (CAE) by AFHMM+PR and AFHMM+LBM on mains in
HES data.

METHODS NDE SAE DAE CAE TIME (S)
AFHMM 1.90±1.16 2.26±0.86 1.91±0.67 1.12 ±0.17 170.8±33.3

AFHMM+PR 0.91±0.11 0.67± 0.07 0.68± 0.18 1.65 ±0.49 214.2±38.1
AFHMM+LBM 0.77±0.23 0.68± 0.19 0.61± 0.22 0.98±0.32 224.8±34.8

every 2 or 10 minutes for different houses. We used only the 2-minute data. We then used the
individual appliances to train the model parameters θ of the AFHMM, which will be used as the
input to the models for disaggregation. Note that we assumed the HMMs have 3 states for all the
appliances. This number of states is widely applied in energy disaggregation problems, though our
method could easily be applied to larger state spaces. In the HES data, in some houses the overall
electricity consumption (the mains) was monitored. However, in most houses, only a subset of
individual appliances were monitored, and the total electricity readings were not recorded.

Generating the population information: Most of the houses in HES did not monitor the mains
readings. They all recorded the individual appliances consumption. We used a subset of the houses
to generate the population information of the individual appliances. We used the population infor-
mation of total energy consumption, duration of appliance usage and the number of cycles in a time
period. In our experiments, the time period was one day. We modelled the distributions of these
summary statistics by using the methods described in the Section 5.2, where the distributions were
Gaussian. All the required quantities for modelling these distributions were generated by using the
samples of the individual appliances.

Houses without mains readings: In this experiment, we randomly selected one hundred house-
holds, and one day’s usage was used as test data for each household. Since no mains readings were
monitored in these houses, we added up the appliance readings to generate synthetic mains read-
ings. We then applied the AFHMM, AFHMM+PR and AFHMM+LBM to these synthetic mains to
predict the individual appliance usage. To compare these three methods, we employed four error
measures. Denote x̂i as the inferred signal for the appliance usage xi. One measure is the normal-
ized disaggregation error (NDE):

P
it(xit−x̂it)

2P
it x

2
it

. This measures how well the method predicts the
energy consumption at every time point. However, the householders might be more interested in the
summaries of the appliance usage. For example, in a particular time period, e.g, one day, people
are interested in the total energy consumption of the appliances, the total time they have been using
those appliances and how many times they have used them. We thus employ 1

I

∑I
i=1

|r̂i−ri|P
i ri

as the
signal aggregate error (SAE), the duration aggregate error (DAE) or the cycle aggregate error (CAE),
where ri represents the total energy consumption, the duration or the number of cycles, respectively,
and r̂i represents the predicted summary statistics.

All the methods were applied to the synthetic data. Table 1 shows the overall error computed by
these methods. We see that both the methods using prior information improved over the base line
method AFHMM. The AFHMM+PR and AFHMM+LBM performed similarly in terms of NDE and
SAE, but AFHMM+LBM improved over AFHMM+PR in terms of DAE (8%) and CAE (50%).

Houses with mains readings: We also applied those methods to 6 houses which have mains read-
ings. We used 10 days data for each house, and the recorded mains readings were used as the input
to the models. All the methods were used to predict the appliance consumption. Table 2 shows the
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Table 3: Normalized disaggregation error (NDE), signal aggregate error (SAE), duration aggregate
error (DAE), and cycle aggregate error (CAE) by AFHMM+PR and AFHMM+LBM on UK-DALE
data.

METHODS NDE SAE DAE CAE TIME (S)
AFHMM 1.57±1.16 1.99±0.52 2.81±0.79 1.37 ± 0.28 118.6±23.1

AFHMM+PR 0.83±0.27 0.82± 0.38 1.68± 1.21 1.90 ±0.52 120.4±25.3
AFHMM+LBM 0.84±0.25 0.89± 0.38 0.49± 0.33 0.59±0.21 123.1±25.8

error of each house and also the overall errors. This experiment is more realistic than the synthetic
mains readings, since the real mains readings were used as the input. We see that both the meth-
ods incorporating prior information have improved over the AFHMM in terms of NDE, SAE and
DAE. The AFHMM+PR and AFHMM+LBM have the similar results for SAE. AFHMM+LBM is
improved over AFHMM+PR for NDE (15%), DAE (10%) and CAE (40%).

7.2 UK-DALE data

In the previous section we have trained the model using the HES data, and applied the models to
different houses of the same data set. A more realistic situation is to train the model in one data set,
and apply the model to a different data set, because it is unrealistic to expect to obtain appliance-
level data from every household on which the system will be deployed. In this section, we use the
HES data to train the model parameters of the AFHMM, and model the distribution of the summary
statistics. We then apply the models to the UK-DALE dataset [13], which was also gathered from
UK households, to make the predictions. There are five houses in UK-DALE, and all of them have
mains readings and as well as the individual appliance readings. All the mains meters were sampled
every 6 seconds and some of them also sampled at a higher rate, details of the data and how to access
it can be found in [13]. We employ three of the houses for analysis in our experiments (houses 1, 2
& 5 in the data). The other two houses were excluded because the correlation between the sum of
submeters and mains is very low, which suggests that there might be recording errors in the meters.
We selected 7 appliances for disaggregation, based on those that typically use the most energy. Since
the sample rate of the submeters in the HES data is 2 minutes, we downsampled the signal from 6
seconds to 2 minutes for the UK-DALE data. For each house, we randomly selected a month for
analysis. All the four methods were applied to the mains readings. For comparison purposes, we
computed the NDE, SAE, DAE and CAE errors of all three methods, averaged over 30 days. Table 3
shows the results. The results are consistent with the results of the HES data. Both the AFHMM+PR
and AFHMM+LBM improve over the basic AFHMM, except that AFHMM+PR did not improve the
CAE. As for HES testing data, AFHMM+PR and AFHMM+LBM have similar results on NDE and
SAE. And AFHMM+LBM again improved over AFHMM+PR in DAE (70%) and CAE (68%).
These results are consistent in suggesting that incorporating population information into the model
can help to reduce the identifiability problem in single-channel BSS problems.

8 Conclusions

We have proposed a latent Bayesian melding approach for incorporating population information
with latent variables into individual models, and have applied the approach to energy disaggregation
problems. The new approach has been evaluated by applying it to two real-world electricity data sets.
The latent Bayesian melding approach has been compared to the posterior regularization approach
(a case of the Bayesian melding approach) and AFHMM. Both the LBM and PR have significantly
lower error than the base line method. LBM improves over PR in predicting the duration and the
number of cycles. Both methods were similar in NDE and the SAE errors.
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