
Language generating alphabetic flat splicing P systems

Linqiang Pana, Bosheng Songb,∗, Atulya K. Nagarc, K.G. Subramaniand

aSchool of Electric and Information Engineering, Zhengzhou University of Light Industry,
Zhengzhou 450002, Henan, China

bKey Laboratory of Image Information Processing and Intelligent Control of Education
Ministry of China, School of Automation, Huazhong University of Science and Technology,

Wuhan 430074, Hubei, China
cDepartment of Mathematics and Computer Science, Faculty of Science, Liverpool Hope

University, Liverpool, L16 9JD, UK
dDepartment of Mathematics, Madras Christian College, Tambaram, Chennai 600059 India

Abstract

An operation on strings, called flat splicing was introduced, inspired by a splic-

ing operation on circular strings considered in the study of modelling of the

recombinant behaviour of DNA molecules. A simple kind of flat splicing, called

alphabetic flat splicing, allows insertion of a word with a specified start symbol

and/or a specified end symbol, between two pre-determined symbols in a given

word. In this work, we consider a P system with only alphabetic flat splicing

rules as the evolution rules and strings of symbols as objects in its regions. We

examine the language generative power of the resulting alphabetic flat splicing

P systems (AFS P systems, for short). In particular, we show that AFS P

systems with two membranes are more powerful in generative power than AFS

P systems with a single membrane. We also construct AFS P systems with at

most three membranes to generate languages that do not belong to certain other

language classes and show an application to generation of chain code pictures.

Keywords: Membrane computing, P system, Flat splicing, Chomsky hierarchy

∗Corresponding author
Email addresses: lqpan@mail.hust.edu.cn (Linqiang Pan), boshengsong@163.com

(Bosheng Song), nagara@hope.ac.uk (Atulya K. Nagar), kgsmani1948@gmail.com (K.G.
Subramanian)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hope's Institutional Research Archive

https://core.ac.uk/display/82960882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Ever since the new computability model based on membrane structure with

a generic name of P system was introduced by Păun [25, 26], several theo-

retical as well as application-oriented P system models have been introduced

with different motivations and investigated extensively, in the area of mem-

brane computing [28, 36]. As a language generating mechanism, P system has

been investigated initially in [24], introducing the notion of rewriting P systems

and proving universality for rewriting P systems with three membranes that

use a priority relation among the context-free rewriting rules. Such a system

involves symbolic computation with structured strings as objects and the evo-

lution rules could be rewriting rules as in formal language theory [29] or other

kinds of string transformation rules as for example, contextual rules [23].

From the seminal definition of rewriting P systems by Păun [24], many

other different kinds of rewriting P systems with several additional features

and/or variants have been introduced. In [2], string rewriting P systems with

different parallel methods of rewriting were considered and the computational

power was analyzed. String rewriting P systems with communication between

regions taking place by the use of query symbols were considered in [5] and

computational completeness was established. Three variants of rewriting P

systems were studied in [8] by considering leftmost rewriting, use of permitting

and forbidding conditions.

Language generation power of rewriting P systems has also been investi-

gated. In [9], rewriting P systems with membranes of variable thickness were

considered and using such a P system with only four membranes, a characteriza-

tion of recursively enumerable languages is obtained. In [14], a hybrid variety of

language generating P systems that make use of both context-free and context-

adjoining rules, is dealt with while in [15], the generative power of P systems

with string-objects and contextual rules was investigated. In [21], a variant

of rewriting P systems with global rules was considered besides improving the

universality result in [24] by reducing the number of membranes to two while

2

in [22], P systems with partially parallel rewriting were considered and it was

shown that such systems with six membranes generate recursively enumerable

languages. Language generation using replicated rewriting P systems is consid-

ered in [16, 17]. In the recent past, language generation has been considered

in the context of other kinds of P systems [13, 32, 33, 34, 35] such as spiking

neural P systems and numerical P systems.

On the other hand, related to the operation of splicing introduced by Head

[11, 12] in the area of DNA computing and extensively investigated [27], subse-

quently, Berstel et al. [1] introduced an operation on strings called flat splicing.

This operation is done by “cutting” a string x = uαβv between α and β and

inserting in x, a string y = γwδ between α and β as directed by a flat splicing

rule of the form (α|γ− δ|β), thus yielding a word uαγwδβv. A flat splicing rule

is called alphabetic, when α, β, γ, δ are letters of an alphabet or the empty word.

In this work, we consider a variant of language generating P systems with

strings as objects and a simple kind of evolution rules, namely, alphabetic flat

splicing rules in the regions of the P systems and examine the language gener-

ative power of the resulting P systems. We show that alphabetic flat splicing

P systems (AFS P systems, for short) with two membranes are more power-

ful than AFS P systems with a single membrane. We also construct AFS P

systems with two membranes to generate languages not in the language classes

generated by flat splicing systems with a finite number of initial words, pure

context-free grammars and regular grammars. On the other hand, we show that

an AFS P system with three membranes generates a context-sensitive language

which is not context-free.

A chain code picture (also called line picture) is made of unit lines in the

two-dimensional grid and is encoded by words over the alphabet {l, r, u, d} with

the symbols l, r, u, d respectively interpreted as instructions to draw a horizontal

or vertical unit line to the left, right, up or down directions from the current

position in the chain code picture. Chain code picture grammars generating

chain code pictures are known [18] as early as 1982 while recently, chain code

picture grammars were linked with P systems [3, 31]. Here as an application,

3

we construct an AFS P system to generate a language of chain code pictures

describing “double stairs”.

2. Preliminaries

For notions and results related to formal languages, we refer to [29] and to

[25, 28] for P systems.

A word (also called a string) w is a finite sequence of symbols belonging to

an alphabet V , which is a finite and nonempty set of symbols. We denote by

V ∗, the set of all words over V . The set V ∗ includes the empty word λ and we

write V + = V ∗ − {λ}. The length |w| of a word w is the number of symbols in

w counting repetitions.

We denote by CSL, CFL, LIN , REG respectively, the families of lan-

guages generated by context-sensitive, context-free, linear or regular Chomsky

grammars [29]. The family of finite languages is denoted by FIN .

We now recall the operation of flat splicing on words [1]. A flat splicing

rule r is of the form (α|γ − δ|β), where α, β, γ, δ are words over an alphabet

V . The words α, β, γ, δ are called the handles of the rule. When all the four

handles of the rule r are symbols in V or the empty word, then the flat splicing

rule r is called alphabetic. For two words x = uαβv, y = γwδ, u, v, w ∈ V ∗,

an application of the flat splicing rule r = (α|γ − δ|β) to the pair (x, y) yields

the word z = uαγwδβv and we write (x, y) `r z. Informally expressed, an

application of the rule r inserts the second word y between α and β in the first

word x yielding the word z.

A flat splicing system (FSS) [1] is a triple S = (Σ, I, R), where Σ is an

alphabet, I is an initial set of words over Σ and R is a finite set of flat splicing

rules. The FSS S is respectively called finite, regular or context-free according

as I is a finite set, a regular set or a context-free language. The language L

generated by S is the smallest language containing I and such that for any two

words u, v ∈ L and any rule r ∈ R, if the rule r is applicable to the pair (u, v)

and if the word w is obtained on applying the rule r to the pair (u, v), that is,

4

if (u, v) `r w, then w is also in L. An alphabetic flat splicing system (AFSS)

has all the flat splicing rules alphabetic. The families of languages generated

by FSS and AFSS are respectively denoted by L(FSS,X) and L(AFSS,X)

for X = FIN,REG or CF according as the initial set is finite, regular or

context-free.

Alphabetic flat splicing rules and context-free initial sets are known [1] to

produce only context-free languages.

Theorem 2.1. [1] The language generated by an alphabetic flat splicing system

with context-free initial set is context-free.

We also recall here the notion of a pure context-free grammar [19] which

makes use of only one kind of symbols, namely terminal symbols and context-

free kind of rules.

Definition 1. [19] A pure context-free grammar is G = (Σ, P,Ω), where Σ is

a finite alphabet, Ω is a set of axiom words and P is a finite set of context-free

rules of the form a → α, a ∈ Σ, α ∈ Σ∗. Derivations are done as in a context-

free grammar except that unlike a context-free grammar, there is only one kind

of symbol, namely the terminal symbol. The language generated consists of all

words generated from each axiom word. The family of languages generated by

pure context-free grammars is denoted by PCF .

For example, the pure context-free grammar G = ({a, b, c, d, e}, {e→ caebd},

{caebd}) generates the language {(ca)ne(bd)n | n ≥ 1}.

3. Flat splicing P systems

We now introduce language generating P systems with internal output com-

puting languages of structured strings. The regions of P systems considered can

have only alphabetic flat splicing rules.

5

Definition 2. A language generating P system of degree m ≥ 1, with alphabetic

flat splicing rules, (AFSPm) is

Π = (V, µ, F1, · · · , Fm, R1, · · · , Rm, io),

where

(i) V is an alphabet of the system;

(ii) µ is a membrane structure consisting of m membranes labelled in a one-

to-one way with 1, · · · ,m;

(iii) F1, · · · , Fm are initial finite subsets of V ∗ associated with the m regions

of µ;

(iv) R1, · · · , Rm are finite sets of alphabetic flat splicing rules associated with

the m regions of µ and the alphabetic flat splicing rules have attached

targets here, out, in (in general, here is omitted);

(v) io is the label of the output membrane of µ.

A computation in an AFSPm is defined in a way similar to a string rewriting

P system [24, 25]. A computation starts from an initial configuration defined

by the membrane structure with the initial words, if any, in the m regions.

The rules in a region are used in a nondeterministic maximally parallel manner,

which means that the strings to evolve and the rules to be applied to them are

chosen in a nondeterministic manner, but all strings in all the regions which can

evolve at a given step should do it. On the other hand, the application of an

alphabetic flat splicing rule to a pair of strings in a region, is sequential in the

sense only one rule is applied to a pair of strings, resulting in an evolved string

which is placed in the region indicated by the target associated with the rule

used. As usual the target here means that the evolved string remains in the same

region, out means that the evolved string exits the current membrane, (thus, if

the rule was applied in the skin membrane, then it can exit the system such that

strings leaving the system are “lost” in the environment), and in means that

6

the string is sent to one of the directly lower membranes, nondeterministically

chosen if there exist several of them (thus, if no internal membrane exists, then

a rule with the target indication in cannot be used). Note that in a region, if a

flat splicing rule with target in or out is applied to a pair of strings (x, y), then x

transforms into the string z, which is sent out of the region into an inner region

or an outer region. Also note that a string passes through the membranes as a

unique entity as in a rewriting P system [24].

A computation is successful only if it stops reaching a configuration where no

rule can be applied to the existing strings. The result of a halting computation

consists of strings in the output membrane in the halting configuration. The set

of all such strings computed (also called generated) by the system Π is denoted

by L(Π).

The family of all languages L(Π) generated by systems Π as above, with at

most m membranes, is denoted by L(AFSPm).

We give an example to illustrate AFSP2 and its work.

Example 3.1. Consider the AFSP2

Π1 = ({x, y, a, b, c, d}, [1 [2]2]1, {axb, ca}, {bd, ybd}, R1, R2, 2),

where R1 consists of the alphabetic flat splicing rule r1, while R2 consists of the

alphabetic flat splicing rules r2, r3, where

r1 = (a|c− a|x), in; r2 = (x|b− d|b), out; r3 = (x|y − d|b).

Computation in Π1 takes place as follows: The region 1 has axiom strings

axb, ca and the rule r1 with target indication in, is applicable to the pair (axb, ca),

which transforms axb into acaxb and sends it to region 2 while at the same time

no string can evolve in region 2 although it has the strings bd, ybd initially,

as no rule is applicable to any pair in this region. Once the string acaxb ar-

rives in region 2, if the rule r2 with target indication out is applied to the pair

(acaxb, bd) then the string acaxb is transformed into the string acaxbdb and

sent back to region 1. The process can be repeated and at any moment strings

7

of the form a(ca)p−1x(bd)p−1b, p ≥ 2 evolve in the region 2 and go to region 1.

But when the string a(ca)px(bd)p−1b, p ≥ 2 arrives in region 2, if the rule r3

(with target indication here) is applied to the pair (a(ca)px(bd)p−1b, ybd) then

this yields the string a(ca)pxy(bd)pb, p ≥ 1 which remains in region 2 itself.

The computation reaches a halting configuration and the string a(ca)pxy(bd)pb

is collected in the output region 2, thus generating the context-free language

{bd, ybd} ∪ {a(ca)pxy(bd)pb | p ≥ 1}. Note that bd, ybd are axiom strings in

region 2, which are also collected in the language.

We now examine the generative power of the alphabetic flat splicing P sys-

tem.

Theorem 3.1. L(AFSP1) ⊂ L(AFSP2).

Proof. The inclusion is by definition. In order to prove the proper inclu-

sion, consider the language L1 = {c} ∪ {x(cad)ny | n ≥ 0} over the alphabet

{a, c, d, x, y}. The language L1 is generated by the AFSP2

Π2 = ({a, c, d, x, y}, [1 [2]2]1, {xy, ad}, {c, xy}, R1, R2, 2),

where R1 consists of the alphabetic flat splicing rule r1, r2, while R2 consists of

the alphabetic flat splicing rules r3, r4, where

r1 = (x|a− d|y), in; r2 = (x|a− d|c), in; r3 = (x|c− λ|a), out; r4 = (x|λ− c|a).

In a computation of this system, initially, in region 1, the string xy trans-

forms into xady by the application of the rule r1 which “inserts” ad into xy.

Due to the target indication in of the rule r1, the string xady is sent to region

2 where it is transformed into xcady by the application of the rule r3. Due to

the target indication out of the rule r3, the string xcady is sent back to region

1. The process can be continued by repeated application of the rule r2 in region

1 and r3 in region 2, sending the generated string back and forth between re-

gions 1 and 2. At some stage when the string of the form xad(cad)n−1y, n ≥ 1

arrives in region 2, an application of the rule r4 generates a string of the form

x(cad)n, n ≥ 1 which remains in region 2 and the computation halts as no rule

8

is applicable in any of the regions. Thus the language generated is L1. But L1

cannot be generated by any AFSP1. If we assume the contrary, we note that

the only membrane in AFSP1 can have only a finite number of initial words

(which are also in the language L1) and a finite number of alphabetic flat splic-

ing rules. Every word (other than c) in the language L1 has only one x and

one y. It can be seen that this property cannot be maintained in the generated

words and hence L1 /∈ L(AFSP1). �

Theorem 3.2. L(AFSP2)−L(FSS, FIN) 6= ∅. As a consequence L(AFSP2)−

L(AFSS, FIN) 6= ∅.

Proof. In the proof of Theorem 3.1, the language L2 = {c} ∪ {x(cad)ny |

n ≥ 0} over the alphabet {a, c, d, x, y} was shown to be in L(AFSP2). But L2

cannot be in the family L(FSS, FIN). In fact if L2 can be generated by a flat

splicing system with a finite number of axioms, then the axioms which will also

belong to L2, should also be words with only one x in the beginning and one y

at the end, the only exception being the word c. But then the flat splicing rules

of the system will have to allow these axiom words to be inserted into other

axiom words and the process of such an insertion will have to continue with

the resulting words. This means that the property of having only one x in the

beginning and one y at the end, of the words in L2, cannot be maintained, as

the generated words will have more than one x and more than one y. Note that

insertion of the axiom word c into other words is not enough to generate the

words of the form x(cad)ny. Also, an alphabetic flat splicing system is a special

kind of FSS and hence L2 /∈ L(AFSS, FIN). �

Theorem 3.3. (i) L(AFSP2)−REG 6= ∅.

(ii) L(AFSP2)− PCF 6= ∅.

Proof. Consider the language L3 = {ca, cad} ∪ {(ca)n(db)n | n ≥ 1}.

Clearly this language is not regular [29]. It cannot also be generated by any

9

pure context-free grammar [19] since no context-free kind of rule for any of the

letters a, b, c, d can generate an equal number of (ca)′s and (db)′s. But L3 can

be generated by the AFSP2 given by

({a, b, c, d}, [1 [2]2]1, {cacabdb, db}, {ca, cad, cadb, cacadbdb}, R1, R2, 2),

where R1 consists of the alphabetic flat splicing rule r1 = (b|d−b|d), in; while R2

consists of the rules r2 = (a|c− a|b), out and r3 = (a|c− d|b). The computation

takes place as follows: While no rule is applicable to any pair of words in

region 2 initially, at the same time in region 1, application of rule r1 inserts db

between b and d in the word cacabdb generating the string cacabdbdb which is

then sent to region 2. Note at this moment only the word db remains in region

1 and so no rule is applicable. Now in region 2, if the rule r2 is applied to

the pair of words (cacabdbdb, ca) then cacacabdbdb is generated which is then

sent back to region 1. The process can be repeated. When a word of the form

(ca)n−1b(db)n−1, n ≥ 3 reaches region 2, if the rule r3 is applied on the pair

((ca)n−1b(db)n−1, cad), then the string generated is (ca)n(db)n, which remains

in region 2 with a halting computation. �

Theorem 3.4. L(AFSP3)− CF 6= ∅.

Proof. Consider the context-sensitive language L4 = {d, ed}∪{anbne(dc)n−1 |

n ≥ 2}, which is not context-free. The language L4 is generated by the following

AFSP3

({a, b, c, d, e}, [1 [2 [3]3]2]1, {a, abc}, {b, c}, {d, ed}, R1, R2, R3, 3),

where R1 consists of the alphabetic flat splicing rule r1 = (a|λ− a|b), in, while

R2 consists of the rules r2 = (b|b − λ|c), in and r4 = (b|c − λ|d), out and R3

consists of the rules r3 = (b|d− λ|c), out and r5 = (b|e− d|c). The computation

takes place as follows: Initially, application of the rule r1 in region 1 to the

pair (abc, a) inserts a into abc between a and b and the resulting word aabc

enters region 2. Here the application of the rule r2 to the pair (aabc, b) inserts b

10

between b and c and the resulting word aabbc is sent to region 3. If rule r3 in this

region is applied to the pair (aabbc, d), then the resulting word aabbdc is sent

out to region 2, the only rule applicable is r4 to the pair (aabbdc, c) yielding the

word aabbcdc which is sent to region 1. The process can repeat. Note that by

the construction of the P system, when a rule is applicable to a pair of words in

a region, no other rule in any other region becomes applicable to any available

pair of words. In general when a word of the form anbnc(dc)n−2, n ≥ 2 reaches

region 3 and if the rule r5 is applied to the pair (anbnc(dc)n−2, ed), then the

computation halts and the generated word anbne(dc)n−1 remains in the output

membrane 3, which is included in the language of the system. �

4. Application to chain-code pictures

There are many applications of the P system models in the area of membrane

computing [4], in particular in the generation of digitized pictures in the two-

dimensional plane [30]. Description of pictures given by chain codes has been of

great interest and investigation [6, 7, 10, 18], in view of the fact that the chain-

code pictures in the two-dimensional plane are described by string grammars.

Recently, P systems for chain code picture languages have been proposed and

investigated [3, 31]. Here we illustrate, by an example, an application of flat

splicing P systems in generating chain code picture languages.

Figure 1: A chain code picture of double “stairs” of equal height

A chain code picture [18] p is composed of unit horizontal and vertical lines in

the two-dimensional plane and is described by words over the alphabet {l, r, u, d}

11

with the symbols l, r, u, d respectively interpreted as instructions to draw a hor-

izontal or vertical unit line to the left, right, up or down directions from the

present position in the chain code picture. A chain code picture language is a

set of chain code pictures.

Consider the non-regular language Lc = {(ru)nrr(dr)nl | n ≥ 1}, whose

words correspond to chain code pictures of double “stairs” of equal height. For

n = 3, the chain code picture of the word (ru)3rr(dr)3l is shown in Fig. 1. Here

we give a flat splicing P system Πc with two membranes to generate the chain

code picture language Lc. The P system Πc is given by

Πc = {l, r, u, d}, [1 [2]2]1, {ru, rr, rudrl}, {dr}, R1, R2, 2),

where R1 consists of the alphabetic flat splicing rules r1 = (u|r − u|d), in and

r3 = (u|r − r|d), in, while R2 consists of the rules r2 = (u|d − r|d), out. The

computation takes place as follows: Initially, application of the rule r1 in region

1 to the pair (rudrl, ru) inserts ru into rudrl between u and d and the resulting

word rurudrl enters region 2. Here the application of the rule r2 to the pair

(rurudrl, dr) inserts dr between u and d and the resulting word rurudrdrl is

sent back to region 1. The process can repeat. But in region 1, if the rule r3 is

applied to the pair (rurudrdrl, rr), then the resulting word rururrdrdrl is sent

into the region 2 and is collected in the language.

5. Conclusions and discussions

In this work, we have considered P systems of the language generating variety

making use of a simple kind of rule, namely, alphabetic flat splicing rules. We

have shown that alphabetic flat splicing P systems with two membranes are

more powerful in generative power than alphabetic flat splicing P systems with

a single membrane. We also proved that alphabetic flat splicing P systems with

at most three membranes generate languages that do not belong to certain other

language classes. Finally, an application of alphabetic flat splicing P systems to

generation of chain code pictures was given.

12

One of the problems that can be explored is whether the number of mem-

branes in the stated results, especially in Theorem 3.4, could be reduced. Al-

though there is a strictly context-sensitive language (as shown in Theorem 3.4),

which can be generated by an AFS P system with three membranes, the posi-

tion in the Chomsky hierarchy of the language family of AFS P systems with

three membranes at the most, remains to be investigated. It will also be of

interest to examine whether the inclusion AFSPm ⊆ AFSPm+1 is proper or

not, for m ≥ 2.

The language generative power of alphabetic flat splicing P systems in com-

parison with Chomsky hierarchy has been investigated in section 3. It remains

open to explore whether alphabetic flat splicing P systems can generate any re-

cursively enumerable language. Moreover, in section 4, a simple picture, double

“stairs” of equal height has been generated. It will be interesting to examine

whether we can generate more complex pictures (such as chess board patterns)

by using alphabetic flat splicing P systems.

The main feature of an alphabetic flat splicing rule is to allow only insertion

of a word into another word in the context of certain symbols, which makes it

very restrictive. So it may be of interest to study the language generative power

of a hybrid variety of language generating P system having certain simple kinds

of rules such as the deletion rules of the form a → λ in addition to alphabetic

flat splicing rules. Along this direction, a language generating P system of the

hybrid variety with only regular or linear Chomsky type of rules along with

alphabetic flat splicing rules, is considered in [20] and such a P system with two

membranes generates a context-sensitive language.

Acknowledgements

The work of L. Pan and B. Song was supported by National Natural Science

Foundation of China (61033003, 61320106005, 61472372, 61472371, 61572446,

and 61602192), China Postdoctoral Science Foundation (2016M600592), and the

Innovation Scientists and Technicians Troop Construction Projects of Henan

13

Province (154200510012). The fourth author K.G. Subramanian is grateful to

UGC, India, for the award of Emeritus Fellowship (No.F.6-6/2016-17/EMERITUS-

2015-17-GEN-5933/(SA-II)) to him to execute his work in the Department of

Mathematics, Madras Christian College.

References

References

[1] J. Berstel, L. Boasson, I. Fagnot, Splicing systems and the chomsky hier-

archy, Theor. Comput. Sci. 436 (2012) 2–22.

[2] D. Besozzi, C. Ferretti, G. Mauri, C. Zandron, Parallel rewriting P systems

with deadlock, in: Proc. of the 8th International Workshop on DNA-Based

Computers, in: LNCS, vol. 2568, 2003, pp. 302–314.

[3] R. Ceterchi, K.G. Subramanian, I. Venkat, P systems with parallel rewrit-

ing for chain code picture languages, in: Proc. of the 11th Conference on

Computability in Europe, in: LNCS, vol. 9136, 2015, pp. 145–155.

[4] G. Ciobanu, M.J. Pérez-Jiménez, Gh. Păun, Applications of Membrane

Computing, Springer, Berlin, 2006.

[5] E. Csuhaj-Varjú, G. Vasil, P systems with string objects and with commu-

nication by request, in: Proc. of the 8th Workshop on Membrane Comput-

ing, in: LNCS, vol. 4860, 2007, pp. 228–239.

[6] J. Dassow, Grammatical Picture generation, Tech. Report, Otto-von-

Guericke-Universität Magdeburg, Chapter 4, 101–121, 2011.

[7] J. Dassow, F. Hinz, Decision problems and regular chain code picture lan-

guages, Discrete Appl. Math. 45 (1993) 29–49.

[8] C. Ferretti, G. Mauri, Gh. Paun, C. Zandron, On three variants of rewriting

P systems, Theor. Comput. Sci. 301 (2003) 201–215.

14

[9] R. Freund, C. Martin-Vide, Gh. Păun, From regulated rewriting to com-

puting with membranes: collapsing hierarchies, Theor. Comput. Sci. 312

(2004) 143–188.

[10] R. Gutbrod, A transformation system for generating description languages

of chain code pictures, Theor. Comput. Sci. 68 (1989) 239–252.

[11] T. Head, Formal language theory and dna: an analysis of the generative

capacity of specific recombinant behaviours, B. Math. Biol. 49 (1987) 735–

759.

[12] T. Head, Circular Suggestions for DNA Computing. In: Pattern Formation

in Biology, Vision and Dynamics(Ed. Carbone, A. et al.), World Scientific,

(2000) 325–335.

[13] K. Jiang, W. Chen, Y. Zhang, L. Pan, On string languages generated by

sequential spiking neural P systems based on the number of spikes, Nat.

Comput. 15 (1) (2016) 87–96.

[14] S.N. Krishna, K. Lakshmanan, R. Rama, Hybrid P systems, Rom. J. Inf.

Sci. Tech. 4 (2001) 11–123.

[15] S.N. Krishna, K. Lakshmanan, R. Rama, On the power of P systems with

contextual rules, Fundam. Inform. 49 (2002) 167–178.

[16] S.N. Krishna, R. Rama, P Systems with Replicated Rewriting. J. Au-

tomata, Languages and Combinatorics. 6 (3) (2001) 345–350.

[17] V. Manca, C. Martin-Vide, Gh. Păun, On the power of P systems with

replicated rewriting, J. Automata, Languages and Combinatorics, 6 (3)

(2001) 359–374.

[18] H.A. Maurer, G. Rozenberg, E. Welzl, Using string languages to describe

picture languages, Inf. Contro. 54 (3) (1982) 155–185.

[19] H.A. Maurer, A. Salomaa, D. Wood, Pure Grammars, Inf. Control. 44

(1980) 47–72.

15

[20] L. Pan, B. Song, A.K. Nagar, K.G. Subramanian, Rewriting P systems with

flat-splicing rules, in: Proc. of the 17th Int. Conf. Membrane Computing,

(2016) 249–261.

[21] A. Păun, P systems with global rules, Theor. Comput. Syst. 35 (5) (2002)

471–481.

[22] A. Păun, On P systems with partial parallel rewriting, Rom. J. Inf. Sci.

Tech. 4 (2001) 203–210.

[23] Gh. Păun, Marcus Contextual Grammar. Studies in Linguistics and Phi-

losophy. Kluwer, Dordrecht, 1997.

[24] Gh. Păun, Computing with membranes, J. Comput. Syst. Sci. 61 (2000)

108–143.

[25] Gh. Păun, Computing with Membranes: An Introduction. Springer-Verlag,

Berlin, 2002.

[26] Gh. Păun, From Cells to Computers: Membrane Computing - A Quick

Overview, in: Proc. of the 10th International Workshop on DNA Comput-

ing, in: LNCS, vol. 3384, 2005, pp. 268–280.

[27] Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing–New Comput-

ing Paradigms. Texts in Theoretical Computer Science. An EATCS Series,

Springer, 1998.

[28] Gh. Păun, G. Rozenberg, A. Salomaa, The Oxford Handbook of Membrane

Computing. Oxford University Press, New York, 2010.

[29] G. Rozenberg, A. Salomaa, (Eds.): Handbook of Formal Languages. Vols.

1-3, Springer-Verlag, Berlin, 1997.

[30] K.G. Subramanian, P systems and picture languages, in: Proc. of the 5th

International Conference on Machines, Computations and Universality, in:

LNCS, vol. 4644, 2007, pp. 99–109.

16

[31] K.G. Subramanian, I. Venkat, L. Pan, P systems generating chain code

picture languages, in: Proc. of Asian Conference on Membrane Computing,

Wuhan, (2012) pp. 115–123.

[32] T. Wu, Z. Zhang, L. Pan, On languages generated by cell-like spiking neural

P systems, IEEE T. Nanobiosci. 15 (5) (2016) 455–467.

[33] X. Zeng, L. Xu, X. Liu, L. Pan, On languages generated by spiking neural

P systems with weights, Inf. Sci. 278 (2014) 423–433.

[34] X. Zhang, X. Zeng, L. Pan, On languages generated by asynchronous spik-

ing neural P systems, Theor. Comput. Sci. 410 (26) (2009) 2478–2488.

[35] X. Zhang, Y. Liu, B. Luo, L. Pan, Computational power of tissue P systems

for generating control languages, Inf. Sci. 278 (2014) 285–297.

[36] G. Zhang, M. Gheorghe, L. Pan, M.J. Pérez-Jiménez, Evolutionary mem-

brane computing: a comprehensive survey and new results, Inf. Sci. 279

(2014) 528–551.

17

