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ABSTRACT

Longevity swaps have been one of the major success stories of pension scheme de-
risking in recent years. However, with some few exceptions, all of the transactions to date
have been bespoke longevity swaps based upon the mortality experience of a portfolio
of named lives. In order for this market to start to meet its true potential, solutions will
ultimately be needed that provide protection for all types of members, are cost effective
for large and smaller schemes, are tradable, and enable access to the wider capital
markets. Index-based solutions have the potential to meet this need; however concerns
remain with these solutions. In particular, the basis risk emerging from the potential
mismatch between the underlying forces of mortality for the index reference portfolio
and the pension fund/annuity book being hedged is the principal issue that has, to
date, prevented many schemes progressing their consideration of index-based solutions.
Two-population stochastic mortality models offer an alternative to overcome this obstacle
as they allow market participants to compare and project the mortality experience for
the reference and target populations and thus assess the amount of demographic basis
risk involved in an index-based longevity hedge. In this paper, we systematically assess
the suitability of several multi-population stochastic mortality models for assessing basis
risks and provide guidelines on how to use these models in practical situations paying
particular attention to the data requirements for the appropriate calibration and forecasting
of such models.

1. INTRODUCTION
Recent years have seen a huge growth in longevity risk transfer, both in the insurer to
reinsurer market, and from pension schemes to the insurance market. For example in 2014
£36.6bn of longevity risk was transferred from pension schemes to insurers and reinsurers
via buy-ins, buy-outs and longevity swaps. Of this, £25.4bn related to longevity only
transactions (longevity swaps), more than double the volume written in the preceding
3 years (Hymans Robertson LLP, 2015). An effective, growing market with sufficient
capacity to meet demand would be to the benefit of all participants, whether to enable
business to be done, or to manage risk.

To date most transactions have been “bespoke” deals, with the payouts linked directly
to the actual experience or lifespans of the individuals being covered. But index-based
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solutions – where the payouts are linked to a longevity index or metric based on an external
reference population – are possible. They have the potential to provide important benefits:
lower costs, faster execution, potential for liquidity, and greater transparency.

In its simplest form an index based longevity swap involves a payment to the pension
scheme or insurer that is based on the longevity experience of a reference index. An
index-based swap provides a means to obtain (partial) protection from longevity risk
both for pensioners but also deferred pensioners who are generally not covered by the
“bespoke” transactions. In the case of life insurers they offer a potentially flexible way
to manage exposure to longevity risk, or to facilitate a more capitally optimal balance
between longevity and mortality risk. However, index-based swaps do not provide a perfect
risk reduction due to the presence of basis risk, which arises from the differences in the
mortality experiences of the reference population of the index and of the target population
being hedged. As a result, the index based payments will not exactly match the actual
annuity payments being made by the insurer or pension scheme.

There are three primary sources of basis risk driving the mismatch between the insurer
or pension scheme liabilities and the longevity index hedge (LLMA, 2012):

• Structuring risk due to the payoff of the hedging instruments being different to
that of the portfolio: for example the hedging instrument making annual payments
whereas the portfolio pays annuities or pensions monthly, the hedge may be of
shorter duration than the liabilities or it may contain some option-like features such
as caps/floors or other non-linear payoff patterns.

• Sampling risk arising from the random outcomes in the mortality of the individual
lives within the portfolio and the index population meaning the actual mortality
experienced by the two populations will not be the same, other than by chance.
The impact of sampling risk may be aggravated by concentration risk affecting the
portfolio.

• Demographic risk owing to demographic and socio-economic differences in the
composition of the actual portfolio being hedged and the index population referenced
in the hedge, leading to different underlying mortality rates at the current moment –
and in the future.

Well-established approaches for modelling the first two of these sources of basis risk
exist. Structuring risk can be assessed by simulating the cashflows under the portfolio and
the payoffs under the instrument, whilst sampling risk can be modelled by simulating the
outcomes for the respective populations.

In contrast, there is no well-established approach for assessing demographic basis
risk. Yet it is this risk which worries (re)insurers and pension schemes when they consider
entering index-based longevity transactions (LLMA, 2012). The absence of an appropri-
ate approach for quantifying such risk makes it very difficult to assess whether such a
transaction looks good value for money, or what impact the transaction would have on the
insurer’s or pension scheme’s overall risk profile and hence capital/funding requirements.

In the academic literature there have been a few contributions setting out possible
approaches for quantifying longevity basis risk. Coughlan et al. (2011) propose a compre-
hensive framework for assessing the effectiveness of a longevity hedge, in which the first
and key step entails a careful analysis of the historical experiences of the reference and
target population to get an informed understanding of the mortality differences between the
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two populations. Li and Hardy (2011) investigate the use of a number of multipopulation
extensions of the Lee-Carter model (Lee and Carter, 1992) for the assessment of basis
risk and use the Augmented Common Factor model of Li and Lee (2005) to quantify the
hedge effectiveness of an index-based q-forward longevity hedge. Li et al. (2015) propose
a systematic approach for the construction of two-population mortality models that can be
used for the quantification of the population basis risk in a standardised longevity hedge.
In addition, recent years have seen a boom in the actuarial and demographic literature
looking at the modelling of mortality in two (or more) related populations (e.g. Li and
Lee (2005); Jarner and Kryger (2011); Plat (2009b); Cairns et al. (2011a); Dowd et al.
(2011)). These two-population models, although not always proposed with the specific
aim of assessing longevity basis risk, have the potential for allowing market participants
to compare and project the mortality experience for the reference and target populations
and thus assess the amount of demographic basis risk involved in an index-based longevity
hedge. However, often the portfolio experience data will be sparse, posing a challenge for
the accurate calibration and projection of the two-population model.

Our purpose in this paper is threefold. First, we provide a systematic and structured
overview of existing multipopulation mortality modelling methodologies (c.f. Figure 1)
scattered within the actuarial, demographic and statistical literature.

Our second goal is to summarize existing and formulate new criteria that a two-
population mortality model should satisfy in order to be suitable for assessing basis risk.

Finally, our third goal is to systematically evaluate, contrast and select the model(s) that
satisfy these criteria. We have done that by using prototype pension schemes with different
size, history length and socio-economic composition. To the best of our knowledge, such a
comprehensive analysis covering different characteristics of pension schemes and many
alternative models has not been performed before. Our main finding is that two-populations
mortality models are efficiently applied only if the scheme size exceeds 20,000-25,000
lives and its history length is at least 8-10 years. Given these conditions are satisfied, we
found that the most appropriate models to be used for assessing basis risk are M7-M5 and
CAE+Cohorts (see Table 3).

We believe that providing such an overview and comparison is an important contri-
bution that will help researchers and industry practitioners interested in longevity risk
modelling. Furthermore, we have shaped the framework under which basis risk assess-
ment methodologies can reliably be used. Therefore, we have offered market participants
involved in longevity transactions an invaluable analytical tool.

The paper is structured as follows. In Section 2 we introduce some notation. In Section
3 we provide an overview of the multipopulation mortality models that have been proposed
in the literature. Then, to facilitate the comparison of models, we discuss in Section 4 a
general modelling framework under which most two-population mortality models can be
accommodated. In Section 5 we draw from the literature comparing single population
mortality models to introduce a number of criteria that a good and practical two-population
model for basis risk assessment should satisfy. We use these criteria in Section 6 to
systematically evaluate the appropriateness of the possible two-population models for basis
risk assessment. First, in Section 6.1, we evaluate the models against those criteria which
relate to the theoretical properties of a model and can be evaluated without reference to
a specific dataset. Then, in Section 6.2, we focus on those criteria which can only be
evaluated after a model has been fitted to data. This systematic evaluation of the models
will allow us to identify the main features of a good model for basis risk assessment and
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discuss the data requirements for the appropriate calibration and forecasting of such a
model. Having identified some reasonable models for basis risk assessment, we examine in
Section 7 the performance of these models in some simple illustrative hedge-effectiveness
evaluation exercises, paying particular attention to the impact that different volumes of
data may have on the assessment of basis risk. Finally, we conclude in Section 8 with a
discussion of our main findings and future areas of research.

2. NOTATION
We denote by R the reference population backing the hedging instrument and by B the
book population whose longevity risk is to be hedged. We assume that for the reference
population the number of deaths at age x last birthday in calendar year t, DR

xt , and the
matching initial exposed to risk, ER

xt , are available. The corresponding 1-year death rate
for an individual in the reference population aged x last birthday and in calendar year t,
denoted qR

xt , can be estimated as q̂R
xt = DR

xt
/

ER
xt . Similarly, the corresponding quantities for

the book population are denoted DB
xt , EB

xt and q̂B
xt = DB

xt
/

EB
xt . We assume that these data

are available for a given set of ages and given numbers of years that can differ between the
reference and the book populations. More precisely, we assume that DR

xt , ER
xt are available

for consecutive ages x = x1, . . . ,xl and consecutive calendar years t = t1, . . . , tnR , while
in the book they are available for ages x = x1, . . . ,xm and calendar years t = u1, . . . ,unB .
Typically, data for the reference population will be available over a longer horizon than
in the book, that is nR ≥ nB. Also, the set of calendar years of data in the book may be a
subset of the corresponding calendar years in the reference population i.e. we may find that
unB 6= tnR . Further, the ages available within the book may be a subset of those available in
the reference population.

3. OVERVIEW OF AVAILABLE TWO-POPULATION MORTALITY
MODELS

In order to be able to assess basis risk, we need a model that is able to capture the
mortality trends in the reference population backing the hedging instrument and in the
book population whose risk is to be hedged. That is to find a suitable two-population
model for qR

xt and qB
xt which produces consistent stochastic forecasts of future mortality.

Many models have been proposed in the literature to represent the mortality evolution
of two or more related populations. The majority of such models extend known single
population models by specifying the correlation and interaction between the involved
populations. Figure 1 contains a schematic representation of the multi-population models
currently available in the published literature, broadly grouped according to three main
categories, following the single population model they extend.

4



E
xt

en
si

on
so

f
th

e
L

ee
-C

ar
te

r

Jo
in

t-
κ

lo
g

m
i xt
=

α
i x
+

β
i xκ

t
C

ar
te

ra
nd

L
ee

(1
99

2)
,

L
ia

nd
H

ar
dy

(2
01

1)
,

W
ilm

ot
h

an
d

V
al

ko
ne

n
(2

00
1)

,
D

el
w

ar
de

et
al

.(
20

06
)

T
hr

ee
-w

ay
L

ee
-C

ar
te

r
lo

g
m

i xt
=

α
i x
+

β
xλ

iκ
t

R
us

so
lil

lo
et

al
.(

20
11

)

C
om

m
on

Fa
ct

or
lo

g
m

i xt
=

α
i x
+

β
xκ

t
C

ar
te

ra
nd

L
ee

(1
99

2)
,

L
ia

nd
L

ee
(2

00
5)

,
L

ia
nd

H
ar

dy
(2

01
1)

St
ra

tifi
ed

L
ee

-C
ar

te
r

lo
g

m
i xt
=

α
x
+

α
i +

β
xκ

t
B

ut
ta

nd
H

ab
er

m
an

(2
00

9)
,

D
eb

ón
et

al
.(

20
11

)

A
ug

m
en

te
d

C
om

m
on

Fa
ct

or
lo

g
m

i xt
=

α
i x
+

β
xκ

t+
β
(i
)

x
κ

i t
L

ia
nd

L
ee

(2
00

5)
,L

ia
nd

H
ar

dy
(2

01
1)

H
yn

dm
an

et
al

.(
20

13
),

L
i(

20
12

)

A
ug

m
en

te
d

C
om

m
on

Fa
ct

or
+

C
oh

or
ts

lo
g

m
i xt
=

α
i x
+

β
xκ

t+

∑
N j=

1
β
(

j,i
)

x
κ
(

j,i
)

t
+

β
(0
,i)

x
γ

i t−
x

Y
an

g
et

al
.(

20
16

)

R
el

at
iv

e
L

ee
-C

ar
te

r
+

C
oh

or
ts

lo
g

m
i xt
=

α
x
+

β
(1
)

x
κ

t+
γ

t−
x+

α
i x
+

β
(2
)

x
κ

i t
V

ill
eg

as
an

d
H

ab
er

m
an

(2
01

4)

C
o-

in
te

gr
at

ed
L

ee
-C

ar
te

r
lo

g
m

i xt
=

α
i x
+

β
i xκ

i t
C

ar
te

ra
nd

L
ee

(1
99

2)
,

L
ia

nd
H

ar
dy

(2
01

1)
,

Y
an

g
an

d
W

an
g

(2
01

3)

L
ee

-C
ar

te
r

+
VA

R
/V

E
C

M
lo

g
m

i xt
=

α
i x
+

β
xκ

i t
Z

ho
u

et
al

.(
20

14
)

C
om

m
on

A
ge

E
ff

ec
t

lo
g

m
i xt
=

α
i x
+

∑
jβ

j x
κ
(

j,i
)

t
K

le
in

ow
(2

01
5)

B
ay

es
ia

n
tw

o-
po

pu
la

tio
n

A
PC

lo
g

m
i xt
=

α
i x
+

κ
i t
+

γ
i t−

x
C

ai
rn

s
et

al
.(

20
11

a)
G

ra
vi

ty
m

od
el

-
Tw

o-
po

pu
la

tio
n

A
PC

lo
g

m
i xt
=

α
i x
+

κ
i t
+

γ
i t−

x
D

ow
d

et
al

.(
20

11
)

E
xt

en
si

on
so

f
th

e
C

B
D

m
od

el

Tw
o-

po
pu

la
tio

n
M

7
lo

gi
tq

i xt
=

κ
(i
,1
)

t
+
(x
−

x̄)
κ
(i
,2
)

t
+
( (x
−

x̄)
2
−

σ̂
2 x
) κ

(i
,3
)

t
+

γ
i t−

x
L

ie
ta

l.
(2

01
5)

Tw
o-

po
pu

la
tio

n
M

6
lo

gi
tq

i xt
=

κ
(i
,1
)

t
+
(x
−

x̄)
κ
(i
,2
)

t
+

γ
i t−

x
L

ie
ta

l.
(2

01
5)

Tw
o-

po
pu

la
tio

n
C

B
D

(M
5)

lo
gi

tq
i xt
=

κ
(i
,1
)

t
+
(x
−

x̄)
κ
(i
,2
)

t
L

ie
ta

l.
(2

01
5)

O
th

er
m

od
el

s

Pl
at

R
el

at
iv

e
m

od
el

Pl
at

(2
00

9b
)

Sa
in

tm
od

el
Ja

rn
er

an
d

K
ry

ge
r(

20
11

)

Pl
at

+
L

ee
-C

ar
te

r
W

an
an

d
B

er
ts

ch
i(

20
15

)

M
ul

tip
op

ul
at

io
n

G
L

M
H

at
zo

po
ul

os
an

d
H

ab
er

m
an

(2
01

3)
,

A
hm

ad
ia

nd
L

i(
20

14
)

R
el

at
iv

e
P-

Sp
lin

es
B

ia
ta

ta
nd

C
ur

ri
e

(2
01

0)

Fi
gu

re
1.

O
ve

rv
ie

w
of

th
e

m
ul

tip
op

ul
at

io
n

m
or

ta
lit

y
m

od
el

lin
g

lit
er

at
ur

e.

5



The first ideas for modelling multiple populations go back to the seminal work of Carter
and Lee (1992), who suggested three possible ways of extending their single population
model (Lee and Carter, 1992) in order to forecast differentials in US mortality between men
and women. The first and simplest approach suggested by Carter and Lee (1992) is to use
independent Lee-Carter models for each population, and, if desired, to study in a later stage
the dependence between the population-specific period effects. A second approach, the
Joint-κ model, assumes that a single period component κt drives the mortality change for
all the populations but assumes that the age-specific mortality pattern and the age-specific
responses to changes in the level of mortality are population-specific. The third approach
estimates the populations jointly using cointegration techniques.

Formally, the Joint-κ model assumes that the central death rate at time t for age x in
population i, mi

xt , is given by
logmi

xt = α
i
x +β

i
xκt . (1)

Several other models proposed in the literature can be thought of as restricted versions
of the Joint-κ model in Equation (1). These include: the Three-way Lee-Carter model
of Russolillo et al. (2011) which assumes that β i

x = βxλ i; the Common Factor model
introduced by Li and Lee (2005) where β i

x = βx; and the stratified Lee-Carter model
proposed in Butt and Haberman (2009) where it is assumed that α i

x = αx +α i and β i
x = βx.

The structure of the Joint-κ model and of its restricted versions imply that mortality
improvements are perfectly correlated across populations. Moreover, the Common Factor
and Stratified Lee-Carter models imply the same mortality improvements for all population
at all times. However, since this is an unrealistic assumption for most datasets, Li and
Lee (2005) have added a population specific factor to the Common Factor model, in the
so-called Augmented Common Factor model:

logmi
xt = α

i
x +βxκt +β

i
xκ

i
t . (2)

In Equation (2) the term β i
xκ i

t captures the deviations of the rate of mortality change
of population i from the long-term trend in mortality change implied by the common
factor, βxκt . In order to avoid divergence in the projected mortality, Li and Lee (2005)
assume that the κ i

t factors can be modelled using stationary processes such as a first order
autoregressive process, AR(1). Under this modelling assumption the mortality rates of
the different populations may wander apart in the short and medium terms, but tend to
converge in the long-run. The Augmented Common Factor has spawned several variants
and extensions. Hyndman et al. (2013) have introduced the product-ratio method which
extends the Augmented Common Factor model by adopting a functional data approach
and allowing more than one period index for the modelling of both the common factor and
of the population-specific factors. Li (2012), who also considers multiple period indexes,
uses a Poisson setting to estimate the parameters of the Augmented Common Factor model
instead of the singular value decomposition approach originally employed by Li and Lee
(2005). Recently, Yang et al. (2016) have extended the Poisson Augmented Common
Factor to allow for possible cohort effects. Villegas and Haberman (2014) have considered
a similar cohort variant of the Augmented Common Factor for the purpose of studying
socio-economic differences in mortality.

As discussed in Li and Hardy (2011), to implement a two-population version of the
co-integrated Lee-Carter model suggested by Carter and Lee (1992), one must first fit two
independent single population Lee-Carter models to each of the populations,

logmi
xt = α

i
x +β

i
xκ

i
t , i = 1,2, (3)
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and then model jointly the period effects of the populations, κ1
t and κ2

t , with a co-integrated
bivariate process under the assumption of the existence of a common stochastic long-term
trend linking the mortality of the two populations. In the same vein, Yang and Wang
(2013) fit independent single population Lee-Carter models to multiple populations and
then model simultaneously the period effects of the different populations using a Vector
Error Correction Model. In order to impose further consistency in the forecast of the
two-populations, Zhou et al. (2014) assume in (3) that both populations share the same
age-sensitivity term, i.e. β i

x = βx. For modelling the period indexes κ1
t and κ2

t , Zhou et al.
(2014) consider three methods: a random walk with drift for κ1

t plus an AR(1) for κ2
t −κ1

t
(abbreviated RWAR by the authors), a vector autoregressive model (VAR); and a Vector
Error Correction Model (VECM). Similarly to Zhou et al. (2014), Kleinow (2015) has
proposed a multiple population Common-Age-Effect model in which the age-sensitivity
terms (age-effects) are common to all the populations.

Another alternative for modelling multi-population mortality is to extend the widely
used single-population Cairns-Blake-Dowd (CBD) model of mortality (Cairns et al.,
2006). This approach has recently been considered by Li et al. (2015) who introduce
two-population versions of the CBD model and its variants. For instance, in a full two-
population version of the M7 model (the CBD model with cohort and quadratic effects
proposed in Cairns et al. (2009)), the one-year death rate for a person aged x at time t in
population i, qi

xt , is given by:

logitqi
xt = κ

(i,1)
t +(x− x̄)κ(i,2)

t +
(
(x− x̄)2− σ̂

2
x
)

κ
(i,3)
t + γ

i
t−x, i = 1,2, (4)

where x̄ is the average age in the data and σ̂2
x is the average value of (x− x̄)2. Li et al.

(2015) also set out a systematic top-down procedure to evaluate if some of the stochastic
factors in the two-population model can be shared by the two populations (e.g. by assuming
in (4) that κ

(1, j)
t = κ

(2, j)
t for some j ∈ {1,2,3} or that γ1

t−x = γ2
t−x). For model forecasting

Li et al. (2015) consider the same three approaches used by Zhou et al. (2014).
In two closely linked studies looking at the mortality dynamics of a pair of related

populations, Cairns et al. (2011a) and Dowd et al. (2011) have proposed the use of a
two-population version of the Age-Period-Cohort (APC) model:

logmi
xt = α

i
x +κ

i
t + γ

i
t−x, i = 1,2. (5)

In both studies, the spreads between the state variables underlying the mortality models
of each population are modelled as mean-reverting processes (e.g. an AR(1)) allowing
different short-run trends in the mortality rates, but parallel long-run improvements. Cairns
et al. (2011a) employ a Bayesian framework permitting a single stage estimation of the
unobservable state variables and the parameters of the stochastic process driving them.
Dowd et al. (2011) use a planetary analogy in which the mortality of the two populations
are attracted to each other by a dynamic gravitational force dependent on the relative size
of the populations.

There are other studies examining the joint modelling of two populations which do not
lie under the category of pure extensions of the Lee-Carter or CBD models. Several of
these studies pursue a relative approach whereby a single-population model is first fitted
to one of the populations and then a separate model is fitted to the ratio of the mortality
rates in the two populations. For instance, Jarner and Kryger (2011) have proposed a
methodology for modelling the mortality experience of a small population in conjunction
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with the mortality experience of a much larger reference population. They assume that the
reference population follows a deterministic long-run trend which is shared with the small
population, and then model short term deviations of the small population from that trend
using a multivariate stationary time series. Similarly, Wan and Bertschi (2015) model the
larger population using the multi-factor single population model proposed by Plat (2009a)
and then model the spread between the larger population and the smaller population with
a three factor Lee-Carter model. In a related study, Plat (2009b) introduces a model for
forecasting portfolio specific mortality alongside the relevant national population. In this
model, portfolio specific mortality forecasts are obtained by combining national mortality
projections derived from a standard single-population CBD model, with forecasts of the
ratio between portfolio mortality rates and national population mortality rates. It is worth
noting that Jarner and Kryger (2011), Wan and Bertschi (2015) and Plat (2009b) adopt the
same approach for modelling the factors driving the dynamics of the mortality ratios and
use a vector autoregressive model of order 1, VAR(1), so to avoid any long-term divergence
of the mortality in the two populations.

Some authors have considered the use in a multipopulation setting of other well-known
single population modelling approaches. For instance, Biatat and Currie (2010) extend to
two populations the P-spline methodology (Currie et al., 2004) that has been successfully
applied in the single population case, while Hatzopoulos and Haberman (2013) and Ahmadi
and Li (2014) use the framework of generalised linear models (GLM) to obtain coherent
morality forecasts for multiple populations.

4. MODELLING THE REFERENCE AND THE BOOK POPULA-
TION: A GENERAL FORMULATION

Along the same lines of the general formulation of single population models considered in
Hunt and Blake (2015b) and Villegas et al. (2015), we have identified a general framework
under which most two population models that have been introduced in the literature can be
accommodated. However, in order to facilitate the comparison between models, the way
such models are proposed here may slightly differ from their original formulation.

As in Jarner and Kryger (2011), we choose a relative approach where the reference
population is modelled first, and then the book mortality dynamics are specified so as to
incorporate features from the reference. This relative approach allows a data mismatch
between the reference and the book and is well suited to the usual situation of the reference
population being considerably larger than the book population. Moreover, since single
population models for the reference population are readily available and extensively studied,
it allows the focus of modelling to be on making an informed decision for the book part of
the model whilst retaining a good fit to the reference population.
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4.1. Reference population
Following Villegas et al. (2015), a general model for the reference population can be
written as1

DR
xt ∼ Bin(ER

xt ,q
R
xt),

logitqR
xt = α

R
x +

N

∑
j=1

β
( j,R)
x κ

( j,R)
t + γ

R
t−x. (6)

In Equation (6) the term αR
x determines the reference mortality level for age group x;

the integer N indicates the number of age-period terms describing the mortality trend for
the reference population; each time index κ

( j,R)
t contributes to specifying the reference

mortality trend with each coefficient β
( j,R)
x dictating how mortality in the corresponding

age group x reacts to a change in the time index κ
( j,R)
t ; and the term γR

t−x accounts for the
cohort effect in the reference population.

4.2. Book population
Given the reference population model, the mortality of the book population is then specified
through

DB
xt ∼ Bin(EB

xt ,q
B
xt),

logitqB
xt− logitqR

xt = α
B
x +

M

∑
j=1

β
( j,B)
x κ

( j,B)
t + γ

B
t−x. (7)

Note that we are modelling the difference in the (logit of) mortality in the book and the
reference populations. Therefore, in Equation (7) the term αB

x determines the mortality
level differences of the book population compared to the reference population for age
group x with the mortality level in the book being αR

x +αB
x ; the integer M (generally less

than or equal to N) indicates the number of age-period terms describing the mortality trend
differences between the book population and the reference population; each time index
κ
( j,B)
t contributes in shaping the difference in mortality trends with each coefficient β

( j,B)
x

dictating how mortality differences for age group x react to a change in the time index
κ
( j,B)
t ; and the term γB

t−x accounts for the differences in cohort effect in the two populations,
with the cohort effect in the book being γR

t−x + γB
t−x.

Depending on how the model is specified, identification constraints may have to be
added to (6) and (7) to ensure uniqueness of the parameter estimates. The estimation of
the parameters of the model can be performed using maximum likelihood in two stages
whereby the reference population part of the model is estimated in a first stage and then,
conditional on the reference population parameters, the book population part of the model
is estimated in a second stage.2

1Here, we have chosen to work with one-year death probabilities, qxt . Therefore, it is most natural to use
the logit function and model deaths using a Binomial distribution. However, if interested in central death
rates, mxt , or the force of mortality, µxt , then the general modelling framework can be easily reformulated
using a log link function and a Poisson Distribution. In addition, based on our experience, no material
differences are to be expected in the analysis if central death rates, mxt , or the force of mortality, µxt , were
considered instead.

2An alternative approach would be to estimate simultaneously the parameters in the reference and book
populations. This would in principle not materially change the fitted parameters as it is expected that the

9



4.3. Time series dynamics
The modelling is completed by specifying the dynamics of the period indices and the
cohort terms which are needed for forecasting and simulating future mortality. Although
alternatives have been explored by some authors (see e.g. Zhou et al. (2014)) for the choice
of the time series used in the dynamics, we stick to those commonly used in the literature.

Starting with the reference population, we assume that the period index is modelled as
a multivariate random walk with drift (MRWD)

κ
R
t = d+κ

R
t−1 +ξ

R
t , ξ

R
t ∼ N(0,ΣR), κ

R
t =

(
κ
(1,R)
t , . . . ,κ

(N,R)
t

)′
,

and that the cohort index is modelled as an integrated auto-regressive process ARIMA(1,
1, 0)

∆γ
R
c = φ0 +φ1∆γ

R
c−1 + ε

R
c , ε

R
c ∼ N(0,σ2

R),

where d is an N-dimensional vector of drift parameters; ∆γR
c denotes γR

c − γR
c−1 with

c = t− x; φ0 and φ1 are the drift and autoregressive parameters associated with the cohort
effect γR

c ; and ΣR is the N×N variance-covariance matrix of the multivariate white noise
ξ

R
t .

As for the book population, we follow the assumption commonly made in the literature
(Li and Lee, 2005; Plat, 2009b; Cairns et al., 2011a; Jarner and Kryger, 2011; Li and
Hardy, 2011; Hyndman et al., 2013; Wan and Bertschi, 2015). More precisely we assume
that in the long-run the two populations experience similar mortality improvements and
therefore model the spread in the time indexes and cohort effects as stationary processes:

κ
B
t = Φ0 +Φ1κ

B
t−1 +ξ

B
t , ξ

B
t ∼ N(0,ΣB), κ

B
t =

(
κ
(1,B)
t , . . . ,κ

(M,B)
t

)′
, (8)

γ
B
c = ψ0 +ψ1γ

B
c−1 + ε

B
c , ε

B
c ∼ N(0,σ2

B),

where Φ0 and Φ1 are an M-dimensional vector and an M×M matrix of model parameters;
ΣB is the M×M variance-covariance matrix of the multivariate white noise ξ

B
t ; and ψ0

and ψ1 are parameters associated to the cohort spread γB
c . Thus:

• The time indices κB
t are modelled as a vector auto-regressive process of order 1

(VAR(1)), for which we assume that the eigenvalues of the matrix Φ1 are smaller
than 1 in absolute value.

• The cohort difference γB
c follows an AR(1) process for which we assume that

ψ1 < |1|.

• We are assuming independence of the time series determining the reference pop-
ulation and those determining the difference between the reference and the book
populations.3

Overall, the time series dynamics approach considered here corresponds to the RWAR
approach discussed in Zhou et al. (2014) and Li et al. (2015).

book population has a small size relative to the reference population. Furthermore, for some models such as
the two-population APC, CBD, M5 and M7 where the log-likelihood is separable, a two-stage estimation
approach results in exactly the same parameter estimates as a joint estimation approach.

3Considering correlations between ξ
R
t and ξ

B
t or between εR

c and εB
c is in principle possible, as has been

done in Cairns et al. (2011a) and in Li et al. (2015). However, we refrain from considering this due to the
fact that the estimation of the appropriate covariance matrix may not be straightforward. This is the case
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5. MODEL SELECTION CRITERIA
With over 20 two-population models currently proposed in the literature (see Figure 1),
our main goal is to identify which model(s) are most likely to provide a satisfactory
solution for assessing basis risk. In order to support this analysis, it is useful to test each
model against certain criteria that a good and practical two-population model for basis
risk assessment should satisfy. Building on the literature comparing single population
models (e.g. Continuous Mortality Investigation (2007); Cairns et al. (2008, 2009, 2011b);
Haberman and Renshaw (2011)), we consider the following criteria. The model should:

1. Produce a non-perfect correlation between mortality rates in the two populations.

2. Produce a non-perfect correlation between year-on-year changes in mortality at
different ages.

3. Permit the generation of sample paths and the calculation of prediction intervals.

4. Have a structure that allows the incorporation of parameter uncertainty in simula-
tions.

5. Permit the consideration of a cohort effect if necessary.

6. Be compatible with the data that are likely to be available when doing basis risk
exercises.

7. Be straightforward to implement using standard statistical methods likely to be
available to practitioners.

8. Be transparent enough so that the model assumptions, limitations and outputs are
understood by the users and can be easily explained to non-experts.

9. Show a reasonable goodness-of-fit to historical data in both the reference population
and the book population for a wide range of book populations.

10. Show a reasonable goodness-of-fit for metrics involving the two populations such as
differences or ratios in mortality rates or life expectancies for a wide range of book
populations.

11. Be relatively parsimonious.

12. Produce plausible and reasonable central projections of both single-population and
two-population metrics.

13. Produce plausible and reasonable forecast level of uncertainty in projections of both
single-population and two-population metrics, which are in line with historical levels
of variability.

when the models involve multiple period effects; for example if the two-population M7 model defined in
Equation (4) is used, then the covariance matrix is particularly large, containing up to 21 distinct elements
associated with 6 period factors (see Li et al. (2015)). In addition, the estimation of the covariance matrix
would be further complicated in the case when the time series for the reference and the book have different
lengths, which is very frequent in practice.
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14. Produce parameter estimates and model forecasts that are robust relative to the
period of data and range of ages employed.

Most of the above criteria coincide with the criteria that a good single population
model should satisfy; we thus refer the reader to Continuous Mortality Investigation (2007,
Section 8) and Cairns et al. (2008, Section 3) for a detailed discussion of their relevance.
By contrast, criteria 1, 10, 12 and 13, referring to correlations between the mortality rates
in the two populations and to the performance of the models in relation to two-population
metrics, are new. The latter criteria are of prime importance to the application of two-
population models in the assessment of basis risk in standardised longevity hedges. On
the one hand, if a model assumes a perfect correlation between mortality rates in the two
populations then it will imply that the reference population provides a perfect match for
the book population, trivially leading to no (or very little) demographic basis risk. On the
other hand, since demographic basis risk emerges from the mismatch in the mortality of
the reference and the book population, it is critical that the two-population model shows a
good fit to metrics involving the two populations, and that forecast levels of uncertainty and
central trajectories for these metrics are plausible and consistent with historical differences
between the populations.

We note however, that a two-population model which might not be suitable for basis
risk assessment, may be an appropriate model for other applications in which some of
the above criteria would be superfluous. For example, consider the case of valuing the
liabilities of a pension book with sparse data, where we may consider a two-population
model to borrow information from a larger reference population with the objective of
improving the accuracy in the projections of the pension schemes’ mortality. In this
situation, having a non-perfect correlations between the mortality of the two populations
would be unnecessary and the performance of the model relative to two-population metrics
would be of lesser importance.

6. IDENTIFYING AN APPROPRIATE TWO-POPULATION MODEL
Given the wealth of models available and the large number of criteria, we have followed a
two-stage filtering process to identify the model structures likely to be suitable for basis
risk assessment. In a first stage, we focus on criteria 1 to 8 which refer to theoretical
properties of a model and can be evaluated without reference to a specific dataset. Then,
in a second stage, we focus on criteria 9 to 14 which can only be evaluated after a model
has been fitted to data. More specifically, in the second stage of filtering we evaluate the
goodness of fit, the reasonableness of the output, the forecasting performance and the
robustness of those models which pass the first stage of filtering.

6.1. Stage 1 of filtering: Criteria requiring no data to assess
We first evaluate all the candidate models against those criteria that can be assessed inde-
pendently of data or the actual fitting of the models. This process permits the identification
of a number of models which could be rejected, either because their theoretical properties
are not suitable for basis risk assessment or because they are unlikely to be accessible to
the wider industry.

6.1.1. Non-perfect correlation between mortality rates in the two populations
A perfect correlation between the mortality rates qB

xt and qR
xt implies that the two populations

move in tandem, with changes in the mortality of the book population matched by changes
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in the mortality of the reference population.4 This will result in the model spuriously
suggesting that there is no (or very little) demographic basis risk. This is the case for those
Lee-Carter based models with a single common period effect for both populations, leading
us to view the Stratified Lee-Carter, the Common Factor Model, the Three-way Lee-Carter,
and the Joint-κ model as inadequate models for assessing demographic basis risk.

6.1.2. Non-perfect correlation between year-on-year changes in mortality at differ-
ent ages

This criterion refers to the correlation between qR
x,t+1−qR

x,t and qR
y,t+1−qR

y,t (or between
qB

x,t+1− qB
x,t and qB

y,t+1− qB
y,t) for x 6= y. As noted by Cairns et al. (2008), a model that

assumes a perfect correlation between changes in mortality at different ages would incor-
rectly suggest that holding a derivative instrument linked to a single age would provide
just as good a hedge as holding several instruments linked to a range of different ages. Dis-
regarding this issue can result in a misassessment of the structuring basis risk underlying a
longevity hedge.

Lee-Carter type models with a single period effect and no cohort effect, such as the
Cointegrated Lee-Carter and the Lee-Carter+VAR/VECM, have a trivial age correlation
structure. In addition, the two-population APC model in Equation (5) implies that there
is perfect correlation at all ages except at the youngest ages, where there is potentially
additional randomness arising from the arrival of new cohorts with an unknown cohort
effect (see Cairns et al. (2009)). In contrast, two-population extensions of the CBD model
allow for imperfect correlations between annual changes in mortality at different ages due
to the presence of multiple period factors.

We do not discard however any model due to its age correlation structure for two
reasons. In many instances it may only be required to perform an indicative assessment
of the demographic basis risk associated with an index-based hedge, without necessarily
considering in detail the precise structuring of the hedge. Further, in order to assess model
risk, it may be useful to consider an alternative model to the one used in structuring the
hedge.

6.1.3. Generation of sample paths
Mortality sample paths are required for the assessment of the uncertainty in the cash-flows
of a mortality-linked security as well as for the pricing and structuring of a longevity hedge.
A distinguishing feature of the P-Spline model of Biatat and Currie (2010) and of the
multipopulation GLM of Ahmadi and Li (2014) is that they assume that mortality follows a
deterministic time trend, meaning that these models cannot generate sample paths. Hence,
we do not consider these two models any further.

6.1.4. Parameter uncertainty
Given that in most cases the amount of data for the book populations is limited, the
parameters of the models may be subject to significant estimation error. It is thus important
to be able to consider the impact that parameter risk can have on forecasts levels of
uncertainty and on hedge effectiveness. With the exception of the Bayesian two-population

4Note that the correlation between the mortality rates qB
xt and qR

xt may not be perfect, although it will be
close to one, even when correlation is perfect on the logit scale used by the models introduced in Section
4. Also note that having a perfect correlation between the populations does not necessarily imply that he
two populations experience exactly the same mortality improvements. For instance, the Joint-κ and the
Three-way Lee-Carter models allow for improvement rate differentials, but imply a perfect correlation
between the populations.
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model of Cairns et al. (2011a) which naturally accounts for parameter uncertainty, none of
the studies we have reviewed considers parameter uncertainty. Nevertheless, for most of the
models it is possible to incorporate parameter uncertainty using bootstrapping techniques
such as the ones proposed in Brouhns et al. (2005), Koissi et al. (2006) and Renshaw
and Haberman (2008). We should mention however that, unlike the Bayesian framework,
bootstrapping is related to the effect of sampling variation in the data. Therefore by means
of bootstrapping it is not possible to assess the parameter uncertainty arising from the time
series processes, but rather only that due to sampling variation.

6.1.5. Cohort effect
For some countries, including England and Wales, it is important that models allow for the
now well-accepted cohort effect, separating out general improvements over time to those
specific to a given birth cohort. Although not all the models include a cohort effect, they
can in principle be extended to include such an effect.

6.1.6. Compatibility with available data
The data requirements of some of the models are incompatible with the likely available
data. For instance, it is unlikely that the book population will provide the same length
of history as the reference population, hindering the application of models which cannot
easily deal with such a scenario. In particular, this requirement leads to the rejection
of two further Lee-Carter based models, namely the Lee-Carter VAR/VECM and the
Co-integrated Lee-Carter.

6.1.7. Ease of implementation and transparency
Ease of implementation and transparency are essential for a model to be of general use
by practitioners. Accordingly, these two criteria lead to the rejection of several other
models. In particular, the Multipopulation GLM of Hatzopoulos and Haberman (2013) is
considered to be impractical for basis risk assessment as it is a complex model which is
computationally involved to implement and may be difficult to communicate to non-experts.
In addition, we disregard the Plat+Lee-Carter model of Wan and Bertschi (2015) (apart
from other reasons discussed later) because it combines a parametric structure for the
reference with a non-parametric structure for the book, and we believe that for the sake
of interpretability of the parameters both parts of the model should be within the same
class of models. Finally, although the Bayesian two-population APC model of Cairns
et al. (2011a) is particularly amenable to the short history and modest exposures sizes of
most book datasets, the implementation and transparency issues related to the underlying
Bayesian approach have led us to rule out this model. However, some of the features of
the approach of Cairns et al. (2011a) will still be investigated subsequently in this paper
through a maximum-likelihood implementation of the two-population APC model.

6.2. Stage 2 of filtering: Criteria requiring data to assess
After carrying out the initial data-independent assessment, the following 10 models can be
identified as candidates which are worth testing against the data dependent criteria: the
Augmented Common Factor model and its cohort extension, the Relative Lee-Carter model
with cohorts, the Common Age Effect Model, the two-population APC (Gravity model),
the two-population M5, the two-population M6, the two-population M7, the Saint model,
and the Plat relative model.

The second stage of filtering entails the evaluation of the historical goodness-of-fit, the
(subjective) evaluation of the reasonableness of the forecast level of uncertainty produced
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Table 1. Description of the book datasets used for model testing. Q1 represents the least
deprived quintile of England and Q5 the most deprived quintile.

Percentage of exposure
Dataset Description by IMD quintile

Q1 Q2 Q3 Q4 Q5

Typical Lives
This is the typical IMD split we would expect
to see in a book population weighted by lives
(head-count)

23% 22% 21% 20% 14%

Typical Amounts

This uses the same split as the typical (lives)
but weighted by individual pension amounts
to approximate the effect of a typical portfo-
lio’s liability distribution amongst the IMDs

30% 25% 20% 15% 10%

Extreme Wealthy
This reflects the split by IMD (on an amounts
weighted basis) that we would expect to see
in a very affluent book population

45% 30% 20% 5% 0%

Extreme Deprived

This reflects the split by IMD (on a lives
weighted basis) that we would expect to see in
a book skewed towards lower socio-economic
groups

10% 15% 15% 25% 35%

by the models, and the evaluation of the forecasting performance and robustness of the
models.

6.2.1. Data
The evaluation of the criteria in this stage requires data for model fitting. We have used as
the reference population data the England and Wales male mortality experience as obtained
from the Human Mortality Database (2013). For the purposes of our analysis we have
focused on a subset of these data covering calendar years 1961-2010 and those older ages
most relevant to longevity hedging, namely ages 60-89.

For the book population we use synthetic datasets generated based on England mortality
data by quintiles of the Index of Multiple Deprivation 2007 (IMD 2007)5 and the socio-
economic composition observed within individual occupational pension schemes of the
Club Vita dataset.6 Specifically, the synthetic datasets used throughout this paper have been
generated by randomly sampling from the national IMD data to obtain a dataset of exposure
size, history length, and IMD profile desired. The technical details of this data sampling
process are described in Appendix A. The use of synthetic data as opposed to actual
pension scheme data facilitates a more thorough assessment of the models. Concretely,
synthetic datasets permit us to control some key characteristics of the book population data
while changing others. For instance, it allows us to vary the history length and exposure
size of the book data whilst keeping the socio-economic and age composition constant.
Moreover, synthetic datasets let us rely on the longer history of the national IMD mortality
data to perform backtesting exercises such us those described in Section 6.2.7.

5A detailed analysis of the mortality data used in this paper can be seen in Villegas and Haberman (2014)
or in Lu et al. (2014). For further information on the Index of Multiple Deprivation see Noble et al. (2007).

6Club Vita is an organisation which provides longevity analytics to pension schemes. The schemes in the
Club Vita dataset span a wide range of sizes including some of the largest DB schemes in the UK and (as at
September 2014) consists of nearly 6 million member records.
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Figure 2. Ratio of the mortality in each of the four synthetic book datasets to the
mortality in England and Wales. The left graph shows this ratio by age while the one on
the right presents the time evolution of this ratio.

For the assessment of the goodness-of-fit of the models, we consider four different
synthetic datasets to reflect the variety of socio-economic mixes observed in real pension
schemes and annuity books. In each case, the socio-economic splits are motivated by the
profiles seen within the Club Vita dataset. Table 1 describes the socio-economic profiles of
these datasets. In all cases we use sample books with historical exposures of 100,000 male
lives per year, which we believe is reasonable proxy for the largest exposure any pension
scheme or insurer is likely to have. We also assume that book data are available for the
period 1981-2010 and ages 60 to 89. Finally, we use the age distribution of the English
population to split by age the total exposure of each of the sample schemes.

Figure 2 depicts the ratio of the mortality in each of the four datasets to the mortality
in England and Wales. We note that the ordering of the ratios in the four datasets is
consistent with their socio-economic mixes: the “Extreme Wealthy” dataset has below
average mortality (ratio < 1), the “Extreme Deprived” dataset has above average mortality
(ratio > 1), and the “Typical Lives” and “Typical Amounts” datasets exhibit a mortality
ratio close to 1 due to the similarity of their socio-economic mix with that of England and
Wales. It is also worth noticing that none of the datasets shows any very marked increasing
or decreasing time trend in the mortality ratios, albeit there is a slight upward trend in the
“Extreme Deprived” dataset. This is consistent with the slower mortality improvements for
the two most deprived quintiles of England reported by Villegas and Haberman (2014).

6.2.2. Model fitting
To facilitate the fitting of the 10 models that passed our first-stage filtering, we have
followed the general modelling framework described in Section 4 whereby each model can
be viewed as a model for the reference population combined with a model for the book
population (or perhaps more accurately, a model for the mortality ratio between reference
and book). As such, the fitting and the assessment of the goodness-of-fit of a model can
be carried out in two stages: fitting and assessing the goodness-of-fit of the reference
model, followed by the fitting and the assessment of the goodness-of-fit of the book part
of the model.7 We note that conclusions regarding the goodness-of-fit of the model to

7All the model fitting performed in this paper has been carried out using the R package StMoMo (Villegas
et al., 2015) which facilitates the implementation of stochastic mortality models using the unifying framework
of generalised (non)linear models.
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Table 2. Mathematical description of the models selected for the reference population.

Model Formula

LC + Cohorts logitqR
xt = αR

x +β R
x κR

t + γR
t−x

APC logitqR
xt = αR

x +κR
t + γR

t−x

M7 logitqR
xt = κ

(1,R)
t +(x− x̄)κ(2,R)

t +
(
(x− x̄)2− σ̂2

x
)

κ
(3,R)
t + γR

t−x

the reference may lead us to slightly modifying the original formulation of certain of the
two-population models before assessing the goodness-of-fit of the book part of the model.
The specific modifications for each particular two-population model are described later in
this section.

6.2.3. Selection of reference population
In order to identify an appropriate model for the England and Wales reference population,
we have carried out an extensive evaluation of the goodness-of-fit of a number of candidate
single population models. However, for the sake of brevity, we present here only the
conclusion of this evaluation, but details can be followed in Haberman et al. (2014, Section
6.2.2.3).

Consistently with the existing literature which compares single population mortality
models for the England and Wales population (see e.g. Cairns et al. (2009) and Haberman
and Renshaw (2011)), we have found that the three models presented in Table 2 are
appropriate for modelling the mortality in the reference population. In Table 2, the model
labelled LC+Cohorts is one of the Renshaw and Haberman (2006) cohort extensions of
the Lee-Carter model while the APC model is a special case of the LC+Cohorts where it
is assumed that β R

x = 1. Model M7 is an extension of the original CBD model and was
proposed in Cairns et al. (2009). A common characteristic of these three models is that
they all include a cohort term to capture the well-known effect of year-of-birth on England
and Wales mortality (Willets, 2004).

6.2.4. Goodness-of-fit for book population
In line with the models selected for the reference population, we have adapted several of the
candidate two-population models before carrying out further goodness-of-fit assessments.
Specifically, we have made the following adaptations:

• The Common Age Effect model, as proposed in Kleinow (2015), does not include
a cohort effect. Therefore, given that there is strong evidence of a cohort effect in
England and Wales, in our testing we extend this model to include such an effect.
The reference population model is then a LC+Cohorts model.

• Similarly, for the Augmented Common Factor model we should consider a cohort
effect, but doing so would turn the model into the Relative Lee-Carter model with
cohorts. Consequently, the Augmented Common Factor model is not considered
further in the analysis.

• In the two-population M5 and the two-population M6 models we replace the corre-
sponding M5 and M6 models for the reference population with an M7 model.
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• For the Relative Plat model we assume an M7 model for the reference population
as opposed to the M5 model originally assumed by Plat (2009b). In addition,
while Plat (2009b) models directly the mortality ratio between the reference and
the book population, qB

xt
/

qR
xt , we model the difference in logits of mortality rates,

logitqB
xt− logitqR

xt .

• For the Saint model, instead of the frailty-type model considered originally by Jarner
and Kryger (2011) which we believe is too complex to be accessible to practitioners
and does not permit the generation of sample paths, we use an M7 model for the
reference population.

For comparison purposes, in some of our additional goodness-of-fit and reasonableness
testing we will consider the Common Factor Model with added cohorts. This model, which
was previously deemed inappropriate as it unrealistically implies zero basis risk, is useful
for illustrating some of the undesirable characteristics in a model for basis risk assessment.

Table 3 summarises the models whose goodness-of-fit will be investigated further.
The parameter constraints associated with these model structures are described in Ap-
pendix B. The Common Factor model with cohorts (CF+Cohorts), the Common Age
Effect model with cohorts (CAE+Cohorts), and the relative Lee-Carter model with co-
horts (RelLC+Cohorts) belong to the Lee-Carter family of models. The CF+Cohorts only
allows for level differences between the reference and the book population, whilst the
CAE+Cohorts and the RelLC+Cohorts also allow for improvement differences. Never-
theless, the latter two models differ in the specification of the age-modulating factor β B

x
accompanying the book-specific time index κB

t : in the RelLC+Cohorts β B
x is estimated

directly from the observed logit difference of mortality between the book and reference
data while in the CAE+Cohorts β B

x is borrowed from the reference population model, i.e.,
β B

x ≡ β R
x .

The Gravity model corresponds to a Binomial-logit version of the two-population APC
introduced in Equation (5).

Models M7-M5, M7-M6, M7-M7, M7-Saint, and M7-Plat (which are the implemented
versions of the two-population CBD, the two-population M6, the two-population M7, the
Saint model, and the Relative Plat model, respectively) all belong to the CBD family of
models. These models differ in the type of differences between the book and the reference
population that are allowed for in the parametric age functions: M7-M5 and M7-M6 allow
only for level and slope differences with M6 also allowing for cohort differences; M7-Saint,
M7-M7 allow for level, slope and curvature differences with M7 also allowing for cohort
differences; and M7-PLAT is a constrained version of M7-M5 assuming that at age 100
there is no difference between the reference and the book.

A good two-population model should show a reasonable fit to the historical mortality
rates in both the reference population and the book population. In addition, the model
should show a good fit to metrics involving the two populations such as differences or
ratios of mortality rates. This last criterion is very relevant as demographic basis risk
emerges from the mismatch in the mortality of the reference and the book population.

When assessing the quality of the fit of the models with respect to the book population
and with respect to two-population metrics, we have found that the traditional graphical
diagnostic of model residuals is not very informative. In principle, this can be attributed to
the fact that cohort and age patterns in the book population residuals may be confounded
with the sampling noise in the book data. Alternatively, the examination of plots of fitted vs.
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Table 3. Mathematical description of the two-population models considered for
goodness-of-fit assessment. CF+Cohorts = Common Factor model with cohorts;
CAE+Cohorts = Common Age Effect model with cohorts; RelLC+Cohorts = Relative
Lee-Carter model with cohorts; M7-X = Two-population model where the reference
population follows an M7 model and the book-reference difference is specified through a
model of type X. See Table 2 for the corresponding reference population models.

Original
Model Model Name

Reference
Population
(See Table 2)

Book-Reference Difference Formula
logitqB

xt− logitqR
xt

Common
Factor

CF+Cohorts LC+Cohorts αB
x

Common
Age Effect

CAE+Cohorts LC+Cohorts αB
x +β R

x κB
t

Relative
Lee-Carter
with
cohorts

RelLC+Cohorts LC+Cohorts αB
x +β B

x κB
t

Gravity Gravity (APC) APC αB
x +κB

t + γB
t−x

Two-
population
M5

M7-M5 M7 κ
(1,B)
t +(x− x̄)κ(2,B)

t

Two-
population
M6

M7-M6 M7 κ
(1,B)
t +(x− x̄)κ(2,B)

t + γB
t−x

Two-
population
M7

M7-M7 M7 κ
(1,B)
t +(x− x̄)κ(2,B)

t +
(
(x− x̄)2− σ̂2

x
)

κ
(3,B)
t + γB

t−x

Saint model M7-Saint M7 κ
(1,B)
t +(x− x̄)κ(2,B)

t +
(
(x− x̄)2− σ̂2

x
)

κ
(3,B)
t

Plat relative
model

M7-Plat M7
100− x
100− x̄

κ
(1,B)
t

observed period survival probabilities in the book and the corresponding plots for ratios of
period survival probabilities in the book and the reference can give useful insight into the
goodness-of-fit of the models. As an illustration, Figure 3 depicts, for a selection of models,
the fitted and observed 30 years period survival probabilities at age 60 for the “Extreme
Wealthy” and the “Extreme Deprived” sample schemes as well as the corresponding fitted
and observed ratios of period survival probabilities between both sample schemes and the
England and Wales reference. Figure 3 is representative of the detailed analyses we have
carried out and which have helped with our assessment of the performance of the different
models under consideration.

The left panel in Figure 3 shows that, with the exception of the M7-Plat model which
shows a slight underestimation in the later years when fitted to the “Extreme Deprived”
scheme, all the other models show a similar and reasonable fit to the period survival
probabilities in the book. By contrast, when considering ratios of survival probabilities the
models show very different performances. In particular, from the right panel of Figure 3
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Figure 3. Fitted vs. observed 30 year period survival probabilities at age 60 for the
“Extreme Wealthy” and the “Extreme Deprived” sample schemes. Left panel presents
result for the book populations while the right panel presents results the corresponding
results for ratios with respect to the England and Wales reference population. Dots in the
graphs represent observed quantities.

we note:

• For the “Extreme Deprived” dataset the M7-Plat model shows a stark bias in the fitted
ratios consistent with the underestimation seen in the period survival probabilities in
the book population. In an attempt to improve the fit of the M7-Plat model, instead
of assuming that crossing of mortality between the reference and book population
occurs at the prefixed age 100, we have treated the age of crossing as an additional
parameter that needs to be estimated from the data. This has however not eliminated
the bias issues suggesting that the M7-Plat model might be too restrictive for some
datasets. Therefore we do not consider the M7-Plat model further as a candidate for
basis risk assessment.

• The CF+Cohorts and the RelLC+Cohorts models produce very smooth ratios of
survival probabilities which seem to understate the observed volatility in the ratios.
Whilst the poor performance of the CF+Cohorts model was expected due to the per-
fect correlation between populations assumed by this model, the poor performance
of RelLC+Cohorts was not.

• Further investigation of the parameters of the RelLC+Cohorts indicates that the
over-smoothed fitted ratios can be linked to the presence of a book-specific non-
parametric β B

x which needs to be estimated from the book data. The estimation
of this term requires large amounts of data, and, hence, with the relatively small
population sizes of the book populations, the estimated β B

x values tend to be erratic
and lack precision. In particular, there exists the possibility that β B

x fluctuates around
0 (see Figure 4) which results in mortality differentials between the book and the
reference cancelling out when aggregated measures of mortality such as survival
probabilities and life expectancies are calculated. Given that this over fitting of the
β B

x may result in an inappropriate perfect correlation between the reference and
the book populations, we consider that the RelLC+Cohorts is inadequate for basis
risk assessment. This conclusion extends to other models with non-parametric β B

x
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Figure 4. Fitted age modulating parameter β B
x for the RelLC+Cohorts fitted to the

“Extreme Wealthy” scheme.

Table 4. Effective number of parameters and AIC for the book part of different
two-population models fitted to the four test books.

Model
Number of
reference

parameters

Number of
book

parameters

Typical
Lives

Typical
Amounts

Extreme
Wealthy

Extreme
Deprived

CF+Cohorts 185 30 7008 (1) 7001 (1) 6921 (1) 7146 (4)
CAE+Cohorts 185 59 7036 (2) 7026 (2) 6950 (2) 7130 (3)
Gravity 156 116 7090 (5) 7077 (5) 7010 (5) 7182 (6)
M7-M5 226 60 7043 (3) 7049 (3) 6971 (3) 7102 (1)
M7-M6 226 117 7106 (6) 7099 (6) 7033 (6) 7166 (5)
M7-M7 226 146 7123 (7) 7128 (7) 7052 (7) 7188 (7)
M7-Saint 226 90 7069 (4) 7074 (4) 6991 (4) 7117 (2)

parameters such as the Augmented Common Factor model and the Plat+Lee-Carter
model.

The graphic testing of the goodness-of-fit of the models leaves us with six potential
candidate models for basis risk assessment. These models are: CAE+Cohorts, Gravity, M7-
M5, M7-M6, M7-M7, and M7-Saint. The balance between goodness-of-fit and parsimony
of these models is investigated in Table 4 where we show the AIC values8 for the book part
of each model when applied to the four sample schemes, together with the corresponding
ranking across models (in brackets). From Table 4 we note the following:

• The CF+Cohorts, which is the simplest model among all the models fitted, tops the
AIC ranking for three out of four datasets. However, as noted before, this model is
not suitable for basis risk assessment since it assumes that the reference and book
populations are perfectly correlated. One may nevertheless consider this model for
other applications where the correlation between the populations is not important.

8The AIC value is computed as AIC = 2νB−2LB where LB is the Binomial log-likelihood of the book
part of the model under the assumption that the reference population is treated as a known offset and νB is
the number of book-specific parameters of the models.
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• Among all other models, the CAE+Cohort and M7-M5 show the best compromise
between goodness-of-fit and parsimony, consistently ranking in the top three places
and with very similar performance.

• M7-Saint and M7-M7, which have a quadratic age term in the book model, are
always outperformed by the M7-M5 model. This suggests that when considering
models from the CBD-Family it is necessary to allow for differences in level of
mortality and a gradient by age, but that an additional parameter for the curvature by
age is not necessary, i.e., it is sufficient to inherit the curvature from the reference
population. Thus, we eliminate the M7-M7 and M7-Saint models from our list of
candidate models.

• The Gravity model, M7-M6 and M7-M7, which have a book-specific cohort effect,
have the worst trade-off between goodness-of-fit and parsimony. This suggests that
we should generally reject models with a book cohort effect on grounds of parsimony.
However, for the moment we shall retain the Gravity model (two-population APC)
which, among models with book-specific cohort effect, shows the best compromise
between goodness-of-fit and parsimony. This will enable us to investigate how
forecasts levels of uncertainty and hedge effectiveness may be impacted by allowing
for a book-specific cohort effect.

6.2.5. Plausibility of forecast central trends and levels of uncertainty
So far, we have shortlisted the CAE+Cohorts, Gravity and M7-M5 based on their theoretical
properties, practicality and goodness-of-fit performance. However, the outcome of a basis
risk assessment exercise will be strongly driven by the expected level of uncertainty around
the central forecast of the demographic and financial quantities underlying the index-
based hedge. It is then crucial to check that these models produce reasonable forecast for
both single and two-population metrics. This entails judging whether or not the forecast
central trajectories and patterns of uncertainty look plausible and are in line with historical
variability.

Following Cairns et al. (2011b), we assess this property by examining fan charts of the
forecasts produced by the models. Fan charts allow us to examine any distinctive visual
feature of the forecasts of the models, as well as the differences between models. Each fan
chart presents 95% prediction intervals and depicts the forecast output from the stochastic
mortality models by also presenting 80% and 50% prediction intervals.

In producing the model simulations underlying the fan charts, we have considered
the following two sources of uncertainty (risk): i) process risk (PR) arising from the
possible future trajectories of the time series of the period and cohort indices and ii)
parameter uncertainty (PU) arising from the estimation of the parameters of the model.
Process risk is taken into account by simulating trajectories of the period and cohort
indices,9 while parameter uncertainty is allowed for by using a Binomial adaptation of the
residual bootstrapping approach proposed by Koissi et al. (2006).10 We note that due to

9To model process risk we use a multivariate adaptation of Algorithm 2 in Haberman and Renshaw (2009)
without provision for parameter error. We note that Algorithm 2 in Haberman and Renshaw (2009) is itself
an adaptation of the prediction interval approach of Cairns et al. (2006).

10We note that in adapting the bootstrap we follow Renshaw and Haberman (2008) and solve for the
observed numbered of deaths instead of the fitted number of deaths as done by Koissi et al. (2006). The
details of the residual bootstrapping approach under a Binomial framework are described in Debón et al.
(2010, Section 3).
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the considerable exposure of the England and Wales population, we deliberately ignore
parameter uncertainty in the reference population.

Rather than analysing forecasts of mortality rates, we concentrate on the forecast of life
expectancies and survival rates. According to Coughlan et al. (2011), these two aggregate
quantities are more appropriate than individual mortality rates for gaining insight into the
basis risk associated with longevity hedges. On the one hand, life expectancies and survival
rates are more closely related to the hedge effectiveness objective than mortality rates,
as, for instance, in a pensioner population life expectancy corresponds to the number of
years over which a pension needs to be paid while survival rates correspond to the number
of pensioners who are still alive to receive pension. On the other hand, these aggregate
metrics smooth out a lot of the noise associated with individual mortality rates.

Figure 5 presents fan charts of 30 year curtailed period life expectancies at age 60,

↑
ei

60,30(t) =
30

∑
h=1

h−1

∏
j=0

(1−qi
60+ j,t), i = R,B,

along with fan charts for the value of a cohort survivor index,

Si(65, t) =
t−1

∏
j=0

(1−qi
65+ j,2011+ j), i = R,B,

for the reference population (i=R) and for the “Extreme Wealthy” test book (i=B). Figure
5 also shows matching fan charts of the difference between the period life expectancies

in the book and the reference population,
↑
eB

60,30(t)−
↑
eR

60,30(t), and of the ratio of the
book and reference population survivor indexes, SB(65, t)/SR(65, t). The survivor index,
Si(65, t), i = R,B, measures the proportion from a group of males aged 65 at the start of
2011 who are still alive at the start of year 2011+ t. We note that SR(65, t) and SB(65, t)
do not involve any forecasts of the cohort effects as the relevant cohort effects, γR

1946 and
γB

1946 in the case of the Gravity model, are known at the start of 2011.
To assist in the assessment of the levels of uncertainty produced by the models, Table 5

presents the forecast variance of period life expectancies in 2020 at age 60,
↑
eR

60,30(2020)

and
↑
eB

60,30(2020), while Table 6 presents the forecast variance of the 25 year cohort life
expectancy for someone aged 65 in 2011 in the reference and book populations,

↗
e i

65,25(2011) =
25

∑
t=1

Si(65, t) =
25

∑
t=1

t−1

∏
j=0

(1−qi
65+ j,2011+ j), i = R,B.

From Figure 5 and Tables 5, 6 we can see that:

• For all the models the central forecast and their levels of uncertainty for the life
expectancies and the survivor indexes in the reference and the book are reasonable
and consistent. We note however that there are noticeable differences between the
models with the CAE+cohorts and CF+cohorts projecting longer life expectancies
and higher survival probabilities with slightly smaller uncertainty (narrower fan
widths and smaller variances) than the other two models. Notably, M7-M5 produces
wider fans for the reference population than the other three models. This reflects the
existence of more random period effects in M7-M5 than in the CAE+cohorts, the
CF+cohorts and the APC (Gravity) model.
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Figure 5. Fan charts of 30 year period curtailed life expectancy at age 60,
↑
ei

60,30(t), i = R,B, and of the cohort survivor index, Si(65, t), i = R,B, for the England and
Wales reference population and the “Extreme Wealthy” book using different mortality
models.

• The levels of uncertainty in the difference in life expectancy and in the ratio of
survivor indexes vary considerably across models. In particular, the unreasonably
tight fan widths produced by the CF+cohorts for differences in period life expectancy
confirm the issues with models assuming a perfect correlation between the reference
and the book populations.

24



Table 5. Forecast mean and variance of 30 year period curtailed life expectancy at age 60
in 2020 for the England and Wales male reference population and for the “Extreme
Wealthy” test book using different mortality models. The columns labelled “Difference”
present the mean and variance of the difference in life expectancy between the reference
and the book populations.

Mean of period life expectancy Variance of period life expectancy
at age 60 in 2020 at age 60 in 2020

Model Reference Book Difference Reference Book Difference

CF+Cohorts 22.82 23.68 0.86 0.2040 0.1718 0.0017
CAE+Cohorts 22.82 23.68 0.86 0.2040 0.1878 0.0135
Gravity 22.12 23.13 1.01 0.2251 0.2065 0.0206
M7-M5 22.33 23.19 0.86 0.2403 0.2230 0.0169

Table 6. Forecast mean and variance of 25 year cohort curtailed life expectancy for the
cohort aged 65 in 2011 for the England and Wales male reference population and for the
“Extreme Wealthy” test book using different mortality models. The columns labelled
“Difference” present the mean and variance of the difference in life expectancy between
the reference and the book populations.

Mean of cohort life expectancy Variance of cohort life expectancy
for the cohort aged 65 in 2011 for the cohort aged 65 in 2011

Model Reference Book Difference Reference Book Difference

CF+Cohorts 20.36 21.05 0.69 0.1229 0.1062 0.0008
CAE+Cohorts 20.36 21.06 0.70 0.1229 0.1066 0.0014
Gravity 19.47 20.34 0.87 0.1252 0.2027 0.0905
M7-M5 19.54 20.27 0.73 0.1830 0.1677 0.0015

• The levels of uncertainty for the ratio of survivors in the book and reference popu-
lation produced by the Gravity (APC) model, which is the only model that allows
for a book specific cohort effect, are completely unreasonable. This suggests that,
unless there is strong reason to believe in the existence of a different cohort effect
in the book to the reference population, the parameter uncertainty in fitting a book-
specific cohort term will greatly outweigh any benefits in terms of goodness-of-fit to
historical experience.

• The close alignment between the fans of models CF+cohorts and CAE+cohorts
deserves further investigation. For these two models, which share the same reference
population model, we plot in Figure 6 the simulated empirical cumulative distribution
considering both process risk and parameter risk for the 30 year period curtailed life

expectancy at age 60 in 2020,
↑
eB

60,30(2020), and for the 25 year cohort life expectancy

for someone aged 65 in 2011 in the book population,
↗
e B

65,25(2011), together with the
corresponding simulated empirical cumulative distribution of the difference in period
and cohort life expectancies between the book and the reference populations. While
for the book population the empirical distributions are practically indistinguishable,
there are notable dissimilarities in the empirical distributions for the difference in
both period and cohort life expectancies, suggesting that the uncertainty in the book
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(a) 30 year curtailed period life expectancy at age 60 in 2020
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(b) 25 year curtailed cohort life expectancy at age 65 in 2011

Figure 6. Cumulative distribution function of the curtailed period and cohort life
expectancy in the “Extreme Wealthy” test book and cumulative distribution function of the
corresponding difference in period and cohort life expectancies between the book and
reference populations. The cumulative distribution functions account for both process and
parameter risk.

survivor index is dominated by the uncertainty in the reference part of the model.
Furthermore, the discrepancies in the mean and variances of the life expectancy for
the book population forecast by both models are immaterial. These results allow
us to conclude that although the CF+Cohorts model is unsuitable for basis risk
assessment due to its implicit perfect correlation between the book and reference
populations, this model might be a reasonable alternative in applications where only
single population metrics are of interest such as when valuing pension liabilities or
pricing annuities.

Finally, in order to investigate the generalisability of our conclusion to the other test
datasets, we show in Figure 7 fan charts of the difference in period life expectancies with
respect to the England and Wales reference for the “Typical Lives”, “Typical Amounts”
and “Extreme Deprived” books. While the forecasts for the “Typical Lives” and “Typical
Amounts” books look plausible, the forecasts for the ‘Extreme Deprived” book look
completely unreasonable, with the models failing to project the increase in life expectancy
differences observed over the 1981-2010 period. Recalling Table 1, 60% of the “Extreme
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(c) Extreme Deprived

Figure 7. Fan charts of 30 year period curtailed life expectancy differences at age 60
between the different test books and the reference population.

Deprived” population belong to the two most deprived quintiles of England which have
seen a significant increase in relative mortality differentials with the respect to England
and Wales (see Villegas and Haberman (2014)). This suggests that the non-divergence
assumption embedded in the (vector) autoregressive process of order 1 used for forecasting
the period index in the book κB

t (recall Equation (8)) may be inappropriate for the “Extreme
Deprived” book.

Overall, although all the models produce plausible trends and forecast levels of uncer-
tainty for single population metrics, for two-population metrics only models CAE+Cohorts
and M7-M5 produce plausible results. In addition, there are big enough differences
between the models for us to acknowledge model risk as an important issue.

6.2.6. Forecast levels of uncertainty by book size
The analysis of the plausibility of the forecast levels of uncertainty performed so far has
been based on a fairly large book population with 100,000 exposed lives per year between
ages 60 and 89. However, for smaller exposures of the book population the sampling
noise in the data is bigger, leading to more uncertainty in the estimates of the parameters
of the models. This additional variability arising from a smaller population size can
potentially have a material impact on the plausibility of the forecast levels of uncertainty.
To explore this phenomenon, we investigate how the contribution of the different sources
of uncertainty to the total level of risk varies by population size. Figure 8 shows, for
models CAE+Cohorts and M7-M5 and the “Extreme Wealthy” test book, the variation

by book size of the variance of
↑
eB

60,30(2020) and of
↑
eB

60,30(2020)−
↑
eR

60,30(2020) (top left

and top right plots), and the variance of
↗
e B

65,25(2011) and of
↗
e B

65,25(2011)−
↗
e R

65,25(2011)
(bottom left and bottom right plots). From this figure we can see how:

• The differences in the levels of uncertainty produced by the models are evident, with
the M7-M5 producing higher variance than the CAE+Cohorts. These differences are
particularly notable for cohort life expectancies in the book population.

• The magnitude of the variance of both period and cohort life expectancies starts to
stabilise around a book size of 25,000 lives. This is particularly noticeable when
considering only process risk.
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Figure 8. Variance by population size of the curtailed period and cohort life expectancy
in the “Extreme Wealthy” test book and of the corresponding difference in period and
cohort life expectancies between the book and reference populations using different
models and considering different sources of risk.

• For book sizes smaller than 15,000 lives, process risk is unrealistic producing
artificially high variances.

These observations suggest that to avoid a distorted assessment of the levels of uncer-
tainty, models CAE+Cohorts and M7-M5 should only be used when the book exposure
is higher than 20,000-25,000 lives. Furthermore, as we show in Section 7, insisting on
using the models with modest exposure numbers may result in a misstated assessment of
demographic basis risk.

6.2.7. Forecasting performance and robustness
A good mortality model should not only produce forecasts that appear reasonable ex-
ante, but should also provide good ex-post forecast, that is forecasts that do not deviate
significantly from realised outcomes. In addition, these forecasts should be robust relative
to the choice of period for the data employed in producing the forecasts. To assess the
forecasting accuracy of the models, we first carry out a backtesting exercise in the spirit of
Booth et al. (2006) and Jarner and Kryger (2011, Section 4). This exercise entails the fitting
and forecasting of the models using data for the period 1981 to 2010 for different history
lengths, book sizes, and IMD compositions in the book population; and the evaluation of
different metrics of forecasting performance.

Specifically, the different models were fitted to history lengths ranging from 5 years to
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20 years,11 book sizes ranging from 5,000 lives to 100,000 exposed lives between ages
60 to 89 and the four test IMD compositions described before in Table 1. The forecasting
performance of the models is evaluated by comparing the actual 30 year curtailed period

life expectancies at age 60 in the book population,
↑
eB

60,30(t), and the actual differences in
30 year curtailed period life expectancies at age 60 between the book and the reference

population,
↑
eB

60,30(t)−
↑
eR

60,30(t), with their corresponding predicted counterparts over the
rest of the period until 2010. Forecast bias (actual-fitted) is summarised by averaging
across years, book sizes and forecasting horizon. The matching absolute errors are also
averaged to provide a measure of forecast accuracy.

The forecast bias (mean errors) and the forecast accuracy (mean absolute error) for
both period life expectancy in the book and differences in period life expectancy between
the book and the reference, plotted against history length are shown in Figure 9. We note
the following:

• Models CAE+cohorts and CF+Cohorts stand out as the best models for forecasting
period life expectancies in the book with the smallest bias and with the smallest mean
absolute error. The close alignment between the mean errors and mean absolute
errors of these two models reflects the fact that they share the same reference
population model.

• History length has a material impact on the out-of-sample performance of the models.
With the exception of model CF+Cohorts which does not require the forecasting of
any book specific time index, the forecasting performance of the models for history
lengths shorter than 8 years is poor. The noticeably poorer performance of model
M7-M5 for the shorter history lengths is explained by the fact that this model has
two period indices for the book, implying a more complex and data demanding time
series process for the forecasting.

• For differences in life expectancies and when we have more than 8 years of history,
the models perform very similarly both in terms of bias and accuracy.

• The bias in forecasting differences between the “Extreme Deprived” population and
the England and Wales reference population is considerably higher than the bias for
the other three test book compositions. This higher bias gives further evidence for
concluding that the non-divergence assumption may be inadequate for the “Extreme
Deprived” book.

In order to check the robustness of the models we will examine the stability of forecasts
towards the inclusion of additional years at the right end of the data window, using a
contracting horizon backtest as proposed by Dowd et al. (2010). Figure 10 shows plots of

forecasts of the 30 year period curtailed life expectancy at age 60 in 2010,
↑
eB

60,30(2010),
for the four test book populations with 100,000 exposed lives, made in 1985, 1986, . . .,
2009. Equivalent plots for the difference between the book and reference population,

11For instance when considering a history length of 5 years the models were fitted using data for the book
population covering the periods 1981-1985, 1982-1986, 1983-1987,. . ., 2003-2007, 2004-2008, 2005-2009.
In all cases, the reference population data was assumed to start in 1961 and end in the same year as the book
population data.
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Figure 9. Mean error (actual - fitted) and mean absolute error in the forecast of 30 year
period curtailed life expectancy at age 60 in the book and in differences in 30 year period
curtailed life expectancy at age 60 between the book and the reference. The results are
averaged across years, book sizes and forecast horizons ranging from 1 year to 15 years
ahead.

↑
eB

60,30(2010)−
↑
eR

60,30(2010), are also included. For all book populations and models, we
see that the forecasts for the book population are well-behaved, in the sense that they
converge in a stable manner towards the realised outcome. For forecasts of differences in
life expectancy we see a similar stable behaviour, albeit the discrepancies in the forecasts
for the “Extreme Deprived” population are noticeable and consistent with our previous
findings regarding the unsuitability of the non-divergence assumption for this book (recall
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Figure 10. Forecast of the 30 year period curtailed life expectancy at age 60 in 2010 for
the four different book populations using different fitting periods. The stepping-off year is
the final year used in fitting the models. The realised life expectancy for 2010 is
represented by a star.

Figure 7). Similar analysis for other book sizes show that the models are robust, provided
that the length of the fitting period is longer than 10 years (i.e. for stepping off years after
1990).

7. QUANTIFYING BASIS RISK
In this section we examine the performance of the models when used for assessing basis
risk. We also discuss the impact that different volumes of data may have on the parameter
uncertainty and on the assessment of basis risk. In presenting the basis risk analysis we
follow the five-step hedge effectiveness framework proposed in Coughlan et al. (2011).

7.1. Steps 1 and 2: Hedging objectives and hedging instruments
Most hedging exercises either consider value hedges or cash flow hedge aiming, respec-
tively, to mitigate the variability of the cash flows or the variability of the value of these
cash flows. We consider thus two separate simple examples reflecting the objectives of a
value hedge and of a cash flow hedge:
Value hedge example. Noting that period life expectancy corresponds to an annuity value
using a zero percent interest rate and no mortality improvements, for the value hedge
case we assume that the quantity at risk to be hedged is the 30 year curtailed period life

expectancy at age 60 in 2020,
↑
eB

60,30(2020), i.e. over a horizon of 10 years. The hedging
instrument to reduce the liability risk is the 30 year curtailed period life expectancy at age

60 in 2020 for the England and Wales population,
↑
eR

60,30(2020). This exercise is similar
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in spirit to the hedge effectiveness analysis performed in Cairns (2013) and Cairns et al.
(2014).
Cash flow hedge example. To reflect a cash flow hedge situation we consider that the
quantity at risk to be hedged is the 25 year curtailed cohort life expectancy at age 65 in

2011,
↗
e B

65,25(2011), which can be interpreted as the sum of the cash flows payable for
25 years to a pensioner aged 65 in 2011 and who belongs to a pension plan that pays
£1 at the end of each year. The hedging instrument to reduce the liability risk is the
25 year curtailed cohort life expectancy at age 65 in 2011 for the England and Wales

population.
↗
e R

65,25(2011). This exercise is similar in spirit to the hedge effectiveness
analysis performed in Li and Hardy (2011).

Although very simple, these two examples should be informative of the performance of
the models for hedge effectiveness assessment while avoiding the idiosyncrasies of specific
pension benefit structures or more realistic hedging instruments.

7.2. Step 3: Method for hedge effectiveness assessment
Following Li and Hardy (2011), Cairns (2013) and Cairns et al. (2014), we use the variance
as our measure of risk. Alternatively, a tail based risk measure such as Value-at-Risk,
as in Li and Hardy (2011) and Coughlan et al. (2011), or expected shortfall could be
considered. However, because our focus is on the comparison of competing models and
for the sake of simplicity, we have implemented the variance as a measure of hedge
effectiveness. Therefore, if L denotes the random unhedged liability and H represent
the value of the index-linked hedging instrument, we assume that the hedger wishes to
minimise the variance of L−hH, where h is the number of units (hedge ratio) held of the
hedging instrument. We define thus the relative risk reduction (hedge effectiveness) as
R2(h) = 1− var(L−hH)

/
var(L) . It can be proved (see, for example, Cairns et al. (2014))

that the optimal hedge ratio is h∗ = cov(L,H)
/

var(H) with optimal relative risk reduction
R2(h∗) = 1− var(L−h∗H)

/
var(L) = ρ2, where ρ is the correlation coefficient between

L and H.
For our examples, it will thus suffice to analyse the correlation between L and H,

i.e., the correlation between
↑
eB

60,30(2020) and
↑
eR

60,30(2020) for the value-hedging example

and the correlation between
↗
e B

65,25(2011) and
↗
e R

65,25(2011) for the cash flow-hedging
example.

7.3. Step 4: Calculation of hedge effectiveness
For each stochastic two-population model under consideration we compute the correla-
tions between L and H based on 1,000 simulated mortality scenarios. Our experience
suggests that a higher number of simulations does not lead to significant differences in the
results. In the analysis that follows, we contemplate three cases concerning the sources
of risks considered in the simulations: i) only process risk (PR); ii) process risk and
parameter uncertainty (PR+PU); and iii) process risk, parameter uncertainty and sampling
risk (PR+PU+SR). Process risk and parameter risk are considered using the techniques
described before in Section 6.2.5, while sampling risk is considered by randomly sampling
the number of deaths from a Binomial distribution once parameter uncertainty and process
risk have been taken into account.

Specifically, for the value-hedging example, we assume that the future exposures
EB

x,2010+t , t = 1, ..,10, are equal to the average age-specific book exposure over the data
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period used in fitting the mortality model and then simulate the number of deaths using the
conditional Binomial assumption:

DB
x,2010+t |qB

x,2010+t ∼ Bin(EB
x,2010+t ,q

B
x,2010+t), t = 1, . . . ,10.

For the cash-flow hedge example, we take sampling risk into account by treating the cohort
of pensioners as a random survivorship group. Thus, if lx denotes the number of pensioners
who survive to age x and given a simulated mortality scenario {qB

65,2011,q
B
66,2012, . . . ,q

B
89,2035},

we model sampling risk with the following Binomial death process:

l65+t ∼ Bin(l65+t−1,1−qB
65+t−1,2010+t), t = 1, . . . ,25,

with l65 equal to 5% of the total exposure in the book between ages 60 to 89 (e.g. if the
total book exposure is 100,000 lives we take l65 = 5,000). We have chosen 5% as from
the total English male population aged 60 to 89 broadly 5% is aged 65.

7.4. Step 5: Interpretation of results
We concentrate on hedge effectiveness results for models CAE+Cohorts and M7-M5 which
have been identified as the best performing models after the systematic model assessment
we have carried out in Section 6. However, in spite of the implausible projections pro-
duced by models CF+Cohorts and APC (gravity) model, we shall also compute hedge
effectiveness metrics for these two models to illustrate the issues that may arise if we insist
on using these models for basis risk assessment.

7.4.1. Hedge effectiveness by book population size
As discussed in section 6.2.5, population size has a material impact in the parameter
uncertainty of the models. In addition, it is expected that the higher sampling risk associated
with smaller populations will reduce the effectiveness of a standardised longevity-hedge.
To investigate this phenomenon, we present in Figure 11 hedge effectiveness results for the
“Extreme Wealthy” test book considering population sizes ranging from 5,000 to 100,000
exposed lives between ages 60 to 89, and considering different sources of risk. In all cases,
data for the period 1981-2010 (i.e. a history length of 30 years) is used for fitting the
models. From Figure 11 we note the following:

• As expected, the inherent perfect correlation of the CF+Cohorts results in an unreal-
istic zero or close to zero basis risk when sampling risk is ignored.

• The previously raised issues in relation to the parameter uncertainty in the estimation
of book-specific cohort parameters become evident, with the APC (Gravity) model
showing implausibly low hedge-effectiveness once parameter risk is taken into
account. This is especially noticeable for the cash flow-hedge example which
involves cohort-type quantities. In this case, even for populations as big as 100,000
lives, the hedge effectiveness produced by the model are below 60% while other
models produce hedge-effectiveness of more than 85%.

• For book sizes smaller than 15,000 lives, process risk is unrealistically high (recall
Figure 8) distorting the assessment of basis risk and producing artificially low hedge
effectiveness for the value-hedge example.
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Figure 11. Squared correlation, ρ2, between the liability L and the hedging instrument
H, as a function of book population size. All values correspond to the “Extreme Wealthy”
socio-economic composition where data for the period 1981-2010 have been used to fit the
models.

• The impact of sampling risk on correlations is material, with hedge effectiveness val-
ues for both the value-hedge and the cash flow-hedge falling rapidly for populations
below 10,000 lives. We also note that for the cash flow-hedge example, sampling
risk is the main determinant of basis risk. In fact, the CF+Cohorts model which
implies zero basis risk before accounting for sampling risk, results in virtually the
same risk reductions as models CAE+Cohort and M7-M5 once sampling risk is
accounted for.

• Although models M7-M5 and CAE+Cohorts can give rather different mortality
forecasts, these differences seem to attenuate in applications, with the two models
producing very similar hedge effectiveness values once all risks have been taken into
account.

7.4.2. Hedge effectiveness by history length
We now investigate how the number of years of available data in the book population im-
pacts the evaluation of hedge effectiveness. Figure 12 presents hedge effectiveness results
for the “Extreme Wealthy” test book considering history lengths ranging from 5 years to
30 years, and considering different sources of risk. In all cases a book population size of
100,000 lives is used for fitting the models. In this figure we can see how history length
has a significant impact on hedge effectiveness assessment. For history lengths shorter
than 10-12 years and once parameter uncertainty has been considered, risk reductions
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(b) Cash flow hedge example: 25 year curtailed cohort life expectancy at age 65 in 2011

Figure 12. Squared correlation, ρ2, between the liability L and the hedging instrument
H, as a function of history length of the book population data used to fit the models. All
values correspond to the “Extreme Wealthy” socio-economic composition with a book size
of 100,000 annual exposed lives between ages 60 to 89.

fall rapidly for model CAE+Cohorts, M7-M5 and APC (Gravity). This reinforces the
previously discussed issues of fitting time series models when historical data are scarce.

7.4.3. Interaction between book size and history length
We end this section by investigating the interaction between book size and history length
in the assessment of hedge effectiveness. To do so, we have fitted the CAE+Cohort and
M7-M5 model to the “Extreme Wealthy” test book considering all possible combinations
between book sizes 5 000, 7 500, 10 000, 15 000, 20 000, 25 000, 30 000, 40 000, 50 000,
75 000, and 100 000 and history lengths 5, 6, 7, 8, 9, 10, 12, 15, 20, 25 and 30 years. Figure
13 presents heatmaps depicting for both the value-hedge and cash-flow hedge examples
the resulting hedge effectiveness values once all sources of risks have been considered. To
ease the identification of patterns, correlations have been smoothed along the book size
and history length dimensions.12 From Figure 13 we note the following:

• The interaction between history length and book size is minimal, with hedge effec-
tiveness falling rapidly for history lengths shorter than 10-12 years and book sizes
smaller than 15,000-25,000 exposed lives above age 60.

• While for model M7-M5 correlations start to fall significantly for history length
below 12 years, for the the CAE+cohorts correlations only start to show a material

12Smoothing has been performed using a generalised additive model of the form logitρ = s(size) +
s(length), where, s denotes a penalised spline. For smoothing we have used R package mgcv (Wood, 2015).
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Figure 13. Smoothed squared correlation, ρ2, between the liability L and the hedging
instrument H, as a function of the book size and history length of the book population. All
values correspond to the “Extreme Wealthy” socio-economic composition.

decline for history length below 10 years. This suggest that when historical data are
limited, models with fewer book specific period indexes should be preferred over
models with multiple period book specific period terms. However, in all cases the
fitting of two-populations models should only be pursued when book data exceeds
8-10 years of history.

• For a book size over 25,000 lives and history length above 12 years, the hedge
effectiveness reductions for both the value-hedge and the cash-flow hedge examples
are above 70%, suggesting that index-based hedges can be a meaningful alternative
for hedging longevity risk.

8. DISCUSSION AND CONCLUSIONS
The main conclusions of our systematic assessment of the alternative two-population
mortality models for basis risk assessment can be summarised as follows. First, as can be
expected, none of the models satisfy all the desirable practical criteria of a practical for
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assessing basis risk laid down in Section 5. However, M7-M5 and CAE+Cohorts stand
out as the models which provide the most suitable balance between flexibility, simplicity,
parsimony, goodness-of-fit to data, and forecasting performance. Both models produce
reasonable best estimate projections with plausible levels of uncertainty, but with sufficient
differences to suggest that model risk should be recognised as an important issue.

As our analysis suggests, the paucity of book data implies that it is difficult to estimate
the age modulating terms β

( j,B)
x without resulting in non-robust and erratic parameter

estimates. Thus, any parameter which moderates the sensitivity of the book to time trends
at different ages should be inherited from the reference population (i.e. β

( j,B)
x ≡ β

( j,R)
x ).

Furthermore, unless there is a strong reason to believe in the existence of a different cohort
effect in the book than in the reference population, the parameter uncertainty in fitting a
(non-parametric) book-specific cohort term will greatly outweigh any benefits in terms of
goodness-of-fit to historical experience.

The fitting of two-population models should in principle only be pursued when two
requirements are met. First the book annual exposure should be over 20,000-25,000 lives,
since for smaller exposures the impact of parameter uncertainty may result in a biased
estimate of basis risk. Secondly, there should be at least 8-10 years of reliable book data,
since for shorter history lengths the quality of the forecasts is likely to be poor.

The above conclusions are underpinned by the analysis based on England and Wales
population data and the profile of sample schemes drawn from the Club Vita database. We
would expect many of the key conclusions to hold for other populations, although specific
results (such as AIC rankings) are necessarily dependent on the choice of data.

We end this paper by making a number of general comments arising from our investi-
gations.

Our previous sections have suggested that M7-M5 or the CAE+cohorts are appropriate
models when undertaking the modelling of the mortality of the reference and the book
populations in a basis risk assessment exercise. However, this need not preclude the
consideration of additional models. Indeed, the modeller may wish to look at alternative
models as part of sensitivity testing; or in order to gain a better understanding of model
risk; or to err on the side of adding more features into the model than historic back-testing
alone might suggest these features may be needed as part of a personal belief regarding
the complexity of mortality. Further, as time goes on, new models will enter the actuarial
literature and our work can help integrate those models into a basis risk assessment.
Therefore, we next provide some general guidelines for the construction of two-population
models for basis risk assessment.

When building a two-population model for assessing longevity basis risk, it is usual to
find that the reference population is considerably larger and has a longer back history of
data than the book population. It is therefore natural to start by selecting an appropriate
model for the reference population. Once the reference population model is chosen a
reasonable approach would be to select the book part of the model from within the same
model family of the reference part. This will ensure a correspondence between the model
parameters in the book and the reference populations which facilitates interpretation of
the parameters of the models and makes the subsequent analysis more comprehensive and
consistent in both populations. Our research on different models has also identified the
following facts: it is in general enough to include at most two book-specific time-dependent
terms; any parameter which moderates the sensitivity of the book to these time trends at
different ages should be inherited from the reference book (i.e. β

( j,B)
x ≡ β

( j,R)
x ); finally, it
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is generally appropriate not to include a book specific cohort effect. In mathematical terms,
if the preferred reference population model is given by

logitqR
xt = α

R
x +

N

∑
j=1

β
( j,R)
x κ

( j,R)
t + γ

R
t−x,

then a good starting point for the book model would in general be of the form:

logitqB
xt− logitqR

xt = α
B
x +

M

∑
j=1

β
( j,R)
x κ

( j,B)
t .

We would usually expect M to be at most two as it is unlikely that the book population can
support more than two time series i.e. M ≤min(2,N).13 By way of example, if we choose
to model the reference population using the single population model described in Börger
et al. (2013):

logitqR
xt = α

R
x +κ

(1,R)
t +(x− x̄)κ(2,R)

t +(xyoung− x)+κ
(3,R)
t +(x− xold)

+
κ
(4,R)
t + γ

R
t−x,

where xyoung and xold are predefined constant, then a suitable starting point for the book
model would be

logitqB
xt− logitqR

xt = α
B
x +κ

(1,B)
t +(x− x̄)κ(2,B)

t .

Our systematic analysis of the two-population mortality literature has focused exclu-
sively on the use of these models for the assessment of basis risk in longevity hedges.
Furthermore, we have implicitly assumed that the target book population is a subset or
is closely related to the reference population on which the index is based. Hence, our
conclusions may not necessarily extend directly to other applications of two-population
mortality models and the evaluation of the suitability of a model will largely depend on the
task at hand (e.g whether it is a basis risk assessment exercises or not) and on the nature
of the relationship between the two populations being modelled. As we have repeatedly
discussed in this paper, simpler models that are not suitable for basis risk assessment (e.g,
because of their implied perfect correlation between the populations) may be suitable for
other applications such us when valuing pension liabilities or pricing annuities. In addition,
the use of two-population mortality models for assessing the basis risk in longevity hedges
where the mortality in one country is hedged with the mortality of another country14 would
require a deep understanding of the differences between the two countries’ mortality. Such
differences may not be captured by the structure of the two-population models we have
proposed and the relative approach we have pursued may have to be substituted by a
simultaneous modelling of the two countries’ mortality, for instance along the lines of the
work of Li et al. (2015) or the GLM modelling approach of Hatzopoulos and Haberman
(2013).

In all our mortality projections and simulations we have employed the usual assumption
that the spread between the mortality in the reference and the book will conform to the

13Note that the M7-M5 model and the CAE+cohorts can be derived from this form by applying the
previous rules if we start by modelling the reference population using an M7 model or a LC+Cohorts model,
respectively.

14An example of this is the Kortis bond where UK mortality is hedged using US mortality, see Hunt and
Blake (2015a).
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non-divergence hypothesis in the long run, i.e., that the ratio of qB
xt to qR

xt will tend to a
limiting distribution as t→ ∞. We have captured this non-divergence constraint via the
use of a (vector) autoregressive process for the time series indices (κB

t ) in the book part of
the model, implying that in the long-run the spread between the logit of mortality for the
book and the reference population will revert from the current level to the historical mean.
Although the investigation of the appropriateness of this assumption is out of the scope
of this paper, the unsatisfactory results we have obtained when modelling the “Extreme
Deprived” book population suggest that such an assumption may not be appropriate in all
cases. In addition, the non-divergence assumption implies that the variance of the difference
in (logit) mortality between the book and the reference population is bounded, potentially
understating demographic basis risk and hence overstating the hedge effectiveness. We
thus encourage further research looking at alternative choices of times series model and at
the implications that such choices may have on hedge-effectiveness.

Our investigations indicate that the accurate calibration and projection of a two-
population model requires that the annual exposure in the book population is over 20,000-
25,000 lives and that there are at least 10-12 years of reliable book data. However, in
practice a large proportion of pension scheme books and life company portfolios will not
meet these data requirements leaving open the question of how to assess longevity basis
risk and hedge effectiveness for such populations. If book size is the main issue, then a
Bayesian approach such as those considered in Cairns et al. (2011a) and in Antonio et al.
(2015) may offer an alternative. But, if the problem is the lack of sufficiently long historical
data, indirect approaches where the book is modelled indirectly by reference to a bigger
population with a more reliable and longer mortality experience could be the way through.
Such approaches have recently been considered in the “mixing” approach proposed by
Ahcan et al. (2014) and in the “characterisation” approach introduced in Haberman et al.
(2014), and we believe that this line of research deserves further consideration.

Finally, although we have only considered very stylised longevity hedges, our hedge-
effectiveness results show that index-based hedges have the potential to provide an effective
and flexible solution to mitigate longevity risk. We hope that our research has shed light on
the assessment of basis risk and contributes to moving forward the market of standardised
longevity transactions.
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A. GENERATION OF SYNTHETIC DATA
In this appendix we present a possible procedure for generating, based on a reference
dataset, synthetic mortality datasets which have a given exposure size with a given distri-
bution of this exposure across population subgroups.

Assume that we have a reference dataset containing observed number of deaths Dxtg in
year t for people age x in subgroup g with matching central exposures Extg and matching
death rates µxtg = Dxtg

/
Extg . Let C

′
t be the target total exposure for year t in the synthetic

dataset and (w
′
tg1

, . . . ,w
′
tgm

) be a vector of weights adding to one which represents the
desired splitting in year t of this exposure among the subgroups.

The synthetic central exposures E
′
xtg in year t for people age x in subgroup g are

obtained as

E
′
xtg =C

′
t

∑g Extg

∑x ∑g Extg
w
′
tg =C

′
t
Ext

Et
w
′
tg,

where Ext = ∑g Extg are the total exposed to risk at age x in year t across all groups and
Et = ∑x ∑g Extg are the total exposed to risk in year t across all groups and ages. Hence the
exposure for the reference dataset is being used to obtain the split by age for a particular
year and group. The corresponding synthetic number of deaths D

′
xtg is generated by

drawing a random sample from a Poisson distribution with mean E
′
xtgµxtg. It should be

mentioned that the use of raw death rates may inflate the variability in the simulated
numbers of deaths. However, in the present application, based on the large UK population,
the extent of this additional variability is limited. Different applications based on smaller
populations may require the preliminary smoothing of death rates.

B. MODEL FITTING CONSTRAINTS
Some of the models require parameter constraints to ensure identifiability of the parameters.
Table 7 presents the parameter constraints imposed to the reference population models and
Table 8 shows the parameter constraints imposed to the book part of the two-population
models. It is well known that cohort extensions of the Lee-Carter model have robust-
ness and stability issues with models being very sensitive to changes in the data or the
fitting algorithm (see e.g. Hunt and Villegas (2015)). Therefore, when implementing the
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LC+Cohorts model we follow the approach suggested in Hunt and Villegas (2015) which
helps resolve many of the stability issues.

Table 7. Parameter constraints for the reference population models.

Model Constraints

LC+Cohorts ∑x β R
x = 1, ∑t κR

t = 0, ∑t−x γR
t−x = 0, ∑t−x(t− x)γR

t−x = 0

APC ∑t κR
t = 0, ∑t−x γR

t−x = 0, ∑t−x(t− x)γR
t−x = 0

M7 ∑t−x γR
t−x = 0, ∑t−x(t− x)γR

t−x = 0, ∑t−x(t− x)2γR
t−x = 0

Table 8. Parameter constraints for the book part of the models.

Model Constraints

CF+Cohorts -

CAE+Cohorts ∑t κB
t = 0

RelLC+Cohorts ∑x β B
x = 1, ∑t κB

t = 0

Gravity (APC) ∑t κB
t = 0, ∑t−x γB

t−x = 0, ∑t−x(t− x)γB
t−x = 0

M7-M5 -

M7-M6 ∑t−x γB
t−x = 0, ∑t−x(t− x)γB

t−x = 0

M7-M7 ∑t−x γB
t−x = 0, ∑t−x(t− x)γB

t−x = 0, ∑t−x(t− x)2γB
t−x = 0

M7-Saint -

M7-PLAT -
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