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Abstract 

 
This thesis encompasses an overview and critical analysis of 11 publications of clinical and 

translational cardiac electrophysiology research that has been executed over the last seven 

years. The focus of this dissertation and the selected papers is on the use of electroanatomic 

mapping technology to define the arrhythmogenic substrate in patients with structural heart 

disease and ventricular arrhythmias. Such advancements in elucidating the mechanisms and 

pathophysiology underlying scar-related ventricular tachycardia have yielded improved clinical 

outcomes for patients with drug-refractory ventricular arrhythmias.  

 

Chapter 1 describes the epidemiologic background and introduces the concept of intracardiac 

mapping and the technological evolution that has provided the basis for this current body of 

work. Chapter 2 and Chapter 3 provide a detailed description of how electroanatomic mapping 

studies have provided critical insight into disease pathogenesis in patients with dilated non-

ischemic cardiomyopathy arrhythmogenic right ventricular cardiomyopathy (ARVC). The 

clinical impact and relevance of these studies are discussed based on conventional 

electroanatomic mapping technologies to define abnormal physiological substrates. Chapter 

3 also addresses important considerations regarding percutaneous epicardial mapping and 

ablation that have been derived from extensive clinical experience. Chapter 4 and Chapter 5 

describe the evolution of mapping technologies and the use of high-resolution mapping 

system technologies. These chapters discuss the potential clinical advantages of these 

technologies during substrate and activation mapping, particularly in post-infarct ventricular 

scar and VT. Finally, Chapter 6 concludes this thesis with final thoughts on the broader context 

of the lessons that have been learned from the studies that are presented in this thesis and 

implications for future work.   
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Chapter 1  

Introduction and Review of Literature 
 

 

1.1 Overview  

 

The field of cardiac electrophysiology has seen a tremendous evolution over the last four 

decades, evolving from the intellectual and research curiosity of a select few to a powerful 

clinical and therapeutic discipline. The development of catheter ablation and new technologies 

have made non-pharmacological therapies a reality, and it is now the treatment of choice for 

most cardiac arrhythmias, including ventricular tachycardia.1 Much of the current 

understanding of the electrophysiologic and electroanatomic substrates that underlie scar-

related ventricular tachycardia (VT) was derived from studies that are performed within the 

electrophysiology laboratory. Through this experience, much has been learned about the 

arrhythmia mechanisms, underlying pathophysiological substrate, and strategies that are 

required to facilitate successful catheter ablation in patients with structural heart disease and 

recurrent VT. The ability to localize and define the associated abnormalities that are critical to 

the manifestation of VT in different disease substrates has provided important insight into 

disease pathogenesis and enhanced the therapeutic effectiveness of these procedures. The 

work in this thesis evaluates results from 11 published clinical and experimental 

electroanatomic mapping studies. Critical analysis of this work demonstrates the clinical utility, 

limitations, and technical considerations of intracardiac mapping to identify the underlying 

electrophysiologic substrate in patients with scar-related VT. 

 

Chapter 1 describes seminal and historic investigations beginning in the 1970s that provided 

robust characterization of the arrhythmogenic substrate, reentrant mechanism, and responses 

to electrical stimulation in patients with infarct-related, monomorphic ventricular tachycardia. 

Utilizing these same principles and electroanatomic mapping technologies that are available 

in clinical electrophysiology laboratories, significant advances elucidating the 

electrophysiologic and electroanatomic substrate in patients with non-ischemic 

cardiomyopathies and VT have recently been made. Unlike the substrate that is associated 

with post-infarct VT, patients with NICM have regions of tissue abnormality that are localized 

in a non-regional manner, resulting in areas of interest that may be more diffuse and patchy. 

Particularly, abnormalities that are localized to the perivalvular regions and basal left ventricle 

with variable degrees of endocardial, mid-myocardial, and/or epicardial tissue involvement 

have been reported.2,3 Although the reason for these variable scar patterns is unclear, 
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characterization of the underlying arrhythmogenic substrate is necessary, but challenging in 

this pathophysiologic setting.  

 

1.2 List of Publications for Each Chapter (in order of discussion) 

 

Chapter 2 – Electrophysiologic Substrate in Patients with Dilated Non-Ischemic 
Cardiomyopathy and Ventricular Tachycardia 
 
Haqqani HM, Tschabrunn CM, Tzou WS, Dixit S, Cooper JM, Riley MP, Lin D, Hutchinson 
MD, Garcia FC, Bala R, Verdino RJ, Callans DJ, Gerstenfeld EP, Zado ES, Marchlinski FE. 
Isolated Septal Substrate for Ventricular Tachycardia in Nonischemic Dilated 
Cardiomyopathy: Incidence, Characterization and Implications.  Heart Rhythm. 2011 
Aug8(8);1169-76. 
 
Frankel DS, Tschabrunn CM, Cooper JM, Dixit S, Gerstenfeld EP, Riley MP, Callans DJ, 
Marchlinski FE. Apical Ventricular Tachycardia Morphology in Left Ventricular Non-Ischemic 
Cardiomyopathy Predicts Poor Transplant Free Survival. Heart Rhythm. 2013 May;10(5): 621-
6.  
 
Bala R. Ren JF, Hutchinson MD, Desjardins B, Tschabrunn CM, Gerstenfeld EP, Deo R, Dixit 
S, Garcia FC, Cooper J, Lin D, Riley MP, Tzou WS, Verdino R, Epstein A, Callans DJ, 
Marchlinski FE. Assessing Epicardial Substrate Using Intracardiac Echocardiography During 
VT Ablation. Circ Arrhythm Electrophysiol. 2011 Oct;4(5):667-73. 
 
Chapter 3 – Electrophysiologic Substrate in Patients with Arrhythmogenic Right Ventricular 
Cardiomyopathy and Ventricular Tachycardia 
 
Haqqani HM, Tschabrunn CM, Betensky BP, Lavi N, Tzou WS, Zado ES, Marchlinski FE. 
Layered Activation of Epicardial Scar in Arrhythmogenic Right Ventricular Dysplasia: Possible 
Substrate for Confined Epicardial Circuits.  Circ Arrhythm Electrophysiol. 2012 Aug 1;5(4):796-
803. 
 
Santangeli P, Zado ES, Supple G, Haqqani HM, Garcia FC, Tschabrunn CM, Callans DJ, Lin 
D, Dixit S, Hutchinson MD, Riley M, Marchlinski FE. Long-term Outcome with Catheter 
Ablation of Ventricular Tachycardia in Patients with Arrhythmogenic Right Ventricular 
Cardiomyopathy. Circ Arrhythm Electrophysiol. 2015 Dec 8;89(6):1413-21.  
 
Tschabrunn CM, Haqqani HM, Zado ES, Marchlinski FE.  Repeat Percutaneous Epicardial 
Mapping and Ablation of Ventricular Tachycardia: Safety and Outcome. J Cardiovasc 
Electrophysiol. 2012 Jul;23(7): 744-9. 
 
Tschabrunn CM, Haqqani HH, Cooper JM, Dixit S, Garcia FC, Gerstenfeld EP, Callans DJ, 
Zado ES, Marchlinski FE. Percutaneous Epicardial Ventricular Tachycardia Ablation After 
Non-Coronary Cardiac Surgery or Pericarditis. Heart Rhythm. 2013 Feb;10(2):165-9. 
 

Chapter 4 – High Resolution Catheter and Mapping Technologies: Insight from Clinical 
Laboratory Investigations 

 
Anter E, Tschabrunn CM, Josephson ME. High-resolution Mapping of Scar-related Atrial 
Arrhythmias Using Smaller Electrodes with Closer Interelectrode Spacing. Circ Arrhythm 
Electrophysiol. 2015 Jun;8(3):537-45. 
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Anter E, Li J, Tschabrunn CM, Nezafat R, Josephson ME. Mapping of a Post-infarction Left 
Ventricular Aneurysm-Dependent Macroreentrant Ventricular Tachycardia. Heart Rhythm 
Case Rep. 2015 Nov 1;1(6):472-6. 
 

Chapter 5 – High Resolution Mapping of Ventricular Scar: Insight from Experimental 
Laboratory Investigations 
 

Tschabrunn CM, Roujol S, Nezafat R, Faulkner-Jones B, Buxton AE, Josephson ME, Anter 
E. Swine Model of Infarct-related Reentrant Ventricular Tachycardia: Electroanatomic, 
Magnetic Resonance, and Histopathologic Characterization. Heart Rhythm. 2016 
Jan;13(1):262-73. 
 
Tschabrunn CM, Roujol S, Dorman NC, Nezafat R, Josephson ME, Anter E. High-Resolution 
Mapping of Ventricular Scar: Comparison Between Single and Multielectrode Catheters. Circ 
Arrhythm Electrophysiol. 2016 Jun;9(6) [Epub Ahead of Print]. 
 

1.3 Epidemiology and Clinical Management 

 

Monomorphic ventricular tachycardia most commonly occurs in patients with coronary artery 

disease and prior myocardial infarction, but it can also develop in the setting of non-ischemic 

cardiomyopathy (NICM).4 The initial clinical presentation of sustained monomorphic 

ventricular tachycardia (VT) may include palpitations, angina, exacerbation of heart failure, 

pre-syncope, syncope, and/or sudden death. The incidence of sudden cardiac death (SCD) in 

the United States occurs as high as 462,000 cases annually and is frequently attributed to 

circulatory collapse after initiation of ventricular arrhythmias.5 Approximately 30% of coronary 

artery disease (CAD) patients develop an initial episode of sustained monomorphic VT within 

the first year following myocardial infarction with a cumulative incidence of 3-5% per year. 

Recently, the incidence of VT in the first year following MI has been reduced to ~1% due to 

aggressive revascularization and pharmacologic therapies that result in smaller infarctions 

with infrequent aneurysm formation.4 Patients with NICM are characterized by mechanical 

and/or electrical ventricular dysfunction in the absence of significant coronary artery disease 

and thus represent a heterogeneous group with variable infiltrative, genetic, infectious, and 

idiopathic ideologies.  

 

The clinical management of sustained monomorphic ventricular tachycardia in patients with 

structural heart disease (SHD) generally involves one or more of the following therapeutic 

options: 1) implantable cardioverter-defibrillator (ICD), 2) antiarrhythmic drugs, and 3) 

ablation. In the United States, the majority of patients with recurrent VTs are managed with 

ICD therapy. This approach is largely based on the findings of secondary prevention ICD trials 

that demonstrate a reduction of mortality in patients with structural heart disease and life-
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threatening ventricular arrhythmias.6–8 Importantly, ICD therapy is not a preventive therapy 

and is typically utilized in conjunction with antiarrhythmic and/or ablation therapies.  

 

There are three main indications for antiarrhythmic drugs in the chronic treatment of ventricular 

tachycardia: adjunctive therapy in patients with ICD and frequent ICD therapies; to slow the 

VT cycle length to enhance tolerance, such that it may be amenable to pacing interventions; 

and lastly, as an alternative to an ICD in patients who choose not to have one or who are not 

good candidates (e.g., because of marked comorbidities). While amiodarone is the most 

effective antiarrhythmic in terms of the prevention of VT episodes, long-term use is associated 

with serious adverse effects and increased mortality.9 Sotalol has been shown to reduce 

episodes of MMVT in patients with SHD and is a reasonable initial pharmacologic therapy in 

patients with normal renal function and a baseline QT interval.10,11 Dofetilide is also an 

alternative, but only class I agents and amiodarone can slow the VT cycle length.  

 

Catheter ablation for sustained VT in the setting of SHD is an important alternative or adjunct 

to pharmacological therapy. Catheter ablation after the first presentation of sustained VT is 

associated with a significant reduction of ICD shocks versus antiarrhythmic drug therapy in 

patients with post-infarct VT.12 The Multicenter Thermocool Ventricular Tachycardia Ablation 

trial reported the outcome in 231 patients who underwent VT ablation with an open-irrigated 

catheter.13 In this population of post infarction VT with a median LV ejection fraction of 25%, 

the targeted VT was successfully ablated in 81% of patients. Although the frequency of 

episodes was markedly reduced, only 49% of patients remained VT free at the six-month 

follow-up.13 Catheter ablation has also been successfully used in NICM patients and typically 

entails a more complex procedure involving epicardial mapping and ablation.3 The long-term 

effectiveness of catheter ablation in the NICM population is less understood than in the post-

infarct population. Of note, a recent, large retrospective analysis of 2061 patients with scar-

related VT demonstrated one year of freedom from VT recurrence in 72% of post-infarct 

patients and 68% of NICM patients.14 In this same study, the overall procedure complication 

rate was 6%, including 0.1% deaths, 0.3% requiring cardiopulmonary resuscitation, and a 

1.7% incidence of hemopericardium.   
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1.4 Pathophysiology 

 

The pathophysiology of scar-related monomorphic ventricular tachycardia includes structural 

and electrical remodeling, which results in inhomogeneous scarring with variable degrees of 

surviving myocardial tissue that is contiguous with dense fibrosis, forming the “arrhythmogenic 

substrate”.15–18 This arrhythmogenic substrate is characterized by zones of slow conduction 

due to non-uniform anisotropy, resulting in fixed and/or functional regions of conduction block. 

These zones facilitate reentry as they generate enough time for tissue in the circuit to recover 

its excitability and allow the excitation wavefront to reenter the initial site of the block, creating 

a circuit.19–21
 

 

Most of the current understanding of the pathophysiologic and electrophysiologic substrates 

that underlie monomorphic VT has been derived from studies that are performed with patients 

who have coronary artery disease and prior myocardial infarction. The electrophysiologic 

substrate for monomorphic VT gradually develops over the first two weeks after myocardial 

infarction, and once established it appears to remain indefinitely.22 During the infarct healing 

process, necrotic myocardium is replaced with fibrous tissue that surrounds surviving 

myocardial fibers (Figure 1.1).  

Figure 1.1: Structural Remodeling Following Myocardial Infarction

Mason-trichrome stained histology section in normal and post-
infarct tissue. The blue stained tissue indicates the extent of
fibrosis. Survived layer of myocardial fibers in disarray occurs at
the borders of the scar. The viable tissue demonstrates loss of the
parallel bundle orientation with myocardial fiber disarray and
variable degrees of fibrosis.
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In addition, reduction in the number of gap junctions coupled with altered cellular distribution 

results in slow, non-uniform anisotropic conduction, which may promote reentry (Figure 

1.2).18,23 Other electrophysiological consequences of infarction include abnormalities in 

refractoriness, inexcitability, and enhanced automaticity, all of which can contribute to 

arrhythmogenicity. However, abnormalities of conduction are most prominent and provide the 

electrophysiologic substrate for VT.19 
 

1.5 Reentrant Circuit 

 

This pathophysiologic substrate facilitates reentry as it generates enough time for the tissue 

in the circuit to recover its excitability and allow the excitation wavefront to reenter the circuit. 

Clinical and experimental investigations provide convincing evidence for reentry as the 

underlying mechanism of post-infarction VTs in human.20,24 In patients with NICM, 80% of VTs 

are caused by scar-related reentry, 20% are due to bundle branch reentry or focal 

mechanisms.25 Evaluation of the VT mechanism has important therapeutic implications in 

post-infarct and NICM related substrates. In particular, distinguishing arrhythmias that are 

Figure 1.2: Electrical Remodeling Following Myocardial Infarction

Connexin-43 antibody immunofluorescence in normal and post-
infarct tissue. Following myocardial infarction, gap junction activity
becomes absent or significantly reduced and lateralized in the
infarcted region
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caused by triggered activity from those due to reentry effects the selection of an appropriate 

antiarrhythmic drug, anti-tachycardia pacing protocol, and ablation strategy.   

 

Reentrant circuits typically have a consistent relationship with the anatomic substrate. They 

arise in areas of fibrosis that contain surviving myocardial strands with the tissue’s inherent 

inhomogeneous anisotropy that leads to a zigzag course of activation.19 A discrete, protected 

zone of slow conduction is contained within the dense scar and this zone serves as the critical 

isthmus, allowing reentry to occur. The reentrant circuit has several components which include 

entrance, common pathway (critical isthmus), exit, outer loop(s), inner loop(s), and bystander 

sites (Figure 1.3). The wavefront enters the reentrant circuit at the entrance site and then 

propagates through the critical isthmus during electrical diastole. As the critical isthmus is 

usually composed of a small amount of myocardial tissue with conduction abnormalities and 

is bounded by anatomical or functional barriers that prevent the spread of the electrical signal, 

except in the orthodromic direction, propagation of the wavefront in the protected isthmus is 

electrocardiographically silent. The wavefront leaves the protected isthmus to depolarize the 

remainder of the ventricles, producing the QRS complex. The reentrant wavefront can then 

return back to the entrance of the common pathway through an outer or an inner loop. The 

outer loop is the path through which the reentrant wavefront propagates while simultaneously 

activating the rest of the myocardium. An inner loop is contained within the scar and can serve 

as an integral part of the reentrant circuit or function as a bystander pathway. If conduction 

through the inner loop is slower than conduction from exit to entrance sites through the outer 

loop, it is a bystander pathway. Alternatively, if the inner loop allows faster conduction back to 

the entrance site, it serves as an internal part of the reentrant circuit.4 

 

 

Figure 1.3: Schematic of Reentrant Ventricular Tachycardia Circuit

15



1.6 Data from Intraoperative Studies 

 

Intraoperative and endocardial mapping studies that were carried out by Mark Josephson and 

his team at the University of Pennsylvania in the 1970s provided substantial insight into the 

mechanisms and underlying arrhythmogenic substrate in patients with VT and prior 

myocardial infarction. These initial studies utilized endocardial catheter mapping techniques, 

multi-site programmed stimulation, and evaluation of VT response to drugs and electrical 

stimulation to demonstrate the reentrant arrhythmia mechanism and subendocardial tissue 

involvement in coronary artery disease patients.   

 

The definition of normal versus abnormal signal characteristics were defined using a non-

deflectable catheter with a 2mm tip electrode, separated by 5mm from a 1mm ring electrode 

during sinus rhythm and VT. These efforts evaluated the electrogram characteristics in 

patients with tolerated VT as well as patients 

with non-tolerated VT and cardiac arrest. 

These reports were the first to define normal 

and abnormal electrogram signal amplitude, 

duration, morphology, and activation 

patterns.26  

 

Activation mapping was performed in patients 

with healed myocardial infarction and 

sustained VT in the electrophysiology lab and 

operating room to determine the relationship 

between abnormal electrograms that were 

identified during sinus rhythm and the location 

of reentrant VT circuits. These investigations 

discovered that the majority of all electrograms 

(>85%) at critical VT sites (based on pre-QRS or mid-diastolic continuous electrical activity 

identification criteria) had abnormal electrograms during sinus rhythm that demonstrated low 

amplitude (<3.0mV) and/or long duration (>70ms) signals. A small percent of signals was 

profoundly abnormal and displayed either fractioned, split potentials (electrograms separated 

by 30ms by an isoelectric interval), delayed activation extending beyond the QRS, and late 

potentials separated by a 30-50ms isoelectric interval from the QRS (Figure 1.4). While these 

abnormal signals reflect abnormal signal propagation that is not seen in normal regions of 

tissue (high specificity), they were not seen in all patients with ventricular tachycardia and 

therefore, they carried a modest predictive value of approximately 30% for defining the “site 
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of origin” during sinus rhythm. Histopathologic evaluation of ventricular tissue with electrogram 

abnormalities demonstrated myocardial fiber disarray with bundles of survived myocytes 

encased in fibrous tissue that were located primarily in the subendocardial surface of the heart. 

 

These studies also found that patients with sustained monomorphic VT had lower tissue 

excitability in areas of low amplitude and fractioned electrograms with prolonged dispersion of 

recovery due to abnormalities of activation. These areas often demonstrated early activation 

adjacent to areas of late activation; this feature is advantageous to promote reentry. All of 

these features are known to represent the electrophysiological milieu for reentrant ventricular 

tachycardia. Patients who require treatment for VT underwent a 2-3cm subendocardial 

resection, where abnormal electrograms were identified. This resulted in the normalization of 

50% of adjacent EGMs and the elimination of VT in the majority of patients, providing the 

strategic foundation for future catheter based therapies.27–31 

 
1.7 Electroanatomic Mapping Technologies 

 

The development of electroanatomic mapping (EAM) technology during the 1990s 

transformed the field of cardiac electrophysiology, as it allowed visual localization of the 

mapping catheter within a 3-dimensional space.32 This facilitated, for the first time, the ability 

to record signals at multiple sites and assess activation during sinus rhythm and arrhythmias 

during catheter-based studies. This groundbreaking technology continued to evolve and was 

widely adopted as the electrophysiologist’s “GPS system” inside of the heart and allowed 

accurate localization and annotation of abnormal electrograms during sinus rhythm.  
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The ability to localize regions of low bipolar amplitude, abnormal signals, and the presumed 

scar using this technique led to the development of substrate mapping and ablation as the 

primary approach for the treatment of scar-related VTs. This initial concept was based on the 

idea that channels of viable myocytes within a dense scar could be recorded during sinus 

rhythm, representing isthmuses of reentrant circuits. Pace mapping at the junction of these 

channels and the “border zone” produced QRS morphologies that were similar to recorded 

VTs. This led investigators to develop ablation strategies, in which lesions are applied 

perpendicular to these channels and/or their borders with the hope of blocking propagation 

through the channels, resulting in the elimination of VT.33 As was the case in early 

intraoperative studies, these abnormal electrogram features that were identified during 

catheter-based electroanatomic mapping is indicative of abnormal myocardium with 

multicomponent, delayed signals that represent slow or delayed activation and that could 

serve as the prerequisite for reentrant VT (Figure 1.5).  

 

Bipolar Voltage Criteria 

 

The most common feature that has been 

analyzed in clinical studies is electrogram 

peak-to-peak voltage. This has been 

evaluated for bipolar (mapping catheter 

tip to ring electrode) and unipolar 

(mapping catheter tip to Wilson central 

terminal) recordings. In a case control 

study, bipolar voltage cutoff values of 

normal vs abnormal substrates in patients 

presenting for catheter ablation of infarct-

related VT using an electroanatomic 

mapping system.33 These initial studies 

utilized a standard linear ablation and 

mapping catheter with a 4mm tip electrode, 1mm ring electrode, and 2mm interelectrode 

spacing. A statistical cut off was utilized to develop normal bipolar voltage criteria with >95% 

electrograms in healthy ventricular tissue, recording a bipolar voltage >1.5mV (Figure 1.6). 

Abnormal regions were delineated as the “scar border zone”, which is defined as bipolar 

voltage amplitude between 0.5-1.5mV; “dense scar” is defined as voltages <0.5mV; these 

electrograms were filtered at 10-400Hz. These cutoff values have also been validated in 

animal infarct models.34 Typically, areas with low bipolar voltages are characterized by 
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markedly abnormal fragmented, split, and late electrograms, which are usually not found in 

regions of normal bipolar voltage. 

 

Unipolar Voltage Criteria  

 

The limited field of view of bipolar signals is an issue of particular importance when attempting 

to characterize the substrate in patients with non-ischemic cardiomyopathies (NICM). The 

abnormal substrate in these patients is fairly equal, but variably distributed to endocardial, 

mid-myocardial, and in some cases isolated to epicardial locations. In general, substrate 

abnormalities that are involved in reentrant VT circuits typically involve perivalvular regions 

with increased prevalence of intramural and/or epicardial substrate abnormalities. In this 

setting, unipolar voltage mapping can provide additional value to identify the location and 

extent of abnormal substrate, beyond the bipolar electrogram field of view. Similar to the 

development of normal and abnormal bipolar voltage criteria, prior studies have developed a 

statistical cutoff value for unipolar electrograms, where >95% of all signals are >8.27mV in the 

left ventricle (Figure 1.7). Low unipolar voltages are usually indicative of epicardial regional 

involvement with a high positive and negative predictive value in patients with no endocardial 

abnormalities identified with bipolar voltage mapping.35 

 

1.8 Conclusion 

 

Adverse structural and electrical remodeling following myocardial infarction or during variable 

processes of different non-ischemic cardiomyopathies can promote the manifestation of 

reentrant monomorphic ventricular tachycardia. Intracardiac mapping can be used to detect 

and characterize regions of abnormal ventricular tissue that are critical to the reentrant VT 
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circuit. These regions serve as therapeutic targets, initially during intraoperative surgical 

procedures and recently with catheter ablation techniques. As such, efforts to accurately 

identify these arrhythmogenic areas continues to have an important role in scar-related VT 

ablation.    
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Chapter 2  

 

Electrophysiologic Substrate in Patients with Dilated Non-Ischemic 

Cardiomyopathy and Ventricular Tachycardia 
  

2.1 Introduction 

 

Chapter 2 encompasses a critical review of clinical electroanatomic mapping studies 

performed in patients with dilated non-ischemic cardiomyopathy and VT. Chapter 2.2 

describes the incidence, electrophysiologic characterization, and clinical implications of 

isolated septal substrate; Chapter 2.3 discusses apical LV extension and the prognostic value 

of LV endocardial mapping; and Chapter 2.4 describes the utility of other imaging techniques 

to localize abnormal regions of LV tissue.  

 
The research investigations that are discussed in this Chapter were carried out in the clinical 

electrophysiology laboratories of the Hospital of the University of Pennsylvania in Philadelphia, 

Pennsylvania. All of the patients provided written informed consent prior to the clinical 

electrophysiologic procedures, in accordance with the University of Pennsylvania Health 

System’s institutional guidelines. 

 
2.2 Incidence and Characterization of Isolated Septal Substrate 

Haqqani HM, Tschabrunn CM, Tzou WS, Dixit S, Cooper JM, Riley MP, Lin D, Hutchinson MD, Garcia FC, Bala 
R, Verdino RJ, Callans DJ, Gerstenfeld EP, Zado ES, Marchlinski FE. Isolated Septal Substrate for Ventricular 
Tachycardia in Nonischemic Dilated Cardiomyopathy: Incidence, Characterization and Implications.  Heart 
Rhythm. 2011 Aug8(8);1169-76. 
 

Previous studies in patients with LV NICM and VT have characterized the basal peri-annular 

LV endocardial and epicardial VT substrate using electroanatomic mapping techniques.2 This 

abnormal substrate is typically isolated to the basolateral region or involves both the 

basolateral and basal septal LV. As the clinical experience of LV NICM VT cases expanded, 

occasional cases without basal peri-annular abnormalities were seen and appeared to 

represent a rare sub-type of NICM substrate, requiring further evaluation. The objective of this 

study was to determine the incidence and electrophysiologic characteristics of patients with 

isolated septal involvement in the NICM VT patient cohort at the University of Pennsylvania. 

Of 266 consecutive NICM VT patients, 31 (11.6%) were identified with isolated or minimal 

involvement beyond the septum based on EAM and/or cardiac magnetic resonance imaging.  

 

Major Findings 

1. Majority of low-voltage and abnormal electrograms localized to the LV or RV endocardium 

with minimal involvement of the septal epicardial tissue 
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2. Possibility of an exclusive, deep intramural VT substrate within the interventricular septum

that may only be evident on imaging or with unipolar voltage mapping

3. Multiple monomorphic VT morphologies with left and/or right bundle branch block, variable

axis, but with characteristic V2 transition due to peri-septal breakthrough

4. Limited efficacy (66% acute success) of ablation to eliminate all inducible VTs

5. Extensive septal ablation may permanently damage the conduction system.

Study Limitations 

This was a single center, nonrandomized study representing a consecutive group of NICM 

patients. During this time, the evolution of CMR imaging, epicardial mapping, and irrigated 

ablation may have affected the study results.  

Clinical Implications 

This is the first report to describe the presence of endocardial/epicardial EAM abnormalities, 

VT characteristics, procedural outcome, challenges, and complications that are specific to this 

subset of NICM patients with isolated septal involvement. This study incorporated EAM and 

CMR imaging techniques to describe clinical characteristics and challenges, particularly 

regarding the identification of the arrhythmogenic substrate using conventional bipolar voltage 

criteria and the ability of radiofrequency ablation to reach deep intramural substrates. Isolated 

or predominant septal substrate for scar-related VT in NICM represents an uncommon but 

challenging cohort of patients. Biventricular endocardial low-voltage zones extending from the 

basal septum (with or without patchy epicardial involvement) are characteristic, but the septal 

scar may be intramural and only identified with CMR imaging or with unipolar voltage map 

evaluation (Figure 2.1). The additional risk that is associated with epicardial access and 

mapping should be avoided as it provides limited value. Instead, effort should be focused on 
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characterization of the septal RV and LV endocardium. Multiple procedures may be required 

for successful VT ablation, with the potential to affect the conducting system.  

 

Since the publication of this study, isolated 

VTs involving mid-septal substrate 

continues to be a challenge requiring 

multiple procedures and aggressive 

ablation from the RV and LV septum to 

eliminate VT circuits that involve deep mid-

septal substrate. In addition, since this 

phenomenon was introduced and quickly 

recognized as a major challenge, efforts to develop more aggressive ablation therapies have 

been underway, which may extend further within this region beyond conventional tools. Two 

potential technologies that may bridge this gap include a proprietary radiofrequency ablation 

needle catheter that can be deployed directly within the ventricular tissue (Figure 2.2), and a 

bipolar radiofrequency ablation technique for more directed and deeper lesions. Both have 

been utilized in a limited and select group of patients with modest success.36,37 

 

2.3      Left Ventricular Apical Substrate and Ventricular Tachycardia  
Frankel DS, Tschabrunn CM, Cooper JM, Dixit S, Gerstenfeld EP, Riley MP, Callans DJ, Marchlinski FE. Apical 
Ventricular Tachycardia Morphology in Left Ventricular Non-Ischemic Cardiomyopathy Predicts Poor Transplant 
Free Survival. Heart Rhythm. 2013 May;10(5): 621-6.  
 
 

As discussed earlier, the area of bipolar low-voltage and abnormal electrograms that are 

consistent with a “scar” in patients with LV NICM and VT typically involves the mitral annular 

region with variable degrees of apical extension. The objective of this study was to compare 

LV endocardial and epicardial electroanatomic substrates and transplant free survival in NICM 

patients with clinical and/or induced sustained VTs that are suggestive of an apical exit site 

versus those without apical VTs. Apical VT exit morphology was defined as left bundle 

morphology with precordial transition ≥V5 or right bundle morphology with precordial transition 

≤V3. Patients with NICM and monomorphic VT who require catheter ablation between May 

2008-April 2011 were categorized accordingly. Of 76 total patients, 32 (42%) were identified 

as having ≥1 VT ECG morphology that was suggestive of an apical exit site.  

 

Major Findings 

1. Patients with apical VT morphologies had larger areas of abnormal electrograms, 

extending beyond the basal LV toward the apex.  
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2. During clinical follow-up, these patients had a higher incidence of death, cardiac 

transplantation, or LVAD implantation due to progressive and end-stage heart failure.  

 

Study Limitations 

Although validation of this association had not been previously reported, one would 

hypothesize that patients with apical VT morphologies are likely to have apical extension and 

involvement from the basal mitral annulus, either in a continuous or patchy distribution. These 

findings are consistent with other studies that have evaluated scar size with CMR imaging and 

found higher mortality in patients with high scar burdens independently of LVEF.38 

Nonetheless, this was a moderately-sized, single-center study with limited follow-up duration 

in patients with NICM, and should not be applied to other disease substrates that were not 

included in this study cohort.  

 

Clinical Implications 

The presence of an apical VT morphology is a simple, noninvasive marker that provides useful 

prognostic information. Patients with NICM and apical VTs have larger areas of scarring, 

extending further from the base toward the apex and worse transplant/LVAD-free survival, 

despite similar LVEF (Figure 2.3). Particular attention should be paid to optimal heart failure 

management in these patients, with a more guarded prognosis. Despite a mean follow-up of 

less than one year, more than 25% of the patients died or required an LVAD/heart transplant, 

emphasizing the advanced heart failure in this patient cohort. At the time of publication, this 

was the first study that demonstrated the association between VT localization and clinical 

outcomes in patients with NICM with multivariate analysis. In the multivariate analysis model, 
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LVEF and endocardial bipolar low-voltage percentage independently predicted adverse 

clinical outcomes. A subsequent study published by the Penn group evaluated the incidence 

and characteristic of LV NICM scar progression in 12 patients that underwent repeat LV 

endocardial mapping, and 6 out of 12 patients had markedly increased unipolar and bipolar 

low voltage areas that were indicative of ongoing disease progression and pathogenesis. In 

four cases, this progression extended towards the apex.39 Taken in conjunction with the apical 

VT study results, it is possible that the development of a new apical VT may be indicative of a 

progressive substrate towards the LV apex and warrants further consideration of potential 

early heart failure interventions. Multicenter studies with longer follow-up are required to 

determine the reproducibility of these findings. 

 

2.4        Detection of Epicardial Substrate with Intracardiac Echocardiography 

Bala R. Ren JF, Hutchinson MD, Desjardins B, Tschabrunn CM, Gerstenfeld EP, Deo R, Dixit S, Garcia FC, 
Cooper J, Lin D, Riley MP, Tzou WS, Verdino R, Epstein A, Callans DJ, Marchlinski FE. Assessing Epicardial 
Substrate Using Intracardiac Echocardiography During VT Ablation. Circ Arrhythm Electrophysiol. 2011 
Oct;4(5):667-73. 
 

Intracardiac echocardiography (ICE) is routinely utilized during electrophysiology procedures 

to facilitate real-time imaging of cardiac anatomy, catheter position, and lesion formation, and 

to monitor for complications. There is limited information on the ability of ICE to identify 

abnormal substrate during VT ablation. The objective of this study was to evaluate the 

feasibility of ICE to identify echogenic tissue regions at the mid-myocardial or epicardial LV 

regions, which are representative of abnormal ventricular substrate in patients with NICM and 

recurrent VT. Eighteen patients were identified that underwent LV endocardial and epicardial 

mapping with ICE imaging that identified increased echogenicity in the lateral LV wall. A 

control group of 30 patients with structurally normal hearts were included for validation.  

 

Major Findings 

1. All of the 18 patients with NICM and ICE defined lateral LV echogenicity correlated to 

epicardial abnormalities identified during electroanatomic mapping marked by fractionated 

and low bipolar voltage electrograms.  

2. There was no identification of ICE increased echogenicity in a control group of 30 patients 

with structurally normal hearts. 

 

Study Limitations 

This was a small feasibility study, which was limited to the evaluation of the LV lateral wall in 

patients with NICM and VT and did not include other regions of the LV. While this technique 

continues to be utilized by operators who are experienced in ICE imaging in conjunction with 
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mapping and imaging modalities, there are no extensive evaluations to determine the 

sensitivity and specificity of ICE imaging as a diagnostic modality for this purpose.  

 

Clinical Implications 

The findings from this initial series of patients suggests that ICE imaging may provide an 

additive and important role in identifying abnormal substrate and facilitating VT ablation. 

Increased echogenicity on ICE imaging coupled with normal or small areas of low voltage on 

LV endocardial electroanatomic mapping suggest the need for detailed epicardial 

mapping/ablation (Figure 2.4). Electroanatomic mapping is currently the gold standard for 

identification of abnormal epicardial substrate, and the validation of these regions to the ICE 

echogenic findings is a major strength of this study. The use of ICE imaging for this purpose 

has particular utility in patients presenting with NICM and VT as MRI imaging in patients with 

ICD implants is not widely performed. ICE imaging identified both midmyocardial and 

epicardial echogenicity in 10 of the 18 patients, and these findings were confirmed in five of 

these patients with CMR imaging. In three patients, epicardial abnormalities were not as 

extensive as the CMR midmyocardial LGE. The CMR and ICE data indicates a greater 

midmyocardial than epicardial substrate abnormality identified with voltage mapping. These 

data are likely representative of the limitations of bipolar voltage mapping to detect 
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abnormalities beyond preserved sub-epicardial layers, and it illustrates the importance of 

additional mapping and imaging techniques in order to identify mid-myocardial abnormal 

myocardial substrates. A more recent study in 22 patients (12 post-infarcts and 12 non-

ischemic) performed 3D reconstruction of ICE images using the Carto Sound module and also 

found that ICE imaging can provide important information about the VT anatomical substrate 

in conjunction with EAM. However, further evaluation is required to determine the true clinical 

benefit during VT ablation.40 

 

2.5 Conclusions 

 

There is no current consensus on the optimal ablation strategy for patients with NICM and VT, 

but previous studies support the concept of an underlying anatomical substrate that facilitates 

reentry. These important clinical studies that utilize electroanatomic mapping technology 

provide critical insight into the electrophysiologic substrate underlying VT in patients with 

NICM. These data represented, at the time of publication, new information to the 

electrophysiology community and was validated and expanded by investigations at other 

centers.  Chapter 3 describes insights from clinical electroanatomical mapping studies in 

patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) and VT.  
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Chapter 3 

 

Electrophysiologic Substrate in Patients with Arrhythmogenic Right 

Ventricular Cardiomyopathy and Ventricular Tachycardia 
 
3.1 Introduction 

 

The pathogenesis of arrhythmogenic right ventricular cardiomyopathy (ARVC) is distinguished 

by fibrous and adipose tissue replacement of ventricular myocardium. Though several 

hypotheses have been proposed for the underlying cause of ARVC/D, it is primarily believed 

to be an inherited cardiomyopathy, resulting from gene mutations that encode desmosomal 

proteins, the organelle responsible for cell-cell adhesion. Desmosomal dysfunction in patients 

with ARVC/D leads to inadequate cell adhesion and subsequent myocyte detachment and 

apoptosis.41,42 This process predominantly affects the right ventricular free wall and extends 

inward from the epicardium toward the endocardial surface in most patients.42–44 The 

replacement of functional RV myocardium with fibrosis serves as the underlying substrate for 

the development of reentrant ventricular arrhythmias due to inhomogeneous conduction 

during sinus rhythm with slow and discontinuous electrical propagation.20,45  

  

Three-dimensional electroanatomic mapping has been instrumental in facilitating a more 

robust understanding of the complex electrophysiologic substrate that is present in patients 

with ARVC. Identifying low voltage electrograms with long-duration, split, fractionated, and/or 

late potentials can localize regions of abnormal myocardial tissue that serves as the substrate 

for VT.46 Identification of these key areas has been correlated with relevant histopathologic 

findings in patients with ARVC, verifying the presence of cardiomyocyte loss with fibrofatty 

replacement that is consistent with the disease.47 The ability to localize and define the 

associated abnormalities that are essential for VT enhanced the effectiveness of catheter 

ablation procedures. In addition, assessment of the anatomic substrate during 

electrophysiology procedures has shed light on controversies pertaining to disease 

pathogenesis. 

 

This chapter discusses insight and outcome implications in ARVC patients, as well as the 

identification of special considerations in epicardial mapping and ablation. Chapter 3.2 

discusses the endocardial and epicardial substrate in patients with ARVC, Chapter 3.3 

describes implications of layered and/or confined epicardial substrate, and Chapter 3.4 

discusses the long-term catheter ablation outcome in ARVC-VT patients. Chapter 3.5 focuses 

on epicardial mapping techniques, including the challenges associated with pericardial 

adhesions. The research investigations that are discussed in this Chapter were all carried out 
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in the clinical electrophysiology laboratories of the Hospital of the University of Pennsylvania 

in Philadelphia, Pennsylvania. All of the patients provided written informed consent prior to the 

clinical electrophysiologic procedures in accordance with the University of Pennsylvania 

Health System’s institutional guidelines. 

3.2 Endocardial and Epicardial Substrate Characterization 

Endocardial Mapping 

Advances in 3D electroanatomic mapping enabled a more thorough understanding of the 

complex electrophysiologic substrate in patients with ARVC/D and VT. Abnormal RV 

endocardial regions can be localized with electroanatomic mapping by identifying regions of 

low bipolar RV endocardial voltage (<1.5 mV) and long-duration, low-amplitude, fractionated 

potentials. These key areas have been correlated to relevant histopathologic findings 

(myocyte loss with fibrofatty replacement) and critical VT circuits, confirming the involvement 

of these areas in the arrhythmogenic mechanism. The endocardial distribution of 

electroanatomic scars in patients with VT and ARVC/D typically extends from the tricuspid 

valve and/or the pulmonary valve to the RV free wall. Low-voltage abnormalities can also be 

found on the septal aspect of the perivalvular region(s), but typically not on the RV apex.45 

Although ARVC/D is known to primarily involve the RV, involvement of the left ventricle (LV) 

is more frequent than previously recognized. Left ventricle abnormalities have been 

documented with electroanatomic mapping and typically involve the basal perivalvular region, 

which is characteristic of other non-infarct related cardiomyopathies.45 Consideration of 

endocardial LV involvement is of particular importance if right bundle branch block VTs with 

positive R waves in the precordial leads are seen, as this suggests an LV VT exit site of 

interest. 

Epicardial Mapping 

Despite peri-procedural advances with irrigated ablation catheter technology and criteria to 

identify RV endocardial bipolar electroanatomic voltage abnormalities, the endocardial 

ablation approach provides modest long-term arrhythmia freedom. The epicardial to 

endocardial scarring process associated with ARVC/D often results in a more extensive 

abnormal epicardial substrate that may not be amenable to endocardial ablation alone (Figure 

3.1). Insight from percutaneous epicardial mapping and ablation procedures in patients with 

ARVC/D and VT have demonstrated the important role of the epicardium. Abnormal epicardial 

low-voltage areas are typically much larger than the corresponding endocardial region, with 

extensive networks of late activation and fractioned signals.46,48 Due to the widespread extent 
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of confluent scarring in these patients, it is common to identify multiple VT circuits that may 

involve both endocardial and epicardial surfaces. In addition, the dense mid-myocardial/sub 

epicardial fibrosis can create an effective barrier for the endocardial to epicardial spread of 

activation. The resultant layered and delayed activation of the epicardium from the edges of 

the scar creates the milieu for an isolated VT circuit that is entirely confined to the epicardium 

and requires epicardial access and direct ablation for elimination.49 In patients that have failed 

endocardial ablation, repeat ablation targeting the epicardial circuits was associated with 

superior long-term success rates.46 As such, patients often require epicardial access for 

mapping and ablation to achieve a successful outcome. 

Although identification of abnormal epicardial substrate is best achieved through a 

percutaneous pericardial puncture, analysis of unipolar endocardial voltage maps with the 

associated larger field-of-view provides information that pertains to the degree of epicardial 

abnormality present. Areas of unipolar voltage of <5.5 mV are associated with epicardial 

abnormalities. Unipolar voltage abnormalities that are identified during RV endocardial 

mapping and that far exceed the bipolar endocardial substrate are highly suggestive of a more 

extensive epicardial > endocardial substrate that is consistent with the ARVC/D substrate in 

patients with VT.48 Additional clues to the requirement for epicardial mapping and ablation 

include surface ECG morphologies of VT, suggesting epicardial exits (QS complex in the 

inferior leads and/or right precordial leads), the presence of an isolated epicardial scar on 

magnetic resonance or intracardiac echo imaging, and/or prior failed endocardial ablation. 3,48 
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3.3 Implications of Layered Epicardial Activation 

Haqqani HM, Tschabrunn CM, Betensky BP, Lavi N, Tzou WS, Zado ES, Marchlinski FE. Layered Activation of 
Epicardial Scar in Arrhythmogenic Right Ventricular Dysplasia: Possible Substrate for Confined Epicardial Circuits.  
Circ Arrhythm Electrophysiol. 2012 Aug 1;5(4):796-803. 
 

A unique opportunity to understand the three-dimensional substrate underlying VT in non-

ischemic cardiomyopathies is presented by patients with ARVC. Patients requiring ablation 

for VT in this context generally have significantly more epicardial scarring than endocardial 

scarring, but may also have substantial intramural fibrosis. This would increase the likelihood 

of conduction block to the endocardium and independent activation of the epicardium in VT 

by circuits that are unable to traverse the intramural RV. In sinus rhythm, the footprint of such 

a schema would be the independent, laminar activation of the endocardium and epicardium. 

 

The purpose of this study was to evaluate whether confluent epicardial or intramural scarring 

in patients with ARVC and VT can prevent transmural endocardial to epicardial activation 

during VT and/or sinus rhythm, indicating the possibility of VT circuits confined to the epicardial 

surface. This study included 18 consecutive patients with VT and ARVC between 2007-2010 

at the University of Pennsylvania that underwent RV endocardial and epicardial mapping. A 

control group of six patients without structural heart disease that underwent RV endocardial 

and epicardial mapping during idiopathic ventricular arrhythmia ablation was included.  

 

Major Findings 

1. Sinus rhythm endocardial RV activation in the absence of structural heart disease 

progresses smoothly from the earliest breakthrough in the apical anteroseptal 

endocardium toward the basal regions.  

2. Reference patients without structural heart disease also show evidence of epicardial RV 

activation in a similar sequence to the endocardium with relative activation timing, which 

is suggestive of direct transmural endocardial-to-epicardial depolarization.  

3. Endocardial RV activation in ARVC is altered by extensive fibrosis that characterizes this 

disease, such that it takes proportionately longer but occurs in an overall similar sequence 

because of the largely periannular endocardial substrate distribution.  

4. Epicardial RV activation is altered and activated in a delayed fashion, with a pattern that 

often appears independent of subjacent endocardial activation, suggesting that the dense 

confluent fibrosis characteristic of ARVC may potentially compartmentalize the 

endocardium from the epicardium.  
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Study Limitations 

This study has several important limitations. The endocardial and epicardial activation 

sequence have been determined in ARVC patients undergoing VT ablation, many of whom 

had already undergone prior ablation which may have altered activation and study results. 

Inaccuracies in determining local activation may have affected the results, including those 

related to the size of the mapping bipolar, the orientation of the catheter shaft, and the difficulty 

in absolutely distinguishing far-field activation from local activation in fractionated signals.  

 
Clinical Implications 

This is the first study to examine the transmural RV activation pattern in a group of control 

patients without structural heart disease and in patients with ARVC. Normal human RV 

activation progresses smoothly from apex to base on the endocardium and epicardium, likely 

with direct transmural epicardial activation. Right ventricular activation in ARVC is modified by 

the presence of confluent scar with a delayed epicardial activation sequence, which is 

suggestive of possible independent rather than direct transmural activation. (Figure 3.2) This 

may predispose VT circuits that are contained entirely within the epicardium in ARVC, and it 

explains the frequent need for direct epicardial ablation to successfully eliminate VT. 
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In the presence of dense fibrosis that is seen in ARVC, successful endocardial ablation of VT 

may be less probable, given the poor transmural penetration of current ablation energy 

sources. This limitation is likely to occur when burning in the thickened, densely scarred RVs 

that are seen in this disease. Though no randomized comparisons are available, the 

incorporation of epicardial mapping appears to be associated with better outcomes for ARVC-

related VT ablation than endocardial ablation alone. This is presumably related to the 

increased ability to directly ablate the substrate for confined epicardial VT circuits.46 

 

Although there is much data on the normal sequence of ventricular activation in patients with 

and without structural and conduction system disease, no studies have performed 

simultaneous contact mapping of the ventricular endocardium and epicardium to examine the 

sequence and relationship of activation of the two surfaces, and there have not been any data 

describing the effect of structural disease on this relationship. Control group findings from this 

study suggests that normal human RV activation occurs in an apex-to-base fashion, from its 

initial breakout at the myocardial border of the distal right bundle branch back toward the 

infundibulum and basal annuli. A similar sequence occurs on the epicardium, which is 

consistent with the results that were obtained by Wyndham et al., with surgical mapping of 

patients with coronary disease.50 In that study, a constant anterior RV epicardial breakout was 

also seen and the latest activation was heterogeneous in a precise location, but was generally 

in the basal regions of the RV. A near simultaneous activation (delayed by only 5.2±1.9ms) 

was observed at sequential fiducial points along the course of activation of the endocardium 

and epicardium. This suggests that progressive transmural activation of the epicardium from 

subjacent endocardial points (rather than independent epicardial laminar activation) was 

occurring; the absence of a Purkinje network on the human epicardium would be expected to 

slow conduction relative to the endocardium to a significantly greater extent than observed. 

The finding that the latest epicardial site is activated within a mean of only 16ms of the 

completion of endocardial activation further supports this hypothesis. 

 

The majority of patients exhibited a reverse centripetal pattern of activation of a confluent 

epicardial scar region from the periphery, progressing to collision in the center (Figure 3.3). 

Such a pattern essentially excludes the possibility of direct sinus rhythm transmural 

endocardial-to-epicardial RV activation in these patients. It is probable that this independent 

layered activation of the epicardium in sinus rhythm predisposes the existence of VT circuits 

that are partly or even completely confined to the epicardium, as the intramural fibrotic process 

provides a limited number of possible breakthrough sites to the endocardium that are 
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insufficient to short circuit the reentrant VTs. 

 

Normal human RV activation progresses smoothly from apex to base on the endocardium and 

epicardium, likely with direct transmural epicardial activation. RV activation in ARVC is 

modified by the presence of a confluent scar with a delayed epicardial activation sequence 

that is suggestive of possible independent rather than direct transmural activation. This may 

predispose VT circuits that are contained entirely within the epicardium in ARVC, and it 

explains observations of the need for direct epicardial ablation to successfully eliminate VT. 

In the presence of the type of dense fibrosis that is seen in ARVC, successful endocardial 

ablation of such VT may be less probable given the poor transmural penetration of current 

ablation energy sources. This limitation is particularly likely when burning in the thickened, 

densely scarred RVs that are seen in this condition. Though no randomized comparisons are 

available, the incorporation of epicardial mapping appears to be associated with better 

outcomes for ARVC-related VT ablation than endocardial ablation alone. This is likely to be 

related to the increased ability to directly ablate the substrate for confined epicardial VT circuits 

when approaching these with a transpericardial, rather than a transmural, strategy. 
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3.4 Long-term Clinical Outcomes of Catheter Ablation 

Santangeli P, Zado ES, Supple G, Haqqani HM, Garcia FC, Tschabrunn CM, Callans DJ, Lin D, Dixit S, 
Hutchinson MD, Riley M, Marchlinski FE. Long-term Outcome with Catheter Ablation of Ventricular Tachycardia in 
Patients with Arrhythmogenic Right Ventricular Cardiomyopathy. Circ Arrhythm Electrophysiol. 2015 Dec 
8;89(6):1413-21.  

Catheter ablation of ventricular tachycardia (VT) in arrhythmogenic right ventricular 

cardiomyopathy improves short-term VT-free survival. The purpose of this study was to 

determine long-term outcomes of VT control, and the need for antiarrhythmic drug therapy 

after endocardial (ENDO) and adjuvant epicardial (EPI) substrate modification in patients with 

arrhythmogenic right ventricular cardiomyopathy.  

Major Findings 

1. VT free survival was 71% with a mean follow-up of 56 months; an additional 15%

experienced a single VT recurrent episode, and no patient received long-term amiodarone

therapy.

2. Approximately half of the patients required more than one procedure and 37% received

only endocardial ablation.

3. In patients with ARVC, long-term VT control can be achieved in the majority of cases with

a strategy of endocardial ablation with adjuvant epicardial VT ablation.

Study Limitations 

This was an observational, non-randomized study that summarizes a single-center experience 

spanning >15 years. The choice for the specific ablation approach (i.e., ENDO-only versus 

ENDO–EPI) was not randomized and, as expected, the acute ablation end points evolved 

over the multiyear study period. Patients who underwent ENDO-only ablation were enrolled 

earlier in the experience and, as a result, also had a longer follow-up, which may potentially 

act as a bias. In addition, the year of enrollment may have influenced the decision to perform 

EPI ablation, as operator threshold for proceeding with EPI ablation was expectedly lower 

than in 2003. Patients who had their ablation before 2003 were more likely to experience a 

clinical recurrence and then have persistent inducible VT, whereas patients with ablation since 

2003 had an EPI ablation if they had inducible VT after extensive ENDO-only ablation before 

a clinical recurrence. 

Clinical Implications 

Prior studies evaluating the benefits of radiofrequency catheter ablation of VT in the setting of 

ARVC have only reported short-term and mid-term outcomes in a relatively small series of 

patients, frequently combining the results from multiple centers.

 

The cumulative evidence 

arising from such studies and our own large single-center experience suggests that an ENDO 
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and EPI substrate–based ablation strategy is important for optimizing the management of 

recurrent VT in patients with ARVC.  

These data support the clinical importance of an aggressive and comprehensive ENDO 

substrate modification as part of intraprocedural management strategy. This study supports 

the notion that ENDO-only ablation may still provide a clinical benefit in selected ARVC cases, 

as the long-term results were achieved with more than one third of patients undergoing ENDO-

only procedures. For instance, ENDO ablation may be particularly critical to target the most 

basal aspect of the typical ARVC perivalvular substrate, which cannot be fully addressed with 

EPI ablation because of the presence of major coronary vessels. Importantly, in this study, 

EPI ablation only was reserved for patients who still had spontaneous or inducible VT after 

extensive ENDO ablation. Currently, this EPI ablation is typically performed in the same 

setting. As such, ENDO ablation represented an important aspect of the procedure and 

preceded EPI ablation. Therefore, the results of this study do not support a first-line EPI-only 

ablation approach in patients with ARVC, although adjuvant EPI ablation is often required to 

achieve long-term VT control.   

 

Given the exceptionally high VT burden in this patient population, with a median of 4 (and ≤14) 

distinct clinical/inducible VTs per patient, it is important to emphasize the relevance of a 

comprehensive and extensive substrate-based ablation strategy that incorporates ENDO and, 

if still inducible, EPI ablation to achieve the long-term VT control that is reported in the present 

study. These data, from over a >10-year experience with EPI VT ablation, demonstrates the 

need to be more comprehensive in the extent of substrate ablation, particularly when 

epicardial access is obtained. This was done even more aggressively, as the researchers’ 

clinical experience evolved to minimize the need for repeat ablation procedures that were 

initially commonly observed. It should be emphasized, however, that this strategy of 

performing noninvasive programmed stimulation before discharge and bringing patients back 

to the electrophysiology laboratory if inducible VT is found is still advocated. Early repeat 

ablation to minimize the potential for late adhesion formation that may limit accessibility is 

advisable.  
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3.5 Special Considerations During Epicardial Access, Mapping, and Ablation  

 

Feasibility, Safety, and Challenges of Repeat Epicardial Access and Mapping 
Tschabrunn CM, Haqqani HM, Zado ES, Marchlinski FE.  Repeat Percutaneous Epicardial Mapping and Ablation 
of Ventricular Tachycardia: Safety and Outcome. J Cardiovasc Electrophysiol. 2012 Jul;23(7): 744-9. 
 

Percutaneous epicardial mapping and ablation has been increasingly utilized since it was first 

described by Sosa, et al. in 1996.51 The feasibility and risk of de novo epicardial access 

procedures is relatively low. In some cases, repeat epicardial mapping and ablation may be 

needed, requiring a repeat percutaneous access attempt to the pericardium in the same 

patient. The objective of this study was to define the feasibility to safely obtain repeat 

pericardial access, the presence of pericardial adhesions, along with the incidence of mapping 

limitations and potential clinical impact. Patients that underwent epicardial mapping between 

June 2002 and April 2011 at the University of Pennsylvania and required a subsequent 

pericardial access for mapping, and ablation of VT was included in the analysis. Thirty patients 

were identified who required two or more epicardial procedures for recurrent VT.  

 

Major Findings 

1. Repeat pericardial access followed by epicardial mapping/ablation can be performed 

safely in the majority of cases. 

2. Significant pericardial adhesions from the prior procedure, limiting catheter manipulation, 

was noted in seven (23%) patients. A steerable sheath was used in six of these cases to 

aid in cautious blunt dissection with the deflected catheter curve.  

3. Adhesions were easily disrupted in five patients using careful blunt catheter dissection, 

and complete epicardial mapping was limited in only two patients.  

4. Comparison of several index procedure characteristics between non-adhesion and 

adhesion groups, including number of epicardial lesions delivered, epicardial ablation time, 

post-procedure intravenous, and/or oral non-steroidal anti-inflammatory medications 

appeared to predict the development of pericardial adhesions.  

 

Study Limitations 

This is a study of a selected patient cohort in a single center with extensive experience 

performing percutaneous pericardial access and epicardial mapping. Procedural findings are 

based on the subjective judgment of the density of adhesions that were reported by the 

primary operator.  
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Clinical Implications 

This study describes the largest population of patients undergoing repeat percutaneous 

pericardial access for catheter ablation of VT. Successful repeat pericardial access was 

acquired in all 30 patients. One patient required an additional puncture during the repeat 

procedure due to significant adhesions and pericardial space compartmentalization that 

precluded full epicardial mapping over the RV with the initial puncture directed toward the 

inferior septum and LV (Figure 3.4). The subsequent puncture, directed over the anterior RV, 

allowed successful mapping and ablation of these patients epicardial RV VT.  

 

This study demonstrates the safety and 

efficacy of repeat percutaneous pericardial 

access for recurrent epicardial VT. It 

demonstrates that in the vast majority of 

cases, repeat access can be obtained and 

that typically, no adhesions are 

encountered. Importantly, those adhesions 

can be effectively disrupted without 

complication when encountered, using the 

deflected mapping catheter and a steerable 

sheath that allows for detailed mapping and 

repeat ablation with a good long-term 

outcome. Uncommonly, adhesions that are 

encountered can be dramatic and produce 

compartmentalization of the pericardial space. The dense adherence may also be seen at the 

site of prior extensive epicardial ablation, which does not preclude successful mapping and 

ablation of other VT, although it may preclude repeat targeting of the original VT ablation sites. 

 

Most VT can be successfully mapped and ablated from the endocardial surface. However, 

when this is not possible, percutaneous epicardial mapping and ablation may be required to 

target and eliminate the VT. In some cases, recurrent arrhythmia may require repeat epicardial 

procedures to obtain complete elimination of VT. There is little data available on the safety 

and efficacy of repeat epicardial procedures. Brugada et al. described one case where repeat 

pericardial access was required the day after the initial procedure and was obtained without 

incident.52 Roberts-Thomson et al. reported a study with 15 patients requiring repeat epicardial 

mapping and successful percutaneous pericardial access was achieved in 87% of patients; 

however, no information about pericardial adhesions was reported.53 
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In this study, repeat pericardial access was obtained in each patient, regardless of whether or 

not intrapericardial steroid was administered during the initial procedure.54 Adhesions can 

typically be disrupted with blunt catheter dissection, allowing the operator to access the site 

of interest (Figure 3.5). This has been done safely in the consecutive patients who are 

presented in this series by operators who are experienced in percutaneous pericardial access 

and mapping techniques. However, this experience is still limited and caution should be 

employed. Operators should be prepared to handle problems that are encountered with 

appropriate surgical backup available. Significant adhesions may be present from previous 

procedures; however, these can usually be disrupted mechanically without complication. By 

allowing for complete epicardial mapping, successful repeat VT ablation can be achieved in 

the majority of patients. 
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Feasibility, Safety, and Challenges of Percutaneous Epicardial Access & Mapping Following 

Noncoronary Cardiac Surgery or Pericarditis 
Tschabrunn CM, Haqqani HH, Cooper JM, Dixit S, Garcia FC, Gerstenfeld EP, Callans DJ, Zado ES, Marchlinski 
FE. Percutaneous Epicardial Ventricular Tachycardia Ablation After Non-Coronary Cardiac Surgery or Pericarditis. 
Heart Rhythm. 2013 Feb;10(2):165-9. 

As described earlier, percutaneous epicardial mapping and ablation may be required to target 

and eliminate VT. In some cases, patients with prior cardiac surgery or pericarditis may require 

epicardial access to facilitate successful VT ablation. There is little data available on the safety 

and efficacy of epicardial procedures in these patients. Furthermore, there are varying reports 

on how often the pericardial space can be accessed in these patients and on how significantly 

adhesions limit epicardial mapping and ablation.  

The objective of this study was to evaluate the safety and efficacy of percutaneous pericardial 

access and mapping/ablation in patients with prior non-coronary cardiac surgery or 

pericarditis. Patients that underwent an epicardial access attempt between June 2002 and 

June 2011 at the University of Pennsylvania were evaluated. In ten patients, epicardial access 

was attempted for recurrent VT. Two patients had previously treated pericarditis and the 

remaining eight patients had undergone sternotomy for variable indications. Of note, six out 

of ten of these patients were referred urgently due to VT storm.  

Major Findings 

1. Successful percutaneous pericardial access was achieved in all patients, but significant

adhesions were encountered, limiting free movement of the ablation catheter in each case.

2. Similar to the adhesion disruption technique described in Chapter 2.6, adhesions could

typically be disrupted with blunt catheter dissection, which allowed limited epicardial

mapping and ablation in all but one patient.

3. Although this was performed safely in this cohort, this experience is still limited and caution

should be exercised. Furthermore, operators were experienced in epicardial access and

mapping with surgical backup available if needed.

Study Limitations 

This is a study of a selected patient cohort in a single center with extensive experience 

performing percutaneous pericardial access and epicardial mapping. Procedural findings are 

based on the subjective judgment of the density of adhesions reported by the primary operator. 

This strategy should be reserved for high-volume centers with adequate surgical backup 

available at all times.  
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Clinical Implications 

This study described the largest population of successful percutaneous pericardial access for 

catheter ablation of VT in patients with prior non-coronary cardiac surgery or pericarditis 

(Figure 3.6). This experience offers a new strategy that may allow experienced operators to 

perform epicardial mapping and ablation in a group of patients where it was previously thought 

not to be possible. 

 

Although in the majority of these cases adhesions were successfully disrupted, this may not 

always be possible. Adhesions that are encountered can be dramatic and produce 

compartmentalization of the pericardial space that is resistant to blunt catheter dissection. 

Roberts-Thomson et al. described the largest study population of 13 patients with prior cardiac 

surgery or pericarditis requiring epicardial procedures. In their series, successful 

percutaneous pericardial access was achieved in only two of these cases (15%).53 The long-

term outcome in these patients was not provided. Sosa et al. have described five cases in 

which pericardial access was obtained in patients with previous cardiac surgery. In this series, 

mapping and ablation were limited, owing to adhesions and no data on long-term outcome or 

failed access attempts were provided.55 There is some reports that suggests that performing 

a surgical pericardial window in the electrophysiology laboratory may assist with disrupting the 
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dense adhesions in these patients.56 However, this is more invasive than mechanical 

disruption with the ablation catheter/steerable sheath. In the single case from our series where 

the ablation catheter was unable to break the adhesions, the surgical window was also unable 

to create a channel in the pericardial space. This suggests that both strategies may be limited 

in some patients with dense adhesions. The ability to access and map the epicardium in this 

series is significantly higher than previously reported. This is attributed to having access to the 

steerable sheath and experienced operators with expertise at performing epicardial 

procedures.	 
 

3.6 Conclusions 

 

The development of fibrosis in ARVC is characterized by a unique epicardial to endocardial 

disease process that requires a specialized approach for arrhythmia treatment in the 

electrophysiology laboratory. Although the association between ARVC/D and the 

development of ventricular arrhythmias has become increasingly clear over the last two 

decades, our understanding of the arrhythmia mechanisms underlying electrophysiologic 

substrate and treatment strategies was significantly limited. These and other clinical studies 

performed in the electrophysiology laboratory allowed detailed characterization of the 

electrophysiologic and electroanatomic substrate underlying ventricular tachycardia in 

patients with ARVC/D. Through increased understanding of the disease process, catheter 

ablation has evolved to become an effective and preferred therapy for the majority of these 

patients. In addition, we demonstrated the safety and feasibility of percutaneous pericardial 

access and mapping in patients that underwent prior epicardial mapping, non-coronary 

cardiac surgery, or pericarditis. These studies described a new technique to disrupt pericardial 

adhesions using a deflected mapping catheter and a steerable sheath to facilitate epicardial 

mapping and ablation.  
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Chapter 4 

High Resolution Catheter and Mapping Technologies: Insight from 

Clinical Laboratory Investigations 
 

4.1 Introduction 
 

Bipolar amplitude is influenced by several factors including: 1) conduction velocity, 2) fiber 

orientation and curvature, 3) relationship of fiber orientation to the propagating wavefront (non-

uniform anisotropy), 4) tissue contact (Figure 4.1), and 5) characteristics of the recording catheter 

(electrode size, orientation relative to tissue, and interelectrode spacing). The notion that 

electrode size and interelectrode spacing characteristics impact bipolar signal morphology and 

spatial resolution is not a new concept. Schaefer et al. demonstrated the mathematical 

relationship between electrode distance from the recording source (i.e. tissue) and the 

implications of unipolar and bipolar electrogram characteristics in 1951.57 This initial work also 

introduced the concept that bipolar electrodes reduce far-field contamination, and this effect was 

maximized as interelectrode distance decreased. Durrer et al. validated this concept in 1957 in a 

canine left ventricle experimental model.58 

 

In more recent work, Stinnett-Donnelly et al. showed, using computational and in-vitro models, 

that electrode spatial resolution is impacted by electrode diameter, electrode length, 

interelectrode distance, and distance from the current source (tissue), and spatial resolution 

degrades with the increase of any of these four factors.59 The angle of incidence (orientation of 
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the catheter relative to the tissue) also has major implications that can impact the degree of 

signal cancellation and electrogram spatial resolution. Previous experimental studies have 

showed that electrograms in a nonparallel orientation (distal electrode in contact with tissue 

and proximal electrode not in contact) results in near simultaneous activation of the distal and 

proximal unipolar electrograms.60 This results in the bipolar summation that is subjected to 

significant cancellation, even in normal tissue (Figure 4.2). This is further complicated in the 

setting of tissue fibrosis due to non-uniform anisotropy and a significantly smaller degree of 

tissue mass being activated.  

 

Conventional mapping catheters with a distal electrode that is larger than 3.5mm, longer 

center-to-center interelectrode spacing, and predisposition to variable extremes in angle of 

incidence inherently limits the spatial resolution of bipolar electrograms. This chapter 

discusses the initial critical insight from clinical studies that were performed using high-

resolution mapping catheters and technologies. Chapter 4.2 compares the mapping resolution 

of standard and high-resolution mapping catheters in the right and left atria, and Chapter 4.3 

presents a case report of high-resolution reentrant VT activation mapping. The research 

investigations discussed in this Chapter were carried out in the clinical electrophysiology 

laboratories of the Beth Israel Deaconess Medical Center (BIDMC) - Harvard Medical School 

in Boston, Massachusetts. All of the patients provided written informed consent prior to the 

clinical electrophysiologic procedures in accordance with BIDMC institutional guidelines.   
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4.2      High Resolution Mapping of Atrial Scar and Arrhythmias 
Anter E, Tschabrunn CM, Josephson ME. High-resolution Mapping of Scar-related Atrial Arrhythmias Using 
Smaller Electrodes with Closer Interelectrode Spacing. Circ Arrhythm Electrophysiol. 2015 Jun;8(3):537-45. 

Atrial fibrillation (AF) ablation is an acceptable therapeutic option for patients with symptomatic 

AF refractory to medications.62,63 Pulmonary vein isolation is the cornerstone of the procedure 

and is associated with a reasonable clinical outcome in patients with paroxysmal AF.64 

However, in patients with persistent AF, pulmonary vein isolation is less effective and 

additional substrate ablation is frequently performed (linear ablation lines and/or complex 

fractioned electrogram ablation), but without evidence of any clinical benefit.65 66 This 

approach often results in the development of post-ablation, scar-related, organized atrial 

tachycardias (AT).67 The mechanism of these arrhythmias is usually re-entry involving pre-

existing and/or ablation related scar tissue. These circuits are typically challenging to map 

because of significant scar coupled with fractionated and multicomponent electrograms, 

limiting local time annotation. In addition, entrainment and post-pacing interval mapping 

techniques may be difficult to perform and interpret because of high output pacing and lack of 

capture in these areas of low voltage. 

The standard catheter for mapping these arrhythmias is a linear catheter with a 3.5-mm distal 

electrode separated by 2 mm from a proximal 2-mm electrode, resulting in a center-to-center 

interelectrode spacing of 4.75 mm. As such, each bipolar electrogram represents an 

underlying tissue diameter that ranges from 3.5 to 7.5 mm, depending on the angle of 

incidence (from perpendicular to parallel to the tissue, respectively). Catheters with 1-mm 

electrodes, 2-mm interelectrode spacing, and 3-mm center-to-center interelectrode spacing 

record electrograms from a significantly smaller underlying tissue diameter, ranging from 1 to 

4.0 mm (also dependent on catheter orientation relative to the surface). These catheters may 

have advantages for mapping scar-related arrhythmias, including (1) higher mapping 

resolution that can identify heterogeneity within the area of low voltage, localizing channels of 

surviving bundles; (2) smaller electrodes with closer interelectrode spacing are subjected to 

less signal averaging and cancellation effects, and may thus record higher bipolar voltage 

amplitude with shorter electrogram duration, allowing more accurate time annotation; and (3) 

pacing with capture at lower output because of increased electric density (Figure 4.3). 

The objectives of this study were to (1) establish normal voltage amplitude cutoffs in the atria 

for both 3.5-mm electrode tip catheters and 1-mm multielectrode-mapping catheters, and (2) 

compare their mapping resolution in scar-related organized AT. 
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Major Findings 

1. Bipolar voltage amplitude in healthy atria is similar between 3.5- and 1-mm electrode 

catheters with a fifth percentile of 0.48 and 0.52 mV, respectively 

2. Mapping resolution within areas of low voltage and scar is enhanced with 1-mm electrode 

catheters. 

3. Electrode size and interelectrode spacing were major determinants of mapping resolution 

within areas of low voltage and scar mapping using activation, and overdrive pacing 

techniques was more accurate using 1-mm electrode catheters. 

 

Study Limitations 
This single center study included a relatively small cohort of patients. Although mapping data 

with the linear catheter was confirmed by contact force measurement, such data were not 

available for maps made with the multielectrode-mapping catheter. However, although 

differences in tissue contact can affect bipolar voltage amplitude, this is unlikely to account for 

the differences between the catheters because 1) all of the maps that were performed with 

multielectrode-mapping catheters had similar volumes compared to maps that were made with 

linear catheters, and 2) points were only accepted if they were within 5mm of the original shell 

that was made with the linear catheter. The clinical impact of mapping with small electrode 

catheters on long-term clinical outcomes is outside of the scope of this study and remains 

unanswered.  

Linear Catheter Multielectrode Catheter

Figure 4.3: Linear and Multielectrode Catheter Left Atrial Bipolar Voltage Maps

Left atrial bipolar voltage maps (0.10-0.50mV) acquired with both the linear and
multielectrode catheters in a patient undergoing de novo pulmonary vein isolation with a
structurally normal heart. Adapted with permission: Anter E, Tschabrunn CM, Josephson ME.
Circ Arrhythm Electrophysiol. 2015 Jun;8(3):537-45.
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Clinical Implications 

This study established the normal bipolar voltage distributions in the right and left atria for both 

a linear catheter with 3.5-mm distal electrode and 1-mm multielectrode-mapping catheter. In 

addition, this study compared the mapping resolution in low voltage and scars with both 

catheters. Accurate detection and characterization of atrial scars with electroanatomic 

mapping is essential for catheter ablation of atrial arrhythmias. Limited data exists on the 

normal voltage distribution in the atria. Kapa et al. have defined the normal bipolar voltage 

distribution in the left atrium using a 3.5-mm Thermocool catheter. In ten patients with 

paroxysmal AF, the mean bipolar voltage amplitude was 1.44±1.27 mV, and 95% of all points 

demonstrated a bipolar voltage amplitude >0.45 mV.68 

 

In this study, the normal atrial electrogram characteristics of two commonly used catheters 

were established: a standard mapping/ablation catheter (Thermocool) and a multielectrode-

mapping catheter (Pentaray). This study demonstrated that 95% of all electrograms in the 

right and left atria had a bipolar voltage amplitude >0.48 mV. In addition, the distribution of 

electrogram duration was measured in healthy atria and 95% of all electrograms had a 

duration <58ms Although the resolution of mapping between the catheters was similar in 

healthy atrial tissue (Figure 4.3), they significantly diverged in low voltage and scar tissue 

(Figure 4.4).  

Linear Catheter Multielectrode Catheter

Figure 4.4: Linear and Multielectrode Catheter Left Atrial Bipolar Voltage Maps in Scar

Left atrial bipolar voltage maps (0.10-0.50mV) acquired with both the linear and

multielectrode catheters in a patient with prior left atrial ablation and scar. Bipolar voltage
map acquired with the mapping with the multielectrode catheter demonstrates smaller low-

voltage area. Adapted with permission: Anter E, Tschabrunn CM, Josephson ME. Circ
Arrhythm Electrophysiol. 2015 Jun;8(3):537-45.
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The resolution of electric mapping is influenced by multiple parameters, including electrode 

size, interelectrode spacing, angle of incidence (catheter orientation relative to the surface), 

the vector of wave propagation, and filtering. Their combined effect is associated with 

significant variations in the recorded bipolar voltage amplitude at any single recording point. 

While these changes may not be as clinically important in normal healthy tissue a bipolar 

voltage amplitude variation between 0.5 and 4.0 mV represents normal tissue; such variations 

in areas of low voltage and scars are significant and determine the feasibility to identify 

surviving myocardial channels and isthmuses that are often present in zones of low voltage.  

Further analysis demonstrated that mapping density alone is not responsible for the 

differences in mapping resolution within a scar and that smaller electrodes and closer 

interelectrode spacing are significant determinants of mapping resolution. Smaller electrodes 

have smaller electric fields of view and smaller antenna, and as such are subjected to less 

averaging and cancellation effects. A bipolar electrode pair with closer interelectrode spacing 

records signals from smaller tissue diameters and is therefore more sensitive to detect 

surviving myocardial fibers in zones of generally low voltage channels. It also has a more 

distinct electrogram with a shorter electrogram duration that allows more accurate annotation 

of activation time (Figure 4.5). Lastly, the pacing output threshold within the zone of low 

voltage and scar is lower with small electrode catheters, presumably because of the increased 

electric current density at the electrode-tissue interface. This technique can facilitate 

successful ablation of scar-related atrial tachycardia.		

Figure 4.5: Atrial Activation Mapping with Linear and Multielectrode Catheters

In a patient with macro-reentrant left atrial flutter, the linear catheter recorded low, far-field, signals with amplitude of
0.12 mV (red arrow). The multielectrode catheter recorded sharp, near-field, signals with bipolar amplitude range of
0.18–0.28 mV (blue arrow) that allowed superior annotation of local activation. Adapted with permission: Anter E,
Tschabrunn CM, Josephson ME. Circ Arrhythm Electrophysiol. 2015 Jun;8(3):537-45.

48



4.3 High Resolution Activation Mapping of Reentrant Ventricular Tachycardia 

 
Anter E, Li J, Tschabrunn CM, Nezafat R, Josephson ME. Mapping of a Post-Infarction Left Ventricular Aneurysm-
Dependent Macroreentrant Ventricular Tachycardia. HeartRhythm Case Rep. 2015 Nov 1;1(6):472-6. 
 

Activation mapping of ventricular tachycardia (VT) is rarely accomplished due to limited 

temporal and spatial resolution, unacceptably long mapping time, and hemodynamic 

instability. Entrainment mapping is a reasonable approach to identifying targets for ablation in 

patients with tolerated post-infarction reentrant VTs. However, it often does not allow 

delineation of the entire VT circuit. Introduction of newer mapping technologies that are 

capable of rapid and high-resolution electroanatomical mapping may allow detailed activation 

mapping of macroreentrant VTs, enhancing our understanding of a macroreentrant circuit’s 

geometry and electrophysiology to facilitate ablation.  

 

Case Report 

A 77-year-old man with a history of hypertension, hypercholesterolemia, diabetes, and multi-

vessel coronary artery disease with prior inferior MI was transferred to our institution for the 

management of recurrent monomorphic VT. Six-weeks earlier, he underwent coronary artery 

bypass graft surgery and a thin-walled large aneurysm at the base of the inferior wall was 

identified. The aneurysm contained thin fibrous, non-contractile material that was associated 

with dyskinetic wall motion abnormality, which was consistent with a contained ruptured wall 

from prior transmural MI, and a pericardial patch was placed during surgery. The patient 

recovered well from surgery with a left ventricular ejection fraction of 35-40% on transthoracic 

echocardiography one month later. Unfortunately, he began to develop frequent and recurrent 

episodes of sustained monomorphic VT that was refractory to pharmacologic therapy 

(amiodarone, quinidine, and mexiletine) and required external shocks due to hemodynamic 

compromise. The VT cycle length was 360msec and it had a left bundle branch block pattern 

with left superior axis, suggestive of a basal inferior wall exit (Figure 4.6). 

 

The high resolution RhythmiaTM mapping system with its proprietary OrionTM mini-basket 

catheter (Boston Scientific, Cambridge, MA) was used to perform high resolution activation 

mapping of the VT. Activation mapping is automated and is determined based on the 

combination of the bipolar and unipolar electrograms and timed at the maximal (-) dV/dt of the 

local unipolar electrogram. The mini-basket catheter was placed in the aneurysm and the 

clinical VT was induced with single extra stimuli from the right ventricle apex. Pacing from the 

RVA during VT showed ECG fusion, which is consistent with a reentrant mechanism. The 

entire reentrant circuit was mapped and it demonstrated a continuous loop around the base 
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of the aneurysm. During a mapping time of 7 minutes and 12 seconds, 4264 activation points 

were acquired.  

 

The area of slowest conduction velocity was at the junction between the base of the aneurysm 

and the mitral annulus. This area served as the protected common pathway of the tachycardia 

that propagated clockwise around the edge of the aneurysm. A fractionated mid-diastolic 

signal was recorded at this site. Entrainment from this site showed a concealed QRS fusion 

with a post-pacing interval that was identical to the tachycardia cycle length and with a stimulus 

to QRS interval of 182ms (50% of the tachycardia cycle length) that was the same as the EGM 

to QRS interval, which is consistent with a protected isthmus site (Figure 4.7). A single 

radiofrequency ablation application at this site slowed and terminated the tachycardia. The 

local electrogram at the termination site demonstrated atrial and ventricular signals that were 

consistent with a mitral annulus site. Following termination of the tachycardia, pacing medial 

to the ablation lesion resulted in clockwise propagation around the edge of the aneurysm with 

QRS morphology that is similar to the VT. Pacing lateral to the ablation lesion resulted in 

counterclockwise propagation around the edge of the aneurysm with QRS morphology 

opposite to the VT with a right inferior axis, which is consistent with a block across the isthmus 

line. Following ablation at the isthmus site, the VT was not inducible.   

 

Clinical Implications  

This case report demonstrates the feasibility of utilizing the Rhythmia mapping system to 

perform high resolution activation mapping of an entire reentrant VT circuit in a patient with 

inferior infarction and aneurysm. This demonstrated that the macroreentrant circuit circulated 

Figure 4.6: Cardiac Magnetic Resonance Imaging and 12-Lead Electrocardiogram of VT in Patient with Prior Myocardial Infarction

Cardiac magnetic resonance imaging with late gadolinium enhancement demonstrates infero-basal aneurysm and fibrosis. The patient developed
recurrent monomorphic ventricular tachycardia with a left bundle branch block morphology and superior axis suggestive of a left ventricle infero-basal
site of origin. Adapted with permission: Anter E, et al. HeartRhythm Case Rep. 2015 Nov 1;1(6):472-6.
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around the edge of the aneurysm with the area of slowest conduction velocity at the edge of 

the aneurysm adjacent to the mitral annulus. This was confirmed to be a central isthmus site 

and entrainment mapping ablation at that site resulted in slowing and termination of the VT 

with a single radiofrequency ablation application.  

 

Macroreentrant circuits around the edge of an LV aneurysm have been described with a 

wavefront propagation that can be clockwise or counterclockwise. However, a detailed 

activation map of such arrhythmias has been limited by inadequate spatiotemporal resolution. 

New mapping technologies utilizing catheters with small multi-electrodes in conjunction with 

automated annotation of local activation time allow rapid mapping of reentrant electrical 

circuits in unprecedented detail. This mapping technology may be particularly useful for 

mapping reentrant VTs and may facilitate rapid mapping of VTs that were previously 

considered “unmappable” because of hemodynamic instability or circuit complexity. It may 

also improve the current understanding of circuit geometry and physiology that can better 

guide targeted ablation strategy.  

 

4.4     Conclusions 

 

Multielectrode mapping catheters using smaller electrodes with closer interelectrode spacing 

offer several advantages for mapping scar-related atrial and ventricle substrate and 

arrhythmias, including: 1) higher mapping resolution that may identify heterogeneity within the 

area of low voltage during sinus rhythm mapping, allowing localizing “channels” of surviving 
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Adapted with permission: Anter E, et al. HeartRhythm Case Rep. 2015 Nov 1;1(6):472-6.

51



myocardial bundles; 2) smaller electrodes with closer interelectrode spacing are subjected to 

less signal averaging and cancellation effects, and may thus record electrograms with higher 

bipolar voltage amplitude and short electrogram duration, allowing more accurate local 

activation time annotation; and 3) pacing with capture at lower output due to increased 

electrical current density.  
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Chapter 5 

 

High Resolution Mapping of Ventricular Scar: Insight from 

Experimental Laboratory Investigations 

 
 

5.1      Introduction 

  

Attempts to use voltage amplitude alone to define barriers and recognize channels are 

inherently influenced by the catheter design and technology. Standard mapping catheters have 

several limitations for mapping scar-related VTs. These catheters have a 3.5mm distal tip 

electrode that is separated by 1mm from a proximal 2mm electrode, resulting in center-to-

center interelectrode spacing of 3.75mm. As such, each bipolar electrogram represents a 

recording from an underlying tissue diameter ranging from 3.5mm to 6.5mm, depending on 

the angle of the catheter (from perpendicular to parallel to the tissue, respectively). This 

mapping resolution may not be adequate to identify surviving myocardial bundles (including 

isthmuses) within the area of low voltage since there may be cancellation effects of bipolar 

electrograms recorded within these areas.69 In addition, electrograms recorded using these 

relatively large electrode catheters often record long, fractionated, and multicomponent 

signals because of the underlying pattern of activation. The presence of such fractioned 

electrograms limits accurate annotation of local activation time during activation mapping and 

interpretation of entrainment mapping.  

 

Multielectrode-mapping catheters have smaller electrodes and closer center-to-center 

interelectrode spacing in comparison to conventional linear mapping catheters. This results in 

increased mapping resolution as each point represents electrical activity of a smaller tissue size. 

This may allow for the identification of surviving myocardial bundles “channels” within an area of 

heterogeneous scarring, that may be “contaminated” by surrounding fibrosis with the large distal 

electrode of the linear catheter. In addition, mapping with multielectrode catheters also contains 

more electrogram points, and points acquired with increased variability in the angle of incidence 

and the relationship to the vector of propagation. They are therefore less subject to the individual 

confounding effects of bipolar voltage amplitude measurement.  

 

This chapter describes the evaluation of high resolution technologies in a human-like large animal 

model of a post-infarct scar. Chapter 5.2 describes the development and validation of the swine 

model that was used for this purpose, Chapter 5.3 compares the standard and multielectrode 

mapping catheters in conjunction with CMR imaging and histopathology, and Chapter 5.4 

introduces unpublished data from high-resolution VT activation mapping studies that were 
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performed using the same model. The research investigations discussed in this Chapter were 

carried out in the experimental electrophysiology laboratory of the Beth Israel Deaconess 

Medical Center (BIDMC) - Harvard Medical School in Boston, Massachusetts under an 

approved institutional animal care and use committee protocol. All of the procedures were 

performed in accordance with BIDMC institutional guidelines.  

 

5.2  Clinically Relevant Model of Post-Infarct Ventricular Scar and Reentrant VT 

Tschabrunn CM, Roujol S, Nezafat R, Faulkner-Jones B, Buxton AE, Josephson ME, Anter E. Swine Model of 
Infarct-related Reentrant Ventricular Tachycardia: Electroanatomic, Magnetic Resonance, and Histopathologic 
Characterization. Heart Rhythm. 2016 Jan;13(1):262-73. 
 

Large animal models have been utilized to study post-infarct arrhythmogenic substrate and 

VT for decades. The selected animal species, designated coronary artery, and myocardial 

ischemia induction method have significantly varied across investigations. These 

experimental characteristics are critical to determining whether or not arrhythmias occur and 

they define their inherent characteristics when they do. Arrhythmias may not occur without the 

presence of surviving myocardial fibers in the infarcted region, and their spatial arrangement 

is important for developing a milieu to support reentry.70 Despite significant advancements that 

have been made in this area, there is an ongoing need for human-like models of post-infarct 

reentrant VT. These models can assist in the development of improved methodologies to 

identify and differentiate an arrhythmogenic scar from a non-arrhythmogenic scar and to 

validate new diagnostic and therapeutic tools in the pre-clinical setting. The objective of this 

study was to develop and characterize a model of a healed myocardial infarction with human-

like subendocardial reentrant VT utilizing a consistent experimental approach.  

Figure 5.1: Vascular Ultrasound Guidance for Femoral Arterial and Venous Access

Vascular ultrasound was used to guide percutaneous femoral arterial and venous access
rather than performing a more traumatic surgical cut-down that is typically utilized in
experimental laboratories. This approach minimizes vascular complications and expedites
animal recovery following the myocardial infarction procedure.

54



Post-infarct Model Development and Technique 

This study implemented a number of specific techniques to maximize survivability. Animals 

were treated with amiodarone at a dose of 800 mg twice daily for 3-4 days before the infarction 

procedure to reduce the incidence of ventricular arrhythmias during the peri-infarct period. 

Percutaneous femoral arterial and venous access was guided by ultrasound (Siemens 

Acuson, Mountain View, CA) and obtained using a micropuncture needle (Cook Medical, 

Bloomington, IN) to minimize vascular trauma (Figure 5.1). After vascular access, 10,000 units 

of unfractionated heparin were administered intravenously with maintenance boluses (2000–

3000 units) as needed to maintain activated clotting time (ACT) of 250–350 seconds. 

Intravenous lidocaine (50–100 mg bolus, 1 mg/min continuous drip) and metoprolol (1mg) 

were administered to reduce the incidence of malignant ventricular arrhythmias. Under 

fluoroscopic guidance, a 6F Hockey stick guide catheter (Cordis Corporation, Fremont, CA) 

was positioned in the left main ostium. A 0.18-in, 180-cm Choice PT angioplasty wire (Boston 

Scientific, Marlborough, MA) was carefully advanced into the left anterior descending (LAD) 

coronary artery. A rapid-exchange 2..5x12 mm angioplasty balloon (Apex, Boston Scientific, 

Marlborough, MA) was placed over the angioplasty wire in the mid-LAD. Serial coronary 

angiography was performed to position the angioplasty balloon immediately distal to the 

second diagonal branch of the LAD. The angioplasty balloon was inflated and maintained at 

12–14 atm throughout the infarct procedure. After initial balloon inflation, repeat coronary 

angiography was performed to confirm adequate distal occlusion of the LAD. Uninterrupted 

coronary occlusion was maintained for 180 minutes, with confirmation of acute MI by ST-

segment elevation in the precordial ECG leads (Figure 5.2). 
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Figure 5.2: Induction of Experimental Myocardial Infarction

Anterior infarction induced with mid left anterior descending coronary artery balloon
occlusion (white arrow). 12-lead electrocardiogram demonstrates ST segment
elevations consistent with anterior infarction shortly after initiation of coronary
occlusion. Adapted with permission: Tschabrunn CM, et al. Heart Rhythm. 2016
Jan;13(1):262-73.
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Animals were recovered and survived for 6–8 weeks after the MI. Amiodarone at a dose of 

800 mg twice daily was continued for another 5–6 days after the infarct procedure up to a total 

dose of 14,400–16,000 mg to minimize post-procedure arrhythmias. Thirty-four of the 35 

animals (97%) survived the MI procedure. One animal developed refractory ventricular 

fibrillation 45 minutes after intracoronary balloon occlusion that persisted despite balloon 

deflation, defibrillation, and antiarrhythmic drug therapy. Thirty-one of the remaining animals 

(91%) completed the survival period of 47.7±2.4 days without complication. One animal 

developed a spontaneous episode of sustained monomorphic VT 6 days after the MI that 

resulted in congestive heart failure. This animal was successfully converted to sinus rhythm, 

but was subsequently euthanized because of cardiogenic shock. Two animals died suddenly 

38 and 45 days after the MI procedure without preceding signs and/or symptoms of heart 

failure. The study demographics and experiments are detailed in Table 5.1.  

 

 Major Findings 

1. mid-LAD balloon occlusion for 180-minutes results in the reproducible development of a 

humanlike post-infarct arrhythmogenic scar in the majority of cases and the developed 

technique and methods yields excellent animal survivability. 

Table 5.1: Experimental Results and Demographics (Total n=35)

Adapted with permission: Tschabrunn CM, et al. Heart Rhythm. 2016
Jan;13(1):262-73.
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2. This includes a transmural component of anterior/anteroseptal fibrosis with adjacent septal 

and lateral borders of preserved subendocardial tissue. These regions contribute to slow 

conduction and non-uniform anisotropy underlying reentrant VT. 

3. Reproducible and sustained monomorphic reentrant VT can be induced in all swine that 

develop this arrhythmogenic substrate after the post-infarct healing phase. Only in rare 

cases can VT not be induced, which is most likely a reflection of a more favorable 

ventricular remodeling process. 

4. Activation mapping during the VT is highly suggestive of a subendocardial VT circuit 

consistent with the aforementioned subendocardial substrate. 

 
 
Study Limitations 
Although these findings demonstrate similar LV remodeling and arrhythmia mechanisms to 

humans, these studies were performed six to eight weeks after infarction and may differ from 

humans with healed MI beyond this time period. The process of LV remodeling in humans and 

probably in swine continues far beyond this time point. Nonetheless, no significant differences 

were found in the anatomical or electrophysiological substrate between animals that were 

evaluated at the six-week time point and the eight-week time point. 

 

As the layer of surviving myocardial fibers in swine is in the subendocardium, signals were 
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Figure 5.3: Overdrive Pacing During VT from RV Demonstrates Progressive Fusion

Adapted with permission: Tschabrunn CM, et al. Heart Rhythm. 2016 Jan;13(1):262-73.
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only recorded from the endocardium. Continuous electrical activity was recorded that was 

consistent with a subendocardial reentrant circuit; however, e a midmyocardial or epicardial 

component of the circuit cannot be excluded. This requires simultaneous epicardial mapping 

or mapping using needle plunges. In addition, data on connexin-43 were not quantified, but 

limited analyses confirm the findings of previous, more detailed, investigations in this field. 

Arrhythmogenic Substrate and Reentrant Mechanism Characterization 

Arrhythmias occurring in hearts with healing and healed infarcts are, to a large extent, the 

result of reentrant excitation; however, delayed afterdepolarization–dependent triggered 

activity is another possible mechanism of arrhythmia that is documented in both human and 

experimental models of infarction.71 Sustained monomorphic VT was induced in all animals 

using programmed stimulation. The pattern of resetting response of the tachycardia to 

premature stimuli showed a mixed curve with a fairly short flat curve during long premature 

intervals and a longer increasing curve as the coupling interval was further decreased; this 

observation is consistent with a reentrant circuit. This observation suggests that the presence 

of a relatively small fully excitable gap, as reflected by a narrow window of the flat response 

curve (20–60ms), and a predominant partial excitable gap, as reflected by the increasing cycle 

length after the premature impulse (increasing curve). Overdrive pacing from the RV 

demonstrated entrainment with progressive fusion (Figure 5.3). In addition, activation mapping 

showed reentrant excitation with continuous diastolic electrical activity (Figure 5.4). These 
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Figure 5.4: Multielectrode Recordings from LV Endocardium During VT Demonstrates Reentrant Excitation

Adapted with permission: Tschabrunn CM, et al. Heart Rhythm. 2016 Jan;13(1):262-73.
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collective responses to stimulation during VT suggests that the sustained ventricular 

arrhythmias induced in this model were predominantly reentrant.   

 

Substrate assessment using CMR imaging (Figure 5.5), EAM, and histopathology in these 

swine showed a large infarct region with transmural anterior components and septal and 

lateral border zones with subendocardial and subepicardial preserved tissue. However, the 

subendocardial component was more heterogeneous with fibrosis and surviving fibers than 

the sub-epicardial layer. The geometrical arrangement of the surviving subendocardial 

myocardial bundles showed a greater extent of fiber disarray with loss of parallel orientation 

and redistribution of connexin-43 gap junctions in sampled regions, resulting in a greater 

degree of non-uniform anisotropy. Non-uniform anisotropic conduction was evident across the 

infarct region and marked by fractionated, split, and isolated late potentials during sinus 

rhythm. This is consistent with our subendocardial characterization of VT circuits and is 

demonstrated by continuous diastolic electrical activity during LV endocardial activation 

mapping. 

 

 

Comparison to Conventional Experimental Models 

A number of animal models have been developed to study the arrhythmogenic substrate and 

mechanisms that are associated with post-infarct VT. These assorted species and 

methodologies have translated into variable results, including infarct size, location, and the 

extent of surviving myocardial fibers. The anatomical features that develop following infarct 

C
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Figure 5.5: Post-Infarct Cardiac Magnetic Resonance Imaging

Cardiac magnetic resonance imaging with late gadolinium enhancement (LGE)

demonstrates variable LGE signal intensities were within the scar area including

regions of dark signal representative of survived myocardial tissue (red arrows).

These regions of viable tissue were predominantly preserved to the subendocardial

rather than subepicardial tissue. Regions of confluent LGE signal intensity

indicative of transmural scar were also observed (black arrows). Adapted with

permission: Tschabrunn CM, et al. Heart Rhythm. 2016 Jan;13(1):262-73.
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healing are critical for determining whether arrhythmias occur and defining their inherent 

characteristics when they do occur. Arrhythmias may not manifest without the presence of 

surviving myocardial fibers in the infarcted region, and their spatial arrangement is important 

for developing the electrophysiologic milieu that can support reentry. For example, canine 

coronary occlusion has been used for decades as a model to investigate scar and ventricular 

arrhythmias. Surviving myocardial fibers are located on the epicardial and endocardial 

surface, with reentrant VT circuits more frequently involving the epicardial surface in the 

canine MI model. As such, reentrant VT circuits often involve the epicardial surface in the 

canine MI model.72 In contrast, swine have a predominant endocardial/midmyocardial system 

and absent epicardial collateral system that is more favorable for a subendocardial reentrant 

VT model. 

 

The mid-LAD ischemia reperfusion technique that was used in this study was adapted and 

based on the extensive experience reported by Sasano et al., who characterized the swine 

LV remodeling process with serial transthoracic echocardiograms (TEEs) and also performed 

programmed extra stimulation each week to evaluate the VT induction rate.73 The authors 

reported a 100% monomorphic VT induction rate following 150-minute balloon occlusion after 

a four-week survival period. LV mapping with a 64-pole basket noncontact system showed the 

earliest activation at the subendocardial septal infarct border in the majority of VTs. Detailed 

endocardial and epicardial mapping was performed in six animals, but detailed voltage and 

VT circuit characteristics are not described, as this was not the primary objective of the 

authors. Histology from the septal “border zone” of this region demonstrated surviving strands 

of the myocardium surrounded by fibrotic tissue. 

 

Ashikaga et al. performed a similar technique of 150-minute LAD balloon occlusion with a 10 

to 12 week survival period, followed by CMR imaging and either endocardial (n=5) or 

epicardial (n=6) VT mapping.74 The authors also reported a complex CMR substrate with 

preserved surviving tissue with a corresponding subendocardial and subepicardial substrate. 

The authors hypothesized that the majority of mapped VTs were subendocardial in nature, but 

did not perform endocardial mapping in swine that underwent epicardial mapping. This study 

also did not report bipolar voltage mapping or histopathologic correlates to CMR data. Tung 

et al. performed obtuse–marginal balloon occlusion for 90 minutes in swine and evaluated the 

distribution of fibrosis after a 12-week survival period with complete LV endocardial and 

epicardial voltage mapping, ex vivo CMR imaging, and histopathologic correlates.75 While 

endocardial and epicardial abnormalities were present, VT induction was not performed. Our 

study also utilized an ischemia-reperfusion model in a large series of 35 swine. Unlike previous 

studies, we performed LAD balloon occlusion for 180 minutes, followed by a six to eight week 
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survival period including systematic assessment with CMR imaging, detailed 

electrophysiology study with high-resolution EAM, and histopathologic analysis. This 

multimodality characterization allowed the evaluation and confirmed the distribution, quality, 

and relevance of scarring in this preclinical setting. Reentrant monomorphic VT was 

reproducibly induced in 90% of animals. 

 

Comparison to Human Physiology 

The majority of sustained VTs in humans with healed MI originate in the subendocardial 

region, particularly in hearts with anteroseptal infarcts and ventricular aneurysms. The 

endocardial border zones of these infarcts contain bundles of ventricular muscle as well as 

Purkinje fibers. The surviving muscle bundles provide the necessary substrate for the 

formation of reentrant circuits due to the physical and electrical ventricular remodeling that 

occurs after an MI. The consequential non-uniform anisotropy properties create the necessary 

slow conduction that is required for reentry. Our swine model of healed infarct resembles the 

human pathophysiology with subendocardial arrhythmia origin and characteristics of non-

uniform anisotropic conduction, as suggested by fractionated EGMs. In addition, swine 

frequently developed anteroseptal aneurysm after an MI, which is a known and common 

phenomenon that also occurs in humans. 

 

5.3      High Resolution Mapping of Ventricular Scar  

Tschabrunn CM, Roujol S, Dorman NC, Nezafat R, Josephson ME, Anter E. High-Resolution Mapping of 
Ventricular Scar: Comparison Between Single and Multielectrode Catheters. Circ Arrhythm Electrophysiol. 2016 
Jun;9(6).  
 

Three-dimensional (3D) electroanatomic mapping systems have been developed to assist 

with mapping and ablation of cardiac arrhythmias. These systems have become an essential 

tool for mapping scar-related VT and they are frequently used to evaluate the underlying 

substrate of scar-related VTs. However, evaluation of the substrate using standard mapping 

techniques is mystified by assumptions and misconceptions. Specifically, bipolar voltage is a 

measure of conduction time between two electrodes rather than a measure of the underlying 

tissue (healthy vs. scar). It is influenced by multiple variables including electrode size, 

interelectrode spacing, angle of incidence (catheter orientation relative to the surface), the 

vector of wave propagation, and filtering. Their combined effect is associated with significant 

variations in the recorded bipolar voltage amplitude at any single recording point. Bipolar 

voltage that is recorded with standard catheters can differentiate dense scar (<0.1mV) from 

healthy myocardium (1.55mV). However, they have insufficient sensitivity to characterize the 

architecture of complex and heterogeneous scar tissue. 
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As discussed in Chapter 4, multielectrode-mapping catheters have smaller electrodes and 

closer interelectrode spacing (Figure 5.6). This results in increased mapping resolution, as 

each data point represents the electrical activity of a smaller tissue size. This may allow for 

the identification surviving myocardial bundle “channels” within an area of heterogeneous scar 

tissue. The aims of this study were to: 1) define normal voltage amplitude and electrogram 

duration in the ventricle for 1mm multielectrode-mapping catheters (Pentaray®); 2) compare 

its mapping resolution in a scar to a standard 3.5mm electrode tip catheter (Thermocool®); 

and 3) evaluate its utility for mapping post-infarction reentrant VTs in a swine model.  

 

Major Findings 

1. Bipolar voltage amplitude in the healthy ventricle is similar between linear and 

multielectrode catheters with a 5th percentile of ~1.5mV.  

2. Mapping resolution within areas of a low voltage and scar is enhanced with multielectrode 

catheters, identifying areas of preserved myocardial bundles (“channels”) that are 

otherwise considered dense scar by standard linear catheters (Figure 5.7).  

3. The increased mapping resolution of multielectrode catheters is primarily confined to 

tissue layers that are adjacent to the recording electrodes (endocardium and 

subendocardium). 

Distal 3.5mm
Interelectrode 1.0mm
Proximal 1.0mm

Center-Center 3.25mm

Distal 1.0mm
Interelectrode 2.0mm
Proximal 1.0mm

Center-Center 3.0mm

Linear Catheter

Multielectrode Catheter

P [IE]   D

Figure 5.6: Design Comparison of Linear and Multielectrode Catheters. Adapted with permission:
Tschabrunn CM, et al. Circ Arrhythm Electrophysiol. 2016 Jun;9(6).
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4. Multielectrode catheters are advantageous for mapping scar-related reentrant VT, as their 

small and closely-spaced electrodes permit identification of distinct diastolic activity 

(including diastolic pathways) that may not be seen with standard linear catheters.  

5. Multielectrode catheters allow pacing with the capture of low voltage tissue at a lower 

output than linear catheters.  

 

 

 

Correlation Between Mapping, CMR Imaging, and Histopathology 

All of the 11 swine with healed anterior myocardial infarction showed a large area of LGE at 

the anterior septum, which is consistent with anterior wall infarction. The distribution of the 

scar was complex with areas of transmural infarction along with areas of near transmural 

infarction, with either subendocardial or subepicardial (right ventricular) myocardial tissue 

preservation. The scar volume that was measured with CMR was significantly smaller than 

the corresponding EAM zone of bipolar voltage amplitude <1.5mV, as measured with both the 

linear and multielectrode catheters. In 4 out of 11 swine (37%), voltage maps that were made 

with linear and multielectrode catheters were similar. In these cases, the mean bipolar voltage 

amplitude within the low voltage area was similar between maps made with linear and 

multielectrode catheters. The seven swine that showed significant differences between maps 

made with linear and multielectrode mapping catheters were all characterized by a nearly 

transmural scar, with evidence of subendocardial myocardial tissue preservation.  

 

In contrast, the four swine with similar voltage maps, made with linear and multielectrode 

mapping catheters, showed either a transmural scar or a scar that was limited to the 

subepicardium. In these cases, the tissue in proximity to the recording catheter was 

homogeneous, with either healthy or scarred myocardium. These data supports the 
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myocardial bundle

3.5  1    1

1 2  1

MultielectrodeLinear

Figure 5.7: Schematic of Survived Myocardial Tissue Detection with Linear and Multielectrode
Catheters. Adapted with permission: Tschabrunn CM, et al. Circ Arrhythm Electrophysiol. 2016
Jun;9(6).
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hypothesis that small multielectrode mapping catheters have increased resolution to detect 

heterogeneity within low voltage tissue that is in close proximity to the recording electrodes 

(i.e., surviving subendocardial bundles in a post infarction scar).   

 

Histological analysis was consistent with the CMR analysis, showing complex scar 

architecture at the anterior-septum, with areas of transmural infarction along with areas of near 

transmural infarction, and with either subendocardial or subepicardial myocardial tissue 

preservation. Consistent with the CMR data, in the 7 out of 11 swine that showed significant 

differences between maps that were made with linear and multielectrode catheters, a thin 

layer of surviving myocardium bundles was identified in the subendocardium. In the four swine 

with similar maps between the catheters, the tissue layers in proximity to the recording 

catheter (endocardium) were homogeneous, showing either a thick layer of myocardium or 

collagen.   

 

 

Study Limitations 

This preclinical study was performed in swine and it utilized an established, human-like model 

of chronic anterior myocardial infarction. While bipolar voltage amplitude in healthy and scar 

tissue are similar between swine and human, this has not been validated for 1mm electrode 

catheters. However, limited experience in human with post-infarction VT is consistent with the 

findings of this study, showing improved mapping resolution with the ability to identify surviving 

Linear Multielectrode

Linear Catheter Map Mutlielectrode Catheter Map

Figure 5.8: Linear and Multielectrode Catheter Left Ventricle Bipolar Voltage
Maps

Left ventricle bipolar voltage maps (0.50-1.50mV) acquired with both the
linear and multielectrode catheters in normal swine. Adapted with permission:
Tschabrunn CM, et al. Circ Arrhythm Electrophysiol. 2016 Jun;9(6).
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myocardial bundles with multielectrode catheters. The increased resolution of multielectrode 

mapping catheters appears to be confined to the tissue layers that are adjacent to the 

recording catheter (endocardium and subendocardium). Though this may be beneficial for 

patients with healed myocardium infarction and subendocardial scar, its potential in other 

substrates, in particular patients with non-ischemic cardiomyopathy with midmyocardial and 

sub-epicardial scarring, is not clear. Lastly, the differences in unipolar voltage amplitude were 

not compared. While this may be an interesting measure, smaller electrodes have a smaller 

field of view and may therefore be less sensitive to measure the effects of remote tissue layers.  

 

Clinical Implications 

This study established the voltage distribution and electrogram characteristics of 

multielectrode mapping catheters (Pentaray®) in the ventricle of normal and post-infarction 

swine. In addition, it compared the mapping resolution between standard linear 

(Thermocool®) and multielectrode (Pentaray®) catheters within scar tissue during sinus 

rhythm and VT, using EAM, CMR, and histology.  

 

While multielectrode catheters increased mapping resolution, this had little value in normal 

healthy myocardium as bipolar voltage variation between 1.5 and 5mV represent normal 

myocardium (Figure 5.8). In contrast, such voltage variations in the infarct and peri-infarct 

zone determined the feasibility of identifying subendocardial surviving myocardial bundles that 

formed conduction channels during sinus rhythm and during VT (isthmuses). We found that 

the improved mapping resolution of multielectrode catheter was most significant in areas of 

heterogeneous scar distribution and in a close proximity recording catheter. In these areas, 

the small and closely-spaced multielectrodes are subject to fewer tissue averaging effects, 
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Figure 5.9: Linear and Multielectrode Catheter Left Ventricle Bipolar Voltage Maps in Post-Infarct Scar. Adapted with permission:
Tschabrunn CM, et al. Circ Arrhythm Electrophysiol. 2016 Jun;9(6).
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allowing the detection of surviving myocardial bundles within an area of heterogeneous scar 

(Figure 5.9). 

 

In eight of the ten induced VTs, the arrhythmia was stable enough to allow positioning of the 

multielectrode mapping catheter at “channels” of increased voltage amplitude, as detected by 

the multielectrode mapping catheter but not by the linear catheter. In all cases, the recording 

electrograms were triphasic and narrow, which is consistent with electrograms that are 

recorded during sinus rhythm. In addition, these electrograms occurred during diastole and 

showed a pattern of sequential activation that is consistent with propagation through the 

channel (Figure 5.10). In two hemodynamically tolerated VTs, entrainment from a channel 

detected with the multielectrode catheter but not with the linear catheter demonstrated an 

isthmus site. Ablation at this site resulted in rapid termination of the VT (Figure 5.11). 

Importantly, when the linear catheter was placed at these channels with diastolic activity, as 

recorded with the multielectrode catheter, low voltage, fractionated electrograms were 

Figure 5.10: Ventricular Activation Mapping with Linear and Multielectrode
Catheters

During reentrant monomorphic ventricular tachycardia, the linear catheter recorded
low, far-field, signals with amplitude of 0.08 mV. The multielectrode catheter
recorded sharp, near-field, signals with bipolar amplitude range of 0.62–1.42 mV
that allowed superior annotation of local activation. Adapted with permission:
Tschabrunn CM, et al. Circ Arrhythm Electrophysiol. 2016 Jun;9(6).
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recorded. In addition, consistent with our findings in the human atria, pacing output threshold 

within low voltage areas is lower with multielectrode catheters due to increased electrical 

“current” density at the electrode-tissue interface. This may be advantageous for pace and/or 

entrainment mapping.  

 

Berte and colleagues performed LV mapping with the 3.5mm electrode catheter (NavistarTM) and 

multielectrode-mapping catheter (PentaryTM) in both post-infarction sheep and patients with scar-

related VT.76 They also reported increased mapping density and higher prevalence of late 

abnormal ventricular activation (LAVA) using multielectrode mapping catheters. However, they 

reported increased bipolar low voltage areas with multielectrode catheters compared to linear 

3.5mm electrode catheters. This difference may be related to inadequate tissue contact when 

mapping with multielectrode catheters. Furthermore, they did not compare the low voltage area 

with CMR and/or histopathology, precluding objective assessment of the true scar. 

 

 

 

5.4 Initial Insight from High Resolution Activation Mapping of Reentrant VT 

 

Mapping reentrant VTs is a clinical challenge that is difficult to achieve. Activation and/or 

entrainment mapping can localize the circuit including its protected isthmus. However, this is 

often time-consuming and is limited to hemodynamically tolerated arrhythmias. As a result, 

ablation strategies are often limited to substrate mapping (low voltage, abnormal 

electrograms, and pace-mapping). One limitation of substrate-based mapping stems from the 

fact that lines of block, including the protected isthmus, may be partially functional with a 

relative paucity of abnormal electrograms during sinus rhythm. As such, activation mapping 

Mutlielectrode Catheter Map

Figure 5.11: Termination of Sustained VT within Region of Preserved Bipolar Voltage Identified with Multielectrode
Catheter Map.
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of VT remains a desired strategy as it can identify isthmuses that are formed by fixed or 

functional lines of conduction block.  

 

There has been increasing interest in developing technologies that allow detailed and rapid 

activation mapping of arrhythmias. This includes catheters with small and closely spaced 

multi-electrodes, accurate time annotation of multicomponent electrograms, and software 

allowing automated and rapid EGM acquisition. Activation mapping of monomorphic VT was 

performed in a prospective study that included 15 swine with chronic anterior wall infarction 

using the RhythmiaTM high-resolution mapping system to: 1) examine the feasibility of mapping 

post-infarction reentrant VTs, 2) examine the electrophysiological properties of the isthmus, 

and 3) correlate the relationship between isthmus' determined by activation and entrainment 

mapping. Activation mapping of all hemodynamically tolerated monomorphic VTs was 

attempted. Activation was determined based on the combination of the bipolar and unipolar 

electrograms and timed at the maximal (-)dV/dt of the local unipolar electrogram. Specifically, 

at sites with multiple and/or fractionated bipolar potentials, the activation time was determined 

by the maximal (–)dV/dt of the corresponding unipolar electrograms. Data acquisition during 

VT were automatic using the following EGM acceptance criteria: 1) 12-lead electrocardiogram 

morphology match, 2) TCL stability (±5ms), 3) time stability of a reference electrogram 

positioned at the RVA, 4) beat-to-beat electrocardiogram consistency (≥3 beat with similar 

electrogram morphology and timing), and 5) respiratory stability that allows data acquisitions 

at a constant respiratory phase.  

 

Mapping of a macroreentrant VT was considered complete when: 1) ≥ 90% of the TCL was 

mapped; 2) a channel of conduction “isthmus” was identified; and 3) mapping density at zones 

of slow conduction was adequate, limiting point interpolation between points to ≤3mm. The 

mechanism of the tachycardia was defined as macroreentry or focal (or microreentry) on the 

basis of the activation map. Macroreentrant circuits had a well-defined entrance site (inward 

curvature), common pathway (isthmus), and separate exit site (outward curvature). The 

entrance was defined as the site at which the orthodromic wavefront enters the common 

pathway (inward curvature), while the exit was defined as the site at which the orthodromic 

wavefront exits the common pathway (outward curvature). Focal tachycardia had a point 

source with centrifugal activation from this center. Fractionated signals during VT were defined 

as those with ≥5 deflections crossing the isoelectric baseline. Split potentials were defined as 

those with ≥2 separate deflections that are separated by an isoelectric interval ≥30ms. Split 

potentials could have occurred during the QRS or after the QRS (i.e., late potentials). 
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Following completion of the activation map, overdrive pacing was performed at selected sites 

of macroreentrant circuits, as determined by activation mapping. These sites included some 

or all of the following: 1) inward curvature “entrance”, 2) isthmus “common channel”, 3) 

outward curvature “exit”, and 4) remote RV and LV sites. The number of pacing sites during 

VT was dependent on the hemodynamic tolerance of the arrhythmia. Pacing was performed 

from the mini-basket electrodes at a cycle length 10-25ms faster than the TCL. A pacing site 

demonstrating concealed fusion, PPI-TCL ≤ 30ms, and S-QRS ≤70% TCL was considered 

within the reentrant circuit.   

 

Dimensions of the isthmus (common channel) were calculated separately from the activation 

and entrainment maps. From the activation map, the length of the isthmus was measured as 

the shortest distance between the proximal curvature “entrance” to the distal curvature “exit” 

of the common channel, while its width was measured from one apparent non-conductive 

lateral barrier to the opposing parallel non-conductive barrier. Dimensions of the common 

channel using entrainment were based on the zone that includes sites with concealed QRS 

fusion, PPI-TCL≤ 30ms, and S-QRS of 0-70% of the TCL. Assessment of conduction velocity 

in the reentrant circuit was calculated using the “single vector method” from the high-density 

endocardial mapping. In brief, recording sites were selected on a line that was longitudinal 

and perpendicular to the isochronal lines. The longitudinal and transverse conduction 

velocities were calculated from the difference in timing and the known distance between the 

recording points. Conduction velocity was then calculated for the mean vector of propagation.      

   

Major Findings 

1. This study demonstrates the feasibility to map reentrant VTs using RhythmiaTM high-

resolution mapping technology. It allows detailed activation mapping of the reentrant circuit, 

including its protected isthmus.  

2. The zone(s) of slow conduction within the reentrant circuit are the inward (entrance) and 

outward (exit) curvatures, while conduction velocity in the common channel is nearly normal. 

3. The common channel is protected by laterally opposing lines of functional block. These allow 

a transverse conduction that is sufficiently slow to protect the common channel, allowing 

parallel propagation of the orthodromic wavefront.  

4. Conduction velocities within the reentrant circuit are dynamic and are influenced by the vector 

of wavefront propagation, such that the zone of slow conduction is not geometrically fixed, 

but influenced by properties of anisotropic conduction.  

5. Entrainment mapping overestimates the dimensions of the isthmus. Specifically, exit sites 

based on entrainment criteria may be well past the true exit as determined by activation. 
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Study Limitations 

This study was performed in swine and it utilized an established human-like model of 

subendocardial infarction and VT. However, it requires further validation in humans, particularly 

in patients with non-anterior wall infarction. Nonetheless, our initial clinical experience thus far 

has been consistent with these findings, particularly in patients with chronic anterior wall 

infarction. Conduction velocities were calculated using the “single vector” method with the 

assumption that the tissue is homogeneously anisotropic and two-dimensional (full thickness 

activation times were not measured). While this may skew the velocity measurements, since the 

VT substrate in this model is subendocardial, the two-dimensional endocardial results may still 

allow good representation of the overall conduction velocities within the tissue. Accurate velocity 

measurements will require mapping with full thickness plunge electrodes.  

 

Clinical Implications  

Activation maps of post-infarction reentrant VTs demonstrated distinct electrophysiological 

elements of reentry, including: 1) entrance of the orthodromic wavefront into a protected channel; 

2) protected channel “isthmus” bounded by two laterally opposing line (functional) blocks, 

allowing orthogonal conduction of the orthodromic wavefront in the isthmus; 3) exit of the 

orthodromic wavefront into the remainder of the ventricle; 4) outer loops(s) consisting of a 

wavefront propagating along the outer margin of the isthmus; 5) remote ventricular sites that are 

not part of the reentrant circuit.   

A

B

C

D D

Figure 5.12: High Resolution Activation Map of Reentrant Ventricular Tachycardia

Entire reentrant circuit defined with high resolution activation map acquired in less than 9
minutes with a total of 8430 annotated mapping electrograms. A: Entrance; B: Mid Isthmus; C:
Exit; D: Remote.
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In this model of chronic anterior wall infarction, the predominant circuit configuration was a 

double loop (figure-of-eight) reentry, as originally described by El Sherif.77 The axis of the 

isthmus was uniformly parallel to the long axis of the ventricle and bounded by two parallel 

lines of block (Figure 5.12). This observation is consistent with post-infarction VT in the canine 

model. Wit and colleagues mapped the epicardium of subacute canine LAD infarcts, using an 

array of 192 bipolar electrodes during sustained VT.78 They found that lines of block during 

tachycardia were similarly oriented parallel to the long axis of the LV, from base to apex. This 

appears to be consistent with the human phenotype of patients with LAD infarction mapped 

with high-resolution mapping technologies (unpublished data). However, this may not be the 

case for all infarct-related VT, particularly in patients with chronic infarction and ventricular 

aneurysms.  

 

Furthermore, standard entrainment criteria overestimate the true size of the isthmus, particularly 

at its exit site, such that concealed QRS fusion combined with PPI-TCL ≤ 30ms can occur beyond 

the distal curvature. We termed these sites “pseudo-exit” sites to distinguish them from true exit 

sites at the distal curvature. Pacing at pseudo-exit sites resulted in concealed QRS fusion, which 

was likely due to similar orthodromic activation wavefront with concealed antidromic fusion. This 

may be particularly true in double loop reentry, as pacing distal to an exit site results in a point 

source activation pattern with propagation in multiple directions. However, in contrast to true exit 

sites, pacing from pseudo-exit sites resulted in a longer PPI. The authors speculate that this may 

be due to increased curvature gradient (resistance) and activation of partially depolarized tissue, 

resulting in slower conduction velocity. However, this requires additional investigation into 

resetting curves at different zones of the circuits. Nonetheless, from a clinical standpoint, this 

may explain why ablation at exit sites determined by entrainment can fail to terminate the VT and 

often results in a change of the tachycardia or the inducibility of multiple similar morphologies 

with minor variations in the exit site. High resolution activation mapping may better guide 

ablation therapy for this reason.  

 

5.5 Conclusions 

Catheter ablation of scar-related ventricular tachycardia (VT) has evolved in recent years. 

However, clinical outcomes remain suboptimal. A major limitation is an insufficient 

understanding of scar-related reentrant VT circuit physiology. These studies utilized high-

resolution mapping technology to study post-infarction scars and the electrophysiological 

properties of post-infarction reentrant VT. Consistent with initial and early clinical experiences, 

multielectrode catheter mapping using smaller electrodes with closer interelectrode space 

improves mapping resolution in areas of scarring. Regions of “normal” bipolar voltage that 
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were identified with high resolution catheters are consistent with preserved subendocardial 

tissue on CMR and histopathology. High-resolution activation mapping of reentrant VT circuits 

is of particular interest, and initial unpublished investigations may increase the current 

understanding of circuit physiology and allow better correlation between circuit and substrate.  
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Chapter 6 

 

Conclusions 

 
 

Adverse structural and electrical remodeling following myocardial infarction or during variable 

processes of different non-ischemic cardiomyopathies can promote the manifestation of 

reentrant monomorphic ventricular tachycardia. Intracardiac mapping can be used to detect 

and characterize regions of abnormal ventricular substrate critical to the reentrant VT circuit. 

The work that is discussed in this thesis demonstrates the clinical utility, while recognizing the 

limitations, of electroanatomic mapping to identify and target these regions of interest in 

patients with scar-related VT in the setting of variable disease substrates.  

 

While the manifestation of fibrosis remains an inherent part of the adverse remodeling 

process, there are multiple other factors that also contribute to the development of reentrant 

VT. In fact, bipolar voltage amplitude alone is the least specific variable to consider, as it is 

influenced by many factors as discussed in Chapter 4 and Chapter 5. For this reason, voltage 

alone should not be a primary measure to define barrier formation or slow conduction. A 

characterization of the electrophysiologic features of tissue regions that are “destined” to form 

barriers is needed. The studies that are discussed in this thesis and the development of 

variable mapping technologies demonstrate a broader critical misconception in the field of 

cardiac electrophysiology: clinicians and investigators often discount the fundamental 

difference between fibrosis/scar and voltage amplitude. These concepts should not be used 

interchangeably and voltage amplitude is not a direct measure of myocardial tissue fibrosis 

quantification. While voltage mapping can provide some idea of the presence of scars that are 

adjacent to the tissue layer mapped with contact, the “gold standard” continues to be 

histopathologic analysis.  

 

Understanding of the underlying substrate can be enhanced using small electrode catheters 

with closer interelectrode distance, a standard wave of activation such as during right 

ventricular pacing, and with adequate tissue contact force. It is hoped that careful study 

designs using new, higher-resolution mapping systems, will better identify areas that might 

form conduction barriers. Moreover, these technologies may also allow rapid mapping VTs to 

better correlate substrate and function and ultimately improve outcomes.  
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Isolated septal substrate for ventricular tachycardia in
nonischemic dilated cardiomyopathy: Incidence,
characterization, and implications

Haris M. Haqqani, MBBS, PhD, Cory M. Tschabrunn, CEPS, Wendy S. Tzou, MD, Sanjay Dixit, MD, FHRS,
Joshua M. Cooper, MD, Michael P. Riley, MD, PhD, David Lin, MD, Mathew D. Hutchinson, MD, FHRS,
Fermin C. Garcia, MD, Rupa Bala, MD, Ralph J. Verdino, MD, David J. Callans, MD, FHRS,
Edward P. Gerstenfeld, MD, Erica S. Zado, PA-C, FHRS, Francis E. Marchlinski, MD, FHRS

From the Section of Cardiac Electrophysiology, Cardiovascular Division, Hospital of the University of Pennsylvania,
Philadelphia, Pennsylvania.

BACKGROUND The substrate for ventricular tachycardia (VT) in
nonischemic cardiomyopathy (NICM) has a predilection for the
basolateral left ventricle with right bundle branch block VT mor-
phology.

OBJECTIVE The purpose of this study was to describe a unique
group of NICM patients with septal VT substrate.

METHODS Between 1999 and 2010, 31 (11.6%) of 266 patients
with NICM undergoing VT ablation had septal substrate and no
lateral involvement. Mean age was 59 � 12 years, and ejection
fraction was 30% � 14%. Eight patients had heart block.

RESULTS Cardiac magnetic resonance showed septal delayed en-
hancement in 8 of 9 patients. Electroanatomic mapping demon-
strated bipolar low voltage (�1.5 mV) extending from the basal
septum in 22 of 31 patients. The remaining 9 patients had normal
endocardial bipolar voltage but abnormal unipolar septal voltage
(�8.3 mV) consistent with intramural abnormalities. Epicardial
mapping in 14 patients showed no scar in 9 and patchy basal left
ventricular summit scar in 5. VTs were mapped to the septal
substrate, with 62% having right bundle branch block morphology
and V2 precordial transition pattern break in 17% suggesting
periseptal exit. After substrate and targeted VT ablation, no VT was

inducible in 66% and no “clinical targeted” VT in 86%. Over a
mean follow-up of 20 � 28 months, VT recurred in 10 (32%)
patients.

CONCLUSION Isolated septal VT substrate is uncommon in NICM.
Biventricular low-voltage zones extending from the basal septum
are characteristic, but septal scarring can be entirely intramural as
evidenced by unipolar/bipolar electrograms and imaging. Multiple
unmappable morphologies are the rule, often requiring several
procedures aggressively targeting the septal substrate to achieve
moderate long-term VT control.

KEYWORDS Cardiomyopathy; Catheter ablation; Electroanatomic
mapping; Heart failure; Ventricular tachycardia

ABBREVIATIONS CMR � cardiac magnetic resonance; DGE � de-
layed gadolinium enhancement; EAM � electroanatomic mapping;
ICD � implantable cardioverter-defibrillator; ICE � intracardiac
echocardiography; LBBB � left bundle branch block; LV � left ven-
tricle; NICM � nonischemic cardiomyopathy; RBBB � right bundle
branch block; RV � right ventricle; VT � ventricular tachycardia

(Heart Rhythm 2011;8:1169–1176) © 2011 Heart Rhythm Society. All
rights reserved.

Introduction
Monomorphic ventricular tachycardia (VT) in the context of
nonischemic cardiomyopathy (NICM) can present significant
management challenges, and catheter ablation has emerged as

an important therapy.1–4 Unmappable VT accounts for the
majority of VT morphologies induced at these procedures,5

and the development of substrate-based ablation strategies has
allowed for the targeting and ablation of these arrhythmias
during sinus rhythm.1 We previously showed that the substrate
for VT in NICM characteristically affects the basal periannular
region of the left ventricle (LV), on both the endocardium and
epicardium.6–8 Although the majority of these patients appear
to have isolated basolateral substrate or both basolateral and
basal septal involvement,7 this is not invariable. The purpose of
this study was to characterize the electrophysiologic and elec-
troanatomic characteristics of NICM patients with isolated
septal substrate for VT.

Dr. Haqqani is the recipient of an Overseas Training Fellowship
(544309) from the National Health and Medical Research Council of
Australia and the Bayer Fellowship from the Royal Australasian College of
Physicians. Dr. Marchlinski has received honoraria and research funding
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and correspondence: Dr. Francis E. Marchlinski, Cardiovascular Division,
Hospital of the University of Pennsylvania, 3400 Spruce Street, Founders 9,
Philadelphia, Pennsylvania 19104. E-mail address: francis.marchlinski@
uphs.upenn.edu. (Received January 4, 2011; accepted March, 2, 2011.)
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Apical ventricular tachycardia morphology in left ventricular
nonischemic cardiomyopathy predicts poor transplant-free
survival

David S. Frankel, MD, Cory M. Tschabrunn, CEPS, Joshua M. Cooper, MD, Sanjay Dixit, MD, FHRS,
Edward P. Gerstenfeld, MD, FHRS, Michael P. Riley, MD, PhD, David J. Callans, MD, FHRS,
Francis E. Marchlinski, MD, FHRS

From the Electrophysiology Section, Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia,
Pennsylvania.

BACKGROUND The scar of patients with left ventricular (LV)
nonischemic cardiomyopathy (NICM) and ventricular tachycardia
(VT) typically originates at or near the mitral annulus and extends a
variable distance toward the apex.

OBJECTIVE To determine whether electrocardiograms of VT with LV
apical exit sites would identify patients with larger scars extending
a greater distance from the base toward the apex and decreased
heart transplant/left ventricular assist device (LVAD)-free survival.

METHODS Consecutive patients with LV NICM undergoing VT
ablation between May 2008 and April 2011 were studied. All
electrocardiograms of spontaneous and induced VT were analyzed.
Apical VT was defined as left bundle branch morphology with
precordial transition ZV5 or right bundle branch morphology with
precordial transition rV3. Scar percentage was defined as the area
of low voltage divided by the total surface area.

RESULTS Thirty-two of 76 patients had 1 or more apical VTs. Those
with apical VTs had larger percentage of endocardial and epicardial
bipolar scars (14.9% vs 8.1%, P ¼ .01, and 15.5% vs 5.5%,
P ¼ .03, respectively), scar that, although originating from the

periannular region (94.7% of the patients), was more likely to
extend apically beyond the basal half (48.3% vs 24.4%, P ¼ .05
endocardial, and 85.7% vs 25.9%, P ¼ .07 epicardial), and worse
transplant/LVAD-free survival during a mean follow-up of 332 days
(P ¼ .006).

CONCLUSIONS Patients with NICM and apical VTs have larger
voltage abnormality extending as contiguous or patchy “scar” from
the base further toward the apex and worse transplant/LVAD-free
survival. Particular attention should be paid to optimal heart failure
management in these patients, with more guarded prognosis.

KEYWORDS Nonischemic cardiomyopathy; Ventricular tachycardia;
Electroanatomic mapping; Heart failure; Left ventricular assist
device; Transplant-free survival

ABBREVIATIONS ECG¼ electrocardiogram; LVAD¼ left ventricular
assist device; LVEF ¼ left ventricular ejection fraction; NICM ¼
nonischemic cardiomyopathy; VT ¼ ventricular tachycardia

(Heart Rhythm 2013;10:621–626) I 2013 Heart Rhythm Society.
All rights reserved.

Introduction
The area of low-voltage, abnormal bipolar electrograms
consistent with “scar” in patients with left ventricular non-
ischemic cardiomyopathy (NICM) and ventricular tachy-
cardia (VT) typically originates at or near the mitral annular
region and extends a variable distance toward the apex.1

While patients with VT and NICM as a whole have better
survival than those with VT and ischemic cardiomyopathy,2

there remains substantial variability in survival among those
with NICM. We hypothesized that patients with NICM and

VT morphologies suggesting an apical left ventricular exit
site would have larger scars extending a greater distance
from the base toward the apex and, consequently, worse
transplant- and left ventricular assist device (LVAD)-free
survival following ablation.

Methods
Study population
We studied consecutive patients with left ventricular NICM
and sustained VT, who were referred to the Hospital of the
University of Pennsylvania for ablation between May 2008
and April 2011. Patients with idiopathic VT, right ventricular
cardiomyopathy, or ischemic cardiomyopathy, as defined by
history of myocardial infarction or obstructive coronary
artery disease on angiography, were excluded. Patients
undergoing multiple ablation procedures during this time

This study was supported in part by the F. Harlan Batrus Research Fund
and the Susan and Murray Bloom Fund. Address reprint requests and
correspondence: Dr David S. Frankel, Electrophysiology Section, Cardi-
ovascular Division, Hospital of the University of Pennsylvania, 9 Founders
Pavilion, 3400 Spruce St, Philadelphia, PA 19104. E-mail address:
david.frankel@uphs.upenn.edu.
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Assessing Epicardial Substrate Using Intracardiac
Echocardiography During VT Ablation

Rupa Bala, MD; Jian-Fang Ren, MD; Mathew D. Hutchinson, MD; Benoit Desjardins, MD;
Cory Tschabrunn, CEPS; Edward P. Gerstenfeld, MD; Rajat Deo, MD; Sanjay Dixit, MD;

Fermin C. Garcia, MD; Joshua Cooper, MD; David Lin, MD; Michael P. Riley, MD;
Wendy S. Tzou, MD; Ralph Verdino, MD; Andrew E. Epstein, MD;

David J. Callans, MD; Francis E. Marchlinski, MD

Background—Intracardiac echocardiography (ICE) has played a limited role in defining the substrate for ventricular
tachycardia (VT). The purpose of this study was to assess whether ICE could identify abnormal epicardial substrate in
patients with nonischemic cardiomyopathy (NICM) and VT.

Methods and Results—We studied 18 patients with NICM and recurrent VT who had abnormal echogenicity identified
on ICE imaging. Detailed left ventricular (LV) endocardial and epicardial electroanatomic mapping was performed
in all patients. Low-voltage areas (�1.0 mV) in the epicardium were analyzed. ICE imaging in the NICM group
was compared to a control group of 30 patients with structurally normal hearts who underwent ICE imaging for
other ablation procedures. In 18 patients (age, 53�13 years; 17 men) with NICM (ejection fraction, 37�13%),
increased echogenicity was identified in the lateral LV by ICE imaging. LV endocardial electroanatomic mapping
identified normal voltage in 9 patients and at least 1 confluent low-voltage area (6.6 cm2; minimum-maximum,
2.1–31.7 cm2) in 9 patients (5 posterolateral LV, 4 perivalvular LV). Detailed epicardial mapping revealed areas
of low voltage (39 cm2; minimum-maximum, 18.5–96.3 cm2) and abnormal, fractionated electrograms in all 18
patients (15 posterolateral LV, 3 lateral LV). In all patients, the epicardial scar identified by electroanatomic
mapping correlated with the echogenic area identified on ICE imaging. ICE imaging identified no areas of
increased echogenicity in the control group.

Conclusions—ICE imaging identified increased echogenicity in the lateral wall of the LV that correlated to abnormal
epicardial substrate. These findings suggest that ICE imaging may be useful to identify epicardial substrate in
NICM. (Circ Arrhythm Electrophysiol. 2011;4:667-673.)

Key Words: catheter ablation � imaging � echocardiography � tachycardia ventricular � epicardial mapping

Intracardiac echocardiography (ICE) is routinely used
during catheter ablation for atrial fibrillation to facilitate

transseptal catheterization, assess cardiac anatomy, moni-
tor pulmonary vein flows, provide real-time imaging of
catheter tip position and lesion formation, and monitor for
complications. Despite its widespread use in ablation for
atrial fibrillation, ICE imaging has not been routinely used
during catheter ablation for ventricular tachycardia (VT).1

Several studies have highlighted the use of ICE in VT
ablation to guide catheter placement on specific anatomic
targets, such as the papillary muscles; to facilitate mapping
and ablation of aortic cusp VT; and to monitor lesion
development.1– 4 There is limited information on the ability
of ICE to assess for abnormal substrate during VT
ablation.5–7

Clinical Perspective on p 673
We present a unique series of patients with nonischemic

cardiomyopathy (NICM) and recurrent VT in whom ICE
imaging identified abnormal echogenicity in the lateral wall
of the left ventricle (LV). We characterized this substrate by
detailed endocardial and epicardial mapping; analysis of
electrograms in low-voltage areas; and correlation with other
imaging modalities, including MRI and CT angiography.

Methods
Study Population
The study population comprised 18 patients with NICM and recur-
rent VT who underwent radiofrequency ablation at our institution.
These 18 patients had increased echogenicity in the lateral wall of the
LV as identified by ICE imaging. We compared the ICE imaging in

Received March 15, 2011; accepted August 5, 2011.
From the Electrophysiology Section, Cardiovascular Division, Department of Medicine, University of Pennsylvania School of Medicine,

Philadelphia, PA.
Correspondence to Rupa Bala, MD, Department of Cardiology, Division of Electrophysiology, Hospital of the University of Pennsylvania, 3400 Spruce

St, 9 Founders Pavilion, Philadelphia, PA 19104. E-mail balar@uphs.upenn.edu
© 2011 American Heart Association, Inc.

Circ Arrhythm Electrophysiol is available at http://circep.ahajournals.org DOI: 10.1161/CIRCEP.111.963553

98



 

The full text of this article has been 

removed for copyright reasons 
 



Appendix C 

Chapter 3 Full Text Manuscripts 
Chapter 3 – Electrophysiologic Substrate in Patients with Arrhythmogenic Right Ventricular 
Cardiomyopathy and Ventricular Tachycardia 

Haqqani HM, Tschabrunn CM, Betensky BP, Lavi N, Tzou WS, Zado ES, Marchlinski FE. 
Layered Activation of Epicardial Scar in Arrhythmogenic Right Ventricular Dysplasia: Possible 
Substrate for Confined Epicardial Circuits.  Circ Arrhythm Electrophysiol. 2012 Aug 1;5(4):796-
803. 

Santangeli P, Zado ES, Supple G, Haqqani HM, Garcia FC, Tschabrunn CM, Callans DJ, Lin 
D, Dixit S, Hutchinson MD, Riley M, Marchlinski FE. Long-term Outcome with Catheter 
Ablation of Ventricular Tachycardia in Patients with Arrhythmogenic Right Ventricular 
Cardiomyopathy. Circ Arrhythm Electrophysiol. 2015 Dec 8;89(6):1413-21.  

Tschabrunn CM, Haqqani HM, Zado ES, Marchlinski FE.  Repeat Percutaneous Epicardial 
Mapping and Ablation of Ventricular Tachycardia: Safety and Outcome. J Cardiovasc 
Electrophysiol. 2012 Jul;23(7): 744-9. 

Tschabrunn CM, Haqqani HH, Cooper JM, Dixit S, Garcia FC, Gerstenfeld EP, Callans DJ, 
Zado ES, Marchlinski FE. Percutaneous Epicardial Ventricular Tachycardia Ablation After 
Non-Coronary Cardiac Surgery or Pericarditis. Heart Rhythm. 2013 Feb;10(2):165-9. 

105



Arrhythmogenic right ventricular dysplasia (ARVD) is a 
genetically determined cardiomyopathy characterized by 

cardiomyocyte loss with replacement of the myocardium by 
fibrofatty tissue.1 The altered myocardial architecture resulting 
from this process causes delayed and disordered electric propa-
gation and predisposes to the development of reentrant ven-
tricular tachycardia (VT). Although the left ventricle (LV) can 
be involved,2 the disease process predominantly affects the right 
ventricle (RV), and both pathological and electroanatomic stud-
ies show a disproportionate burden of disease on the epicardium 
compared with the endocardium.3,4 This is likely to have impli-
cations on the nature and location of the reentrant VT circuits 
seen in ARVD. In particular, confluent epicardial or intramu-
ral scarring may prevent transmural endocardial-to-epicardial 
activation during VT, precluding endocardial involvement, and 
establish the potential for all or major components of VT circuits 
to be confined entirely to the epicardium. We postulated that the 
compartmentalized activation of the epicardium induced by 

such confluent scarring would also alter the sinus rhythm right 
ventricular endocardial-to-epicardial activation sequence.

The purpose of this study was to define the pattern of activa-
tion of the RV endocardium and epicardium in patients with-
out structural heart disease and to compare this with patients 
with anticipated extensive RV scarring caused by ARVD.

Clinical Perspective on p 803

Methods
The study population (group 1) consisted of 18 consecutive patients 
with ARVD (13 men; mean age, 43±15 years) who had detailed en-
docardial and epicardial electroanatomic mapping (EAM) performed. 
Patients were studied between 2007 and 2010 and met the Revised Task 
Force Criteria for ARVD as listed in Table 1. They had recurrent VT and 
multiple implantable cardioverter-defibrillator (ICD) therapies, despite 
antiarrhythmic drugs, and were undergoing catheter ablation. Thirteen  
of the 18 patients (72%) had undergone a prior ablation procedure. 
Patients had recurrent monomorphic VT documented either by 12-lead  
electrocardiograph or by stored ICD electrograms. The reference group 

© 2012 American Heart Association, Inc.
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Background—Ventricular tachycardia ablation in arrhythmogenic right ventricular dysplasia (ARVD) is more successful 
when including epicardial ablation. Scarring may cause independent, layered epicardial activation and promote 
epicardially confined ventricular tachycardia circuits. We aimed to characterize transmural right ventricular activation in 
ARVD patients and to compare this with reference patients without structural heart disease.

Methods and Results—Eighteen ARVD patients underwent detailed endocardial and epicardial sinus rhythm electroanatomic 
mapping. Bipolar activation was annotated at the sharpest intrinsic deflection including late potentials and compared with 
6 patients with normal hearts. Total scar area was larger on the epicardium (97±78 cm2) than the endocardium (57±44 
cm2; P=0.04), with significantly more isolated potentials. Total epicardial activation time was longer than endocardial 
(172±54 versus 99±27 ms; P<0.01), and both were longer than in reference patients. Earliest endocardial site was the 
right ventricular anteroseptum in 17 of 18 ARVD patients versus 5 of 6 controls (P=0.446), and latest endocardial site was 
in the outflow tract in 13 of 18 ARVD patients versus 4 of 6 controls and tricuspid annulus in 5 of 18 ARVD patients versus 2 
of 6 controls (P=1.00). In reference patients, epicardial activation directly opposite endocardial sites occurred in 5.2±1.9 ms, 
suggesting direct transmural activation. In contrast, ARVD patients had major activation delay to the epicardium with 
laminar central scar activation from the scar border, not by direct transmural spread from the endocardium.

Conclusions—Transmural right ventricular activation is modified by ARVD scarring with a delayed epicardial activation 
sequence suggestive of independent rather than direct transmural activation. This may predispose ventricular tachycardia 
circuits contained entirely within the epicardium in ARVD and explains observations on the need for direct epicardial 
ablation to eliminate ventricular tachycardia. (Circ Arrhythm Electrophysiol. 2012;5:796-803.)

Key Words: ablation ◼ cardiomyopathy ◼ catheter ablation ◼ electrophysiology ◼ tachycardia
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Arrhythmogenic right ventricular cardiomyopathy (ARVC) 
is characterized by diffuse or segmental loss of RV myo-

cytes with replacement by fibrous and fatty tissue, which char-
acteristically involves more extensively the epicardium (EPI) 
than the endocardium (ENDO).1,2 This peculiar pathological 
process leads to islets of residual myocytes interspersed among 
adipocytes and fibrous tissue, providing an ideal milieu for 
reentrant ventricular tachycardia (VT).3 The management of 
recurrent VT in ARVC is challenging with antiarrhythmic drug 
(AAD) therapy having limited efficacy.4 Initial experiences 
with catheter ablation using an ENDO-only approach led to 
disappointing results.5–7 Given the more extensive epicardial 
pathological substrate,8,9 catheter ablation approaches using a 
combination of ENDO–EPI ablation have been recently shown 
to significantly improve VT-free survival at the short to the mid-
term follow-up.9–12 Few data are available on the long-term out-
come associated after ENDO–EPI ablative therapy in patients 

with ARVC and recurrent VT. In this study, we report our insti-
tutional experience on catheter ablation of VT in ARVC and 
document the long-term outcomes associated with extensive 
ENDO or ENDO–EPI VT ablation and substrate modification 
in these patients as it relates to VT recurrence and requirement 
for continued AAD therapy.

Methods
Study Population
Sixty-two consecutive patients with ARVC and recurrent VT re-
ferred to the Hospital of the University of Pennsylvania for radiofre-
quency catheter ablation between 1998 and 2013 were included in 
the study. During the same study period, a total of 2716 VT ablation 
procedures were performed at our institution, of which 325 (12%) 
were epicardial; secular trends in the number of VT ablation pro-
cedures and epicardial procedures are shown in Figure I in the Data 
Supplement. All patients met the International Task Force criteria 

© 2015 American Heart Association, Inc.
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Background—Catheter ablation of ventricular tachycardia (VT) in arrhythmogenic right ventricular cardiomyopathy 
improves short-term VT-free survival. We sought to determine the long-term outcomes of VT control and need for 
antiarrhythmic drug therapy after endocardial (ENDO) and adjuvant epicardial (EPI) substrate modification in patients 
with arrhythmogenic right ventricular cardiomyopathy.

Methods and Results—We examined 62 consecutive patients with Task Force criteria for arrhythmogenic right ventricular 
cardiomyopathy referred for VT ablation with a minimum follow-up of 1 year. Catheter ablation was guided by activation/
entrainment mapping for tolerated VT and pacemapping/targeting of abnormal substrate for unmappable VT. Adjuvant 
EPI ablation was performed when recurrent VT or persistent inducibility after ENDO-only ablation. Endocardial 
plus adjuvant EPI ablation was performed in 39 (63%) patients, including 13 who crossed over to ENDO–EPI after 
VT recurrence during follow-up, after ENDO-only ablation. Before ablation, 54 of 62 patients failed a mean of 2.4 
antiarrhythmic drugs, including amiodarone in 29 (47%) patients. During follow-up of 56±44 months after the last 
ablation, VT-free survival was 71% with only a single VT episode in additional 9 patients (15%). At last follow-up, 
39 (64%) patients were only on β-blockers or no treatment, 21 were on class 1 or 3 antiarrhythmic drugs (11 for atrial 
arrhythmias), and 2 were on amiodarone as a bridge to heart transplantation.

Conclusions—The long-term outcome after ENDO and adjuvant EPI substrate ablation of VT in arrhythmogenic right 
ventricular cardiomyopathy is good. Most patients have complete VT control without amiodarone therapy and limited need 
for antiarrhythmic drugs.  (Circ Arrhythm Electrophysiol. 2015;8:1413-1421. DOI: 10.1161/CIRCEP.115.003562.)

Key Words: ablation techniques ◼ antiarrhythmic drugs ◼ arrhythmogenic right ventricular dysplasia 
◼ catheter ablation ◼ tachycardia, ventricular

Received July 31, 2015; accepted November 2, 2015.
From the Department of Medicine, Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia.
The Data Supplement is available at http://circep.ahajournals.org/lookup/suppl/doi:10.1161/CIRCEP.115.003562/-/DC1.
Correspondence to Francis E. Marchlinski, MD, Cardiovascular Division, Hospital of the University of Pennsylvania, 9 Founders Pavilion, 3400 Spruce 

St, Philadelphia, PA 19104. E-mail francis.marchlinski@uphs.upenn.edu

Long-Term Outcome With Catheter Ablation 
of Ventricular Tachycardia in Patients With 

Arrhythmogenic Right Ventricular Cardiomyopathy
Pasquale Santangeli, MD; Erica S. Zado, PA-C; Gregory E. Supple, MD;  

Haris M. Haqqani, MBBS, PhD; Fermin C. Garcia, MD; Cory M. Tschabrunn, CEPS;  
David J. Callans, MD; David Lin, MD; Sanjay Dixit, MD; Mathew D. Hutchinson, MD; 

Michael P. Riley, MD, PhD; Francis E. Marchlinski, MD

114



 

The full text of this article has been 

removed for copyright reasons 
 



744

Repeat Percutaneous Epicardial Mapping and Ablation
of Ventricular Tachycardia: Safety and Outcome

CORY M. TSCHABRUNN, C.E.P.S., HARIS M. HAQQANI, M.B.B.S., Ph.D.,
ERICA S. ZADO, P.A.-C., and FRANCIS E. MARCHLINSKI, M.D.

From the Cardiac Electrophysiology Program, Cardiovascular Medicine Division, Hospital of the University of Pennsylvania, University
of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA

Safety and Efficacy of Repeat Epicardial Access. Introduction: Epicardial mapping and abla-
tion of ventricular tachycardia (VT) has been increasingly performed. Occasionally additional ablation is
necessary, requiring repeat percutaneous access to the pericardial space.

Methods and Results: We studied 30 consecutive patients who required a repeat epicardial procedure.
We specifically examined the success and safety of repeat percutaneous pericardial access as well as the
ability to map and ablate epicardial VT targets. Percutaneous pericardial access at a median of 110
days after the last procedure was successful in all 30 patients. Significant adhesions interfering with
catheter mapping were encountered in 7 patients (23%); 6 had received intrapericardial triamcinolone
acetate (IPTA) with prior procedures. Using blunt dissection with a deflected ablation catheter and a
steerable sheath, adhesions were divided allowing for complete catheter mapping in 5 patients with areas of
dense adherence compartmentalizing the pericardium in 1 patient and precluding ablation over previously
targeted ablation site in the second. Targeted VT noninducibility was achieved in 27 (90%) patients including
7 patients with adhesions. No direct complications related to pericardial access or adhesions disruption
occurred. One periprocedural death occurred from refractory cardiogenic shock in patient with LV ejection
fraction of 10%. Another patient developed asymptomatic positive Haemophilus influenzae pericardial fluid
cultures identified at second procedure, which was successfully treated.

Conclusions: Repeat access can be obtained after prior epicardial ablation. Adhesions from prior pro-
cedures may limit mapping, but can usually be disrupted mechanically and allow for ablation of recur-
rent VT. IPTA may not completely prevent adhesions. (J Cardiovasc Electrophysiol, Vol. 23, pp. 744-749,
July 2012)

adhesions, catheter ablation, epicardial access, mapping, pericardium, ventricular tachycardia

Introduction

Catheter ablation is increasingly employed for both idio-
pathic and scar-related ventricular tachycardia (VT).1 Typi-
cally, VT ablation targets for both focal and reentrant forms
of VT are accessible from the right or left ventricular en-
docardium or the aortic sinuses of Valsalva.2-4 However, for
certain disease substrates, VT ablation targets are located
on the epicardial surface of the ventricles, and accessing
these targets requires a percutaneous, transpericardial ap-
proach. Epicardial VT mapping and ablation is increasingly
utilized since it was first described by Sosa and colleagues in
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1996.5-11 The risks, benefits, and safety of de novo epicardial
procedures for the treatment of different VT substrates have
been described.12,13 In some cases, repeat epicardial map-
ping and ablation may be needed, thus requiring a repeated
percutaneous access to the pericardium in the same patient.
The ability to safely obtain repeat access to the pericardial
space, and the presence and clinical impact of pericardial
adhesions noted at repeat epicardial procedures has not been
previously described. The purpose of this study was to evalu-
ate the safety and efficacy of repeat percutaneous pericardial
access and mapping/ablation of recurrent epicardial VT.

Methods

Study Population

We examined consecutive patients undergoing epicardial
VT mapping and ablation at the Hospital of the University of
Pennsylvania from June 2002 to April 2011. All procedures
were performed according to the institutional guidelines of
the University of Pennsylvania Health System and all pa-
tients provided written informed consent. Patients requiring
2 or more percutaneous pericardial punctures for mapping
and ablation of VT were included. Patients who had previous
cardiac surgery were excluded from this analysis. The deci-
sion to move forward with an epicardial approach was based
on (1) the VT morphology on the surface 12-lead ECG;14,15

(2) the presence of epicardial substrate on imaging studies
(computed tomography [CT], cardiovascular magnetic reso-
nance [CMR], intracardiac echocardiography);16 and/or (3)
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Percutaneous epicardial ventricular tachycardia ablation after
noncoronary cardiac surgery or pericarditis
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From the Cardiac Electrophysiology Program, Cardiovascular Medicine Division, Hospital of the University of Pennsylvania,
Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.

BACKGROUND Patients with previous noncoronary cardiac surgery
or pericarditis may require epicardial access to facilitate successful
ventricular tachycardia (VT) ablation. Percutaneous pericardial
access is known to be difficult in these patients owing to the
presence of pericardial adhesions.

OBJECTIVE To examine the success and safety of percutaneous
pericardial access as well as the ability to map and ablate epicardial
VT targets.

METHODS We studied 10 consecutive patients with prior noncor-
onary cardiac surgery (8 patients) or prior pericarditis (2 patients)
who required epicardial access for VT ablation.

RESULTS Percutaneous pericardial access was achieved by experi-
enced operators, and dense adhesions interfering with catheter
mapping were encountered in all patients. Using blunt dissection
with a deflected ablation catheter, adhesions were divided over the
course of 19–125 minutes (mean 57 � 38 minutes; median 47
minutes). This dissection allowed for sufficient epicardial mapping
in 9 of 10 (90%) patients. The clinical targeted VTs were rendered
noninducible in 8 (80%) patients. One patient had 70 cm3 of
bleeding with the initial puncture. No other complications

occurred. During a long-term follow-up of 24 � 27 months (median
13 months), 5 patients have remained VT-free.

CONCLUSIONS Percutaneous pericardial access for epicardial VT
ablation in patients with previous noncoronary cardiac surgery or
pericarditis can usually be obtained. However, dense pericardial
adhesions are often encountered and may limit the ability to map
the entire epicardial space. Typically, appropriate targets can
be reached and ablated by disrupting the adhesions with the
ablation catheter and/or deflectable sheath, facilitating excellent
long-term clinical outcome in half of the patients with no major
complications.

KEYWORDS Epicardial access; Pericardium; Ventricular tachycardia;
Adhesions; Mapping; Ablation; Pericarditis; Cardiac surgery

ABBREVIATIONS AVR ¼ aortic valve replacement; CHF ¼
congestive heart failure; ECG ¼ electrocardiography; LV ¼ left
ventricle; RV ¼ right ventricle; VT ¼ ventricular tachycardia; OHT
¼ orthotopic heart transplant

(Heart Rhythm 2013;10:165–169) I 2013 Heart Rhythm Society.
All rights reserved.

Introduction
Catheter ablation is increasingly employed as a treatment for
both idiopathic and scar-related ventricular tachycardia
(VT).1 Typically, VT ablation targets for both focal and
reentrant forms of VT are accessible from the right or left
ventricular endocardium or the aortic sinuses of Valsalva.2–4

In some instances however, VT ablation targets are located
on the epicardial aspect of the ventricles and accessing these
targets requires a percutaneous transpericardial approach.
Epicardial VT mapping and ablation are increasingly utilized
since Sosa and colleagues5–9 first described it in 1996. The
risks, benefits, and safety of de novo and repeat epicardial
procedures for the treatment of different VT substrates have
been described.10–12 Patients with VT who have had prior
cardiac surgery or pericarditis may require percutaneous
epicardial mapping and ablation to successfully eliminate
their arrhythmia. The ability to safely obtain access to the
pericardial space and the presence and clinical impact of
pericardial adhesions have not been previously described in
these patients. The purpose of this study was to evaluate the
safety and efficacy of percutaneous pericardial access and
mapping/ablation in patients with prior noncoronary cardiac
surgery or pericarditis.
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Appendix D 

Chapter 4 Full Text Manuscripts 
Chapter 4 – High Resolution Catheter and Mapping Technologies: Insight from Clinical 
Laboratory Investigations 

Anter E, Tschabrunn CM, Josephson ME. High-resolution Mapping of Scar-related Atrial 
Arrhythmias Using Smaller Electrodes with Closer Interelectrode Spacing. Circ 
Arrhythm Electrophysiol. 2015 Jun;8(3):537-45. 

Anter E, Li J, Tschabrunn CM, Nezafat R, Josephson ME. Mapping of a Post-infarction Left 
Ventricular Aneurysm-Dependent Macroreentrant Ventricular Tachycardia. Heart 
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Atrial fibrillation (AF) ablation is an acceptable therapeu-
tic option for patients with symptomatic AF refractory 

to medications.1 Pulmonary vein isolation is the cornerstone 
of the procedure and is associated with a reasonable clinical 
outcome in patients with paroxysmal AF. However, in patients 
with persistent AF, pulmonary vein isolation is less effective 
and additional substrate ablation is frequently performed.2,3 
This approach often results in the development of postabla-
tion, scar-related, organized atrial tachyarrhythmias (AT).4–6

The mechanism of these arrhythmias is usually re-entry 
involving pre-existing or iatrogenic ablation–related scar tis-
sue.7,8 These circuits are typically challenging to map because 
of significant scar coupled with fractionated and multicompo-
nent electrograms, limiting local time annotation. In addition, 
entrainment and postpacing interval mapping techniques may 
be difficult to perform and interpret because of high output 
pacing and lack of capture in these areas of low voltage.

The standard catheter for mapping these arrhythmias is a 
linear catheter with a 3.5-mm distal electrode separated by 2 
mm from a proximal 2-mm electrode, resulting in a center-
to-center interelectrode spacing of 4.75 mm. As such, each 

bipolar electrogram represents an underlying tissue diam-
eter ranging from 3.5 to 7.5 mm, depending on the angle 
of incidence (from perpendicular to parallel to the tissue, 
respectively). Catheters with 1-mm electrodes, 2-mm inter-
electrode spacing, and 3-mm center-to-center interelectrode 
spacing record electrograms from a significantly smaller 
underlying tissue diameter, ranging from 1 to 4.0 mm (also 
dependent on catheter orientation relative to the surface). 
These catheters may have advantages for mapping scar-
related arrhythmias, including (1) higher mapping resolution 
that can identify heterogeneity within the area of low volt-
age, localizing channels of surviving bundles; (2) smaller 
electrodes with closer interelectrode spacing are subjected to 
less signal averaging and cancellation effects, and may thus 
record higher bipolar voltage amplitude with shorter elec-
trogram duration, allowing more accurate time annotation; 
(3) pacing with capture at lower output because of increased
electric density.

The aims of this study were to (1) establish normal volt-
age amplitude cutoffs in the atria for both 3.5-mm electrode 
tip catheters and 1-mm multielectrode-mapping catheters; 

© 2015 American Heart Association, Inc.
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Original Article

Background—The resolution of mapping is influenced by electrode size and interelectrode spacing. Smaller electrodes 
with closer interelectrode spacing may improve mapping resolution, particularly in scar. The aims of this study were to 
establish normal electrogram criteria in the atria for both 3.5-mm electrode tip linear catheters (Thermocool) and 1-mm 
multielectrode-mapping catheters (Pentaray) and to compare their mapping resolution in scar-related atrial arrhythmias.

Methods and Results—Normal voltage amplitude cutoffs for both catheters were validated in 10 patients with structurally 
normal atria. In 20 additional patients with scar-related atrial arrhythmias, similar sequential mapping with both catheters 
was performed. Normal bipolar voltage amplitude was similar between 3.5- and 1-mm electrode catheters with a fifth 
percentile of 0.48 and 0.52 mV, respectively (P=0.65). In patients with scar-related atrial arrhythmias, the total area of 
bipolar voltage <0.5 mV measured using 1-mm electrode catheters was smaller than that measured using 3.5-mm catheter 
(14.7 versus 20.4 cm2; P=0.02). The mean bipolar voltage amplitude in this area of low voltage was significantly higher 
with 1-mm electrode catheters (0.28 and 0.17 mV; P=0.01). Importantly, 54.4% of all low voltage data points recorded 
with 1-mm electrode catheter had distinct electrograms that allowed annotation of local activation time compared with 
only 21.4% with 3.5-mm electrode tip catheters (P=0.01). Overdrive pacing with capture of the tachycardia from within 
the area of low voltage was more frequent with 1-mm electrode catheters (66.7 versus 33.4; P=0.01).

Conclusions—Mapping with small closely spaced electrode catheters can improve mapping resolution within areas of low 
voltage.  (Circ Arrhythm Electrophysiol. 2015;8:537-545. DOI: 10.1161/CIRCEP.114.002737.)
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Mapping of a postinfarction left ventricular
aneurysm–dependent macroreentrant
ventricular tachycardia
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Introduction
Activation mapping of ventricular tachycardia (VT) is rarely
accomplished owing to limited temporal and spatial reso-
lution, unacceptably long mapping time, and hemodynamic
instability.1 Entrainment mapping is a reasonable approach
to identify targets for ablation in patients with tolerated
postinfarction reentrant VTs; however, it often does not
allow delineation of the entire VT circuit.2,3 Introduction of
newer mapping technologies capable of rapid and high-
resolution electroanatomic mapping may allow detailed
activation mapping of macroreentrant VTs, enhancing our
understanding of macroreentrant circuit geometry and elec-
trophysiology to facilitate ablation.4

Case report
We present the case of a 77-year-old man transferred to our
institution for the management of recurrent monomorphic
VT. The patient has a history of hypertension, hypercholes-
terolemia, diabetes, and multivessel coronary artery disease
with prior inferior myocardial infarction. The baseline sinus
12-lead electrocardiogram (ECG) is shown in Figure 1A. Six
weeks earlier, he underwent coronary artery bypass graft
surgery. At the time of surgery, a thin-walled large aneurysm
at the base of the inferior wall was identified and a pericardial
patch was placed over it. The aneurysm contained thin
fibrous, noncontractile material that was associated with
dyskinetic wall motion abnormality, consistent with a con-
tained ruptured wall from his old transmural myocardial

infarction. A cardiac magnetic resonance of the left ventricle
(LV) including the basal inferior aneurysm is depicted in
Supplemental Figure 1 (available online).

The patient recovered well from surgery with only mild
congestive heart failure symptoms (New York Heart Associ-
ation class I–II) and a left ventricular ejection fraction of 35%–

40%, as was shown on transthoracic echocardiography 1
month after surgery. However, he developed frequent and
recurrent episodes of sustained monomorphic VT requiring
external shocks due to hemodynamic instability. He failed
therapy with antiarrhythmic drugs including amiodarone,
quinidine, and mexiletine. The 12-lead ECG of the clinical
VT is shown in Figure 1B. The VT cycle length was 360
milliseconds and it had a left bundle branch block pattern with
left superior axis, suggestive of a basal inferior wall exit.

In an attempt to obtain detailed mapping of the VT circuit
with as short as possible mapping duration, we elected to use the
Rhythmia mapping system with its proprietary Orion mini-
basket catheter (Boston Scientific, Cambridge, MA).4 The mini-
basket consists of 8 splines, each containing 8 very small
electrodes of 0.4 mm2 that are separated by 2.5 mm from center
to center, and with an overall extended basket diameter of 18
mm.5 Activation mapping is automated and is determined based
on the combination of the bipolar and unipolar electrograms and
timed at themaximal (�) dV/dt of the local unipolar electrogram.

A pentapolar catheter was placed in the right ventricular
apex (RVA) with its proximal electrode in the inferior vena
cava serving as an indifferent unipolar electrode. An intra-
cardiac ultrasound catheter was placed at the base of the right
ventricle in order to visualize the LV and confirm tissue
contact of the mini-basket catheter. Heparin was adminis-
tered to maintain an activated clotting time of 300–350
seconds for the duration of the procedure. The 8F mini-
basket bidirectional catheter was introduced into the LV
using a retrograde transaortic approach. The mini-basket
catheter was placed in the aneurysm and the clinical VT was
induced with single extrastimuli from the RVA. Pacing from
the RVA during VT showed ECG fusion, consistent with
a reentrant mechanism. The entire reentrant circuit was

KEYWORDS Myocardial infarction; Ventricular aneurysm; Ventricular tachy-
cardia; Mapping; Radiofrequency ablation
ABBREVIATIONS ECG ¼ electrocardiogram; LV ¼ left ventricle; RVA ¼
right ventricular apex; VT ¼ ventricular tachycardia
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A swine model of infarct-related reentrant ventricular
tachycardia: Electroanatomic, magnetic resonance, and
histopathological characterization
Cory M. Tschabrunn, CEPS,* Sébastien Roujol, PhD,† Reza Nezafat, PhD,†

Beverly Faulkner-Jones, MD, PhD,‡ Alfred E. Buxton, MD,* Mark E. Josephson, MD,*

Elad Anter, MD*

From the *Harvard-Thorndike Electrophysiology Institute, Cardiovascular Division, Department of Medicine,
†Cardiovascular Division, Department of Medicine, and ‡Surgical Pathology Division, Department of
Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.

BACKGROUND Human ventricular tachycardia (VT) after myocar-
dial infarction usually occurs because of subendocardial reentrant
circuits originating in scar tissue that borders surviving myocardial
bundles. Several preclinical large animal models have been used to
further study postinfarct reentrant VT, but with varied experimental
methodologies and limited evaluation of the underlying substrate
or induced arrhythmia mechanism.

OBJECTIVE We aimed to develop and characterize a swine model of
scar-related reentrant VT.

METHODS Thirty-five Yorkshire swine underwent 180-minute
occlusion of the left anterior descending coronary artery. Thirty-
one animals (89%) survived the 6–8-week survival period. These
animals underwent cardiac magnetic resonance imaging followed
by electrophysiology study, detailed electroanatomic mapping, and
histopathological analysis.

RESULTS Left ventricular (LV) ejection fraction measured using
CMR imaging was 36% � 6.6% with anteroseptal wall motion
abnormality and late gadolinium enhancement across 12.5% �
4.1% of the LV surface area. Low voltage measured using
endocardial electroanatomic mapping encompassed 11.1% �
3.5% of the LV surface area (bipolar voltage r1.5 mV) with
anterior, anteroseptal, and anterolateral involvement. Reentrant
circuits mapped were largely determined by functional rather than

fix anatomical barriers, consistent with “pseudo-block” due to
anisotropic conduction. Sustained monomorphic VT was induced in
28 of 31 swine (90%) (67 VTs; 2.4 � 1.1; range 1–4) and
characterized as reentry. VT circuits were subendocardial, with an
arrhythmogenic substrate characterized by transmural anterior scar
with varying degrees of fibrosis and myocardial fiber disarray on the
septal and lateral borders.

CONCLUSION This is a well-characterized swine model of scar-
related subendocardial reentrant VT. This model can serve as the
basis for further investigation in the physiology and therapeutics of
humanlike postinfarction reentrant VT.

KEYWORDS Myocardial infarction; Mapping; Ventricular
tachycardia; Ablation

ABBREVIATIONS CMR ¼ cardiac magnetic resonance; EAM ¼
electroanatomic mapping; ECG ¼ electrocardiogram/
electrocardiographic; EGM ¼ electrogram; ILP ¼ isolated late
potential; LAD ¼ left anterior descending; LV ¼ left ventricle/
ventricular; MI ¼ myocardial infarction; MTS ¼ Masson trichrome
stain; RV ¼ right ventricle/ventricular; TCL ¼ tachycardia cycle
length; VT ¼ ventricular tachycardia

(Heart Rhythm 2016;13:262–273) I 2016 Heart Rhythm Society. All
rights reserved.

Introduction
The pathophysiology of infarct-related ventricular tachycar-
dia (VT) includes structural remodeling that occurs after
myocardial cell death, resulting in inhomogeneous scarring
with varying degrees of survived myocardial tissue con-
tiguous with dense fibrosis, forming the so-called arrhyth-
mogenic substrate.1

This arrhythmogenic substrate is characterized by zones
of slow conduction due to nonuniform anisotropy resulting
in fixed and/or functional regions of conduction block. This
facilitates reentry as it generates enough time for tissue in the
circuit to recover its excitability to allow the excitation

Biosense Webster and Boston Scientific provided partial funding for this
study in the form of an investigator-initiated study. This study was also
partially funded by the National Institutes of Health (grant no.
1R21HL127650-01). Dr Anter receives research grants and speaking
honoraria from Biosense Webster and Boston Scientific. Dr Buxton receives
research grants from Biosense Webster and Medtronic. Dr Josephson
receives speaking honoraria from Medtronic. Mr Tschabrunn receives
research grants from Biosense Webster. Address reprint requests and
correspondence: Dr Elad Anter, Cardiovascular Division, Department of
Medicine, Harvard-Thorndike Electrophysiology Institute, Beth Israel
Deaconess Medical Center, 185 Pilgrim Rd, Baker 4, Boston, MA 02215.
E-mail address: eanter@bidmc.harvard.edu.
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The pathophysiology of infarct-related reentrant ventricular 
tachycardia (VT) includes myocardial cell death and ven-

tricular remodeling, resulting in inhomogeneous scarring with 
variable degrees and configurations of surviving myocardial 
bundles within the areas of fibrosis. This provides the neces-
sary electrophysiological substrate for formation of reentrant 
VTs that are predominantly located in the subendocardium.1,2

See Editorial by Tung and Ellenbogen

Standard mapping catheters have several limitations for 
mapping scar-related VTs. These catheters have a 3.5-mm 
distal tip electrode that is separated by 1 mm from a proximal 
1-mm electrode, resulting in a center-to-center interelectrode
spacing of 3.25 mm. As such, each bipolar electrogram rep-
resents recording from an underlying tissue diameter ranging
from 3.5 to 5.5 mm, depending on the angle of the catheter
(from perpendicular to parallel to the tissue, respectively).
This mapping resolution may not be adequate to identify

surviving myocardial bundles (including isthmuses) within 
the area of low voltage because there may be cancellation 
effects of bipolar electrograms recorded within these areas.3 
In addition, electrograms recorded using these relatively large 
electrode catheters often record long, fractionated, and multi-
component signals because of the underlying pattern of acti-
vation. The presence of such fractioned electrograms limits 
accurate annotation of local activation time during activation 
mapping and interpretation of entrainment mapping.

Catheters with 1-mm electrodes, 2-mm interelectrode 
spacing, and an overall 3-mm center-to-center interelectrode 
spacing record electrograms from a significantly smaller 
underlying tissue area, ranging from 1 to 4 mm. This design 
offers several advantages for mapping scar-related arrhyth-
mias, including (1) higher mapping resolution that may 
identify heterogeneity within the area of low voltage during 
sinus rhythm mapping allowing localizing channels of sur-
viving myocardial bundles; (2) smaller electrodes with closer 

© 2016 American Heart Association, Inc.

Circ Arrhythm Electrophysiol is available at http://circep.ahajournals.org DOI: 10.1161/CIRCEP.115.003841

Original Article

Background—Mapping resolution is influenced by electrode size and interelectrode spacing. The aims of this study were 
to establish normal electrogram criteria for 1-mm multielectrode-mapping catheters (Pentaray) in the ventricle and to 
compare its mapping resolution within scar to standard 3.5-mm catheters (Smart-Touch Thermocool).

Methods and Results—Three healthy swine and 11 swine with healed myocardial infarction underwent sequential mapping 
of the left ventricle with both catheters. Bipolar voltage amplitude in healthy tissue was similar between 3.5- and 1-mm 
multielectrode catheters with a 5th percentile of 1.61 and 1.48 mV, respectively. In swine with healed infarction, the total 
area of low bipolar voltage amplitude (defined as <1.5 mV) was 22.5% smaller using 1-mm multielectrode catheters (21.7 
versus 28.0 cm2; P=0.003). This was more evident in the area of dense scar (bipolar amplitude <0.5 mV) with a 47% 
smaller very low–voltage area identified using 1-mm electrode catheters (7.1 versus 15.2 cm2; P=0.003). In this region, 
1-mm multielectrode catheters recorded higher voltage amplitude (0.72±0.81 mV versus 0.30±0.12 mV; P<0.001).
Importantly, 27% of these dense scar electrograms showed distinct triphasic electrograms when mapped using a 1-mm
multielectrode catheter compared with fractionated multicomponent electrogram recorded with the 3.5-mm electrode
catheter. In 8 mapped reentrant ventricular tachycardias, the circuits included regions of preserved myocardial tissue
channels identified with 1-mm multielectrode catheters but not 3.5-mm electrode catheters. Pacing threshold within the
area of low voltage was lower with 1-mm electrode catheters (0.9±1.3 mV versus 3.8±3.7 mV; P=0.001).

Conclusions—Mapping with small closely spaced electrode catheters can improve mapping resolution within areas of low 
voltage.  (Circ Arrhythm Electrophysiol. 2016;9:e003841. DOI: 10.1161/CIRCEP.115.003841.)

Key Words: electrodes ◼ heart ◼ myocardial infarction ◼ swine ◼ ventricular tachycardia
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