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Abstract 9 

 Vaccination programs for childhood diseases, such as measles, mumps and rubella have greatly 10 

contributed to decreasing the incidence and impact of those diseases. Nonetheless, despite long 11 

vaccination programmes across the world, mumps has not yet been eradicated in those countries: 12 

indeed, large outbreaks continue. For example, in Scotland large outbreaks occurred in 2004, 2005 13 

and 2015, despite introducing the MMR (Measles- Mumps- Rubella) vaccine more than twenty years 14 

ago. There are indications that this vaccine-preventable disease is re-emerging in highly vaccinated 15 

populations. Here we investigate whether the resurgence of mumps is due to waning immunity, and 16 

further, could a booster dose be the solution to eradicate mumps or would it just extend the period of 17 

waning immunity? Using mathematical modelling we enhance a seasonally-structured disease model 18 

with four scenarios: no vaccination, vaccinated individuals protected for life, vaccinated individuals 19 

at risk of waning immunity, and introduction of measures to increase immunity (a third dose, or a 20 

better vaccine). The model is parameterised from observed clinical data in Scotland 2004-2015 and 21 

the literature. The results of the four scenarios are compared with observed clinical data 2004-2016. 22 

 While the force of infection is relatively sensitive to the duration of immunity and the number of 23 

boosters undertaken, we conclude that periodic large outbreaks of mumps will be sustained for all 24 

except the second scenario. This suggests that the current protocol of two vaccinations is optimal in 25 

the sense that while there are periodic large outbreaks, the severity of cases in vaccinated individuals 26 

is less than in unvaccinated individuals, and the size of the outbreaks does not decrease sufficiently 27 

with a third booster to make economic sense. This recommendation relies on continuous efforts to 28 

maintain high levels of vaccination uptake.   29 

1 Introduction 30 

To prevent, control and eradicate childhood diseases, vaccination programs have been adopted 31 

throughout the world. For example the trivalent measles-mumps-rubella vaccine (MMR) [1, 2, 3] has 32 

been highly successful for both measles and rubella reduction in many countries. Despite near 33 

eradication of both measles and rubella [4,5,6], elimination of mumps has not been achieved and 34 

could be considered to be re-emerging, despite initial early success in reducing mumps cases. In the 35 
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last decade, many countries such as Belgium [7], Korea [8], the Netherlands [9] and the US [10] have 36 

reported a dramatic increase in the incidence of mumps. In Scotland, 2004/2005 saw a sudden high 37 

resurgence in mumps with approximately 4500 cases, eight years after the second dose of MMR was 38 

included in the vaccination program (which was predicted to substantially reduce mumps outbreaks 39 

[11]).  One hypothesis is that the resurgence was related to declining vaccine coverage [12, 13], in 40 

particular, a widespread scare related to autism which led to some parents refusing to vaccinate their 41 

children. This can be easily debunked: the herd immunity threshold is estimated at 75-86% [14] and 42 

mumps vaccination levels have stayed above that level (e.g. in Scotland, ranging from 87% to 94% 43 

pre-2004). In addition Donaghy et al [14] argues that those infected during the 2004/2005 epidemics 44 

are characterised by low uptake of a single dose of MMR (catch-up campaign) and being of school 45 

age at time when the mumps virus had greatly reduced circulation in that group, delaying infection. 46 

The study undertaken by DeStefano et al [15] analysing the number of antigens in both children with 47 

and without autism, shows that there is no association between receiving vaccine and developing 48 

autism. 49 

A second hypothesis is to link vaccination status and age, e.g. proposing that outbreaks continue in 50 

the older population but die out in the increasingly vaccinated population. However, while age 51 

structure has shown to be informative in many models of traditionally childhood diseases [16, 17, 18, 52 

19], current studies suggest that age is not the key determinant in mumps. Snijders et al. [20] do not 53 

find any significant interaction between these two features. In addition, several studies of different 54 

outbreaks occurring at different times and locations in the US and Canada [21] indicate that there is 55 

no evidence that age is the main factor leading to mumps spread. For instance, the outbreaks 56 

occurring in New York (Sulivan, Brooklyn, Rockland county and Orange county), New Jersey and 57 

Canada show variable average of infected age groups (Sullivan: 12 years, Brooklyn: 14 years, 58 

Rockland county: 12 years, Orange county: 18 years, New Jersey: 19.5 years and Canada: 27.5). 59 

However, it was confirmed that all cited cases were related to religious events or camping in 60 

Sullivan, with the majority fully vaccinated. It was also reported that the series of outbreaks were due 61 

to one fully vaccinated child aged 11 years who had been infected during his travel to UK. Snidjer et 62 

al. [20] analysed a group of infected whose ages ranged in 3 to 13 years. The authors find out that no 63 

significant difference between the attack rate of the group aged 10-13 years and 3-5 years. 64 

Considering Scotland specifically, Donaghy et al. [14] argued that the shift of ages observed in the 65 

epidemic in Scotland suggests that the propagation of mumps is becoming more widespread and 66 

diverse as the targeted population becomes more dynamic and mobile.  67 

Having rejected the first two hypotheses, the arguments used lead to the third and more plausible 68 

hypothesis: MMR vaccine efficacy against mumps reduces over time [13]. In 2015 67% of those 69 

infected in Scotland were fully vaccinated individuals (1 and 2 doses confounded). Moreover, most 70 

primary cases occurred in adolescent and young adults, in contrast to the pre-vaccine era where 71 

outbreaks were among children of primary school age. Similar patterns can be found for Belgium in 72 

2012 [7] and in the US in 2006 [10]. Serological studies [8, 22] show that susceptibility level 73 

increases (immunity wanes) as time from vaccination increases; however, the antibody threshold 74 

defining the protective level is not well specified for mumps [23]. Even using two doses of the MMR 75 

vaccine, existing analyses [8, 24] stress that some of the population will remain at risk of disease 76 

unless additional control strategies are adopted.   77 

We investigate the hypothesis of waning immunity using mathematically-based computational 78 

modelling. The basic model is a seasonal compartmental SEIR model [25, 26, 27], to which 79 

vaccination and immunity is added. We first show that the model produces comparable results to 80 

observed mumps data in Scotland [28], matching endemic levels of mumps with occasional larger 81 
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epidemics, as in 2005 and 2015. Having established the accuracy of the model with historical data, 82 

we use it predictively to better understand the relationship between immunity and transmission, to 83 

illuminate long-term patterns of resurgent outbreaks, and to determine whether these can be 84 

controlled by extending immunity duration (e.g. by using another booster). While modelling has been 85 

previously used to investigate mumps and vaccination [7, 27, 29], the novelty of our approach lies in 86 

consideration of waning immunity and associated optimal control strategies. Our model shows 87 

clearly that waning immunity is a driver for  a long period of oscillating outbreaks. Moreover, by 88 

working with epidemiologists to use mathematics to understand the observed clinical data, we 89 

illustrate the power of mathematics to inform public health policy through multi-disciplinary 90 

collaboration. 91 

2 Mumps epidemiology in Scotland  92 

During the period 1988-2015, Health Protection Scotland (HPS), the national surveillance centre for 93 

Scotland, reported 10943 mumps cases. 10486 of these cases were between 2004 and 2015. 94 

Vaccination was introduced in 1988, with a second dose introduced in 1996. Fig. 1 shows the 95 

epidemic curve of mumps, and the vaccination uptake curves for both vaccines (MMR1 and MMR2). 96 

Observe the initial success of the vaccine (1988-2003) contrasted with a long potential cycle from 97 

2004-2015, possible with sub-cycles (2005-2009, 2009-2012, 2012-2015). The 2004/2005 outbreak 98 

was related only partly to the decrease in vaccination coverage shown in Fig. 1 [14]. The majority of 99 

cases (94%) were born before 1990 (aged 15+ years), with only a few of them receiving only one 100 

dose of MMR (around 1%) or none at all. Similarly for the outbreaks in 2009 and 2012. In 2015 the 101 

highest incidence of mumps (63%) was related to the group born 1991-2000 (aged 15-24 years). 102 

Cameron and Smith-Palmer [24] argue that the 2015 outbreak was the first where the majority of 103 

cases were fully vaccinated. Transmission is a complex feature to model as it can be influenced by 104 

many factors (vaccination history, current immunity status, age, opportunity for social mixing, 105 

geography, and so on). Moreover, some of these factors are confounded (e.g. age and vaccination 106 

history). We propose in this model that vaccination history is used as a proxy for these combined 107 

effects. Therefore, the main question arising is: why are vaccinated individuals being infected? Here 108 

we focus on the long curve (2005-2015) relating to the long inter-epidemic period.  We explore these 109 

features within the model presented in Section 3, using the Bio-PEPA plugin tool [30] and 110 

deterministic simulation to provide time series prediction of the number of infected individuals. The 111 

model is parameterised and validated on data up to 2015, and then to further validate its predictive 112 

performance it is shown to match 2016 data provided by HPS. The advantages for using the Bio-113 

PEPA formalism (a mathematically-defined computational modelling approach called process 114 

algebra) have been fully argued in many works [30, 31, 32]. Here, the advantages are: formal 115 

structuring of interactions between components, a compositional approach to building the 116 

epidemiological model, and a range of analysis techniques to support the modeller in understanding 117 

the system. The underlying semantics of Bio-PEPA is a continuous time Markov chain. 118 

3 Methods 119 

3.1 Model structure, epidemiological assumptions and parameter estimates 120 

We consider a compartmental structure for a model of mumps formulated as an extended SEIR [11] 121 

model including seasonality and waning immunity: natively susceptible (S1), vaccinated individuals 122 

with MMR1 only (V1), vaccinated individuals with both MMR1 and MMR2 (V2), modified 123 

susceptible who are vaccinated individuals who have become susceptible (S2), exposed individuals 124 
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(E), infected individuals (I) and recovered individuals who are regarded as immune for life (R) [11, 125 

33]. Fig. 2 shows how these compartments interact.  126 

Our goal is to provide as simple a model as is necessary to demonstrate the impact of waning 127 

immunity, therefore we have ignored features which others have chosen to include. For example, the 128 

models of Glass and Grenfell [34] and Barbarossa and Röst [35] include immunity levels and 129 

immune-boosting through vaccination and interactions with infected. Since we have no data on 130 

antibody levels as individuals interact we choose not to include this, choosing the simpler scenario 131 

which can be parameterised through observed data. Neither do we include age-structure, as mumps 132 

has ceased to be a mainly childhood disease. As shown in several works [14, 36, 37, 38], the range of 133 

those infected with mumps has become more diverse due to a more mobile susceptible population. 134 

Therefore, rather than stratifying the population by age, we assume a more homogenously-mixed 135 

population, with routine vaccination, and transmission based on seasonality and immunity status.  136 

This model is general and could be parameterised for any seasonal disease with up to two 137 

vaccinations. We use data from Health Protection Scotland (HPS) from 2004-2016 [28] and some 138 

parameters from the literature [11, 39]. These are detailed in Table 1, with some explanatory text. 139 

 Demographic estimation 140 

Birth and death rate estimated from Scottish demographic data [28].  141 

 Immigration rate estimation 142 

As the net migration to Scotland is insignificant (typically 15,000 per year), the model has been 143 

simplified by having neither mass emigration nor immigration of susceptible individuals. A small 144 

constant rate of immigration of infected individuals is required to prevent the disease dying out 145 

entirely. This is justified by the knowledge that there is immigration, and there are many populations 146 

in the world where mumps is more prevalent and the global population is more mobile, transmitting 147 

disease between countries. A small rate of immigration of infectious individuals is estimated as in 148 

Finkenstadt et al [40] and Benkirane et al [31].  149 

 Vaccination rates estimation (μ2, μ3) 150 

According to vaccination data [41], our basic assumption is an average of 94% MMR1 vaccination 151 

coverage (1988-2016) for children aged 0 to 2 years and 90% MMR2 vaccination coverage (1996-152 

2016) for children aged 3 to 5 years. According to past vaccination history [42, 43], we estimate the 153 

susceptible portion of the remaining unvaccinated population at 20%. Within that proportion of 154 

susceptible we consider 11% of those to be aged ten years or over according to current demographics. 155 

It would be more realistic to consider a varying vaccination rate each year; however, we did not want 156 

this to confound the patterns obtained through simply waning immunity. We do investigate scenarios 157 

in which these average vaccination rates are varied across the simulation period, to show how this 158 

affects the pattern of outbreaks. 159 

 Waning immunity estimation (, ) 160 

Our basic assumption is individuals vaccinated with MMR1 and MMR2 (resp. only MMR1) are 161 

temporarily protected and that immunity wanes towards susceptibility at constant rate  (resp. ). 162 

Lebaron et al [23] report low antibody levels 4-9 years after MMR1 only, and 7-12 years after 163 

MMR2 administration. We also investigate scenarios in which these rates are varied. 164 
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 Transmission rate estimation (1, 2, 3) 165 

In our model, the transmission rate depends on two features: seasonality (High, Low) and type of 166 

susceptible (native susceptible, modified susceptible) giving four rates: 1 (High season and native 167 

susceptible), 2 (high season and modified susceptible, 3 (low season and native susceptible), 4 168 

(low season and modified susceptible). For seasonality, data report higher number of cases October 169 

to May, and fewer between June and September [28]. As most cases occurs in 17-24 year-olds this 170 

seasonality is further supported through an assumption that many of that group are likely to be in 171 

full-time education, and mixing more in semester-time than in the holiday. As the total number of 172 

infected at low season is small we assume 3 = 4. In addition, we assume 2 > 1 (transmission in 173 

modified susceptible is higher than in native susceptible). This follows from the model of Scherer 174 

and McLean [45], and is supported by the report of Cameron [44] that within 205 confirmed cases 175 

related to two health boards, 137 (67%) individuals were fully vaccinated. As transmission rate is 176 

based on the basic reproduction number R0 (see Table 1), a range of proposed values were collected 177 

from literature [11, 13, 27], where R0 is ranged [4-11]. See section 5 for sensitivity analysis of the 178 

particular choices of these rates. 179 

 Incubation rate  and recovery rate  180 

Established empirical studies [11, 27] estimate the incubation period between 12-25 days and the 181 

infectious period between 7-9 days [27]. For modelling convenience, we assume the same period of 182 

infection and incubation [43] for both natively susceptible and modified susceptible. 183 

 Initial conditions 184 

The initial mix of susceptible, vaccinated, exposed, infected and recovered is calculated for 1996 185 

according to the above assumptions about population based on vaccination beginning in 1988. See 186 

appendix 1 (model component).  187 

The description of the model and parameters above can be summarised by seven ordinary differential 188 

equations:  189 

   

  
      

       

 
          190 

   

  
                   191 

   

  
                    192 

   

  
         

        

 
          193 

  

  
 

       

 
 

        

 
              194 

  

  
                   195 

  

  
           196 
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Where:                       
                                        

                            
    197 

This model is coded in Bio-PEPA (see Appendix 1). Analysis of the model is performed through 198 

deterministic simulation. Stochastic simulation was used to guide model development but does not 199 

provide additional information when identifying long term trends. 200 

3.2 Model scenarios  201 

To capture the impact of vaccination efficacy and the effect of waning immunity on the population of 202 

Scotland for future projection of epidemics, the history of mumps epidemics (from pre-vaccine to 203 

post-vaccine era) are reproduced where four strategies are considered:  204 

 Scenario one. No vaccination. This is equivalent to the pre-vaccine era and useful for model 205 

validation where the whole population is considered susceptible. 206 

 Scenario two. Immunity does not wane:  and  are zero. This case reflects the introduction of a 207 

vaccination protocol to case one, where immunity is assumed to be for life. This is consistent 208 

with the period immediately following the introduction of vaccination. 209 

 Scenario three. Immunity wanes in vaccinated individuals according to the assumptions above. 210 

This scenario reflects modern reality, where mumps is resurgent. Our model is extended to two 211 

separate but correlated models: the first model expresses unvaccinated individuals and the 212 

second model expresses vaccinated individuals for whom immunity wanes. Scenario three is an 213 

extension to case two by introducing the terminology of waning immunity.  214 

 Scenario four. An additional medical intervention increases immunity duration. We explore 215 

immunity duration across a range (10 to 80 years). This case is a particular variation of case 216 

three, where the immunity duration is specified in the defined range. This scenario is to 217 

predictively investigate possible future interventions. 218 

4 Results 219 

According to observed mumps data in Scotland in Fig. 1, and in conjunction with observed mumps 220 

data in England and Wales in Fig. 9 (a and b) (see Appendix 3), three different periods of an 221 

epidemiological shift in incidence are observed: pre-vaccine, successful post-vaccine and waning 222 

immunity period.  Fig. 3 depicts time series results for infected cases under scenarios 1-3. Overall, it 223 

is clear that mumps occurs every year, regardless of vaccination or waning immunity; however, those 224 

factors control the amplitude of the epidemic and the frequency of the highest peaks driving a long 225 

term damping oscillation of large outbreaks. After 100 years the difference between the high and low 226 

of the cycle is around 25 cases. 227 

Scenario One (no vaccination = pre-vaccine era) 228 

We begin by checking model performance without vaccine. Fig. 3 (a) shows an inter-epidemic period 229 

of three years within an oscillatory pattern of mumps cases. This matches parameter values of 230 

incubation period of 13 days, infectious period of seven days and a mean age of infection of five 231 

years (all within the ranges of Table 1). This is supported by the incidence of mumps in England and 232 

Wales [27] and observations in the literature reporting cycles of 2-5 years [29, 46].  233 
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 234 

We point out that predicted cycles do not damp out during 100 years of simulations. By varying 235 

seasonality parameter of the model, including removing seasonality altogether, we observed that after 236 

a long period the model reaches an endemic state. To further reinforce the suitability of the model we 237 

considered R0 ranging from [7 - 14]. Fig. 4 (see Appendix 3) shows that increasing R0 leads to 238 

decreasing the inter-epidemic period from 5 years to 3 years. 239 

Scenario Two (up to two vaccinations and immunity is permanent = immediate post-vaccine era) 240 

Turning to the successful post-vaccine era (and assuming life-long immunity), Fig. 3 (b) and (d) 241 

show a massive decrease of mumps infections consistent with observed data 1988-2003, where 242 

waning immunity was not yet an important factor and the number of cases overall dramatically 243 

decreased due to the decreased pool of susceptibles, in turn due to vaccination. Again, this helps to 244 

confirm that the model successfully models historical data. 245 

Scenario Three (up to two vaccinations and immunity wanes) 246 

Fig. 3 (c) (resp. Fig.3 (d)) shows model prediction against observations from Scotland in the post-247 

vaccine era (2004-2016, resp. 1996-2016). Fig. 3 (c) shows pattern of mumps outbreaks from 2004 to 248 

2016 as waning immunity begins to be more relevant. The simulated data (black solid line) displayed 249 

in Fig. 3 (c) depicts patterns of mumps dynamics qualitatively similar to observed data (gray solid 250 

line). Mumps is notoriously under-reported [47] as, especially for those in whom immunity has 251 

waned, the disease is often milder (and infected do not seek medical attention). Our model has no 252 

notion of “level” of infection, therefore sub-clinical, mild, and serious infections are all counted and 253 

contribute to disease transmission. Observed data is scaled by two to compensate for under-reporting 254 

of mumps. This is a conservative estimate, based on higher uptake of vaccine in Scotland than in 255 

Germany [47].  This is discussed further in section 6.  256 

Fig. 3 (d) shows that 2005/2015 years were the dominant period reflecting the highest peaks of 257 

mumps infection. Some notable gaps are observed (2009, 2010 and 2012); the observed mumps 258 

dynamics are inherently stochastic and noisy. Fig. 3 (c,d) depicts that the simulated data for the year 259 

2016 follows the same patterns as observed data, where the number of infected start to decrease. 260 

Qualitatively, the simulation results show that even if vaccination is applied, mumps is occurring 261 

each year, where the seasonal patterns of our model depict that the infection increases rapidly over 262 

the last few months of the year and the high peak is reached early at the start of the year. This is 263 

broadly in agreement with observed data.  264 

Vaccination coverage dips in this period, but this is not the main factor leading to the resurgence and 265 

sustainability of mumps, nor is seasonality on its own (as above). We investigate the variability of 266 

vaccination coverage by ranging its value from [75 - 95], where 75% is the minimum value related to 267 

the threshold level and 95% is the maximum value of applied vaccine coverage in Scotland. Fig. 5 268 

(see Appendix 3) shows that increasing vaccine coverage leads to a decrease in the peak of infected
1
 269 

(from 1694 to 1413). This is 16%, and still produces a large number of cases. Therefore, increasing 270 

the vaccination coverage does not prevent disease occurrence. In addition, we note that all 271 

experiments (vaccination coverage ranging from [80 – 95]) settle into a ten year pattern of gently 272 

                                                 
1
 Average number of infected corresponds to the average of the highest peaks during 100 years of simulations. 
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damping oscillations (100 years of simulation), where the large oscillations are up to 2045, and 273 

thereafter the outbreaks become more and more regular in height. 274 

To further investigate the impact of waning immunity Fig. 6 depicts separately those infected-275 

unvaccinated and those infected-vaccinated against natively susceptible and modified susceptible 276 

over 100 years of temporal prediction. As expected, due to increasing levels of vaccinated individuals 277 

in the population, the number of natively susceptibles and infected-unvaccinated decreases over time, 278 

reaching a steady state of infection of around 200 individuals. Conversely, waning immunity leads to 279 

an increase in the number of modified susceptible and infected-vaccinated, settling into a ten year 280 

pattern with peaks of between 800 and 1200. Therefore, waning immunity and its effects are the 281 

dominant portion of any epidemic.  282 

Scenario Four (additional booster - up to three vaccinations and immunity wanes) 283 

Further, we consider scenario 4: the impact of increasing the period of immunity by applying an 284 

additional dose of MMR [44]. This could be similarly done by increasing immunity by increasing the 285 

efficacy of the vaccination [43]. We investigate increasing immunity duration in steps from 10 to 80 286 

years (broadly, life expectancy). Fig. 7 compares these scenarios and shows that the average of the 287 

number of infected individuals at the peak of each outbreak decreases with increasing duration of 288 

immunity, as expected.  289 

5 Sensitivity analysis 290 

The results above depend on precise parameter values, therefore we used sensitivity analysis to show 291 

that the qualitative results of periodic large outbreaks hold across the range. We identify significant 292 

parameters reproducing first the observed data, and second leading to the low level endemic state.  293 

Table 2 shows the impact on epidemic amplitude and the periodicity of damping cycles of a series of 294 

experiments during 100 years of simulation varying model parameter values for: transmission rates 295 

(β1, β2, β3), infectious period (), incubation period (),  immunity duration (, ) and vaccination 296 

rate. The values of the remaining parameters (birth rate, death rate and immigration rate) are fixed. 297 

For all analysis we used ANOVA as implemented in Minitab [48]. The full details of the analysis are 298 

in Appendix 2: as expected, only varying transmission rates and immunity duration impact on results. 299 

Increasing R0 leads to a decrease in period between large outbreaks and therefore an increase in the 300 

number of oscillations (see Fig. 8, Appendix 3). Smaller immunity durations increase the pool of 301 

susceptibles faster and therefore lead to larger and earlier epidemics. 302 

6 Discussion  303 

Our analysis shows that mumps epidemics will continue, with larger outbreaks of ~1200 every 10 304 

years as shown in Fig 6, eventually settling into an endemic state. This is despite high vaccination 305 

coverage against mumps (87- 95%) since 1988 in Scotland [28] (well above the estimated herd 306 

immunity threshold of 75-86% [14]).  307 

In this paper, we have presented the results of mathematical modelling using Bio-PEPA, identifying 308 

the impact of vaccination and waning immunity in the mumps component of the MMR vaccine. Even 309 

though vaccination has been ongoing since 1988, thus largely preventing mumps in children, our 310 

results show that waning immunity is the main factor in a repeated pattern of outbreaks. Simulations 311 

and analysis undertaken showed that waning immunity over 10 years leads to the highest number of 312 

infected and to the longest inter-epidemic period for larger outbreaks. 313 
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The first part of this study was to build a seasonal model which reproduces the patterns of the 314 

observed data in three scenarios: no vaccination, initial post-vaccine period with immunity for life, 315 

and with waning of vaccine-induced immunity as suggested by several sources [7, 8, 9, 10]. Those 316 

show that mumps is present in previously vaccinated individuals with the majority of those affected 317 

being university students. While based on Scottish data this is not a peculiarly Scottish phenomenon: 318 

for example, in the US [1], Korea [8] and the Netherlands [9] adolescent individuals were notified as 319 

infected despite high vaccine coverage. In these countries, it was observed that the majority of cases 320 

were in young adult (18 to 25 years) who have been fully vaccinated. In the US, where the first dose 321 

of MMR was introduced in 1977 and the second dose in 1990, the outbreak occurring in 2006 322 

reached 6584 cases,63% of whom received two doses of vaccine. For this country it was reported that 323 

in 1982 the incidence rate was reduced to 97% and the three year cycles observed in the pre-vaccine 324 

era disappeared. Moreover, in 2005, one year before the resurgence of the outbreak occurred in 2006, 325 

the incidence rate was damped to up to 99% where the vaccine coverage reached 91.5%. In the 326 

Netherlands, the large epidemic which occurred in 2004 led to the reintroduction of mumps as a 327 

notifiable disease. This followed its removal from the notifiable disease register in 1999 as a 328 

consequence of low outbreaks and vaccination coverage of at least one dose of MMR of at least 93% 329 

since the introduction of routine vaccine in 1987 . In Korea, the epidemic of 2013-2014 showed that 330 

99% of infected individuals aged from 13 to 18 years have been fully vaccinated. It is worth noting 331 

that Korea is not that different from other countries as in the pre-vaccine era the epidemic cycles 332 

were identified at 4 to 5 years and the mean age of infection at 4 to 6 years which shifted to teenagers 333 

in the recent outbreaks (2007 and 2013) in time when vaccination coverage rose to 90%.   334 

Waning immunity is expressed in our model by including an additional compartment of modified 335 

susceptible, which is increased by vaccinated individuals (MMR1 and MMR2) losing their immunity. 336 

We find that assuming 5 years of MMR1 vaccine-induced immunity (resp. 10 years of MMR2 337 

vaccine-induced immunity) generates simulation results consistent with more recent mumps post-338 

vaccine data from Scotland (2004-2015). In addition, as our model suggests a ten-year-long gradually 339 

damping oscillation, the following trajectory of mumps disease would show a decrease in 2016 and 340 

so on, building back up from 2020 to another high peak in the year 2025. The most recent data 341 

provided by HPS has confirmed this prediction, where the year 2016 depicts 215 cases compared to 342 

2015 which defines 836 cases. Although our estimates of the amplitude of mumps epidemics are 343 

higher than observed data, we conjecture that this can be explained by a low level of reporting. 344 

Anecdotally, cases of mumps in vaccinated individuals have much milder symptoms and therefore 345 

may be undetected [43, 47, 49, 50]..  346 

By considering different values of immunity duration (scenario 4) we can estimate the time needed to 347 

reverse the epidemic trend and eliminate mumps. This models the situation that, for example, a new, 348 

more effective, vaccine is introduced, or a third vaccine dose is introduced into the national 349 

programme. This is shown in Fig 7. Even extending immunity to 80 years, a reasonable lifespan, 350 

mumps outbreaks still occur. Only by further increasing immunity duration to 150 years eliminates 351 

mumps outbreaks, assuming no perturbations occur such as a new vaccine or new strain of mumps. 352 

It is worth noting that the basic reproductive number R0 for the pre-vaccine era is estimated at 10.5 353 

which falls in the range [7-14] as cited in literature [11, 39] and for the post-vaccine era R0 is 354 

estimated at 6 where in the literature it is quoted at [4-7] [29, 51]. Recall that R0 indicates the number 355 

of secondary infections, clearly showing that the number of doses of vaccination and immunity 356 

duration has a great impact on decreasing infectious contacts. 357 
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Cumulatively, our findings suggest that the more "unprotected" individuals (who were either never 358 

vaccinated or lost their immunity), the shorter the period between two high peaks of epidemic 359 

outbreak (note the number of cycles in Table 2 for varying values of R0). In addition, in both cases 360 

related to scenarios 1 and 3 (No vaccination and waning immunity), an earlier high peak of mumps is 361 

expected. This occurs because the pool of susceptibles is increasing faster as those vaccinated lose 362 

their immunity and move to the susceptible state (scenario 3), or the pool of susceptibles is 363 

decreasing faster when no vaccination is applied and R0 is higher (scenario 1). Clearly, controlling 364 

the number of susceptible individuals has a great impact on controlling disease. As argued by Gay 365 

[52]: to achieve elimination of an epidemic, low levels of susceptible individuals should be 366 

maintained, leading the basic reproductive number (R0) to be less than 1. We do this here by 367 

adjusting immunity duration. 368 

These conclusions illustrate an enhanced understanding of mumps disease in response to mass 369 

immunization gained through mathematical modelling. Further, our multi-disciplinary team could 370 

explore the potential impact of further vaccination on cyclic outbreaks. Our conclusion for public 371 

health services is that they should urge vaccine uptake in those eligible since a high degree of 372 

protection is offered by the vaccine overall for those under 18. Considering the possible economic 373 

cost/benefit of a third vaccine dose, it seems that while there would be an increased period of 374 

immunity, the cyclic outbreaks would continue at about 2/3 the current level, therefore this would not 375 

offer significant advantages over the present situation. The Joint Committee on Vaccination and 376 

Immunization
2
 do not consider these large outbreaks of particular concern, since there has been no 377 

formal discussion to introduce a 3
rd

 vaccine dose into the national programme. 378 

 We suggest further study with this model could include vaccination programmes targeted to those 379 

subject to waning immunity or at higher risk due to social mixing in a diverse population (as in 380 

higher education). Such a model might also include economic factors to allow the effect of targeted 381 

programmes to be more precisely evaluated. Another interesting facet would be to bring more 382 

attention to the level of immunity by analysing the vaccine/virus content and detect eventual 383 

discrepancy between vaccine strain and mumps outbreak. This might also be linked with a data 384 

science approach to analysing serology of confirmed cases. There are further opportunities to use 385 

data science to analyse other features, such as geographic distribution. These developments would 386 

allow an enhanced version of Fig. 6 showing waves of outbreaks related to waning immunity, 387 

evolution of strains of mumps, and locality. 388 
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10 Appendix 1: Bio-PEPA Model 509 

A Bio-PEPA model, illustrated below, is defined by three main components: species, functions of 510 

species dynamics and rates at which those species evolve. Modelling mumps in Bio-PEPA requires 511 

describing fully those features accordingly to the model in Fig. 2 and its description above. 512 

Rates. All rates fully described in Table 1 are reported in Bio-PEPA code, from line 1to 12. In 513 

addition, Bio-PEPA defines the parameter “location” (from line 13 and line 18). As in our model, the 514 

population is considered homogeneous, therefore all individuals belong to the same space. 515 

Seasonality is expressed by using the Heaviside function (H). As noted by Marco et al. [53]: ” 516 

Heaviside function (H) is used to switch customised behaviours on or off in the kinetic laws, this 517 

gives a binary valued function from time”. The lines from 19 to 22 code two seasons. The system 518 

moves instantaneously from the high epidemic season defined from October to May to the low 519 

epidemic season defined from June to September. 520 

Species and Functional rates (KineticLawOf). According to the compartments shown in Fig. 2, seven 521 

species are defined: S1, S2, V1, V2, E, I, R. Species carry out actions (kinetic laws) leading to 522 

increase/decrease their level (from line 24 to 40). Actions occur at a rate determined by the kinetic 523 

law. Most of these kinetic laws are simple mass action terms defined by the parameters described in 524 

the Table 1. Since species interact, the dynamics of each species may affect the level of other species. 525 

The scale of this dynamic is bounded by the functional rate specified for each species. For example 526 

the action described in line 34, related to incubation and used both by species “E” and “I”, leads to a 527 

decrease in the Exposed species (line 43) expressed by the operator “<<”, while it leads Infected 528 

species to increase using the operator “>>”. Bio-PEPA species can carry out different activities at 529 

each time step, by using the operator ‘+’. 530 

The last line of the model (line 48) defines the interaction between species, and their initial sizes. 531 

Parameters 532 

1 D_R = 0.000037; 533 
2 Beta1 =0.80; 534 
3 Beta2 =1.03; 535 
4 Beta = 0.45; 536 
5 Mu2= 0.0000028; 537 
6 Mu3= 0.000025; 538 
7 Mu1 = 0.0000021;  539 
8 Alpha = 0.05; 540 
9 Gama  = 0.167; 541 
10 imrate1 =0.07; 542 
11 Tau= 0.00034; 543 
12 Delta=Tau/2; 544 
13 sizeOutside = 110000; 545 
14 sizeLocal = 5300000; 546 
15 location world : size =5200000 , type = compartment; 547 
16 location Local in world: size = sizeLocal, type = compartment; 548 
17 location Local in world: size = sizeLocal, type = compartment; 549 
18 location Outside in world : size = sizeOutside, type = compartment; 550 
19 thigh = 4; 551 
20 tlow = 9; 552 
21 month = floor(time/30); 553 

   22 season_time = 1-H( ((month - 12*floor(month/12)) - tlow)*(thigh-(month - 12*floor(month/12))) ); 554 
   23 N = (S1@Local +E@Local + I@Local + R@Local +S2@Local   + MMR1@Local + MMR2@Local); 555 
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Kinetic Laws 556 

24 kineticLawOf BIRTH1:  Mu1 * N; 557 
25 kineticLawOf BIRTH2:  Mu2 * N; 558 
26 kineticLawOf BIRTH3:  Mu3 * N; 559 
27 kineticLawOf  MMR1_S2: MMR1@Local *Tau; 560 
28 kineticLawOf  MMR2_S2: MMR2@Local *Delta; 561 
29 kineticLawOf Death_MMR1 : D_R * MMR1@Local; 562 
30 kineticLawOf Death_MMR2 : D_R * MMR2@Local; 563 
31 kineticLawOf immigration : imrate1/10000; 564 
32 kineticLawOf S1_E: (Beta1 * S1@Local * I@Local)/N * (season_time)  565 

          + (1-season_time)*(Beta * S1@Local * I@Local)/N ; 566 
33 kineticLawOf S2_E: (Beta2 * S2@Local * I@Local)/N * (season_time) 567 

            + (1-season_time)* (Beta * S2@Local * I@Local)/N; 568 
34 kineticLawOf E_I: Alpha * E@Local; 569 
35 kineticLawOf I_R: Gama * I@Local; 570 
36 kineticLawOf Death_S1: D_R * S1@Local; 571 
37 kineticLawOf Death_I: D_R * I@Local ; 572 
38 kineticLawOf Death_E: D_R * E@Local; 573 
39 kineticLawOf Death_S2: D_R * S2@Local; 574 
40 kineticLawOf Death_R: D_R * R@Local; 575 

Species 576 

41 S1 = (BIRTH1,1) >>  S1@Local  + (S1_E,1) << S1@Local + Death_S1 << S1@Local; 577 
42 S2 = (S2_E,1) << S2@Local + Death_S2 << S2@Local + (MMR2_S2,1) >> S2@Local +(MMR1_S2,1) >> 578 

S2@Local; 579 
43 E = (S1_E,1) >> E@Local +(S2_E,1) >> E@Local +(E_I,1) << E@Local+  Death_E << E@Local; 580 
44 I = (E_I,1) >> I@Local +(I_R,1) << I@Local +   Death_I << I@Local + immigration[Outside -> Local](.)I  581 
        + (S1_E,1) (.) I+ (S2_E,1) (.) I; 582 
45 R = (I_R,1) >> R@Local+ Death_R << R@Local ; 583 
46 MMR1 = (BIRTH2,1) >> MMR1@Local  + (MMR1_S2,1) << MMR1@Local+ Death_MMR1 << ; 584 
47 MMR2 = (BIRTH3,1)>> MMR2@Local + (MMR2_S2,1) << MMR2@Local + Death_MMR2 <<  ; 585 

Model component 586 

48 S1@Local[1100000]<*> S2@Local[305500]<*>  E@Local[0]<*> I@Local[20]<*> R@Local[3018600]<*> 587 
MMR1@Local[29250] <*>MMR2@Local[276250] <*> I@Outside[100000] 588 

 589 

 590 
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11 Appendix 2: Sensitivity analysis 603 

1: Incubation period experiments 604 

The analysis per ANOVA is carried out for 14 experiments where the incubation period varied from 605 

12 to 25 days per one step day. The results indicate that at 95% of confidence, no significant 606 

statistical differences between experiments (p = 0.968) and then the null hypothesis (the means of 607 

experiments are equal) cannot be rejected. Hsu’s MCB test and Tukey test imply that varying 608 

incubation period does not affect the number of infected; however, using simulations we can look at 609 

cycles. 100 years of simulations show that by increasing the incubation period the periodicity 610 

changes from 8 to 11 cycles. 611 

Analysis 2: Infectious period experiments 612 

Varying the infectious period from 6 to 9 days per one step day, indicates no significant statistical 613 

differences ( p= 0.114). However, the results validated by the Tukey test are in contrast with the 614 

Hsu’s MCB test results. While the former shows no significant differences, the latter shows 615 

significant differences between an infectious period of 6 days (1
st
 experiment) and the one of 9 days 616 

(4
th

 experiment). In fact, the analysis shows clearly that the mean of the 4
th

 experiment (2739) is 617 

higher than the others (1808, 2113, 2276). In addition the simulation results show that increasing the 618 

infectious period increases the amplitude of the epidemic where the main gap is depicted at the first 619 

peak. 620 

Analysis 3: Transmission rates experiments 621 

Transmission rate experiments are based on changing the basic reproductive number R0 from 4 to 11. 622 

This equates to varying the high transmission rate from 0.44 to 1.83 and the low transmission rate 623 

from 0.19 to 0.81. ANOVA analysis shows that experiments are not statistically significantly 624 

different (p = 0.36). However, simulations over 100 years indicate that increasing the basic 625 

reproductive number leads to a decrease in periodicity. As R0 varies from 4 to 11 the period of cycles 626 

per 100 years of simulation varies from 14 to 6 and the number of cycles varies from 7 to 16 cycles. 627 

During simulations, it was observed that the first epidemic tends to occur sooner with increasing 628 

amplitude as R0 increases.  629 

      Analysis 4: Immunity duration experiments 630 

The analysis per ANOVA of the different values of immunity duration varying from 10 to 80 years, 631 

reveals statistically significant differences. In particular, the analysis depicts four different groups. 632 

The first group includes only one experiment (immunity duration = 10 years).  The second group 633 

includes two experiments (immunity duration = 20 and 30). The third group includes three 634 

experiments (30, 40 and 50). The fourth group includes five experiments (40, 50, 60, 70 and 80), 635 

where the 2
nd

 group overlaps the third group with one experiment (30) and the third group overlaps 636 

the fourth group with two experiments (40, 50). In ANOVA, the experiment which does not share 637 

any group is considered significantly different. This implies that experiment one (10) is significantly 638 

different from all others. This is because small immunity duration tends to increase the pool of 639 

susceptibles faster and the epidemics occur sooner with higher amplitude. Moreover, this analysis 640 

supports the idea that immunity duration has a major effect on the epidemic dynamics, while varying 641 

incubation period, infectious period and transmission rates do not show such large impact on 642 

epidemic curves. 643 
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Analysis 4: Vaccination coverage experiments 644 

Varying vaccination coverage from 75% to 95% in steps of 5 percentage points, indicates at 95% of 645 

confidence no significant statistical differences (p= 0.648) between experiment and H0. The results 646 

validated by Tukey test are similar to those with Hsu’s MCB test results which imply that varying 647 

vaccination coverage does not affect the number of infected; this fact is confirmed by simulations 648 

performed where we can look at cycles. 100 years of simulations show that by increasing the 649 

vaccination coverage the periodicity does not change significantly. From 80% to 95% the simulations 650 

detect 10 cycles where at 75%, the periodicity of cycles is at 9 years. These findings support the 651 

conclusions of DeStefano et al [15] and Donaghy et al [14].   652 
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12 Appendix 3: Mumps data in England and Wales  674 

Table 1. Model parameters 675 

Parameter Description Value (day) Formula 

B Birth rate 3 10
-5

 Number of birth / Total population 

 Death rate 3.7 10
-5

 Number of death / Total population 

1 No-vaccination rate 2.1 10
-6

 Birth rate -(μ2+μ3) 

μ2  Vaccination rate (MMR1) 2.8 10
-6

 Birth rate * VC1 

μ3 Vaccination rate (MMR2) 2.5 10
-5

 Birth rate * VC2 

 Waning immunity rate (MMR1) 3.4 10
-4

 1/immunity duration of MMR1 

 Waning immunity rate (MMR2) /2 1/immunity duration of MMR2 

 

1 

2 

3 

Transmission rate for : 

- high season and native susceptible 

- high season and modified susceptible 

 - low season 

 

0.7 

0.9 

0.4 

 

 

 = R0 *  

T
3
 Inter-epidemic period [2-5] 

T = 2 *    
 

 
 

 


    [42] 

where A: mean age of infection 

1/ Incubation period [12-25] 1/infection rate 

1/ Infectious period [7-9] 1/recovery rate 

 Immigration rate 0.07 Immigration              

 676 

 677 
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Table 2. Sensitivity analysis summary 678 

Incubation period                             

Values 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Amplitude 2357 2316 2229 2123 2020 2309 2280 2153 2149 2132 2020 1968 1909 1927 

Period of Cycles 8 9 9 9 9 9 10 10 10 10 11 10 11 11 

Infectious period         

Values  6 7 8 9 

Amplitude  1808 2132 2276 2739 

Period of Cycles  10 10 11 10 

Basic reproductive number             

Values  4 5 6 7 8 9 10 11 

Amplitude  1690 1708 2132 2134 2256 2320 2289 2407 

Period of Cycles  14 12 10 9 9 8 7 6 

Immunity duration               

Values  10 20 30 40 50 60 70 80 

Amplitude  1873 1245 909 668 555 440 371 306 

Period of Cycles  10 8 7 7 6 5 5 4.5 

Vaccination coverage 

   Values  75 80 85 90 95 

Amplitude (100 years peaks) 1694 1660 1552 1536 1413 

Amplitude (10 first peaks) 1602 1587 1547 1504 1410 

Period of Cycles  9 10 10 10 10 
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Fig. 1 Confirmed mumps cases, Scotland 1988-2016 and MMR vaccine coverage 679 

Fig. 2 Mumps structure 680 

Fig. 3 Predicted incidence of mumps from 2004 to 2016: : (a) Scenario 1- No vaccination, (b) Scenario 2- 681 
Vaccination without waning immunity, (c) Scenario 3- Vaccination with waning immunity, (d) ) Predicted-682 
Observed data for mumps from 1996 to 2016.. 683 

Fig. 4 Inter-epidemic period against basic reproductive rate R0 for pre-vaccine era 684 

Fig. 5 Infected against vaccination coverage 685 

Fig. 6 The effect of waning immunity: Left axis: Infected-unvaccinated, Infected-unvaccinated/vaccinated. 686 
Right axix: natively susceptible and modified susceptible. 687 

Fig. 7 Infected against duration of immunity 688 

Fig. 8 Inter-epidemic period against basic reproductive rate R0 for post-vaccine era 689 

Fig. 9 Confirmed mumps cases, England and Wales and MMR vaccine coverage 690 

 691 
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