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Resumen.- El objetivo del estudio fue evaluar el efecto de 4 niveles de proteina (20, 30, 40 y 50%) vy lipidos (2, 4, 8 y 16%)
sobre la magnitud y duracion de la accion dindmica especifica (ADE) y la excrecion nitrogenada en subadultos del camarén
blanco Litopenaeus vannamei usando una cdmara metabdlica controlada por computadora (respirémetro de flujo continuo).
Se determind la tasa de consumo de oxigeno a intervalos de 1 hora hasta que la tasa de consumo de oxigeno postprandial
regreso al nivel de pre-alimentacién. Los camarones alimentados con todas las dietas tienen una tasa de respiracion
significativamente alta después de la alimentacion debida a la ADE. El consumo de oxigeno, el coeficiente de ADE y la
magnitud de ADE aumentd notablemente con el incremento del contenido de proteina en la dieta. Los camarones alimentados
con el 20% de proteina en la dieta tuvieron el nivel mas bajo de respiracidn de pre y post-alimentacion y la mas baja ADE.
Un cambio significativo en el coeficiente de ADE relativo a la energia digestible no fue demostrado para cada uno de los
niveles de lipidos. Adicionalmente, la excrecidn nitrogenada aumento con el incremento del nivel de proteina en la dieta,
pero no con el incremento del nivel de lipidos. Al estimar la ADE de subadultos se encontré que la tasa metabdlica estandar
(SMR) fue menor que la reportada para juveniles y postlarvas de L. vannamei.
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Abstract.- The study aimed to evaluate the effect of 4 levels of dietary protein (20, 30, 40 and 50%) and lipids (2, 4, 8 and
16%) on the magnitude and duration of specific dynamic action (SDA) and postprandial nitrogen excretion in the subadult
white shrimp Litopenaeus vannamei using computer-controlled metabolic chambers (continuous-flow respirometer). We
determined the oxygen consumption rate at 1 h intervals until the postprandial oxygen consumption rate returned to the
pre-feeding level. Shrimp fed all the diets had significantly higher respiration rates after feeding due to the SDA. Oxygen
consumption, the SDA coefficient and the SDA magnitude increased notably with increasing dietary protein content. Shrimp
fed the 20% protein diet had the lowest levels of pre- and post-feeding respiration and the smallest SDA. A significant
change in the SDA coefficient relative to each lipid level was not demonstrable. Additionally, nitrogenous excretion increased
with an increase of dietary protein but not with an increase of lipid level. By estimating the SDA of subadults, the response
to standard metabolic rate (SMR) was lower than that reported for juveniles and postlarva white shrimp.
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INTRODUCTION

The specific dynamic action (SDA) reflects the metabolism of
protein, lipids and carbohydrates, and the deamination and

and it manifests as an increase in oxygen uptake which usually
reaches peak values within 4 h of feeding and may remain

synthesis of proteins are the greatest contributing factors
(Beamish & Trippel 1990). In crustaceans, the SDA has been
described in a number of species including isopods, amphipods
and decapods (Whiteley et al. 2001, McGaw & Curtis 2013),

elevated for over 48 h (McGaw & Reiber 2000, Mente et al.
2003). In decapod, postprandial rate of oxygen consumption
(MO,) canincrease 2-4 fold over resting metabolic rate (Penney
et al. 2016) and can remain raised for between 12 and 72 h
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(McGaw & Curtis 2013). Protein utilization can be determined
by the rate of oxygen consumption and ammonium excretion
(Frisk et al. 2013), which has been shown to vary with species,
dietary composition, ration level, food and animal size (McGaw
& Curtis 2013). In relation to the level of lipids (8.5t0 10.5 g
kg™) in the diet, Toledo et al. (2016) have found that there are
no significant differences in the growth performance of shrimp.

During fasting, the ammonium excretion rates are low and
are usually associated with food retention and growth
(Lyytikdinen & Jobling 1998). There are some studies on the
influence of dietary and non-dietary factors on the SDA in L.
vannamei, such as protein content and ammonia excretion
(Rosas et al. 1996, 2001a), growth rate (Nuno 1996) and
water salinity (Du-Preez etal. 1992, Rosas et al. 2001b), but
the results were fragmentary.

The energy expended in mechanical and biochemical
processes, expressed as the SDA, and post-prandial nitrogen
excretion (PPNE) have been related to the growth rate of shrimp.
In shrimp, it has been found in both post-larvae and juveniles
thata lower SDA and PPNE are related to better shrimp growth
(Rosas et al. 1996, Taboada et al. 1998). In other aquatic
organisms, it has been found that excessive protein in the diet
causes high proportions of protein and energy to be used for
excretion (Wang etal. 2016). A significant amount of energy
consumed by shrimp is lost as nitrogenous excretory products.
The ammonia excretion of penaeids has been studied for L.
vannamei (Racotta & Hernandez-Herrera 2000, Lin & Chen
2001, Li etal. 2007, 2016). The protein content of a meal can
influence the SDA, and because protein is the most expensive
dietary component in aquaculture, there is a great interest in the
relationship between the SDA and the protein content of the
diet. Cost-effective shrimp production requires optimal dietary
protein-to-lipid ratios to minimize amino acid catabolism and
maximize anabolism (Cho 1992). Furthermore, protein
requirements change with shrimp size and its stage of growth
(Lim & Sessa 1995), with young shrimp requiring more protein
compared with larger shrimp on maintenance or production diets
(Hilton & Slinger 1981). Consequently, despite the extensive
research on optimal dietary protein-to-lipid ratios in various
cultured shrimp species (Carter & Mente 2014), conflicting
results still exist.

The objectives of this study were to evaluate the effect of
different levels of protein and lipids in the diet on feeding
metabolism in shrimp, to test whether the postprandial metabolic
cost increases with increased protein and lipid levels in the diet
of L. vannamei subadults.
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MATERIALS AND METHODS

SHRIMP COLLECTION AND ACCLIMATIZATION

Intermolt subadult white L. vannamei (weight 11.0 + 2.6 g)
shrimp were obtained from a commercial farm in Sinaloa state,
Mexico (23°10°43.37”’N; 106°20°34.46°’W). The animals
were acclimated to laboratory conditions for at least 7 days.
The shrimp were maintained in 8 cylindrical plastic tanks (600
L) at salinity of 35 + 1.5 ups, with a 12 L:12 D photoperiod,
within the optimal temperature range for growth (28 + 0.5°C)
for white shrimp (Ponce-Palafox et al. 1997) and within an
aerated recirculation system. The stock shrimp were fed twice
daily (2% biomass/day) with a diet containing approximately
35% protein and 6% lipid (commercial shrimp pellets). The
animals were fasted for 3 d prior to supplying them with the
protein and lipid diets. This period allowed all food to be
evacuated from the digestive system but avoided the large-scale
physiological changes associated with starvation (Wallace
1973).

DIET FORMULATION AND PREPARATION

For the protein and lipid level experiments, two series of
experimental dry diets (Table 1) were isoenergetic, containing
20, 30, 40 and 50% protein (15.60 to 16.50 MJ of estimated
DE kg*) and 2, 4, 8 and 16% lipid (15.30 to 16.56 MJ of
estimated DE kg™?).

The diets were prepared at the Coastal Bioengineering Lab,
National School of Fisheries Engineering, Autonomous
University of Nayarit in San Blas, Nay, Mexico by first mixing
all the finely ground dry ingredients together for at least 30 min
in a Hobart Commercial Mixer (Hobart Manufacturing
Company, Troy, OH, USA). The dry mashes were then steam
pelleted using a Californiamodel CL 2 Laboratory pellet mill.
Thereafter, the pellets were dried immediately in a custom-made
vertical cooler. Subsequently, the pelleted diets were kept in
air-tight containers at 4°C until required.

Proximate analysis was performed using standard methods
(AOAC 2000). Prior to experimentation in the metabolic
chambers and during the trials, shrimp were fed for 10 days in
the stock tanks with the corresponding diet.

OXYGEN CONSUMPTION

Thirty-five intermolt subadult shrimps were utilized from each
treatment to analyze individual oxygen consumption in a
continuous-flow respirometer. Oxygen consumption (MO,, mg
0, kg™ h'') was determined according to the method described
by Li et al. (2007). Every hour during a 24 h period, the O,
concentration (mg L) in the metabolic chamber and control
water was measured.



MO, = ((0,-0,+0,) - V) - (WT)* (Ec.1)

where O is the initial oxygen (mg L™*); O, is the final oxygen
concentration in the shrimp container (mg L™); O, is the final
oxygen in the control (mg L?); V is container volume (L); W is
weight of the shrimps (g) and T is the duration (h).

Six metabolic chambers (18.5x 6.5x 15.5 cm), each with a
capacity of 1,864 mL, were supplied from a flow-through
respirometry system modified of Chakraborty et al. (1992).
The water was matched to that of the stock holding conditions.
The water quality in the recirculation system was controlled
using aeration, solid filtration and charcoal filtration. The

metabolic chambers were partitioned internally using a stiff mesh
sheet so that no shrimp could transfer between the upper and
lower sections. The capacity of the upper active chamber was
900 mL. Water flow for each chamber was calculated from the
volume of water that passed through the chamber (the median
water flow was 3.45 + 0.27 L h™). A small feeding port in the
lid allowed the introduction of the diet. The lower chamber could
be evacuated via a valve which allowed feces and water to be
collected for determination of ammonia excretion content. The
metabolic chambers were managed according to the protocols
of Chakraborty et al. (1992).

Table 1. Formulation and proximate composition of experimental diets / Formulacién y composicion proximal de las

dietas experimentales

Ingredient Protein (%) Lipids (%)

20 30 40 50 2 4 8 16
Fish meal' 19 25.2 32 35 28 28 28 28
Soybean meal® 13 15 18 19 14 14 14 14
Shrimp meal’® 6 6 6 6 3 3 3 3
Corn meal* 4 2 2 2 2 2 2
Fish oil’ 5 5 5 5 0.5 1 4 6
Soybean oil® 2 2 2 2 2 2 2 2
Starch’ 453 39.1 29.3 26.3 44.8 443 413 39.3
Vitamins® 2 2 2 2 2 2 2 2
Minerals’ 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
C vitamin'® 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Binder!! 2 2 2 2 2 2 2 2
Crude protein (gkg!) 2022 309.1 3984 4998 2951 2975 3012 3079
Crude lipid (g kg™") 69.1 67.3 66.7 65.1 21.8 39.8 81.6  159.1
Ash (gkg™) 56.3 65.3 75.1 87.8 75.7 57.4 65.2 50.5
DE (MJ kg™) 1560 16.04 1570 1650 1532 1530 16.12  16.56
DP* 2840 2994 3177 3520 2706 2715 280.1 2863
DP:DE* 1821 18.66 2023 2133 17.66 17.74 1738  17.29

Fish meal (Peruvian): crude protein 640 g kg, crude
lipid 87 g kg'* (dry weight basis)

2Soybean meal (defatted): crude protein 465 g kg, crude
lipid 13 g kg?

3Shrimp meal crude protein 415 g kg, crude lipid 185 g
kg? (dry weight basis)

“Corn meal crude protein 456 g kg, crude lipid 65 g
kg? (dry weight basis)

°Kindly provided by Guangdong Yuehai Feed Group
Co. Ltd (Zhanjiang, Guangdong, China)

®Kindly provided by Guangdong Yuehai Feed Group
Co. Ltd (Zhanjiang, Guangdong, China)

Starch

8Vitamin g kg™ premix: premix: thiamin HCI 1.5, riboflavin
9.0, pyrodoxine HCI 3.0, DL Ca-Pantothenate 15.0,
nicotinic acid 15.0, biotin 0.15, folic acid 0.54, Vitamin

B12 0.006, choline chloride 300.0, inositol 15.0,
menadione 6.0, Vitamin Aacetate (20 000 1U g)1) 15.0,
Vitamin D3 (400000 1U g)1) 0.006, DL -alphatocopherol
acetate (250 IU g)1) 24.0, L-ascorbyl-2-
polyphosphate(25%) Active C, 0.067, Alpha-cellulose
595.731

°*Mineral g kg* premix: cobalt chloride 0.004, cupric
sulphate pentahydrate 0.250, ferrous sulphate 4.0,
magnesium sulphate heptahydrate 28.398,
manganous sulphate monohydrate 0.650, potassium
iodide 0.067, sodium selenite 0.010, zinc sulphate
heptahydrate 13.193, filler 53.428

10C vitamin, “*Binder

*Digestible protein (DP) and digestible energy (DE)
were calculated using published from digestible
coefficients (Cousin 1995)
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EXPERIMENTAL PROTOCOL

Stock shrimp were starved for 24 h before being transferred to
the respirometers. The shrimp were blotted with absorbent
paper to remove excess moisture before being individually
weighed and placed into the metabolic chambers. Once
installed, the water flow was reinstated and data collection was
commenced, with the respiratory rate being logged every hour.
The metabolic chambers were left without handling for 24 h to
allow the shrimp to recover from handling stress and to adapt
to the chambers. Of the 6 chambers available, one was always
used as a control and contained no shrimp.

Prior to all experiments, data were collected for a period of
24 h, during which the shrimp were unstressed and unfed. This
allowed the determination of the minimum resting respiratory
rate for each shrimp, which was subsequently used in calculating
the parameters of the SDA.

The resting metabolic rate (post-absorptive, minimal activity)
was recorded for a 3 h control period. The shrimp were then
fed a meal, and all had finished feeding by the time the first
postprandial oxygen consumption reading was completed.
Oxygen consumption was recorded until it returned to pre-
feeding levels. For each experiment, the following parameters
were calculated: a) the time to reach peak oxygen consumption
following feeding, b) the scope of the SDA, c) the duration of
the SDA response, and d) the SDA of each animal in kJ (as a
function of individual mass).

For each diet, feeding commenced on the first morning and
was always carried out between 10:00 and 11:00 a.m. The
water flow to the chambers containing shrimp was turned off,
and the bung in the feed port was gently removed. Individually
weighted pellets of approximately 40 mg were dropped one at
atime into the chamber until either the whole meal was consumed
or a simple small pellet remained uneaten. The flow was
reinstated and the fecal traps were immediately flushed to remove
uneaten food and feces. Some shrimp did not feed well in the
metabolic chambers, and data from these were discarded. In
all, a total of 30 shrimp gave satisfactory SDA responses, in
addition to five sham results.

NITROGEN EXCRETION

Nitrogen excretion of unfed and fed animals was measured to
assess postprandial nitrogen excretion (PPNE). Water samples
were taken every 1 h from each chamber. Metabolism chamber
6 held no shrimp and was used as the control chamber to
measure the background ammonia in the system water. Nitrogen
excretion in the form of ammonia was measured as the total
ammonia in the water using the indophenol and azo-dye
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colorimetric methods (Rodier 1989). During fasting, a 5 ml water
sample was retrieved from the respirometer immediately before
the waiting period started, again immediately before the
measuring period ended, at MMR. This procedure was repeated
2, 10, 20, and 35 h post feeding and when the oxygen
consumption rate had returned to SMR.

For each experiment, the following parameters were
calculated: total ammonia nitrogen excretion (TAN) (ug-atom
N kg* h), analyzed standard TAN excretion rate (STR),
maximum fasting TAN excretion rate (MTR), postprandial peak,
factorial postprandial scope (postprandial peak divided by
STR), time to peak (TTP) (h) and duration (h) (Frisk et al.
2013).

DATA ANALYSIS

We quantified standard metabolic rate (SMR), maximum
metabolic rate (MMR), the SDA of each animal in kJ (as a
function of individual mass), the scope of the SDA - maximal
oxygen consumption (peak MO,) divided by the basal pre-
feeding rates (RMR), postprandial metabolic peak (the maximum
peak oxygen consumption induced during feeding), factorial
scope of that peak (postprandial peak divided by SMR), time
to peak (TTP), duration of the SDA response - until oxygen
dropped back to pre-feeding levels, the SDA calculated as the
integrated oxygen cost in excess of SMR for the duration of the
SDA, and the SDA coefficients were calculated by dividing the
SDA by the energy of the diet (kJ) (Grigoriou & Richardson
2008, Frisk et al. 2013). Oxygen consumption rates were
converted to units of energy using a standard oxycalorific
conversion: 1 ml 0,=48 cal or 20.1 J (Elliott & Davison 1975,
Wells & Clarke 1996).

STATISTICAL ANALYSIS

As previously described by Ross & McKinney (1998), there
is variability in the raw data. The underlying trend can, however,
be revealed by processing the raw data using a smoothing
routine. The data from these experiments were reprocessed
using a 42 twice-running median technique (Velleman & Hoaglin
1981). Integrals of area under curve (AUC) and curve fittings
were performed using Table Curve 2D version 5.5 software
(Systat Software Inc., Chicago, Illinois, USA). Oxygen
consumption data for the shrimp in different treatments were
evaluated with analyses of variance (ANOVA) and covariance
(ANCOVA). Percentages were arcsine transformed (Morman
2014). If significant differences were detected (P < 0.05) among
the means, Tukey’s test was applied.



REsuLTs
MO,

Increasing the protein level from 20 to 50% increased the
standard metabolic rate (SMR) from 217.9 to 258.2 mg O,
kg™ h?, while the maximum metabolic rate (MMR) increased
approximately 50% (from 308.2 to 586.8 mg O, kg™ h*, Table
2). Although the protein level affected the kinetics of the SDA,
subadult white shrimp displayed a typical response atall protein
levels: MO, increased rapidly followed by a slow decline. The
change in the oxygen consumption (MO,) is shown for each
dietary protein level in Figure 1. The postprandial SMR
increased by 1.41 to 2.72 times that of the pre-prandial SMR
of shrimp. The postprandial peak of MO, was significantly
higher at the 50% protein level than at 40, 30, and 20% (Table
2) protein. As a result of the higher SMR at 50%, the factorial
postprandial scope at 40 and 50% tended to be larger than at
30 and 20%. The TTP was significantly different between 20%
and the other treatments, with the value at 20% being the shortest
(2.2 h). The duration of the SDA was significantly lower in 20
and 30% protein (13 and 15 h, respectively) than in 40 and
50% (20 and 21 h, respectively). Differences in the total
metabolic expenditure on SDA were observed between 20%
and other treatments; there were significant differences between
the SDA coefficients of 20 to 30% and 40 to 50%. The SDA
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magnitude increased significantly with dietary protein levels. The
values for the SDA magnitude ranged from 911.1 mg kg™ with
20% dietary protein to 1,788.1 mg kg* with 50% protein
content. The SDA coefficient was significantly correlated with
the protein content of the diet and increased from 20 to 30%
and 40 to 50% dietary protein. The mean SDA coefficients
with 20, 30, 40 and 50% dietary protein were 2.7, 5.3, 11.2
and 11.5, respectively.

The effects of different dietary lipid levels on the SDA are
summarized in Table 3. The metabolic rate of unfed L.
vannamei was between 210 and 266 mg kg h* at different
dietary lipid levels. The metabolic rate of fed animals increased
to between 1.6 and 2.3 times that of the unfed animals. The
SDA coefficient was between 5.7 and 7.9%, although the
differences were not statistically significant.

NITROGEN EXCRETION

The STR was smaller at 20% than at the 30 to 50% protein
level, but no significant difference was observed between 30,
40 and 50% (Table 2). The MTR followed the same pattern as
the STR. The postprandial course of TAN excretion was
essentially in line with the course of MO, with an initial steep
increase followed by a slow decline. The postprandial peak of
TAN excretion at 20% was significantly lower than others

SouUeUJUIBLL

7

8 9 10 11 12 13 14 1I5

Time (h)

Figure 1. Post-prandial change in oxygen consumption rate in L. vannamei fed diets containing different levels of protein
/ Cambio post-prandial de la tasa de consumo de oxigeno en L. vannamei alimentado con dietas que contienen diferente

nivel de proteina
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Table 2. Measurements of postprandial rate of oxygen consumption (MO,) and ammonia excretion (TAN) in L. vannamei
fed diets differing in protein contents / Medidas del consumo de oxigeno (MO,) y excrecién de amonio (TAN) en L.
vannamei mantenido con dietas con diferente nivel de proteina

Protein (%)

ltem 20 30 40 50
MO,
SMR (mg O, kg'h™) 217.946.5° 234.5+6.3" 242.1+8.7° 258.2+7.7°
MMR (mg O, kg'h™) 308.2+12.3° 543.2+18.2° 5723+14.3°  586.8+12.7°
ASMR (%) 141.4£1.5° 222.2+43.1° 226.9+3.5° 227.3+3.4°
Metabolic scope 2.0£0.6° 2.97+0.52* 3.110.75 3.14+0.82°
Postprandial peak 4282+15.7° 7274+20.4°  7843+17.2°  811.8+14.9°
ASMR maximum (%) 195.4+3.9° 297.5+4.8° 311.143.7° 314.4+3.9°
Postprandial scope 1.33+0.12° 1.34+0.10° 1.37+0.10° 1.38+0.11°
Time to peak (TTP, h) 2.240.1° 3.0+0.2° 3.0£0.1° 3.0£0.2°
Duration (h) 13.0£1.5° 15.0+1.5° 20.0£1.5° 21.0£1.5°
Magnitude (mg kg’ 911.1+14.8"  1421.4£19.4°  1623.2421.0° 1788.1+33.1¢
SDA (kJ) 0.17+0.008* 0.230.005° 0.26+0.003°  0.28+0.005
SDA Coefficient 2.7+1.2° 5.3+1.9° 11.241.3° 11.5+1.4°
TAN
STR (ug-atém N kg'h™) 3.64+1.12° 6.92+1.43° 7.0442.25° 7.00+2.08°
MTR (pg-atom N kg'h™") 5.95+3.01° 18.07+4.87° 18.85+9.92°  18.95+9.37°
ASTR (%) 163.46+5.0° 261.13+8.0°  267.76+7.5°  270.7 0+5.3°
Scope 2.92+0.9° 3.710.6* 5.15+0.7° 6.85+0.9°

10.63+4.92°  26.18+27.72°  35.7049.12%¢  41.73+12.92°
201.6848.3°  378.32+11.2°  507.1+12.1°  684.80+11.9¢

Postprandial peak (ug-atom NH, kg'h™")
ASTR maximum (%)

Postprandial scope 1.78+0.4" 1.39+0.5" 1.96+0.3° 2.2140.3°
Time to peak (TTP, h) 1.5+0.4° 1.5+0.3° 2.0+0.4° 2.0+0.2°
Duration (h) 12+1.5° 13+1.5° 18+1.5° 19+1.5°

Magnitude (mg kg™) 0.3240.05° 1.06+0.45" 1.1940.76° 1.89+0.94°
SDA (kJ) 7.95+1.1% 29.64+4.8° 26.29+3.9° 46.99+6.8°
SDA Coefficient 0.20+0.02* 0.37+0.06° 0.38+0.04° 0.60+0.08°
MTR/SDA (%) 74.8 60.9 71.7 403

MO,: oxygen consumption; TAN: ammonia-N excretion. Different superscripts in each row indicate significant differences
among treatments (P < 0.05)

DiscussioN
Oxygen consumption was measured in fasted and fed subadult

treatments. However, when comparing postprandial scopes, no
differences were apparent between 20 and 30%. At 20 and

30%, the TTP of TAN excretion was significantly shorter than
at the 40 and 50% protein level. The TTP differed between
MO, and TAN excretion, where TAN excretion peaked first.
Similarly, the duration of elevated TAN excretion was shorter
than the duration of SDA at all treatments.

Diets containing different lipid levels had an increase in
nitrogen excretion rates of between 1.61 to 2.08 times that of
the unfed animals (Table 3). The energy lost varied from 33.25
J day* with 16% lipid diet to 22.67 J day™* with 2% lipid diet,
suggesting a decrease inenergy loss with increasing dietary lipid.
The PPNE decreased with dietary lipid level, although the trend
was statistically significant at 16%.
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shrimp. Those fed the 20% protein diet had lower levels of
prefeeding oxygen consumption than shrimp fed either of the
30 to 50% diets (Table 2). The shrimp fed the 20% diet were
obtaining energy from a substrate that requires less oxygen to
metabolize. Themean SMR from subadults fed a diet containing
30 to 50% protein (234.5 to 258.2 mg O, kg™ h*, respectively)
was lower than the range reported for SMR (350.0 to 600 mg
0, kg™*h?, respectively) in juvenile L. vannamei (Rosas et al.
2001a). The SMR of subadult shrimp were 1.5 to 2.3 less than
that of juveniles with diets of 30 to 50% protein, respectively.
The peak postprandial MO, for subadult shrimp was 428.2 to
811.8 mg O, kg™ h'* for 20 to 50% dietary protein, respectively,
which represents postprandial increases of 195 to 314% above



Table 3. Measurements of postprandial rate of oxygen consumption (MO,) and ammonia excretion (TAN) variablesin L.
vannamei fed diets differing in lipid contents / Medidas del consumo de oxigeno (MO,) y excrecién de amonio (TAN) en L.
vannamei mantenido con dietas con diferente nivel de lipidos

Lipid (%)
Item 2 4 8 16

MOZ
SMR (mg O, kg'h™) 265.6+8.3" 258.846.0° 235.7+5.8" 229.943.9
MMR (mg O, kg'h™") 42831411.7* 437.66+13.6° 456.60+12.5° 478.50+17.9°
ASMR (%) 161.3+6.1° 168.9+4.9° 193.8+8.1° 210.9+9.5°
Metabolic scope 2.46£0.8" 2.22+0.9° 3.32+0.7° 3.03+0.6°
Postprandial peak 654.2+13.4° 575.1416.7° 695.9+18.8° 687.6+12.9°
ASMR maximum (%) 246.3+5.4° 274.1+7.1° 269.0+8.3 236.9+8.7"
Postprandial scope 1.53+0.2% 1.52+0.6" 1.52+0.5° 1.49+0.8"
Time to peak (TTP, h) 3.0£0.5° 3.0£0.5° 3.0£0.5° 3.0+£0.5°
Duration (h) 10£1.0° 101.0% 9+1.0° 11£1.0°
Magnitude (mg kg™ 1526.0+31.8° 1576.9+22.6° 1585.2423.2° 1534.1435.2°
SDA (kJ) 0.23+0.01° 0.24+0.02° 0.28+0.04° 0.29+0.03
SDA Coefficient 6.1+2.8 7.941.0° 7.7+4.1° 5.7+43.7°

TAN
STR (pg-atéomN kg'h™) 9.41+4.52° 9.69+5.14* 8.59+4.62* 5.00+3.08°
MTR (pg-atémN kg 'h™) 13.1443.31° 17.86+5.92° 13.67+49.12° 10.87+4.52°
ASTR (%) 139.26+3.5° 141.54+4.6° 162.1545.6° 129.78+3.7°
Scope 2.17+0.3 2.24+0.2° 2.330.5° 2.13£0.7*
Postprandial peak (pg-atomN kg'h)  42.06+11.53 44.0645.09° 34.00+7.61° 27.7149.29*
ASTR maximum (%) 216.72+10.1° 223.8148.6° 232.96+7.9° 213.12:8.2°
Postprandial scope 1.82+0.5% 1.58+0.3% 1.43+0.2% 1.64+0.2%
Time to peak (TTP, h) 2.0+£0.5° 3.0+0.5° 3.0+0.5° 3.0+0.5°
Duration (h) 9+1.0° 9+1.0° 8+2.0° 10£1.0°
Magnitude (mg kg™ 0.91+0.23° 1.12+0.21° 1.26+0.38° 0.53+0.09"
SDA (kJ) 22.67+1.7° 27.83+1.9° 31.3242.1° 33.25+0.9°
SDA Coefficient 0.32+0.07° 0.33+0.05° 0.34+0.09* 0.39+0.01°
MTR/STR (%) 100 100 75.7 72.5

MO,: oxygen consumption; TAN: ammonia-N excretion. Different superscripts in each row indicate significant differences among

treatments (P < 0.05)

the SMR. This is smaller than other species (up to 514%
increase) such as Penaeus monodon (Du-Preez et al. 1992).
Pascual et al. (2004) determined the post-prandial high oxygen
consumption in juvenile shrimp fed 15% protein. Once subadult
shrimp were fed, oxygen consumption increased, reaching a
peak 2.2 to 3.0 h after feeding for the 20 to 50% protein level;
in juveniles, the peak occurred at 1 and 2 h (Pascual et al.
2004) after feeding with 15 to 40% dietary protein. Generally,
the time to peak reached in subadult shrimp was higher than in
juveniles at one hour. Despite the fact that the quantity and
quality of food supplied to juvenile shrimp in the studies of Rosas
etal. (2001a) and Pascual etal. (2004) is different and higher
feed rate, there is a tendency of the parameters studied to be
lowest in subadult

The method of estimating SDA varies among studies and
depends on the respirometry system and the SMR calculation
method (Eliason et al. 2007). Accurate estimates of SDA

require a separation of metabolism associated with activity and
stress from that associated with feed intake (Brett & Groves
1979). This may also result in an overestimation of the SDA in
the case of shrimp.

Findings obtained with several species of shrimp (Rosas et
al. 1996) and L. vannamei (Rosas et al. 2001a) at postlarve
and juvenile early stages showed that proteins ingested through
the diet have an effect on the SDA, showing that diets with high
protein levels could result in a higher metabolic cost (Taboada
et al. 1998), most likely because more protein is being
synthesised from the meal at the cellular level. There are no
studies that assessed the effect of diet on both the SDA and
postprandial ammonia using the same group of subadult shrimp.
However, in this study, we found that more advanced life stages
of shrimp, the subadults, exhibit the same pattern of excretion
of nitrogen. This is because nitrogen metabolism in white shrimp
is akey factor in the SDA because the deamination and synthesis
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of protein are probably the greatest contributors (Rosas et al.
1996). In subadult shrimp fed with a high protein level (50%),
the SDA was 165% higher than that obtained in shrimps fed
with a diet containing a low protein level (20%) (P < 0.05). In
subadult shrimp, the SDA was 1.6 times lower (this work) than
in juveniles (Rosas et al. 2001a).

Postprandial nitrogen excretion is a measure of excreted
ammonia of alimentary origin in shrimp; it can be associated
with the SDA through the STR/SDA ratio. The STR in the
SDA (STR/SDA) is lower in subadult shrimp (40.3%) fed
diets containing high protein (50%) in comparison with shrimp
fed diets containing lower protein levels (60.9 to 74.8%).
These results confirm that the metabolism of L. vannamei
subadults, similar to juvenile shrimp (Rosas et al. 2001a), is
controlled by dietary protein levels. The prefeeding ammonia
excretion rate was significantly lower for shrimp fed the 20%
diet (Table 2), so the lower level of deamination of amino
acids may well be responsible for some of the differences in
prefeeding respiration rates.

The maximum oxygen consumption rate (MMR) and
maximum fasting TAN excretion rate (MTR) changed similarly
with the level of dietary protein, although this was only significant
between 20%and 30 to 50%. This is in accordance with findings
in L. vannamei, where instantaneous protein use changed during
restand exercise (Duan et al. 2014, Zhang et al. 2006).

Anincrease in the duration of the SDA response has been
noted in carp (Chakraborty et al. 1992). This effect is minimal
in L. vannamei, suggesting a much more rapid digestive
metabolism. The total magnitude of the response increased
(Table 2), although the standard deviation of the data also
increased. The coefficients measured in this study were generally
higher than those recorded in shrimp from the Gulf of Mexico
(Rosas et al. 1996). The metabolic scope in this study was
within the range of 2 to 5, as reported in other aquatic organisms
(McCue 2006, Luo & Xie 2008). The postprandial peak and
duration of the SDA differed between the protein content of
20% and the 30-50% groups, by contrast shrimp digest and
assimilate food remains without significant changewith increasing
levels of lipid in the diet.

The magnitude of the SDA depends on the composition of
the meal in the diet. The values were lower for lipidic diets
when compared with proteic diets; these values are in agreement
with the findings by McCue (2006), which showed a relatively
lower value (1,211.1 mg kg to 1,688.1 mg kg™) for fat and
higher values (1,526.0 mg kg™ to 1,585.2 mg kg*) for protein.

The protein influences the magnitude of the SDA in the 20-
30% range of dietary protein, levels in excess of 30-50% had
no effect on SDA, which appears to be athreshold phenomenon
(Clifford & Brick 1978), operating independently of the quantity
of food intake. In our study, the SDA and magnitude did not
differ between the shrimp fed the low-lipid diet and those fed
the high-lipid diet, which suggests that the effect of food
composition on the SDA in shrimp is species-dependent (Luo
& Xie 2008). Studies in fish found that changing the meal lipid
content had no impact on the SDA (Peres & Oliva-Teles 2001).
A significant change in the SDA relative to digestible energy
was not demonstrable with dietary protein for each lipid level.

The SDA coefficient is comprised of two components: an
obligatory one, which consists mainly of the energetic cost of
first digesting and then converting food to its primary storage
forms, and a facultative one, which is an adaptive mechanism
for dissipating extra calories as heat (Fu et al. 2007). It is
interesting to note that no sparing of dietary protein could be
observed with a higher lipid diet, as was reported by Ross et
al. (1992)in O. niloticus. The continuous quantitative appraisal
of nitrogen excretion to determine energy loss is necessary for
a better understanding of endogenous nitrogen excretion and
nitrogen excretion from different proteinaceous diets. In the
present study, post-feeding subadult shrimp had an increased
ammonia excretion pattern similar to the SDA response.
Ammonia excretion increased with the protein content and,
hence, the nitrogen content of the diet. A similar effect was
reported by Rosas et al. (1996), where the amount of nitrogen
excreted as ammonia by P. notialis, P. duorarum, P. schmitti
and P. setiferus depended largely on the quantity of protein
assimilated during feeding.

High dietary protein means high cost of feed and pollution
from waste, which will not support sustainable development of
shrimp culture (Wang et al. 2015), it has been demonstrated in
laboratory and on farm that shrimp L. vannamei can grow
sustainably in ponds with a level of digestible energy:crude
protein ratio (DE: CP) from 11.9 to 28.57 kcal g* protein
(Cousin etal. 1993, Lawrence et al. 1995*, Kureshy & Davis
2002, Patnaik & Samocha 2009), mainly in subadult organisms.
Due in part to the low cost of energy expenditure to eliminate
excess nitrogen as shown in the present work

In the present study; it was found that variations in the level
of the protein:energy ratio affect the SDA and post-prandial
nitrogen excretion of subadults, as has been found in juvenile
shrimp (Rosas et al. 2001a). Furthermore, metabolic N

!Lawrence AL, P Aranyakananda & FL Castille. 1995. Estimation of dietary protein and energy requirements for shrimp. Proceedings,
American Oil Chemists Association (AOCS) Conference, San Antonio, Texas, Inform 6(4): 520-521.
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excretion by subadult shrimp tends to be lower when dietary
lipid and the energy:protein ratio are high. Subadult shrimp fed
the 50% protein diet consumed food with the highest DP/DE
(21.33) and had the highest SDA and digested the greatest
percentage of dietary protein. In general, it has been
hypothesized that, as the optimal protein level is approached,
there is a significant decrease in the metabolic rate of the shrimp
(Hewitt & Irving 1990). Therefore, with the 20% protein diet,
subadult L. vannamei may be operating at or near their optimum
dietary protein level or protein/energy ratio. An optimal ratio of
lipid, carbohydrate and protein would imply that subadult shrimp
fed the 20% diet would have a smaller requirement for protein
metabolism to provide energy and hence a lower oxygen
consumption and ammonia excretion rate. This could also explain
why it has been found that white L. vannamei shrimp grew
properly when fed with 20 to 36% dietary protein (Venero et
al. 2008), depending on size. It has also been found that subadult
L. vannamei have lower requirements than juveniles for protein
(Kureshy & Davis 2002), which is in agreement with this work.
L. vannamei protein requirements have been determined at
40% for postlarvae, 20-30% for juveniles and subadults
(Pedrazzoli 1998 and this work) and a low level of 15% CP in
the diet (Lawrence et al. 1995?). Smaller organisms require
more protein compared with larger organisms (Hilton & Slinger
1981), and the maximum and maintenance rations both decrease
as organisms increase in size, with the maximum ration
decreasing at a faster rate (Lim & Sessa 1995). This is because
small organisms have a higher scope for growth. Furthermore,
the oxygen consumption and nitrogen excretion in subadults were
lower than those reported in juvenile shrimp fed with 20 to
50% dietary protein.

In conclusion, the results in this study show a relationship
between respiration rate and the level of dietary protein ingested.
L. vannamei have developed various physiological mechanisms
to cope with variations in food quality, and they are able to
adjust these mechanisms to a variable diet quality by regulating
their metabolic. The SDA following ingestion of a 20% protein
diet was the lowest, and there was a marked increase in the
SDA when feeding a 30 to 50% protein diet. Knowledge of
the protein-sparing effects of non-protein nutrients such as lipid
and carbohydrates could be effective in reducing feed costs
and enhancing growth. This work has confirmed and quantified
the significant effect of dietary protein on oxygen consumption,
the SDA coefficient and SDA magnitude in subadult L.
vannamei, while the effect of dietary lipid has been shown to
be minimal. Thus, a significant change in the SDA relative to
digestible energy was not demonstrable with dietary protein for
each lipid level.
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