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Summary

In Chapter One we consider analytically coupled circle maps (uniformly expand-
ing and analytic) on the Z%lattice with exponentially decaying interaction. We
introduce Banach spaces for the infinite-dimensional system that include measures
whose finite-dimensional marginals have analytic, exponentially bounded densities.
Using residue calculus and ‘cluster expansion’-like techniques we define transfer op-
erators on these Banach spaces. We get a unique (in the considered Banach spaces)
probability measure that exhibits exponential decay of correlations.

In Chapter Two we consider on M = (S)%* a family of continuous local updat-
ings, of finite range type or Lipschitz-continuous in all coordinates with summable
Lipschitz-constants. We show that the infinite-dimensional dynamical system with
independent identically Poisson-distributed times for the individual updatings is
well-defined. In the setting of analytically coupled uniformly expanding, analytic
circle maps with weak, exponentially decaying interaction, we define transfer op-
erators for the infinite-dimensional system, acting on Banch-spaces that include
measures whose finite-dimensional marginals have analytic, exponentially bounded
densities. We prove existence and uniqueness (in the considered Banach space) of a
probability measure and its exponential decay of correlations.
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Chapter 1

Transfer Operators for Coupled
Analytic Maps

1.0 Introduction

Coupled map lattices were introduced by K. Kaneko (cf. [20] for a review) as systems
that are mixing wrt. spatio-temporal shifts. L.A. Bunimovich and Ya.G. Sinai proved
in [7] (cf. also the remarks on that in [4]) the existence of an invariant measure
and its exponential decay of correlations for a one-dimensional lattice of weakly
coupled maps by constructing a Markov part1t1on and relating the system to a two-
dimensional spin system.

JBricmont and A. Kupiainen extend this result in [3] and [4, 5] to coupled circle
maps over the Z%lattice with analytic and Holder-continuous weak interaction, re-
spectively. They use a ‘polymer’ or ‘cluster’-expansion for the Perron-Frobenius
operator for the finite-dimensional subsystems over A C Z4 and write the nth iter-
ate of this operator applied to the constant function 1 in terms of potentials for a
d + 1-dimensional spin system. Taking the limit as n — oo and A — Z¢ they get
existence and uniqueness (among measures with certain properties) of the invariant
probability measure and exponential decay of correlations.

V. Baladi, M. Degli Esposti, S. Isola, E. Jirvenpii and A. Kupiainen define in [1],
for infinite-dimensional systems over the Z¢ lattice, transfer operators on a Frechet
space, and, for d = 1, on a Banach space; they study the spectral properties of these
operators, viewing the coupled operator as a perturbation of the uncoupled one in
the Banach case.

In [21] G. Keller and M. Kiinzle consider periodic or infinite one-dimensional lattices
of weakly coupled maps of the unit interval. In particular they define transfer
operators on the space BV of measures whose finite-dimensional marginals have
densities of bounded variation and prove the existence of an invariant probability
measure. For the infinite-dimensional system they further show that for a small
perturbation of the uncoupled map any invariant measure in BV is close (in a
specified sense) to the one they found.



Coupled map lattices with multi-dimensional local systems of hyperbolic type have
been studied by Ya.B. Pesin and Ya.G. Sinai [27], M. Jiang [16, 17], M. Jiang and
A. Mazel [18], M. Jiang and Ya.B. Pesin [19] and D.L. Volevich [31, 32].

Detailed surveys on coupled map lattices can be found in [6], [19] and [4].

In the above papers (except [1], [21]) the analysis has been done only for Banach
spaces defined for finite subsets A of the lattice, and the (weak) limit of the invariant
measure for A — Z¢ was taken afterwards.

Here we present a new point of view in which a natural Banach space and transfer
operators are defined for the infinite lattice of weakly coupled analytic maps (Section
1.1). The space contains consistent families of analytic densities over finite subsets
of Z¢. We take a weighted sup-norm so that the sup-norms of the densities for the
sub-systems over finitely many (say V) lattice points is bounded exponentially in N
(Section 1.2). We identify an ample subset of this space with a set of rca measures
(Section 1.4) that contains the unique invariant probability density (Section 1.2).
We derive exponential decay of correlations for this measure and a certain class of
observables from (the proof of) the spectral properties of our transfer operators.
(Sections 1.2, 1.7). The operator for the coupled system and also the invariant
measure are (for a small interaction) in fact perturbations of their counterparts in
the uncoupled case. So the mixing properties are inherited from the single site
systems. Section 1.8 contains the proofs.

Our approach provides a natural setting for an analysis of the full Z¢ Perron-
Frobenius operator in terms of cluster expansions over finite subsets of the lat-
tice. Using residue calculus we introduce an integral representation for the Perron-
Frobenius operator for finite-dimensional sub-systems (Section 1.3) which yields a
uniform control over the perturbation and also gives rise to an easy approach to
stochastic perturbation (cf. [26]) which however we do not consider here.

Our ‘cluster expansion’ combinatorics (Section 1.5) uses ideas from the work of C.
Maes A. Van Moffaert [26] who have introduced a simplified (compared to the one
in [3]) polymer expansion. Apart from the analysis of the one-dimensional operator,
which is fairly standard and for which we refer to e.g. [3], the paper should be
self-contained.

1.1 General Setting

We consider coupled map lattices in the following setting: The state space is M =
(S1)2 where S' = {z € C | |z| = 1} is the unit circle in the complex plane and
deN.

The map S : M — M is the composition S = F o T¢ of a coupling map T depend-
ing on a (small) non-negative parameter ¢ and another parameter for the decay of
interaction (cf. (1.1)) with an (uncoupled) map F that acts on each component of
M separately. We make the following assumptions:



Assumption I F(z) = (f,(2p))pcz¢ where f, : S1 — S! are real analytic and
expanding (i.e. f; > Ao > 1) maps that extend for some J; holomorphically to the
interior of an annulus As, &f {z € C| -6, <In|z| < 6} and the family of Perron-
Frobenius operators Ly, for the single site systems satisfies uniformly a condition
specified in Section (1.5.1) below (1.31). (We need some more definitions to specify
these conditions. But note that they are in particular satisfied if all f, are the same.)

We write T : M — M as T%(z) = (T;(2))pez+ and T;5(z) = 2, exp[2mieg,(2)] with
9p(2) = 3%, 9p.x(2). The function g, is real valued on (S*)%* and depends only on
those z, with [|p—g|| < k (neighbours of distance at most k) where [|p|| & S |pi]-
We write Bi(p) = {q € Z% | |lp — q|| < k} and also denote by g, the function from

the finite-dimensional torus (S)2+®) to R.
We assume the following for the functions g, x:

Assumption II For all p € Z¢ and k > 1 each map g, extends to a holomorphic
map gp : Ag"(p ) - C and its sup-norm (of modulus) is exponentially bounded by

I 90 [l 2> < €1 exp (—c2k?) (1.1)
1

with ¢; > 0 and ¢, bigger than a certain constant specified in (1.100).

The parameter c; is actually redundant as it is multiplied by € in the definition of
Ts. We also have exp(—cpk?) < exp(—¢€) exp(—c3k?) for ¢ = ca — £, € > 0, ie.
for any € we can make the interaction small only by taking c; large. But once we
have chosen c; large enough to guarantee the convergence of the infinite sums in
our analysis we can consider perturbations of the uncoupled map depending on the

parameter € only.
With the metric

' def
dy(x,y) = sup 7P|z, — 3|
p€eZd

for 0 <y <1 (M,d,)is a compact metric space. Its topology is the product

topology on (S 1)Zd. The Borel o-algebra B on M is the same as the product o-
algebra. F and T* are continuous and measurable. Let C(M) denote the space of
real-valued continuous functions on (M, d,) with the sup-norm and u the Lebesgue

(product) measure on M.
For Ay C A; C Z4, with A, finite and an integrable function % on M depending

only on the A,-coordinates, we define the projection

(1.2)

raen) ¥ [ e Vaan) (09)
S1)Az\h



1.2 Main Results

For finite A C Z¢ let H(A%) be the space of continuous functions on the closed
polyannulus A2 that are holomorphic on its interior and write || - ||5 for the sup-
norm (of modulus) on H(A}). Let F be the set of all finite subsets (including @)
of Z%. We denote by H the vectorspace of all consistent families ¢ = (¢4 )aer of
functions ¢A € H (A}). Consistency means ma, ¢a, = ¢y, for A CAyeF. We

“write p(g) &

We want to deﬁne a norm on a (sufficiently large) subspace of H that should at
least contain ‘product densities’ like b = (ha)aer with ha(z) = [T,cp hp(2p), Where
h, e H (A{” }) is the invariant probability density for the single system over {p} (cf.

Sectlon 1.5.1).
Because of (1.32) the sup-norm ||hy, [|a, does not grow faster than exponentmlly in

|A;|. Therefore we take a weighted sup-norm. For 0 < 9 < 1 we define

Illo & sup 9| palla ' (1.4)

and set Hy aof {p€H||plls <oo}. Then (My,|| - ||s) is a Banach space. In fact,
if (¢™)nen is a Cauchy sequence in (Hg, || - [|s) then for each A € F the sequence
(% )nen is Cauchy in the Banach space (H AM -1 A?) and so converges to @,.
Consistency of (#a)aecr follows from taking the limit (as n — o0o) of ma, 4}, = R,
using the continuity of ma, for any A; C A, € F. Analogously we define for A € F
the weighted norm on spaces H, » of consistent sub-families (¢,,) ALCA:

def
llas = sp 9164, A, (1.5)

We get the same (topological) vector space as (H (A7), || - [la), but the constants for
the estimates of the norms are unbounded as |A| increases. :
For given A; C A, € F and N € N we have a map,

L © Lpngopnne ©Tay + (Mo ||+ 1) = Havo, I+ 1as0) (1.6)

where LY PAsorhge 18 the Perron-Frobenius operator for the finite-dimensional system
over Ay (cf. Section 1.3) with fixed boundary conditions (not included in the nota-
tion). The following definition of transfer operators for the infinite system does not
depend on the choice of the boundary conditions.

Theorem 1.2.1 For 9, € sufficiently small, c3, Ny sufficiently big and any A, € F:

1. The limat ]
N de . N
Tp, © ‘CFon = lim T, © cFAonAg,e O TA, (1'7)
Ay—Z4d



€ L((Hs, || ll9) s (Harows || * lar,0x)) exists for suitably chosen0 < ¥; < -+ <
IN, = ONg+1 =+ ++ = U and the family of these operators is uniformly (in A;)

bounded. This defines operators L1
el ((Hﬂ’ ” ) “19) ) (H19N) ” ' ”19N)) by (Egonq&)Al £ A © LgoT“ﬁ'
In particular for N > Ny we have LY 7. € L (Hq, || - |ls)-

In the case of finite-range interaction we can define a linear map Lpope on H
in the same way, i.e. if r is the range of interaction we set for any Ay € F

def
A, © EpoTe = 7[‘/\1 (o] ,CFAonAz,e O A, (18)

where Ay = B.(Ay).

2. There is an F oT¢-invariant, non-negative probability measure v*. It is unique
in the set of non-negative probability measures whose marginal densities can

be identified with a v = (Va,)Aex € Ho.
In L (Hs, || - l|s) the sequence (L¥.re) N>n, Converges ezponentially
fast: -

”‘CgoTG - /'L(.)V*“L((’H,,,”-”,,)) < c3ﬁN (1'9)

for some c3 >0 and 0 <7j < 1.

Remark 1) The relation between measures and elements of  is explained in Section
1.4, in particular in (1.23).
2) A formula for v is given in (1.59).

For the invariant measure v we have exponential decay of correlations for spatio-

temporal shifts on the system:

Let (ej,...,eq) be a linearly-independent system of unit vectors in Z4. We define
translations 7, (p) % p-+ &, for p € 24 and (e,(2))p ! 27 for 2 € M.

In the following theorem we denote by 7 (acting on M from the right) compositions
T = T4 0...0 Ty and by o a composition of spatio-temporal shifts (on M): o =
010 ... 0 Op(o)4n(o) With o; € {S, 7, ..., Te,}- We denote by n(o) the number of
factors S and by m(o) the number of spatial translations in this product. For a
translation-invariant system, ie. f, = f and g,(2) = g,-14,)(7e;(2)) for all p € VA
and ¢ = 1,...,d, the time-shift S commutes with the translations.

Theorem 1.2.2 For ¥,e as in Theorem 1.2.1 and c3 sufficiently. large there is a
k € (0, 1) such that for all nonempty A, Ay € F the following holds with the constant
C(AI) A2’ K:) d:ef K- max{lll’—Qll!PEAth/\z});



1. If g € C((SH)M) and f € C((S*)™2) then
o 0 05 = (0 8) (s ° £)| < cad M0 gl it

where dist(Al,Ag) def min{|lp — ¢ : p € A1,¢ € Az}
2. If g € C((SHYM) and f € HNC((S*)A2) then

‘/Mdy*gorosnf—(/MdV*goq-) (/Mdu*f)l (1.10)

< oAy, Mgy R)SE gl || Flla ™7

with suitable cs and 7 as in Theorem 1.2.1.

8. If the system is translation-invariant and g, f are as in (2. ), then

vt () ()

< oAy, Ag, £)cg M gl oo | £[lag ™).

(L11)

4. If g, f € C(M) then

lim l/ dV*gOToS"f—(/ du*go'r) (/ dy*f)l_—_-O,
max{m(7),n}—o0 |/ ps M M

(1.12)

5. If the system is translation-invariant and g, f € C(M) then

lim / dv*goo f= (/ dy*g) (/ dl/*f). (1.13)
max{m(s),n(o)} =00 fps M M

Remarks: 1) Statement (5.) means that for a translation-invariant system v is
mixing wrt. spatio-temporal shifts. According to (3.), the decay of correlations for

observables g and A as specified in (2.) is exponentially fast.
2) The proof of Theorem 1.2.2 shows that the statements hold for any « € (0,1)

if € is sufficiently small and ¢, sufficiently large (both depending on k). So a small
interaction leads to small spatial correlations.



1.3 Finite-Dimensional Systems

We first consider ‘finite-dimensional versions’ of the maps F,T* etc. Let & =
(&)peze € M be a fixed configuration. For a finite subset A C Z? we define

The: AN — C by

(T(2p))p 2 2, exp(2micgy (24 V Exc)), (1.14)

where z, V Exc € M agrees with z, on its A-sites and with ¢,c on its AC-sites.

We do not specify £xc in the notation of TA¢. The restriction of F to A2 is denoted
by FA.

With the following two propositions we ensure that for sufficiently small § and e
(independent of A and z,c), the image of A} wrt. FA o TA€ contains a bigger
polyannulus (cf. [3]) and the image of the boundary, FA o TA< (9AP), has positive

distance from A2.
For A C Z¢ we have the metric ds on (S')* defined by

dp(z,w) & sup{|z, — w,| | p € A}. (1.15)

Proposition 1.3.1 For all ¢; € (0,1), sufficiently small § and € (depending on
cr), and arbitrary A € F\ {0}, T™¢ maps A} biholomorphically onto its image
and TM¢ (A}) D AL, i.e. the image contains a sufficiently thick polyannulus. Also
TAe (GA{,\) N A,/}, s =0, i.e. the image of the boundary (the same as the boundary of
the image) does not intersect the smaller polyannulus.

Proposition 1.3.2 Let the expanding maps f, : S* — S* satisfy Assumption I for
some §; and an ezpansion constant Ag and let 1 < A < XAg. Then for all sufficiently
small § (0 < & < &) and all finite A C Z?% the map FA : A} - CA is locally
biholomorphic, Al C FA (A}), i.e. the image contains a thicker polyannulus, and
furthermore all z € A}; have the same number of preimages. We also have AN

FA(94}) =0.
Combining Propositions 1.3.1 and 1.3.2 we have for fixed ¢; (from Proposition 1.3.1)

and (small) § N
FhoT™ (AF) D AL (1.16)

and

FhoTh (0A}) N A ;= 0. (1.17)
In particular, if we choose c7 > 3 there is a disc of radius (c;A — 1)6 > 0 around
each point in A} that is entirely contained in F"* o TA< (A}). We will need this for
Cauchy estimates. From now on we keep ¢ fixed.
In the next proposition we establish a special representation of the Perron-Frobenius
operator for our finite system with (S1)V = (§1)*, §¢ = FAoTA« 1 continuous (the
proposition holds also for 3 € L>(M)) and ¢ continuous on the closed polyannulus

A} and analytic in its interior.
First we give the definition of the Perron-Frobenius operator (cf. for example [23]).

7



Definition 1.3.1 Let A be a measure on a metric space M (with the Borel o-
algebra) and let S : M — M be a measurable map which is non-singular wrt. A (i.e.
for all measurable A € M, A\(A) = 0 implies A(S~!(A4)) = 0). The Perron-Frobenius
operator Lg, acting on L!(M), is defined via the equation

/d,\¢os¢=/ A\ Lo (1.18)
M M

that, for given ¢ € L' (M), must hold for all 9» € L°(M). The existence and unique-
ness of Lg¢ € L1(M) is equivalent by the Radon-Nikodym Theorem to the absolute
continuity (wrt. A) of the measure associated to the functional ¢ — [, dA oS¢
(the functional here is restricted to continuous functions 1), and this follows from

the nonsingularity of S.

Remark Setting 1 =1 in (1.18) we get that Ls preserves the integral:

/M d\Lsp = /M d\o. (1.19)

The normalized Lebesgue measure 4 on S* is given by du(z) = ££1 (this lifts wrt.
the map t — € to the normalized Lebesgue measure % on [0,27)) and the product

measure u? on (S')A is given by

dz 1 get dz, 1
dpr(z) = ——= = [ =2~ 1.2
M (Z) (27r1,)|A| z pEHA 27” Zp ( 0)

We also use du?(z) as a shorthand notation for the right-hand side of (1.20) for
z € A}
The following representation of the Perron-Frobenius operator for finite-dimensional

subsystems of our coupled map lattice by means of Cauchy kernels is essential for
our analysis. Similar Cauchy kernels were used in [28].

Proposition 1.3.3 With FA and T defined as above set S¢ = F» o TM and let
S, be the projection onto its p-th component. Then the Perron-Frobenius-Operator
(for S¢), acting on ¢ € Ha, can be written in the following way:

Lovt(w) = [ 4@ [T (5= 50) (1.21)

PEA

where I' = 'y, UT'_ is the positively-oriented boundary of As.



1.4 Further Remarks on the Infinite-
Dimensional System

The subspace of complex-valued functions that depend only on finitely many vari-
ables is dense in (C(M), || - |ls), and each such function (say depending on z, only)
can be uniformly approximated by (the restriction of) functions in #(A2). The dual
space of C(M) is rca(M) (see e.g. [11]), the space of bounded, regular, countably
additive, complex-valued set functions on (M, B) where B is the Borel o-algebra.
The norm on rca(M) is the total variation. For given 9, A we consider rca measures
whose marginals have densities ¢ (s1)a over (S')* (restriction of g5 to (S)A) s.t.
¢ = (Pa)acr € Hs. We remark that not every ¢ € Hy with real-valued Pa|(s1)a
corresponds to an element in rca(M) because its variation might not be bounded
as [, du®|¢a| might be unbounded with A. So we define for ¢ € #

def ,.
var = 1 du? . .
l|Blvar Aled (sHA 1| Bal ‘ (1.22)

We set 1o & {$ € H : ||llvar < o0} and HE def 2yt Hy. In particular all
real-analytic and non-negative ¢ € H, i.e. d5g1ya > 0 for all A € F, belong to this

space.
We can view every ¢ € " as an element of rca(M): For g € C(M) the net (ga)rer

given by ga 4 ra(g) converges uniformly to g. We set

def . :
= 1 A
¢(9) = lim, i aondn. (1.23)

The limit exists because for A; C A,

[ duM - / du 24
[ (1.24)
= Az —_
/(\51)/\2 dp” (ga, — ga,)PA,
< llga, - gAz“(sl)Az |6 llvar
gets arbitrarily small as A; — Z% i.e. the net has the Cauchy property.
We further see
|4llar = sup / du™ gl (1.25)
AeF J(s1)a

= sup sup / dulg éa
(sHAa

AEF gec(shyh)
liglioo<1

flollco <1



50 ||¢|lvar is in fact the total variation (the operator-norm, cf. [11]) of the corre-
sponding linear functional on C(M).

Let H(F) def Urer H (A}) be the subspace of functions depending on only finitely
many variables. We define the product g'¢ € Hy of g' € H(AM) and ¢ € Hy by

(9'6)a = ma(g darun). (1.26)

Lemma 1.4.1 If g' € H(A}Y), ¢? € H(A}?), g € C(M) and ¢ € Hy the following
holds

1. The product in (1.26) is well-defined and ||g'¢|ls < [|g*[|a, 9/ ||¢lls-
2. (9'9%)¢ = g'(4¢)-

8. g% can be considered as an element of Hy and the product g'g® as defined in
(1.26) is the same as the usual product between functions on M.

4. ('8)(9) = #(g'g) where (9'¢) and ¢ act as functionals in the sense of
(1.23).

5. HY is also a module over the ring H(F), i.e. in particular
19" Bllvar < 19"l l|luar-

1.5 Expansion of the Perron-Frobenius Operator

We split the integral kernel of the Perron-Frobenius operator for a finite-dimensional
system. Recall that T (z) = zp exp (2mie Y 2, g, x(2))

= zp [ Lo exp(2miegyx(2)) and that Sy(z) = f, 0 Tf(z).

If we consider only finite range interaction, say up to distance [, we have

l
def .
T;,(2) = z, exp(2mie Z 9o (2)). (1.27)
k=1
For a finite-dimensional system (say on (S?)A?) with fixed boundary conditions we
have a special representation of Lpasras.« in terms of the integral kernel (Proposition
1.3.3).

Lemma 1.5.1 For the factors in the integral kernel in (1.21) we have the following
splitting :

1
oTz) = ———— .
fp o Te(z) — wp foo T3 (2) A ES JACATE (1.28)
+wp 00 fp o T;,k—l(z) — fp (o] T;,k(z)

k=1 (fp © ;,k—l(z) - w,,) (fp ° T;,k(z) - wp) .

10



The sum in the right hand side converges uniformly in z € I'* and w, € As.

1.5.1 The Unperturbed Operator

The first summand in (1.28) is just the one which appears in the uncoupled system
(i.e. T<° = id) and in this case each lattice site can be considered separately.
We denote by Ly, the restriction of the Perron-Frobenius operator to the Banach
space of functions on S! that extend continuously on the closed annulus As and
holomorphically on the interior As. || - || 4, denotes the uniform norm over As. The

operator

Ly, : (H(As) Il - llas) = (H(As), || - [la5)

has 1 as simple eigenvalue and the rest of its spectrum is contained in a disc around
0 of radius strictly smaller than 1. It splits into

Lr,=CQp+ Ry (1.29)
with
R,y =QyR, =0 (1.30)
and [
1B erecanyinag) < €1 (1.31)

with ¢, > 0, 0 <7 < 1. For proofs of these statements see e.g. [3)].

@, is the projection onto the one-dimensional eigenspace spanned by h, € H(As),
whose restriction to S is positive and has integral [, duh, = 1.

We assume in Assumption I regarding the family ( f,,)pezd that

17oll a5 < en S (1.32)

and the exponential bound in (1.31) both hold uniformly in p. This is the case
for example if the f, are uniformly close to each other as is shown using analytic
perturbation theory.

Ly, preserves the integral (cf. (1.19)) and so does Q,, as follows e.g. from (1.29)-
(1.31). Since 'y is homologous to ' we can write @, as

Qog(w) = hy(w) / dug (1.33)
= ) [ 52e0)
= ;—;%h (w, 2)g(z) (1.34)

11



where we have used that g is holomorphic in A; and defined:
def [ hp(wp) for z, €l
h (wp) P) { 0 fOI' Zp e F_ (1.35)

The idempotency Q: = (Q, results in the integral representation

d2 1 [ did d
/ Gl [0 L 222, 2)g(2) / —z——l-h (wp 21)a(2)).  (1.36)

2mi 22 27r1, z1 2mi 2}
r P

Here and throughout the section the upper indices in zP, zp etc. refer to the temporal
and the lower ones to the spatial coordinate in the space-time lattice Z x Z2.
According to Proposition 1.3.3 the operator R, can be written

dz 1

27mz"'p('wp, zp)g(zp) (1.37)

Rpg(w,) =

with
rp(Wp, 2) = fp(z) fp(zp) by (wp, 2,). (1.38)

Then equation (1.30) results in the 1ntegra1 representation

d22 1 dz 1
/ 2mi 22 J 27rzz1 o1 7o 5) (2, 3)9(23) = 0, (1.39)
dz2 1 dz 1
/51 57}31:212, 27r1,z1 7‘,,( ) (p) = 0 (1.40)

1.5.2 The Perturbed Operator
In view of (1.28) we set

) def w fpo ;,k—l(z) — fpo T;’k(z)
P(fpo T;,k—l(z) —wp)(fp0 T;,k(z) — Wp)

This corresponds to the difference between the operators for systems with interaction

of finite-range of order k£ and k — 1, respectively. Using (1.1) we have the estimate

Bpx(Wp, 2 (1.41)

| B,k (wp, 2)] (1.42)
< gl |fpo Tek 1(z) wpl llfp ° Tek(z) wpl_l
X|fp 0 Tpi-1(2) = fp 0 T;4(2)]
< (1 48)|erd =1 erd = 1 fallpycre exp(—cok?)
< Geexp(—ck?)

uniformly in p € Z¢, w, € A;, z € TA.
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1.5.3 Time N Step

Now we want to estimate the norm of (1.6) or equivalently that of

TA,L © £gA2°TA2,¢ . (HAz,ﬂ’ ” * ”Az,ﬂ) - (HAl,t,) ” ‘ ”1\1,19) (143)

EgAonAz ,e¢(z0) = fr‘Az dph?(z71) .- fr/\z dp?* (z~N) Ht—:l—N ]._IpeAz (1.44)
x (hp(25tt, 2) + 1p (252, 28) + ooy Boi(2EFY, 2Y)) B(27V)

(cf. also the beginning of Section 1.3.)
Distributing the product we get infinitely many summands. In each factor there is

for each —N < m < —1, p € A, a choice between hy,, r, and B, (1 < k < 00) and
we can interpret such a choice graphically as a configuration (similar objects were
introduced in [26] where they were named polymers):

On A; x {—N,...,0} we represent

o hy (244, z:’) by an h-line from (p,t) to (p,t+1)

o 7, (25t1,2t) by an r-line from (p,?) to (p, 2 +1)

(»,?) (1)
hp(z;tzH’ Zzt:) ' Tp(z;H’ z;)

(p,t+1) (p,t+1)
Figure 1.1: h-line and r-line

o Bok (21, z') by a k-triangle (actually rather a cone or pyramid but in our
pictures ford = litisa triangle) with apex (p,t+1) and base points (g, t) with
lp — gl| € k. (So some of the base points might not lie in Ay x {~N,...,—1}
but all the apices lie in Ay x {-N +1,...,0}.)

Note that if def
v(k) = |Bx(0)| (1.45)

denotes the number of base points of a k-triangle, we have the estimate v(k) < (3k)%.
Each summand, that we get by distributing the product in (1.44), corresponds to a
configuration and for each configuration C we have an operator L¢. So we can write

ﬁgAonAz,e = ZCC (1.46)
c
Some of these summands are zero namely if

13



P22 GgLY) bY@l (F2

(p,t+1)
Figure 1.2: 2-triangle

o a factor hy (2512, 2671) 1 (251, 25) or 1y (2542, 2571) by, (211, 21)

appears, but no factor B (25*2,z"+!) with |[p—g|| < k (i.e. an h-line follows or
is followed by an r-line and at their common endpoint no triangle is attached
with any of its basepoints. cf. Figure 1.3.) This follows since, by Fubini’s
Theorem, one can first perform the dzf+!dz¢-integration and get zero by (1.39)
or (1.40). (Note that the other factors in the integrand do not depend on FAARR
So they can be considered as the function g(z}) in (1.39) or (1.40).)

{20 ® (rt)
rp(25, 2}) ho (251, 2L)

$(,t+1) | ¢ (pt+1)
ho(252, 25* 1) rp(2t+2, 2+

®(p,t+2) ® (p,t+2)

Figure 1.3: Consecutive r-line and h-line

if a term hy (252, 24%1) B (25, 2°) appears but no Sy, (2572, 2*') with
Ilp—qll <1 (ie a triangle is followed by an h-line and at their common
endpoint (the apex of the triangle) no other triangle is attached with any of
its basepoints. Cf. Figure 1.4.) Indeed:

1 1
Wp,2) = W, € - € 1.47
Bk (wp, 2) = Wp [fp 0T (@) ~wy  JpoToy 1(2) — wp (1.47)
By the Residue Theorem:
dw, 1
. 2Ti w_pﬂp,k (wp: Z) =0 (148)
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because the poles at w, = fp 0 T4 (z) and w, = f, o T, _,(2z) (with z € 'V,
in particular z, € I'y or ['_) both lie either outside I'y or inside I'_ as f, is
expanding, T is close to T, and the two summands have residue —1 and

1, respectively.

Identity (1.48) is a consequence of the fact that (3, is the kernel of a difference
between two transfer operators (for the systems with interaction of range &
and k — 1) both preserving the Lebesgue integral in the sense of (1.19). So
the range of this operator difference consists of functions with integral zero
and these are annihilated by the operator corresponding to h, (cf. (1.33) and

(1.34).)

(p, 1)
@

Boa(z+, ")

(p,t+1)

hy (22, 2£41)

(p,t+2)
Figure 1.4: Combination 2-triangle and h-line

Furthermore we note that in

TA; o LgAonAz,e = Z'/r,\l o Ec (1.49)
C

we get mp, 0L =0 unless C ends with h-lines in all points of (Az \ A;) x {0} because
of (1.40), (1.48) and the fact that Tz, means integration over (S*)Az\A1,

Definition 1.5.1 We call a configuration L in the expansion (1.49) a zero configu-
ration if it does not end with h-lines in all poi'nts of (A2 \ A1) x{0} or contains one of
the constellations (consecutive r-line and h-line or k-triangle and h-line) mentioned

above. Otherwise we call it a non-zero configuration.

Remark For a zero configuration C we have just shown that its corresponding
summand in (1.49) is 0. So we just have to sum over non-zero configurations. We
note that the notion non-zero configuration does not exclude that £ = 0.

We have to find an upper bound for the norm of each Lc. We do so by collecting
r- and h-lines into chains and estimating the contributions of integrating the factors
corresponding to these parts of the configuration.

15



Definition 1.5.2 e Let C be a non-zero configuration with exactly ng

k-triangles for 1 < k < co. We define

def

ng = (ng,1,mp2,..-) (1.50)
and
def =
|n5| = Znﬂ,k < 00. (1.51)
k=1

A sequence of h-lines from (p,t) to (p,t+1), ..., (p,t+k—1) to (p,t+k) with
p € Ap and —N < t < t+k < 0 such that to the points (p,t+1)...(p,t+k—1)
no triangles are attached is called an h-chain of length k.

If such an h-chain is not contained in a longer one it is called a mazimal
h-chain. Then (p,t) and (p,t + k) are denoted its endpoints. '

The definitions for a mazimal r-chain and its endpoints are analogous.

A denotes the set of points p € Ay that appear as the Z%coordinate of a base
point (p, t) of a triangle in C and Ac the set of those points p € Z4 that appear
as the Zd-coordinate of an apex (p,t) that does not lie above (i.e. having the
same spatial coordinate) any other triangle.

A, is the set of p € Z¢\ Ac that appear as the Z¢ coordinate of an r-line (this
implies that there is an r-chain from (p, —N) to (p,0) for otherwise an r-line
would have a common endpoint (p,t) with an h-line and C would be a zero

configuration.)

We write A(C) I AcUA,.

In Figure 1.5 there are for example maximal r-chains from (1, —3) to (1,0) or from
(Zy _3) to (2) —2) Ay = {la . ":8}’ Ac = {2a . "7}) Ac= {4} and A, = {1}
As each k-triangle has v(k) < (3k)? base points we have

el <D (3k)*ng (1.52)

k=1

To get the estimate for the norm of (1.43) we proceed in the following order:

1.

We integrate in |ma, o Lcd (2}, )| over all dz} for which a factor -
Tp (z;“, z;) appears. For each maximal r-chain of length ! we get according to
(1.31) a factor not greater than cn'.

16



';

(1,-3) . ° °
(1,-2)
(1-1)

°

1LY 20 GO G0 GO 60 (70 80

Figure 1.5: Example for a configuration

2. For each maximal h-chain starting at (p, t) and ending at (p,t+!) we perform
the integration

[ty [ megt £ ) = hy(af). (159)
3. We perform the integration corresponding to my,

0 0y _ 1

4. We estimate the contribution of each (from step 2 and 3 remaining) factor
hp(2t) by ||hplla; < cn and, using (1.42), the contribution of each factor

B (25, 2") via

dzj 1 t+1

— B (25, 2°)(2) (1.55)

27m zt

r
< '2'1 e exp(-eah®) [l

< cgeexp(—cak?) ||l .

Here |I'| denotes the euclidean length of I" and 1 the remaining factors, con-
taining other integrals. Finally the contribution of the factors |¢(z~)| is
estimated by [|¢5.ua, lli.ua, (cf- remark below).
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Remark For all points ¢ ¢ Ac U A, we must have h-chains in C from (g, —N) to
(,0). Therefore we have

7rA1 © LC¢A2 (z?\l) = 7rA1 ° chs;\cUA,- (z(/)\l) (1'56)
where on the right-hand side we use the same notation ‘L¢’ for the operator on
Hp o,

So if n, denotes the number of r-lines, 7, the number of maximal r-chains and 7,
the number of maximal h-chains having spatial coordinates in Ac UA; (for otherwise
they are ‘integrated away’ giving a factor of 1) we get, using (1.31) and (1.55),

ll7, © Ledlla, (1.57)

00
< (cse)™lexp (—62 Ekd"ﬂ,k) Cﬁhcf'ﬂ"'”¢7\cu/x,||[\cum
k=1

and, using (1.52),

| éacun licua, < 9= ZEa B ek ] 4, (1.58)
o0
< oM TTo OB srig]lny 0
k=1 '

for all A, € F and with || + ||a,,¢ defined in (1.5).
(1.57) and (1.58) are the basic estimates for a single configuration. We use refined

versions of them throughout the paper. ,
In particular the idea of t‘flking the norm of @3, rather than that of ¢, which
grows with the size of As, is the key point in our analysis.

1.6 Opérators for the Infinite-Dimensional
System

Estimates (1.57) and (1.58) bound the particular summands in an expansion like
(1.49). We see that triangles and maximal r-chains in a configuration C lead to small
factors on the right-hand side of (1.57). (A maximal r-chain consisting of n r-lines
contributes a factor ¢,n™. The factor c, is greater than 1 in general. But either it
~ will be compensated for by a small factor due to a triangle e.g. as in (1.99) or n will

be large, cf. e.g. (1.103)). This motivates the following definition of the length of a
configuration. The length gives rise to a lower bound for the number of triangles or
r-lines, i.e. a long configuration will lead to a small contribution in the total sum in

(1.49).
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Definition 1.6.1 e The length, length(C), of a non-zero configuration C (that
we got in an expansion like (1.46)) is the maximal difference 0 — ¢ such that
there are points (p,t) and (q,0) being end-points of r-lines or base points or
apices of triangles. (Note that if there are any triangles or r-lines, there is also
a triangle or an r-line ending at A x {0}.) If there are no triangles or r-lines
in C its length is zero.

e We identify two non-zero configurations C; and C, if they agree in their tri-
angles, r-lines and their number of max h-chains that go upwards from base-
points of triangles (but might be defined on space-time boxes A; x {—to, ..., 0}
of different sizes, i.e. with different A; and ¢;). We still speak of configurations
rather than equivalence classes. For a configuration C  length(C), A¢, A(C)
(as in the Definition 1.5.2) and the operator : :

a0 Le € LH(AFO), |- llae), (AR, || - I1a)) is well-defined.

e For A, € F we define E(A,) as the set of all non-zero configurations C in some
Ay x {~tg,...,0} with Ay C Ay € F, £y € N and to > length(C), and that do
not end in A; x {0} with triangles or r-lines.

e Exn(A,) is the set of non-zero configurations C in Ay x {—N,...,0} with A; C
Ay € F and A(C) C A,.

We define

VA (.i.—e:f Z A © Ech/\(c). (1.59)
CEE(A)

The convergence of this infinite sum and other properties of v are stated in the
following proposition additional to Theorem 1.2.1.

Proposition 1.6.1 Let ¥, the sequence of U;, €, c2, No and A, be as in Theorem
1.2.1 and N > N,.

1.
T, © LNope = Z T, © Le. (1.60)
CEEN(A1)
2. y
N 1 ~N
1€z = Lrdellioua oy < 07" (1.61)

3. For Ny, N; € N the operator L2y, is defined on L3 (Hs) C Hoy, - It maps
this space to Hoy, .y, and

L o LM = LN, (1.62)
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4. For ¢ € HYY we have the estimate

1LPoreBlluar < || var- (1.63)

For g € C(M) and ¢ € H’ we have the identity

dipgoS¢=
/ goS¢ /M du gLpored (1.64)
and in particular

For finite-range interaction the inequality and both equations also hold for
¢ € 1.

5. Lpore s non-negative, i.e. ¢ > 0 implies Lpyredp > 0. (6 > 0 means
0 forall A€ F.) - PAlsyn 2

1.7 Decay of Correlations

We have found the unique invariant v € Hy with u(v) = 1. Thig corresponds to a
non-negative measure on (M, B) whose marginal on (S1)A has density A, wrt
ur. In the next theorem we state the decay of correlation for y in ’ceriifs)of the:
weighted norms. We will use these results in the proof of Theorem 1.2.2,

Theorem 1.7.1 For sufficiently small  and ¢, big c,, finite disjoint AL Ay and
f € H(A}?) there are a k € (0,1) and a9 € (0,1) such that ’

1. |[vaune = YarPasllaungs < crordoHAL)

2. (ma (Fv) = v(Farllane < cnd ™l fl] o, 858ALA2)
8. ima, 0 L¥ore (Fv) = v(f)vailla, 5 < 01219_'A"‘]HfHAznd"“(Ah/\z)ﬁN

for every N > 0.

Remark As in Theorem 1.2.2 we can choose the rate of decay & first and then the

other parameters.
13
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1.8 Proofs

In the proof of Proposition 1.3.1 we use the following lemma, which is rather standard
in real analysis. Here we formulate it in the setting of holomorphic functions.

Lemma 1.8.1 If T : U — C* is a holomorphic map on a convezr set U C C"
and satisfies the estimate ||DT(z) — id|| < ¢;5 < 1 then T is biholomorphic onto its
image (in this lemma the chosen norm on C* and the corresponding operator norm
are both denoted by || - ||).

Proof T is locally biholomorphic by the Inverse Function Theorem. So we only
have to show injectivity. Let 2% 2! € U with T'(2°) = T'(2!) and v: [0,1] = U,
v(t) = 2° + t(z! — 2°). Then

|28 =2 = [|T(z") =" =T (°) +2°
= [|Toy(1) = (1) = T ov(0) + v(0)|l

- ” /0 (DT (1) ~id) (= - 29) dt“

-2 [ 10T () - id et
< |7t = 2" e (1.66)

IA

which implies 2! = 2°.

[

a

Proof of Prop051t10n 1. 3 1 We have a Cauchy est1mate for the partial derivatives
of the functions g,k : Ay Bi(?) _, C on a smaller polyannulus. Let g € Bi(p), Then

0

Bz, Ik —c1 exp(—cok?) (1.67)

< -
AR T led — et

= (3 éxp(-—czkd).
(1.68)

Also note that 3_2;gp,k =0 for ¢ ¢ By(p). Therefore

0
’a_z‘gp 4 = Z 9p.k (1.69)
v 114§ 924\ Jpmal 4z
51
o
< ¢ Z exp(~czk?)

k=llp—gll
. 1 )
——————————————————— e — —
0131 ~exp(—ca) Xp ( collp — 4| )
= C14€Xp (—02"17 - ‘I“d) .
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Now we consider the lift given by pr : Cf — A}, (5),, (€%) cp» Where

Cs ¥ {weC|Imw e [-4,4]}.

Then we have for the lifted functions (TA@ (2)) = Z, + 2mwegy(Z). The function
P

Gp(2) = gp(pr(Z)) satisfies the same estimate (1.1) with a different constant ¢é; for
d < 6, sufficiently small since pr and its partial derivatives are uniformly bounded
on C}.

Then we have

< 2mec; exp (—cy3)lp — qll) -

‘D ({1”/&7 (z))p,q - 5p,q

In particular the row sum norm (the operator-norm induced by the I°°-norm on CA)
of (DT’\»6 - id) is smaller than 1 for € small enough, independent of A. According

——

to Lemma 1.8.1 (note that Cs is convex), TA¢ is a biholomorphic map onto its image
and so is T+,

Now fix § < 8; according to the first part of the proof. If z € 9A} we have z, € d4;
for at least one p € A. From the formula z, o TM<(z) = 2z, exp (2mieg,(z)) and the
assumption that g, is uniformly bounded on A;, we see that

lln |z > 6 — ci60e > cz6 5 (1.70)

for sufficiently small e.
Now assume @ # A5 \ T»¢(As) 3 z. Let s be the hne-segment between z and its

nearest point w on (Sl)A (wrt. the metric dy). For each pom’c y on s the inequality
Indp(w,y) < Indx(w,z) < 170 holds.
In particular there is a y € TM* (9A}) on s with |y,| < C7<_5 for all p € A, but this

contradicts the estimate (1.70) above.
a

Proof of Proposition 1.3.2 As F' acts on each coordinate separately by an f, we
have (in view on the chosen metric (1.15)) to show the statement just for the map
f (we drop the index p), i.e. the case when A contains just one element.

Consider the lift R; x R 3 (r, ¢) —> re*® where Rs & [1 —1né,1+Ind]. This defines
(modulo (0,27) ) a (0, 27)-periodic map f= ( fry f¢) via
f (mw) = f. (r, ¢)eif'¢(r,¢)_ On {1} xR one has a% f, > Ao and so because of periodic- -

ity and a compactness argument, - 2 f > Xon a thin (0 < 6 < &g small) strip Ry x R.
It follows similarly, as in the proof of Proposition 1.3.1, that f (Rs X R) D Rys X R,

f is diffeomorphic onto its image and each point in Rs x R has the same number of
preimages (which is equal to ( f@,2n) - fQ, )) /2m). From this the claim about

f follows.
a
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Proof of Proposition 1.3.3 We substitute the expression (1.21) into the right-
hand side of equation (1.18) and get

_dw 1 dz 1 Siz)
/(is‘qn (2m)IM VTV.I(/)(W) /I"A (27"7;)’A|¢(Z);;I;II& (S;(Z) —Wp % ) ' (1.71)

To simplify notation we assume that A = {1,...,N}. As (1.18) is linear in 1
we can assume (by using a continuous partition of unity) that 1 vanishes outside
a small set K C (S')V having distinct preimages under S* (for all 0 < ¢t < ¢)
contained in K, = K,, X :++ X Kqay such that each K, is contained in a polydisc
Dy = Dg, x -+ x D,,,. These are mutually disjoint and S}, %f SitDu is biholomorphic
onto its image (for all 0 < ¢t < €). (To make this more precise we note that for
t = 0 the map S° is the product of maps f; (1 < i < N) and each f; gives rise to
an M;-fold covering map of As. So locally we can index the disjoint preimages of
K under §° by @ = (ay,...,an) where 1 < o; < M;. If we take the set K small
enough this is still true under small (0 < ¢ < €) perturbations.)

For given w € K, index o as above, k € {1,..., N} and fixed z € As, (I # k) the
function z + (SE(z1,+++, 2k, **+,2n) — wk)~! has exactly one simple pole in each
Do, and is holomorphic in A} away from these poles. Therefore we get the same if
we just integrate around these poles.

dw 1 X dz N8 (z) & 1 |
= K~—(2WXN;¢(W); (g/w% 2_75) <l5(z)I£I1 :k g CREETTS (1.72)

For each o we can write each of the inner integrals as an integral of a differential
form over the distinguished boundary oD, aef 0D,, x ... x dD,,, parameterized

by [0,1)N > t s (€271, ..., 2™N), whence
N N
Se.x(2) 1
z = - dz; A...Ndzy. (1.73
bDa # ),I_Il 2k kHl Se(@) —we )

We want to split the singular factor into a product of single poles in each variable.
So we apply the transformation u = S,(z) & S¢(z) to get:

N

1
0S8 (u ”———%-—detS‘l’ ” dui A...ANduy (1.74
/Se(boDa)¢ e ( )k=1 (S-1(u))s (Se )(u)k=1 e — Ur Uy v (1.74)

where (S;1)' is the complex derivative and so is holomorphic in u. To apply Cauchy’s
formula we have to integrate over a product of cycles (each lying in C). For exam-
ple boD or Sy(byD) are such products of cycles, but Sc(byD) in general is not. So

first we have to deform S,(byD) into So(beD). The map t — S, & S¢ is a smooth
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homotopy between S, and the product map .Sy and avoids singularities of the inte-
grand in (1.74) since for € small enough the set {S;(byDy) IJ 0 <t < €} has positive
distance (uniformly in A) from the set of singularities |J,_,;{v € Do : ur = wi}.
So(boDga) = So,1(8Day) X ... X So,n(0D.y ) is a product of cycles and hence a cycle.
The differential n-form in (1.74) is a cocycle because its coefficient is holomorphic.
So we get by Stokes’ theorem

=/So(b0Da)¢oS 1(u)]:[ 1( Ve det(S;) (u)H kdul/\.../\duN (1.75)

and by Cauchy’s formula

N
Wy 1
= S-l w . 176
#0520 1 watey, wEEamm (176)
So (1.72) is equal to
N
dw 1
S . (L7
5 [ armawttmée 607 grsmsmeen L oo 47
For each index a, the coordinate transformation u = (S¢)~!(w) yields
du 1 .
-3 [ Gt o Si(wotu) (178)
As 1 o F = 0 outside |J, Ko and the K, are mutually disjoint this equals
du 1
= Joye et e S0 (79)
= / dpNp oS¢ (1.80)
(s1yv
as was to be shown.
a
Proof of Lemma 1.4.1 Consistency follows from
7rA3(gl¢)A4 = A3 0 7rA4(gl¢A1UA4) (1.81)
= TAs (91¢A1UA4)
= 7y (9" Pauns)
(gl¢)/\3
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forall As; C Ay € F.
As g' depends only on the A;j-coordinates we have

lg' Basunllaua

< ||91”A1”¢A1UA||A1uA
< lgHlla, A=A 6]l

(" #)a,uallasua

and so

M| (g @)alla < llg*lla, 97441181

and
lgglle < llglla,9~"41]|g]ls.

For A, fixed the product is continuous in both factors.
(2.) follows from

((6'9%)d)n = mA(gh, 92, Pruriun,)

TA (.911\1 TAUA, (912\2 ¢AUA1u/}2))
T (g, maun, (9°6)) |
(9(9°9))a.

To see (3.) we note that the projection of the product of g! and g2 is

ma(9'9%) = 7a(9A,93,)
and the product in the sense of (1.26) projects to

7TA(9192) = WA(gllxlgf\qu)
= WA(Q}\lg/zxz)

as g2 does not depend on A \ Az-coordinates.
If A; C A, then

gA, (gl¢)/\2 = gAzgl¢A2

= (919)A2¢A2

and so (4.) follows from o
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(1.83)

(1.84)

(1.85)

(1.86)

(1.87)

(1.88)



@A)o) = Jim, | o, B98P, (1.89)

= 1' Ay 1
Jlm iyt dp*(9°9) A, P,
= ¢(g'9)
(5.) follows from
1 = [ d Aol
”g ¢”var Ainzld (S1)A H I(g ¢)A| (190)
= lim dut|g' ||l
5 S
< ”91||A1||¢”var
a
Proof of Lemma 1.5.1 We get recursively
L o T, (2) . | (1.91)
fp °Tcl(z) w,, ,
1
= fooTpi1(2)
fp°T;f,l—1(z) — Wp P

w o T;f,z—l(z) = foo Ty, (z)
"(fo oTp,_ 1(2) = wp) (fp 0 et(z) — wp)

_ 1 w : p© pk 1(z) — fp°T;f,k(z)
B Jo(2) — fp(z )+ pkz °T;f,k 1(2) ~ wp)(fpoT;,k(z)"wp)

The estimate (1.42) yields uniform convergence of this sum as | — co. So we get

(1.28).
(]

In (1.57) we estimate the norm of the operator corresponding to one particular
configuration in terms of the lines and triangles it contains. Now we have to bound
sums over all such configurations as they arise in expansions for the full operators.
For this we use our analysis and some combinatorics at the same time. The idea
is that a configuration of a given length must have at least a certain number of
triangles and r-chains that lead to small factors in the estimates. In fact, certain
r-chains could not be replaced by h-chains in the configuration as we would get a
zero configuration.
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Definition 1.8.1 e A maximal r-chain going from an apex of a triangle down-
wards to the next basepoint of a triangle or to a bottom point is called an
a-r-chain. (If the apex coincides with a base or bottom point the a-r-chain
has length zero.)

e The a-r-length of a configuration C is the sum of the lengths of all its a-r-chains
plus the number of its triangles, i.e. if C has |ng| triangles with corresponding
a-r-chains of length Iy, ..., ljns| then

a-1-length(C) o+t Ung| + |n5] (1.92)

= (h+1)4: -+ Uy +1)

(In particular a-r-length(C) > [ns}.)

e We call a maximal r-chain going from a base point (p, t) of a triangle to (p, —N)
(such that (p, —N) is not a base point of another triangle) a u-r-chain (upwards
going r-chain), a maximal r-chain going downwards from a basepoint a d-r-
chain (d-h-chains are defined analogously).

e A maximal r-chain going from a bottom point (p,0) to (p, —N) is called an
l-r-chain (long r-chain). We denote the number of l-r-chains of C by /(C).

The configuration in Figure 1.5 has length 3, a-r-length 6, only one a-r-chain of
positive length from (6,—2) to (6,—1), only one u-r-chain of positive length from
(2,-3) to (2,—2), and only one l-r-chain from (1,-3) to (1,0).

We prepare the proofs of Theorem 1.2.1 and Proposition 1.6.1 in the following tech-
nical proposition that provides the key bounds and basic analysis and combinatorics

for the other proofs.

Proposition 1.8.1 For sufficiently small 9, € and big co and N we have for all
Ay C Ay € F the following bound for the terms in the expansion of (1.49) for

Ta, © LNp, rage With constants cig, 2!
1.
N
Z lmay © EC“L((HAznﬂ1”'“1\2,0)1(7'11\1.19:”‘”/\1,19)) < cgf) (1.93)
C:length(C)=N

with 7 & /7 < 1

741 © Linsaraae (1.94)

L((“Az,'ﬂ)”'”/\z;")’(HAII"’”.”Alid)) S 620
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For the proof of Proposition 1.8.1 we need a graph-theoretical lemma. We consider
labelled tree graphs that are constructed in the following way (cf. Figure 1.6):
We start with a star graph with a root-vertex, labelled (0), to which K edges are
attached, each connecting to one leaf. The leaves are labelled by (0,1),..., (0, K ).

Then we add successively star graphs (Each of these has a certain finite number v(k)
of leaves. These numbers are defined in (1.45).) to the already built up tree: We
identify one of the leaves of the tree, say labelled by s = (sy,..., s,), with the root

of the added star and label the new leaves by (81,---,Sm1),-.-,(81,---,8n,v(k)),
In total we use besides the star graph with K leaves exactly ngk star graphs with

exactly v(k) leaves. We say the tree has parameters K and ng = (ng, ng2,...)
We also introduce a linear order on the set of tuples (and so on the set of vertices

of the labelled graph): .
We say s = (s1,...,8n) < t=(ty,...,tm) ifn <mand s; = ¢; for 1 <i<norif

si =t; (1 <4< k) and s < t; for some k.

Lemma 1.8.2 1. The number of labelled tree graphs with ezactly n edges is not

greater than 22"

2. Given K,ng1,mp2,... with K+ 327 ngx < 0o. The number of labelled tree
graphs with parameters K and ng is bounded from above by

Cal e Cg:nﬁ'k with ¢z = 4%,

Proof of Lemma 1.8.2 We first prove (1.) For every labelled tree graph in question
we can define a path starting and ending at the root point (0) and running through
each edge exactly twice in the following way. From a (labelled) vertex ¢ = (t1, ..., tr)
we go to the next greater (wrt. <) vertex where we haven’t yet been (going up), or if
this is not possible (i.e. t is a leaf or we have already been at all vertices (t,, ..., tr+1))
back to (ty,...,tx_1) (going down). So we re.turn to (0) after 2n steps. We encode
the path in a word (ay,...,02.) With a; =1 if we go up in the ith step and o; = 0
otherwise. Obviously the labelled graph is uniquely determined by its word. (Note
that not every word of length 27 with symbols ‘0’ a‘nd. ‘.1’ c‘orresponds to such a
labelled graph. But the map between these two data is m‘Je(.:twe.) As there are 22n
words of length 2n with at most two different. symbols this is also an upper bound
for the number of graphs in question, so (1.) is proved.

To see (2.) we note, using the estimate for v(k) that we got after (1.45), that the

number of edges in such a tree graph is not greater than K + ) "> (3 k)dnﬂ,k.
O

Proof of Proposition 1.8.1 We estimate the norm of each L¢ in (1.93) in terms of
the number of particular triangles, 1-chains etc. of C as we do in (1.57). We also have

to bound the number of configurations in (1.93) that h‘ave the same set of triangles.
We do so by assigning in (i) to (iv) to each configuration a labelled tree graph and

estimating the number of graphs that have certain properties.
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(i) We fix 0 < K < |Ay| and A3 C Ay with |A3] = K (so there are (V}(") possible
choices for A3) and want to estimate the number of configurations C such that
A¢ = A3. So let us consider such a configuration. We call the triangles whose apex
lies at, or whose a-r-chain ends in, A3z x {0}, root triangles. We can assign to C
a graph of the type we consider in Lemma 1.8.2 as follows: We start with a star
graph with a star point labelled (0) and K leaves, labelled (0,1),...,(0, K). These
leaves are in bijection with Az x {0}. Now we add successively for each I-triangle
(cf. def. on page 13) in C a star graph with one star point and v(l) leaves (cf. def.
of v(l) in (1.45)) to the graph and label the new vertices: If an I-triangle lies with
its apex or ends with its a-r-chain on a basepoint of another triangle (for which we
have already assigned a small tree) or on a point in A3 x {0} (this point is labelled
say s = (s1,...,8n)) we add a small [-tree to the graph by identifying its star point
with s and label the v(l) new leaves in the graph (sy,...,8n,1),...,(s1,...,5n,v(0)).
Since, for example, an apex could coincide with more than one other triangle’s
basepoint we use the linear order < (defined on page 28) to define an order in our
successive assignment of triangles to star graphs. We always choose the next triangle
such that the corresponding star graph is attached to the smallest (wrt. <) labelled
leaf in the graph. This also defines a unique choice of the triangle and the leaf
where we attach the star graph. So the position of triangles and the a-r-chains of
C are completely determined by the datum consisting of the corresponding labelled
graph and the lengths of its a-r-chains. Note that it is not the case that for every
graph together with a choice of lengths for the particular a-r-chains there was a
corresponding configuration.

For the configuration in Figure 1.5, for example, we get the labelled graph in Figure
1.6.

01231 (01232 (01233

©,1,3,1) (0,1.32) (0,1,3,3) ©,15,1) (0,15,2) (0,15,3)

0,1.2,1) (0,1,2,2) é

©,1,1)

0,1)

[ ]
©)

Figure 1.6: The labelled graph for the configuration in Figure 1.5
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Let ngy be, as in Definition 1.5.2, the total number of k-triangles. The number of

graphs with parameters K and ng is bounded by 4% []¢°, c;‘:"””‘ (by Lemma 1.8.2).
As mentioned above we have for each of the |ng| a-r-chains a length 0 < I; < oo.
The a-r-length is

L= (l1+1)+"'+(l[nﬁ|+1). - (1.95)

So L > |ng|. For a given ng with |ng| > 1 and L > 1 there are (, ) different
choices of (I1,...,ljns) that satisfy (1.95). For |ng| = 0 we have L = 0 and the
(unique) conﬁguratlon without tnangles or r-lines. So in any case the number of
choices is bounded from above by (.’ ). The integration over these |ns| a-r-chains

leads to a factor ci™® In in our estimates (cf. (1.57)) and each k-triangle contributes
by (1.55) a factor cge exp(—czk?).

(i) There are choices between d-r-chains and d-h-chains in the configuration.
There are not more than Y _pe, (3k)%ng x base points for which we can choose between
a d-h-chain (giving factor c; in our estimates) and a d-r-chain (giving factor at most
c,n). So the total sum over these combinations is bounded from above by

o0
(ch + crn)zzo:l(sk)dnﬁ'k S H (eXP(szkd))np'k .
k=1

(iii) There are choices between u-r-chains and u-h-chains in the configuration.

There are not more than Y ;- (3k)%ng, basepoints. To each of them we can attach
either a u-h-chain, giving a factor cs, or a u-r-chain, giving a factor ¢,nm2{®&N-L}
because if N — L > 0, such a u-r-chain cannot have length smaller than N — L, for
otherwise it would not end in A; X {—N}. We get in total a factor not greater than

(cn + cr)zzil(s’k)d"l’rh = H (exp(c23kd))nﬁ"° . (1.96)
k=1

(iv) There are choices left between l-h-chains and l-r-chains in (A;\A¢) x{-N, ..., 0},
giving factor ¢, or c,n" respectively. Let I (0 <1< |A;\ A¢| < |A| — K) denote
the number of l-r-chains in such a choice. For given [ there are ('AI\A”) < (|A1| —)

different subsets A, of A; \ Ac of cardinality [ (that corresponds to a particular
choice of exactly ! l-r-chains.) The configuration C is determined by all the choices

mentioned up to now.
Consider now a C with length(C) = N. If N — L > 0 then there must be at least
one u-r-chain giving rise to an extra factor n™*{%N-I} or an l-r-chain giving rise to
a factor n™. To get (1.98) we split
Jl‘g‘t
ﬁmax{O,N—-L} — ﬁmax{O,N—L}ﬁmax{O,N—L}

or T]N — ﬁNﬁN
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with 7j & \/_ Therefore we get the factor 7max{0:N-L},

In the configuration C there are h-chains at points with Z%coordinate in

A1\ (Ac U A,). The operator L acts on ¢,, by integration over these coordinates.
So for the uniform estimate of L@z ) we use (1.58).

First we estimate in (1.97)-(1.104) the sum over C with length(C) = N and then in
(1.105)-(1.107) the sum over C with length(C) = m < N. We do that separately
because in the second case C has no l-r-chains while in the first case every l-r-chain
leads to a small factor ¢, V. The idea of making this distinction is similar to the
idea of ‘vacuum polymers’ in other papers (cf. [3, 26, 1]).

IS im0 Lealla, (1.97)
C:length(C)=N
A %
IA1] o |As] K d\\ "8,k Ing|
< 9 Z Z 4 H(exp(czlk ))"?* (cre)lme (1.98)
K_<_|:g|<oo k=‘l
i nok o= (LY n
XH (exp(—czkd)) B,k Z (,n l) | B|77LH (exp(622kd)) B,k
k=1 L=lng] \'P k=1

|Arj—-K

X H (exp(czakd))m3 * e N .L} Z (lAll - )(CrﬁN)l

g T sl

k=1
A1
a1 K Ingl
= 9 Z > H(aeq) (1.99)
KS[:ZI(«: }

x [ ] exp((car — c2 + ca2 + €23 — 3 In ) k?)"0%
k=1

N e e O N T I
ng

L={ng|
We assume € < 1. We set e; = decicy and €, 2 Jei. Then we have el < Kelal,
We set ¢ % ¢, — cg1 — €22 — Co3 + 3%In 0. Then & > 0 if
Co > Cg1 + Cop + Co3 — 3¢Ind. (1100)

(We assume this condition on the déca.y of the coupling. Note that we first have
to choose 1 below, after (1.104), depending on the other parameters of the system
(but not on c;) and then condition (1.100) is well-defined.)

31



Then (1.99) can be bounded as follows:

A1l

< Z(l ll)(crfl + Dcp) MK K Z Z

K=0 L=
K<|nﬁ|< Inﬁl

( ) Ale®l (1.101)

o0
XH (exp(—&2k%)) " | pllag, 0™
k=1

< (c,.n + Jcp, + 62 IAll ZZ ( )ﬁLfg Z ﬁ (exP(_C}kd))nﬂ,k

L=0 n=0 n
Ingl=n

X |18l Az,077" -
We have

> ﬁ(eXP(—c“zk“))"""‘ <II >_ (exp(-ck%))™* (1.102)

ng k=1 k=1ng ;=0
Ingl=n

and the last 1nﬁn1te product converges (to o4 say) since for k sufficiently large
exp(—G&k?) < § and 350 (exp(—62k%)) "k < +2exp(— —6k?) and
Y heo exp(-—cgk“) < 0o. (Recall [Tpz, (1 + ux) convergent <= 32, |ux} < 00.)

o0
< (et + )Mo Y (€2 +7)E(Igllan 07"

L=0
- 1 -
= (e+ci" + Chﬂ)'A"mCMIWHAz,MN, (1.103)
< 1o ||l azyo | (1.104)

for ¥ and e sufficiently small and N sufficiently large. This also holds for A C A;.
So (1.) is proved.

To show (2.) we have to estimate in addition to (1.93) the contribution of non-zero
configurations C of length 0 £ m < N in the expansion of m, o ['FAonAz .. These
have no l-r-chains. So this time we have [(C) = 0. Using the splitting n* < 7E5™

we get in a similar way
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IME N lma, 0 Legagla, (1.105)

c:length(C)=m,
i(c)=0
'A I IAII lAl K oo R
< 9 ‘z Z 4 H(exp(czlk )
KSl:ZI(w k=1
o0 o0 L
x(cle)lnﬂll—l(exp(—czkd)) fik Z (]n |> InﬁlnLH (exp(c22k" )
k=1 L=lng] \'P
oo n _ 0o _ . )
x [T (exp(cask®))™* ch1=5 TT w01 | g, o™
k=1 k=1
< K{)(c 9)ll-K Z (crede, |"ﬂ|H exp(—é; kd))
K=0 k=1
K<|nﬂ|<oo
o0
x 3 ( )~Lﬁm||¢i|A2,o
L=|ng|
(A1}
- |A1| |A1| -K, K ~L Inpl
< (ca?) Z >
K=0 K<|nl3|<oo -lnﬂl
o0
x [T (exp(=c2k®)™* ™| 6ll a0
k=1
1 .
< (62 + Chﬂ)IAlll—_—é—_—%C%nm”‘ﬁ”Az,ﬂ
< o™ @llas0- (1.106)
Again this also holds for A C A; and so
il 7y © Lednslla, 0 < casllpllag,of™ (1.107)
AL © LeOnzilp, o S Co6llPl[Ag 07 - .
¢:length(c)=m, ‘
i(C)=0
Therefore
N
N ~m
17ar © LErsarmsell(aun, oy o) Hn, alling.e) < ZO C26] (1.108)
m=
o0
< 202677"l
m=0
< ¢y
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which was to be shown.
a

Proof of Theorem 1.2.1 First we consider the case N > N,. The difference
between mp, © LNs, 1ye © Ta, and ma, 0 Ly, a0y for Ay C A C A3 € Fis
due to the summands involving configurations that do not lie completely (with all
their triangles) in Ay x {0, —1,...}. For those summands we have the lower bound
for the spatial extension of the set of triangles:

bC) € Y kngy (1.109)
k=1 ’

As the analysis in the proof of Proposition 1.8.1 shows we have in the estimate for
each such configuration a factor

ﬁ (exp(—&k%))"** (1.110)
k=1
< T lexp(~(c — O] [] (exp(~¢knss))
k=1 k=1
< T [exp(~(6 - )K]™** exp (~¢dist(Ar, AS))

o
1
—

If we take £ > 0 small enough we can take out a factor exp (—£dist(A1, AS)) and do
the analysis with the remaining factor as before since é; — £ > 0. So we get

N
I7as © LEraqraze © Tas = Ty © Lpnsorsie © ThsllL (o101, (ay 0H1n, 0))
< eyrexp (—&dist(Ar, AT)) (1.111)
with some constant c,7 and the limit in (1.7) exists for N > N,. The proof for the

case N < Nj is similar. We use the modified estimates that we get by replacing
in (1.97) and (1.105) 9 by a sufficiently small 9. For example, (1.97) and (1.103)

become

il Z ”71'1\1 ° ‘CC¢A2”A1 (1'112)
C:length(C)=N

N0 . N
< cosle2 + Cr77N'1§ + Chﬂ)lA1l||¢||Az,w977N

]
‘
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and the term in parentheses is smaller than 1 if J and -g are small enough. The
statement for systems with finite-range interaction follows from the fact that in that
case all limits are already attained for some sufficiently large A, € F and that all
considered sums are finite.

For the proof of (2.) we use results from Proposition 1.6.1 that we prove below.
By (1.7) the operators LY . € L(Ms,| - |ls) are well defined for N > N, and,
by part (2.) of Proposition 1.6.1, give rise to a Cauchy sequence. With the same
argument we see that the infinite sum in the definition of v, (cf. (1.59)) converges
and v € Hy. v > 0 and so v € H™ follow from (6.) of Proposition 1.6.1.

The difference in (1.9) is only due to configurations of length > N and we estimate
it, using part (2.) of Proposition 1.6.1, by c37". So v = limy_00 LY b and by
(3.) and (4.) of Proposition 1.6.1, Lrorev = v and p(v) = 1, respectively. For any
@ € Hy with Lpore¢d = ¢ and p(¢) = 1 we have by (1.9)

¢ = lim Lird=p(@)v=r. (1.113)

That shows uniqueness of ¥ and so of v* and the proof of (2.) is complete.
a

Proof of Proposition 1.6.1 Using the same argument as in the proof of (1.)
in Theorem 1.2.1, we see that the right-hand side term in (1.60) differs from the
operator in (1.49) only in summands for C with b(C) > dist(A;, AS). So the difference
is bounded by cz9 exp (—£dist(Ay, AY)) for some c;3 > 0 and (1.60) follows from
taking the limit A, — Z4. ' '

In order to prove (2.) we first observe that configurations C € En(A;) of length
< N —1 extend canonically to C' € En41(A;) with Lo = L because there are
only h-lines in the step from time —N to —N + 1. So we can extend C to C’' on
Ay x {~N —1,...,0} (where A; is so big that Ay x {—~N —1,...,0} contains all
triangles of C) by adding h-lines from (p, —N — 1) to (p, —N) for all p € A; and
obviously L. = L¢.

Note that a configuration C' in Ay X {~N —1,...,0} of length < N — 1 is the
extension in the above sense of a (uniquely defined) C.

So in the difference (1.61), all terms L¢ with length(C) < N —1 are cancelled. Using
(1.) of Proposition 1.8.1, (1.107) and (1.) of this proposition we get for all A; € F

” (”Ax 0 Lype = Ta, © Eg;rlf) ¢“A1,19 S (01977N + eooff” + ClQﬁN+1) l$lls
< caf™ |4l (1.114)

with ¢39 independent of A;. This proves (2.) Next we prove (3.)
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For A; € F,

1 © ‘CFOT‘ ° £FOT‘¢

(1.115)

= Y. 7 oLe (Lrind)
C2€EN2 (Al)
= Y [moLge D maeyoLedae
C2€En, (A1) C1€EN, (A(C?))
= Z A1 © Lesoe, Paey)
C2€EN, (A1)

CLEE N, (A(C2))

2.

C3€EN  +n;(M1)

F‘oTc

Note that we sum over infinitely many Clb,Cz.

valid for finite partial sums.

N1+N2

A, © LesPaces)

¢.

A vpriori, the distribution is only
In terms of configurations we ‘put C; on C;’ to get

Cs = C; o C; (which might be a zero configuration) and in fact such a splitting

exists and is unique for every

non-zero Cs. So the net of finite partial sums over C;

converges to the infinite expansion (1.60) of the nght hand side of (1.62) and (3.) is

proved.

To prove (1.64), we consider first the spec1al case g € C((SM)M).

/dug°S¢
M

= lim
A1—Z4

dpgoSh, ¢ (1.116)
M

lim duMgo Sy ¢,

A —Zd (SHM

lim du'“g Lpayorareda,

A1—Z4 (sHyM

lim

A
A1—Zd d/"’ gmae EFAIOTAI € © 7TA1¢

(sHA

/ du gLpore.
M

So (1.64) is true for g € C((S')*). Taking g = 1, we get (1.65).

Now we show (1.63), using th

e special case of (1.64) for the second equality.

4
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IIEFOT‘¢”var = Ssup sup /dﬂgLF°T=¢ (1117)
AEF gec(shyh) J M

llglloo <1
= sup sup / diugoSé¢
AEF gec(shr) IM
lislioo<

< sup sup [Iglloollbllvar
AEF gec((shr)
llglloo <1

= ”¢”var-

We can conclude (1.64) for any g € C(M). By assumption ¢ and then by (1.63)
Lrore¢ are in HY, i.e. the integrals in (1.64) correspond to continuous linear func-
tionals on C(M). The net (ga)acr converges uniformly to g as A — Z9, as does
(9a © S)acr to go S, so (1.64) follows by uniform approximation of g by functions
ga and (4.) is proved.

We show (5.) by indirect proof. We have, by definition, (Lrore¢)a Gef limy, yzamp ©
Lpaiorare®p,. If that was negative somewhere there would be a A; € F with
A © Lpayorare@p, having negative values and we could find a non-negative g €
C((S")M) such that

/ dutgmp o Lpaopayedp, <0 (1.118)
(s1)a ‘
But by (4.) the integral equals
/ duMgo S ¢, >0. (1.119)
(51)/\1 .
So Lpore is non-negative.
O
Proof of Theorem 1.7.1
VajuA, = Z WA1UA2 ° Ech (1.120)
CeE(A1UAR)
= Z (A, © Leyh) (A, © Leyh)

C=C;UCy
b(€)< 3dist(A1,A9)

+ > maumoLeh

¢
b(c)> dist(Ay,Ap)

In estimating the second summand we note that if we sum in formula (1.97) and
(1.105) just over C for which 5(C) > dist(A;, Az) (b(C) was defined in (1.109)), we
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can take out from [];2, (exp(—&k4))™* a factor exp(~¢1dist(A;, Ag))(like in the

proof of Proposition 1.6.1): We do so by choosing a x € (0,1) so that

GHInk=co—co1 —Coa—cC3+3In9+1lnk>0

(1.121)

and by defining £ by exp(—{%) = k. Note that such a choice exists as & > 0 by

(1.100).
The rest of the analysis is as in the proof of Proposition 1.8.1. We get

|l Z TAUA, © Lehl[aua,
b(c)>§dicst(A1,A2)

< ndlst(Al,Az)cal“h”ﬂﬁ—mll—ll\ﬂ
' S 632"9—|A1|—IA2IK,diSt(A1,A2).

We write for the first summand in (1.120)

Z (7rA1 oLe h‘) (”Az ° ‘CCzh)

€=C1UCa
b(c)<4dist(A1,A2)

=VnVA; — Z (T, © £C1h)(7rAz o Le,h)

c=C1UCy
b(c)> $dist(Ag,Az)

and estimate in a similar way

” Z (7rA1 o ‘Cc1h) (ﬂAz ° ‘Cczh’)”AxU/\z < c3319"A1I_'Az'ﬁdiSt(AhAz)'

C=C1UCy
b(C)> 4 dist(A},A2)

(1.124) and (1.125) also hold for all A} € A;, Ay C Ay and (1.) follows.

TA, (fl/) = Tz (fVAlUAz)
= (fV/uVAz - f(VA1 Vp, — VA1UA2))
= V(f)VA1 — TA,L (f(VA1VA2 - VA1UA2))

and, using ||ma, |l = 1, we get

l7a, (f Wavas — vasuma))llan < I Nlaxllvasva, — vajung llasuss

and so by (1.)
Ay (f (VA VAe — Yasuna))llay S eag® M al=12l] ]| secistArna),
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(1.123)

(1.124)

(1.125)

(1.126)

(1.127)

(1.128)



This holds for all A} C Ay, so (2.) is proved.

We set ¢ = fv — v(f)v. So ma, 0 LEre(fv) — v(f)va, = Ta, © LY rcd. We estimate
the || - {|5, s-norm of the last term as in the proof of Proposition 1.8.1, but this time
using the finer estimates from (2.)

¢ llaey < 97HOleyg7Ial ], xistAEA2) (1.129)
< crd ] g0 e OIS SR i ) b

where as before A(C) = & R UA,. So we get analogously to formulae (1.97) and
(1.98):

M DT Ima, 0 Ledaglia, (1.130)
C:length(C)=N
A 0o
|A1|| ! |A4] K d\\ "8,k Ingl
< 9 Z >, 4 I (exp(cz15%))™* (cre)
K<|:g|<oo k=1
o n N L n n
xH exp( czkd) Pk E (|nﬂ|) 'BIULH(GXP(szkd)) ok
k=1 L=|ng| k=1

|At]—-K

XH exp czskd))nﬂk max{0,N-L} Z (,Alll— >(cm )z A1|~K -1

X01119 IAZ]”f”A ,0—1 Ek=1(3k)dn5,k dlst(Al,Az)—zz‘;l kng i

< g 19"*1!%01\“) 3 A (ciec,)m!

n
K<Ing|<oo

X H (exp((car — €2 + €2 + €23 — 3In9 —In 'ﬁ)kd))n'9 *
k=1

x Z (I‘[I\(ll) nmax{L,N}(,ﬁ—lcrnN + Ch)lAll_'Kﬁ—lAz]Ilf“Az/CdiSt(Al’A2).

L=|ng|

Using (1.121) we get with the same analysis as from (1.98) to (1.103):

-~

NV = - - .
<eule+od 5+ cnd)Arlg=IAzl| | kst AL AD GV (1.131)

For sufficiently small e, and 9 the term in brackets is smaller than one. Note that
there is no condition on N. So we get the same estimates for all n > 0 and these
also hold for A C A;. So in analogy with (1.61) we get
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|£Fored = LE |y, < casd™ || £, i1 AD N (1.132)

and as p(¢) = 0 we conclude (3.)

|A1

Proof of Theorem 1.2.2 Applying (1.) of Theorem 1.7.1 we get

l/MVdugf-(/Mudug) (/Muduf)‘ (1.133)

< d ALUA2 _

= [sl)A1UA2 (] (VAlUAz VA1VA2)gf
< ”VMUAz - VA1VA2”AlUAz”.qHOOHf”oo v

< Cloﬁ_IAll_lAzl”g”oonfIlm’cdiSt(Al’Az)y

o (1.) is proved.

’/MudugoroS’"f—(/Ml/dﬂgOT) (/Mydufﬂ (1.134)

= I/ dugor (Wr—l(Al) © Lioye(fv) — V(f).i/r“(Al))

< ennd ) £llag llglloon et A g,

Here we have used (3.) of Theorem 1.7.1 and set cs ' 5-1. From

dist(77! (A1), Az) > m(7) —max{[lp— gl : p € A1, q € A3} (1.135)
follows
ndist(‘r‘l(Al),Az) < C(Al,Ag, R)Iﬁ?m(T) (1136)
where c(Ay, A3, k) is as defined in Theorem 1.2.2. If 7 and S commute, (3.) follows
from (2.).

We prove (4.) by approximating g and f by functions for which we can apply
estimate (2.). For any v > 0 we can choose A; € F so large that |lg — ga, ||oo <d 7.
Further there exists an fa, € H(A5?) with || f ~ Faslle < (sup-norm on (S*)%%).
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So

(1.137)

[ vangaross— ([ wigor) ([ vins)

< '/A:!Vdu(g—gm)OTOSnf +,/1;1Vd/*‘g/\1°7-osn(fl\z_f)‘

+ /Mudug,\lo'rOS"fAz— (/Mle!:gAl OT) (/MVdeAz)
+ (/M,,dgg,\l or) (/Mudu (f-f~A2)>
(it ()

lg = gasllooll Flloo + lgasllooll f = Fazlloo
(A, Ag, ) gn, oo | Fa s 7O ™)
Hlgalloollf = Fazlloo + 11 = gaslloo | Faalloo
211 flloo + 2llglloo +37) ¥
+e(Ar, Az, €)1 (llglloo + 7)1 Fa, 2,7 67

IA

IA

and this gets arbitrarily small as we can first choose v, and then (depending on 7)
Ay, A; and £, and finally max{m(o),n(o)}.
(5.) follows from (4.) and the commutation of the 7, with S.
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Chapter 2

Weakly Coupled Circle Maps
with Asynchronous Updatings

2.0 Introduction

In this paper we study coupled map lattices with indepentent identically (i.i.)
Poisson-distributed updatings at the individual sites.

A deterministic coupled map lattice (CML) is given by a Z%-lattice with a copy of the
same Riemannian manifold at each lattice point (i.e. the state space is the product
of these manifolds with index set Z4) and a map on the infinite space that can be
decomposed into an uncoupled map that acts individually on each component and

an ‘interaction step’ where the change of each coordinate depends also on the other

sites.
L.A. Bunimovich and Y.G. Sinai prove in [7] (cf. also the remarks on this in [4])

the existence and uniqueness of an invariant measure and its exponential decay of
correlations for a one-dimensional lattice of interval maps with weak coupling. By
constructing a Markov partition they relate the system to a two-dimensional spin
system whose Gibbs measure corresponds to the invariant measure of the CML.

G. Keller and M. Kiinzle prove in [21] the existence and uniqueness of an invariant
measure for periodic or infinite one-dimensional lattices of weakly coupled interval
maps by studying the transfer operators on the space of measures whose finite-
dimensional marginals have densities of bounded variation. For small perturbation
of the uncoupled map any invariant measure is ‘close’ to the one they found.

J. Bricmont and A. Kupiainen extend in [3] and [4, 5] the result of Bunimovich
and Sinai [7] to Z%lattices of weakly coupled circle maps with analytic and Hélder-
continuous interaction, respectively.
They represent the iterates of the Perron-Frobenius operatqr for finite-dimensional
subsystems (over A C Z%) by a ‘polymer’- or ‘cluster’-expansion that gives rise
to a representation of the corresponding invariant measure in terms of a (d + 1)-
dimensional spin system. The weak limit (as A — Z% of these measures is the
unique (in a certain class) invariant probability measure and it is exponentially
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mixing with respect to (wrt) spatio-temporal shifts.

C. Maes A. Van Moffaert introduce in [26] for a similar setting as in [3] a simplified
‘cluster’-expansion for the truncated Perron-Frobenius operator and show stochastic
stability of the CML under stochastic perturbation.

In [1] V. Baladi, M. Degli Esposti, S. Isola, E. Jirvenpaa and A. Kupiainen define
Frechet spaces, and, for d = 1, a Banach space and transfer operators for the infinite-
dimensional systems, considered by Bricmont and Kupiainen in [3], and study the
spectral properties of these operators.

In [12] we consider analytically coupled circle maps (uniformly expanding and an-
alytic) on the Z%lattice with exponentially decaying interaction and introduce Ba-
nach spaces for the infinite-dimensional system that include measures whose finite-
dimensional marginals have analytic, exponentially bounded densities. We define
transfer operators on these spaces, get a unique (in the considered Banach spaces)
probability measure and prove its exponential decay of correlations.

CMLs with multi-dimensional local systems of hyperbolic type have been studied
by Ya.B. Pesin and Ya.G. Sinai [27], M. Jiang [16, 17], M. Jiang and A. Mazel [18],
M. Jiang and Ya.B. Pesin [19] and D.L. Volevich [31, 32].

For detailed reviews on mathematical results on CMLs we refer to [1], [4], [6] and
[19].

An interacting particle system (IPS) is given by an infinite lattice with a copy of the
same state space (that is usually a finite or countable set but can also be a Rieman-
nian manifold) at each site. The updating at an individual site is a deterministic or
stochastic map (e.g. in the case of finite local state spaces it is given by a stochastic
matrix with transition probabilities as its coefficients) that is applied with ‘expo-
nential waiting times’, i.e. like the waiting times for jumps in a Poisson process. The
jump rates for the updating depends also on the other sites. R.J. Glauber intro-
duces in [13] (a special case of) the stochastic Ising model as a model for magnetism.
The total state space {—1, -I-l}z represents the spins of the atoms at all sites. The
rate for a flip of an individual spin depends on the states of the neighbour sites.
F. Spitzer [29, 30] and R.L. Dobrushin [8, 9] study more general systems where the
individual jump rates do not only depend on the nearest neighbours.

A basic problem is to establish the existence of infinite systems with asynchronous
updatings. The infinitely many jumps in a finite time-interval cannot be ‘listed’, i.e.
there is no order preserving bijection between the time-ordered set of jumps and N.
R.L. Dobrushin obtains in [8] the infinite system as the limit of subsystems over
finitely many sites.

By using a percolation argument T.E. Harris proves in [14] that for systems of finite
range interaction and a sufficiently small time interval the history of an individual
particle depends on only finitely many sites, and so he provides a natural definition
of the infinite system. With probability 1 the set Z¢ splits into finite clusters such
that each site is affected at most by sites in the same cluster.

R. Holley shows in [15] for generators, corresponding to one-dimensional models,

43



and T.M. Liggett in [24] for the d-dimensioanal case, that these operators generate,
in fact, a semigroup, acting on continuous functions.

Here we have only mentioned different methods to establish the existence of the
infinite systems. For detailed reviews on IPSs and results on invariant measures,
mixing properties, phase transitions and applications to physics and other sciences

we refer to [10] and [25].

In this paper we consider the infinite topological product M = (S')%* and continuous
updating maps for the individual coordinates that are of finite range or Lipschitz-
continuous wrt all coordinates with a summable family of Lipschitz constants (cf.
Section 2.2.2 for the definition). The times for the updatings at the individual sites
are independently Poisson-distributed with the same constant rate A > 0. For the
finite range case we show that with probability 1 the updatings at any finite set
of sites and any finite time-interval depend on only finitely many sites. Qur proof
uses time- and space-oriented percolation and is different from the one in [14). This
result provides a natural definition of the infinite dynamical system.

For the systems with infinite range interaction we show that with probability 1 it
is well-defined as the net-limit of its finite-dimensional subsystems with arbitrary
boundary conditions. We combine standard estimates for error growth with ideas
from percolation theory. The limit of the corresponding Markov kernels, acting on
continuous functions, exists and provides a definition of the infinite process, different
from the widely used generator approach.

Our proofs still work if we replace S' by any compact Riemannian manifold or
stochastic systems with finite state spaces. The assumption of having the same
constant jump rate at all sites is by no means essential and can be weakened to the
case of upper bounded individual jump rates that depend on other states as well.
However we do not consider these generalizations in this paper,

In a setting similar to that of [12], i.e. for analytically coupled circle maps (uni-
formly expanding and analytic) on the Z%lattice with weak, exponentially decaying
interaction but with asynchronous updatings as described above, we define transfer
operators for the Markov kernels of the infinite system. The operators act on the Ba-
nach space Hy (introduced in [12]) that includes measures whose finite-dimensional
marginals have analytic, exponentially bounded densities. Using ‘cluster-expansion’-
like techniques, we represent these integral operators in terms of configurations and
prove the existence and uniqueness (in #y) of an invariant probability measure and
its exponential decay of correlations. .

The paper is organized as follows. Section 2.1 prov1dfes definitions, notation and
some propositions about stochastic processes and metric spaces. In Section 2.2 we
define the infinite-dimensional systems for finite range (Section 2.2.1) and infinite
range interaction (Section 2.2.2) and the corresponding Markov kernels (Section
2.2.3). In Section 2.3 we study the transfer operators for a specific class of interac-
tions. In Section 2.4 we prove the mixing properties of the invariant measure (found

in Section 2.3) wrt spatio-temporal shifts.
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2.1 Basic Definitions and Examples

In this section we present definitions from probability theory and topology and also
introduce most of the notation used in this paper. We have taken most definitions
and statements on probability theory from [2].

Definition 2.1.1 N denotes the set of natural numbers including zero. Let (E, A;)
be a measurable space, (2,.4;,P) a probability space and (X;)ic; a family (with
index set I # @) of random variables on (£2,.4;, P) with values in E.

e Then (2, A;, P, (Xt)ter) is called a stochastic process with values in
(E, Az).

e IfI=Norl=1{0,1,...,N} the process is called a discrete time stochastic
process. If I = R>?, [0,T] or [0,T) for some T > 0 the process is called a
continuous time stochastic process.

e For fixed w € Q the map t — X;(w) is called the trajectory of w. It is also
denoted by X, (w).

e We consider the set N as measurable space with the discrete o-algebra. For
any set A we denote by N* the product space, established with the product
o-algebra.

A discrete or continuous time stochastic process with values in N* and with
index set I and P-a.a. of whose trajectories are non-decreasing (i.e. the func-
tions ¢ > m, o X;(w) are non-decreasing for all ¢ € A and P-a.a. w € Q. ‘my’
denotes the projection on the gth coordinate.), is called a counting process
with values in N* We say that such a process is of finite expectation if for
all t € I the random variable w — 3 ) m; © X;(w) has finite expectation.

Remark 2.1.1 1. We will also use the short-hand-notation X, for a stochastic
process if £, A; and P are obvious from the context.

2. The term path seems to be more common than trajectory but we will denote
something else later on by path.

3. Finite expectation means that with probability 1 there are only finitely many
jumps (cf. Definition 2.1.2 below) in every finite time-interval.

Definition 2.1.2 (cf. [2]) Let (2, A;, P, (X¢)ecr) be a discrete time counting process
with values in N as in Definition 2.1.1 and w € §2. We say that X, (w) jumps, or
has a jump, at time t € I\ {0} if X;_(w) < Xi(w). Then X;(w) — X1 (w) is called
the size of the jump.

Now let (2, Ay, P, (X;)icr) be a continuous time counting process with values in N
as in Definition 2.1.1 and w € 2. We define
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def .
X ) mX,) (2.1

_ def [ limg  Xy(w) if £>0
Xiw) = { Xo(w) i t=0 (22)

We say that X, (w) jumps at time ¢ > 0 if X; (w) < X;"(w). Then X;'(w) — X; (w)
is called the size of the jump.

Let X, (w) be a (discrete or continuous time) counting process with values in N* and
w € Q. We say that X,(w) jumps at time ¢ and site ¢ € A if 7, 0 X, (w) jumps at ¢.
Then we also say that w jumps at (g, ).

We define the jump set A(w,t) of w at time t as the set of all ¢ € A such that w
jumps at (q,1t).

Definition 2.1.3 (cf. [2]) Let I =R2% or I = [0,T) for some T > 0. A stochastic
process (2, A, P, (Xt)ter) with values in N is called (normalized) Poisson process
with parameter A > 0 if the following holds:

1. The process has stationary and independent increments which foralls <t € I
satisfy '

P({w: Xi(w) = Xs(w) = n}) = pa(t — s,n) (2.3)

with

oy OD)
patn) e “(T,) : (2.4)

2. P-almost every trajectory X, (w) is a right-continuous, increasing function hav-
ing at most jumps of size 1.

3. At time 0 P-a.a. trajectories have value 0:

Plw: Xo(w)=0)=1 (2.5)

Theorem 2.1.1 (cf. [2], Satz 41.2) For any A > 0 and I as in Definition 2.1.8 there
ezists a (normalized) Poisson process with parameter A\. Any two such processes are
equivalent (i.e. if X! and X? are two such processes then for any finite sequence
t1 < ... < tq in I the projections (X},...,X}) and (X?,...,X2) have the same
distribution.)

a
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Definition 2.1.4 Let A be a nonempty set and (2,4, Ay, Py, (X7)icr)qen be a family
of stochastic processes with values in (E,, A?), respectively. We set

def
n < ®Qq, (2.6)
geA
T def
A = CSD-Aq’ (2'7)
qeEA
~  def
p ¢ ®Pq, (2.8)
geA
A Y completion of A wrt P, (2.9)
P ¥ extension of P to A (2.10)
and X, ¥ ®Xf- (2.11)
geA

Then the process (Q, A, P, (Xt)ter with values in (®qen Eos ®er A7) is called the
product of the family of processes.

Remark 2.1.2 1. Products of stochastic processes as in Definition 2.1.4 exist.
For example the existence of the non-completed product measure follows from
standard measure theory (cf. [2].)

2. For non-empty, at most countable A and a family (indexed by A) of Poisson
processes two such products X' and X? are equivalent because for all ¢ € A
the Poisson processes mq 0 X! and my o X? are equivalent (cf. Theorem 2.1.1).
It follows from the definition of the product o-algebra ®q€ 2 A? that X! and
X? are equivalent.

Definition 2.1.5 Let A > 0 and A a nonempty, at most countable set. A Poisson
process on A with parameter ) is the product of a family, indexed by A, of
Poisson processes with parameter .

Remark 2.1.3 1. For A > 0 the Poisson process on Z¢ with parameter ) is

clearly not of finite expectation. In fact for any ¢ > 0 there are P-almost
surely infinitely many jumps in [0, ¢}, i.e.

P({w: Z g0 X¢(w) =00}) = 1. (2.12)
A
P
2. But if A} C Z¢ is finite then ma, o X,(w) has finitely many jumps in [0,t] for
P-aa.weQandt>0.
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3. There are P-almost surely no simultaneous jumps at two different sites:

P{w:3q #q2 € Z4 ¢ > 0 such that w jumps at (g;,t) and (go,%)}) = 0.
(2.13)

4 For0<t; <t

P({w: w jumps at t}) = 0. (2.14)

Proof of Remark 2.1.3 We only show (2.13). The proofs:of the other statements
are similar. We set

A(q1, 92, T) & w3t € [0,T) such that w jumps at (q1,t) and (go,t)}.  (2.15)

We have to prove that the set

U U 4ae7) (2.16)

TeN  g1,q2€Z¢
has P-measure zero and it is sufficient to show that

P(A(q1,42,T)) = 0 (2.17)
for fixed q, # ¢2 € Z% and T > 0. For this we set
def T T
def |k — 1) = k=
I [( 5k N) (2.18)

for Ne N\ {0} and 1 <k < N. We have fori =1,2:

P ({w: jumps at (g;,t) for some t € Iyz}) =1 - e (2.19)

and so, using the estimate e® > 1 + z:

P ({w : 3k;t),ts € Iy such that w jumps at (q1,¢;) and (q1,%)})  (2.20)
2
< N (1 — e'A%)

1
< 2272
)\TN

which converges to 0 as N — oo.
- t A D .

In Sections 2.2.3 and 2.3 we will use discrete time processes to approzimate Poisson
processes. (The convergence in distribution will be made precise in Lemma 2.1.2.)
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Definition 2.1.6 For d > 1 we denote by F the set of finite subsets of Z4.
Let \,T >0, N > AT, I ={1,...,N}, A € F\ {0},
Qv = {0, 1}4% (2.21)

and Aj n the discrete o-algebra on €, y. Elements of Q are denoted by w =
((d(q, n))(q,n)eAxI- We set:

p & % (2.22)
wl &S wign) (2.23)
(g,n)EAXI
Pan({w}) & pMl( - p)AN-lel (2.24)
Ton() E Y w(g,k) (2.25)
k=1
Xa@) = (Tgn)oer (2.26)

The discrete time counting process (Qa,n, Aa,n, PaN, (Xt)teu,..,n}) With values in
NA is called Bernoulli process with parameters A, T,N and values in NA.

The following two definitions prepare Definition 2.1.9 that we will need in Section
2.2.

Definition 2.1.7 In view of Definition 2.1.3 and Remark 2.1.3 we define (for a
given Poisson process like in that remark) the set N of P-measure zero:

M dof {w: X,(w) is not non-decreasing, has jumps at 0, (2.27)
simultaneous jumps or jumps of size greater than 1}.

Definition 2.1.8 For ¢ = (qi,...,¢n) € Z% we define

gl = laal + .. + g, (2.28)
For R>0
Br(g) ¥ {G€2?:|lg-d| <R} (2.29)

is the set of points that have distance at most R from gq.
Definition 2.1.9 Let a,b € Z4and n > 0. A path from a to b is a finite sequence
Q= (9 =a,q1,...,q. = b) of points ¢; € Z*. We call maxocicn-1||¢ir1 — gl| the

step size of Q. Note the special case of a path @ = (g). It is called the empty
path at site qg and we define its step size to be 0.
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Definition 2.1.10 Let (2, A, P, (X;):>0) be a Poisson process with parameter A > 0
and with values in N2°, Let T > 0, w €Qand Q= (qo =a,q,...,q, = b) a path.
We extend @Q to the infinite sequence Q (90,91, --3Gn, Gny1 = @, . . .) in which g,

is repeated.
We define a process (2, A, P, (Z;)¢ejo,77) With values in N as follows.

Z:0,4x9Q —» N (2.30)
(tw) » Zi(w)

If w € M or it does not jump at (go,t) for any ¢t € (0,T) we set Z, (w)=0on[0,T)
Otherwise there is a maximal sequence T >ty > £, > ... > tmw) such that with

t_, &,

¢, & max{t € (0,%-;) : w jumps at (g;,t)} for 0 < i< m(w). (2.31)

‘Maximal’ means that w does not jump at gm()+1 in the time interval (0, t,,(,)) and
the sequence cannot be extended. (Intuitively one can think that one sits at time 7'
at site go and, going backwards in time, waits for the next jump of w at gy (which
happens at time ?;), then jumps (instantly) to ¢; and waits (backwards in time) for
the next jump of w at ¢, then jumps to g; etc. After n jumps (should this occur)
one does not change the sites any more, but possibly jumps from g, to ¢,. m(w)
is the total number of jumps. It is P-a.s. finite because P-a.a. w have only finitely
many jumps at gy.)

We set for t € [0,T7:

S\ def i for telft,t)
Zy(w) = { m(w) for te€|0, tm(w))

And Z,(w) is the (uniquely defined) right-continuous function, such that Z,(w) =
ET_,(w) everywhere, except possibly where these functions jump. Then

(2, A, P,(Z4)scpo,m)) is a Poisson process with parameter A. (A precise proof of this
uses that the constructed process is ‘made of’ independent Poisson processes and
that these have independent increments.) We call it the Poisson process induced

by the path Q.

(2.32)

Definition 2.1.11 In the setting of Definition 2.1.10 we call Q a causal path
wrt (t,w) if Zr(w) > n and a maximal causal path wrt (t,w) if Zp(w) = n.
(The latter means that @ = (go,...,¢,) cannot be extended to any causal path

(QO, ey Qn, qn+1)')
We define:

o Path(q,n,R) to be the set of paths that start at g, have exactly n steps and
are of step size at most R.
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e Path(q — A) for any @ # A € Z¢ to be the set of paths starting at ¢ and
ending in A.

e Pathc(t,w,q, A) for g € A to be the set of causal wrt (t,w) paths Q@ = (g =
q,...,qn) such that

1. @ is maximal causal and qq,...,q, € A
or2. g¢o,...,qa-1 € A and g, € AC.

e Pathc(t,w,q — AC) for ¢ € A to be the set of causal paths (g = g, ..., gy)
such that gqq,...,qn—1 € A and g, € A®. (So this is the subset of elements in

Pathc(t,w, g, A) for which case 2. applies.)

Remark 2.1.4 1. We have defined the property of being causal for general paths
and not related this definition to any kind of interaction. When we study finite
range interaction, of range R say, we will consider only causal paths of step

size at most R.

2. A term like inverse causal path from a to b instead of causal path would actually
be more appropiate as it corresponds to b affecting a (cf. Definition 2.2.1) but
not necessarily the other way around. However, we prefer the shorter notion.

Definition 2.1.12 (cf. [2]) Let (€21,.41) and (Q2, 42) be measurable spaces. A map
K :; x Ay — [0,1] is called a Markov kernel from (Ql,Al) to (2, Az) if the

two following conditions are satisfied:

MK1 w;, = K(w;, 4;) is A;-measurable for all 4, € .A2
MK2 A; — K(w;, Ap) is a probability measure on A, for all w; € A;.

If (1, A1) = (2, A;) then K is called a Markov kernel on (€24, 4,).

Example 2.1.1 Let (Y, gy) be a metric space and By its Borel o-algebra. C°(Y,Y)
is the space of continuous maps from Y to Y. It has a uniform metric, defined by

co(v,v)(91, 92) = supycy ov(91 (¥),92(y)) and the Borel o-algebra Beo(y,y) wrt this
metric. Further let (2, .4, P) be a probability space and

S:Q = C(v,Y) (2.33)
w = S,

a measurable (wrt the o-algebras A and Beo(y,y)) map.
Then

Ks(y,Y1) = P({w: S.(y) € Yl}) (2.39)
for all y € Y,Y; € By, defines a Markov kernel on (Y, By).
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Proof To verify MK1 we fix an Y; € By and show that the map ¥y Ks(y, 1)
is measurable. First we note that S can be seen as a measurable map from ) x YV
to Y. We write it as the composite of measurable maps S x idy and the ‘evaluation

map’:

(@, ) = (Sury) = Su(y). (2.35)

The map S X idy is measurable by assumption and the definition of the product
o-algebra of C°(Y,Y) x Y. The evaluation map is continuous (wrt to the product
topology), hence measurable wrt the Borel o-algebras. So the composite in (2.35)
is measurable in 2 x M. It follows that the map y — P({w : S,(y) € V1)) is
measurable (cf. Lemma 8.1 on p. 159 in [22]) and so MK1 holds.

Next we show MK2. Consider for fixed ¥ € Y the composite of measurable maps

w - (w,y) — Suy) (2.36)

that maps Q to Y. We see that K(y,-) is the image of P wrt this map and so a
probability measure which was to be shown.

0

Definition 2.1.13 (cf. [2]) Let K be a Markov kernel from ({4, 4;) to (3, 4;) and
E*(A;) (i = 1,2) the set of A;-measurable functions with values in [0, 00]. Then K
defines a map from E*(Ap) to E*(A,;) as'follows:

(K)wn) = | Ko, don) f () (2.37)
for any f € E*(A,).

Example 2.1.2 (cf. [2]) For the characteristic function x4, of an A-measurable
set A; we get ‘

KXAz ((4)1) = K((“)l) A2) (238)
Now we consider a special case of Example 2.1.1.

Example 2.1.3 Let S : Y — Y be a continuous map map on (Y, gy) and let
(R, A, P, (X;):cr) be a counting process with values in N and ¢ € I.
The map :

St:Y - Y & (2.39)
y = SXE)(y),
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where SX#(«) denotes the X;(w)-th iterate of S, is well-defined for all w € Q. Further
S.(y) is measurable wrt (w,y). In fact, S, depends just on X;(w) and so we get a
countable, measurable partition of {2

Q= (Jum | (2.40)

neN
with Un) & {weQ:Xw)=n} (2.41)

We define a Markov kernel by

Kiy,Y1) € P{w:Si(y) e 1) (2.42)
= ) PU(n)

n:S*(y)eY1
= [ dP@ xvostw)
Q

forye Y and 1 € By.

We prepare a generalization of Example 2.1.3 with a definition and a technical
lemma. .

Definition 2.1.14 Let A € F\ {0} be fixed. We define J to be the union of a one-
point set {joo } and the set of finite sequences (Ay, ..., A,) of subsets of A. Then J
is countable and we consider it as a measurable space, established with the discrete

o-algebra.
Let (Q, A, P, (X;):e1) be a discrete or continuous time counting process with values

in N* and index-set I = {1,..., N} or [0, T], respectively. We define a map

i@ = J (2.43)
w = jw)
If X,(w) is non-decreasing, has only finitely many jumps and at most jumps of size 1

then we define j(w) to be the (time-ordered) sequence of jump sets of w. Otherwise
we set j(w) = joo- We define for j € J:

U() ¥ {w:jw) =4} (2.44)

Lemma 2.1.1 Let A € F\ {0} be fized and (2, A, P,(X¢)ser) a discrete or con-
tinuous time counting process with bounded indez-set I and values in N* such that

for P-a.a. w the trajectory X,(w) is non-decreasing, has only finitely many jumps
and at most jumps of size 1. Then the map j, as defined in Definition 2.1.14, is
measurable. ,
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Proof For the discrete time case this is obvious because then all subsets of §2
are measurable. Now we consider the continuous time case with I = [0,T]. By
assumption N = U(joo) is measurable and has measure zero. We have to show that
U(j) is measurable for any j = (A4,...,A,). For any q1,¢2 € A, ny,ny € N\ {0}
and t € [0, T] we define A;(g1,n1, g2, n2) to be the set of all w € 2\ N that have at
least n; jumps ot ¢, and at least n; jumps at g, and the n;th jump at ¢; happens
at the same time as the npth jump at g,. Similarly A;(g1, 1y, g2, n2) is the set of all
w € Q\ N that have at least n; jumps at site ¢, and the n;th jump at ¢, occurs
before the nyth jump (if any) at g;. We only show the measurability of the sets
Az(+). The proof of the measurability of the sets A;(-) uses similar arguments.

AZ(q,n,1) def {weQ\N 7y 0 Xy(w) > m} (2.45)

is the set of all w € Q\N that have at least n; jumps at site ¢, and the n;th of these
jumps happens at the latest at time . We define sets A”(g;,n1,t) etc. analogously.
AZ(qy,ny,t) and A<(q1,m1,t) are measurable, and so is A3(g1, 71, g3, n3) since

Ax(q1,m1,q3,m3) = U (AZ(q1,m1,t) N A%(g3, 13, 1)) . - (2.46) .
te[0,T)NQ

Now w belongs to U(j) if and only if, forall 1 < k¥ <nand ¢;,¢; € Ay and g3 € A\ Ax
the following holds:

o If for exactly n; indices 1 < ¢ < k the point g; belongs to A; and for exactly
n, indices 1 < j < k the point ¢, belongs to A; then w € A;(q1,n1, g2, n2).

o If for exactly n; indices 1 < i < k the point q; belongs to A; and for exactly
n3 — 1 indices 1 < j < k the point g3 belongs to A; then w € A3(g1, 11, g3, n3).

o If for exactly > 0 indices 1 < k1 < k2 < ... < k; < n a point ¢ € A belongs
to Ay, then w € {& € R\ N : g0 X (@) =1}

We see that U(j) is the intersection of finitely many measurable sets and hence

measurable.
0

Example 2.1.4 Let us consider a generalization of Example 2.1.3. Let (Y, gy) be a
measurable space, A a non-empty finite set and (Q, A, P, (X:):cr) a counting process
with values in NA that has finite expectation and with P-almost surely only jumps
of size at most 1. Let (Sh,)a,ca be a family of continuous maps on YA, such that
Sa, changes at most the Aj-coordinates, i.e. if y; € YA and ¢ € A\ A; we have for
the gth coordinate 7, 0 Sa,(¥A) = ¥q.

Fort € I and P-a.a. w € Q with X;(w) € N* we have a finite sequence of jump-sets
j() = (A,...,A,), as defined in Definition 2.1.14, and it depends measurably on
w, as was shown in Lemma 2.1.1. We define
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Sw): YA YA (2.47)
def ‘
yao Sj(w) = Sp,0...0 Sh, (yA) (2.48)

We get a representation of K§(y, Y1), similar to the one in (2.42):

Kiu,Y1) = P{w:S.(x) € 1i}) (2.49)
= /s;dp(w) Xn OSw(y)

= Y, PUQG)

JET:S;(y)eEn
foryeY and Y; € ).

We have seen in Example 2.1.4 that S(w) depends on j(w) only. In Section 2.2.3 we
will approximate the Markov kernels for Poisson processes by kernels for Bernoulli
processes, and in Section 2.3 do an analogous approximation for transfer operators.
We prepare this in the following lemma.

Lemma 2.1.2 Let A € F\{0}, T >0, A >0, (Q,A4,P, (Xt)teo,r)) a Poisson
process with parameter A and with values in N* and for each integer N > AT,
(Q,ny Ar Ny Pan, (Xt)te{l,,_,,N}) the Bernoulli process with parameters A\, T, N and
values in N, Let

i: 2 -J (2.50)
iv: Qv —J, - (2.51)

be as defined in Definition 2.1.14, for the Poisson process and the Bernoulli pro-
cesses, respectively. We consider jy and j as random variables with different prob-
ability spaces but the same range.

Then the sequence (jn)n>ar converges to j in distributuion.

Proof We define for all J C J the sets U(J) d=e’fj‘1(J) and Uy(J) ‘Efjl—vl(,])_

We have to show that for all J C J

A}EI;OPA,N(UN(J)) = P(U(J)). (2.52)
Because of
> Pan(Un()) =) PUG)) =1 (2.53)
jeg jeg
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and Lemma 2.1.3 (see below) we have to show (2.52) only for the special case J =
{7}.

For J = {jw} equation (2.52) holds because P(U(j)) = 0 (by definition of the
Poisson process) and Un(joo) = 0.

If j contains a set with more than one element then P(U(5)) = 0 by Remark 2.1.3.2

and for the Bernoulli process with parameters A\, T, N the probability of simultaneous
jumps is

Ppn({w : w has simultaneous jumps}) (2.54)
[A]

< anz:z (Iﬁ) (:\FT)" (1 _/\FT)IAI—n’

and this tends to 0 (as N — oo) which was to be shown.
Finally we consider 7 = ({¢1},...,{gn}). We have

PAn(Un(5)) (2.55)

QT[T

_ NN-1-...-(N-n+1) (OT)" (1 _ E_)(W-l)n (1 _ ,\_T)(N—n)ml

n! Nn N N
_ NN=-1):...-(N—-n+1) (1__)\—]_’ - 1_:\2 NIAI(/\T)n
Nn N N n!
and so
. . _ AT)?
Jim Pon(U()) = e AT (2.56)

This is equal to P(U(j)) because _ 5 7, 0 X, is a Poisson process with parameter
|A|X and for any n € N the |A|* (ordered) sequences of jump-sites have all the same
probability. |

O

In the proof of Lemma 2.1.2 we have used the following lemma.

Lemma 2.1.3 Let (@n)nen, (a%k))neN (with k € N) be sequences of non-negative
real numbers such that

e, =1, (2.57)

neN
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Zaﬁ,’“) = 1 forallk

neN
and lim a® = a, foralln.
k—o0

Then for any N CN:

lim ol® = Z Qn-

k—o00 -
neN neN

Proof Let ¢ > 0. Choose ng and kg such that for all k > k:

ne
Za,. > 1-—¢

n=0

no
and Z|an——a$,’°)| < e

n=0

Then we also have for k > kg

no no no
S 2 S S le ol
n=0 n=0 n=0
> 1—2¢
o0 00 . o0
and Z |an — a®)| < Z al® + Z an
n=no+1 n=ng+1 n=ng+1
< 3e
We conclude from (2.62) and (2.64) that
Doad =3 | < D lan—al
neN neN n=0
< 4e.

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

]

As we are interested in spatially extended systems we need some definitions and

facts about infinite-dimensional systems.

Definition 2.1.15 S! is the one-dimensional sphere. We define 1t to be isometric
as Riemannian manifold to R/27Z. This defines in particular a metric os1 on St
and also the normalized Lebesgue measure on the (completed) Borel o-algebra.

The diameter of S! is
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¢y & diam am,, (S') = . (2.66)

(It seems a bit redundant to introduce the constant cg instead of using 7 in the
following. But we indicate that the proofs in Section 2.2 work if S! is replaced
by any compact Riemannian manifold or more general by a bounded metric space
with a Borel probability measure. Further we use the letter ‘r’ as notation for
projections.)

We set

M (512 . (2.67)

and give it the product topology and product Lebesgue measure on the (completed)
Borel o-algebra.

For A C Z% we denote by 7, the projection on the A-coordinates.
Note that the product of the Borel o-algebras is the same as the Borel o-algebra for
the product space. M is compact and metrizable in the following way:

Definition 2.1.16 Let (b(g))scze be a family of positive numbers such that

lim sup b(g) =0. 2.68
R0 gl>R (2.68)

Then the metric om on M, associated to (b(q))scze, is defined by

. .
om(%,¥) = sup b(q) 51 (g, yo) (2.69)
qezd
for x,y € M.

Remark 2.1.5 1. One can easily show that gy, as defined in Definition 2.1.16,
is in fact a metric and also compatible with the product topology.

2. A sequence (x™),cn in M converges wrt the product topology iff it converges

wrt to each coordinate, i.e. (a:((, ))neN converges for every ¢ € Z% The same

holds also for nets (x*)acr-

3. The product topology does not distinguish any particular sites despite the
the fact that the weights b(¢q) depend on q. Spatial shifts, like x — % with
Zy = T4-, for some r € Z4, are homeomorphisms.

4. The space C°(M, M) of continuous maps on (M, gys) is complete wrt the metric
defined by

cercaany(f,9) 2 55D our(£(x), 9(x). (2.70)
We denote by Beo(a,ar) the Borel o-algebra wrt this metric.
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Lemma 2.1.4 Let (Q, A) be a measurable space and (fA) rer\(oy be a net of mea-
surable maps

;e - (M M) (2.71)
w fa’}

such that fOT all A1 € .7'-\ {0} and w € Q the net (7rA1 ofu/)\)ALCAG}'\{@} converges (GS
A = Z%) in CO(M, (S')M), say to ma, o fo.

Then
def ..
fua(®) = lim g0 £ (x) (2.72)
defines a measurable map
f:Q = C(M,M) (2.73)
w = fo

whose gth coordinate function is given by (2.72).

Proof Fixw € 0, x € M and a metric gps like in Definition 2.1.16 . We show that
fu is continuous in x. For that let € > 0 and choose Ry € N such that

cblg)<e (2.74)

for all g with ||g|| > Ro. We note that the gth coordinate function of my, o f,, €
C°(M, (S*)M) is the same as the gth coordinate function f, , of f,.
By continuity of 7p,_ o f,, we can choose a § > 0 such that for all y € Bj(x) and all

g with |lg|| < Rq:

¢s b(q) 051 (fu,g(X), fue(¥)) <e. (2.75)
From (2.74) and (2.75) we conclude that for all y € Bs(x)

em(fu(x), fu(y)) <€ (2.76)

which was to be shown. Finally f depends measurably on w because it is pointwise
limit of measurable functions with values in a metric space (cf. [22], p 117, for
example).

0

Remark 2.1.6 1. Lemma 2.1.4isin partiCular based on the compactness on M
wrt the product toplology.

M is not compact wrt the different metric, defined by
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- def
o (%, y) = sup psi (2, y,).-
geEA

In this case the conclusion from ‘local’ to ‘global’ does not hold.

2. As f in (2.73) is (A, Beom,um))-measurable, the map (w,%) = fo(x) is (A x
B, Bar)-measurable. We have proved this fact in Example 2.1.1.

2.2 Infinite-Dimensional Systems

In Example 2.1.4 we used a counting process with values in N* (for finite A) and a
family of updating-maps on Y to define Markov kernels on the product YA, These
kernels act on the product space C° (YA) of continuous functions (cf. Definition 2.1.13
and Proposition 2.2.4). In view of spatially extended systems like coupled map
lattices or interacting particle systems we would like to define analogous operators
for infinite-dimensional systems (A = Z%). As counting process we take the Poisson
process (€, A, P, (X;):>0) with parameter A > 0 and values in N2°,

Recall that the set N, defined in Definition 2.1.7, of all w € Q such that X, (w) is
not nondecreasing, jumps at time 0, has simultaneous jumps or jumps of size greater
than one, has P-measure zero. So we have to consider updatings only at single sites.
_They are given by a family of continuous maps (Sq)qezd such that S, : M - M
changes only the gth coordinate (cf. Example 2.1.4 for a definition.) We remark
that such a family naturally gives rise to updatings at more than one point at the
same time. We will use this when we approximate continuous time processes by
discrete time processes.)

A problem is obviously that the Poisson process, restricted to any finite interval
[0,t] of length ¢t > 0 is not of finite expectation (cf. Definition 2.1.1 and Remark
2.1.3. 1). P-as. there are infinitely many jumps and it is even impossible to define
an order preserving bijection between them and N. However in Subsection 2.2.1
we will for systems with finite range interaction show that for P-a.a. w € Q, any
g € Z% and t > 0 the site g is affected in [0,] (cf. Definition 2.2.1) by only finitely
many sites, so that maps ‘m, o S‘(w)’ from M to (S 1){‘1} and then also ‘St(w)’ from
M to M can be defined in a natural way. The proof is based on a percolation
argument. Percolation techniques, but different from the ones presented here, were
already used by Harris in [14] for proving the existence of certain interacting particle
systems of finite range. It follows in particular that m;0S*(w) : M — (S1)A for finite
A # ( is the limit (as Ao Z%) of maps that are constructed by using the ‘cut offs’ .
mp o St g(w), corresponding to a finite A O A and boundary conditions £. In fact
this limit also exists and is independent of the boundary conditions for a huge class
of infinite range interactions as we will show in Subsection 2.2.2. It gives rise to a
natural definition of the system. But we also note that for infinite range interaction
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each site depends with positive probability on infinitely many other sites. So we
cannot use the same definition as for finite range interaction.
In Section 2.2.3 we define Markov kernels K% for the infinite system S* and Ké i

for the system S% that fixes the AC-coordinates for a finite A. We show that K% is

the weak limit of Kg’ 5 (as A = Z%), i.e. the corresponding operators on continuous
functions converge weakly. '

2.2.1 Finite Range Interaction

Now we are considering an interaction of range R € N\ {0}, i.e. 7, 0.5,(x) depends
only on Xp,,)- (Recall that Br(q) was defined in (2.29).)

Definition 2.2.1 Given R as above, ¢,§ € Z%, T > 0, w € . We say that
affects g wrt (R, t,w) if there is a causal path from q to § of step size at most R. .
(Recall that we defined path etc. in Definitions 2.1.9 to 2.1.11). If A C Z¢ we say
that § affects A wrt (R,t,w) if § affects any point in A wrt (R, t,w).

We set

Affpew)(A) © (e 2?: g affects A wrt (R,t,w)} (2.77)
def |

and Qp = {w:3t>0,q€Z%such that |Affg,.)(q)] = 00} (2.78)
where | - | denotes the cardinality.

Aff(x,i,u)(qo)
0+ @ ‘@ ® ® ® T ®

4
- N
-
L)

TL o ® ® ® ™ ° ™
qd-2 d-1 qo q1 q2 q3 g4

Figure 2.1: The history of gy

Figure 2.1 is a picture of Aff1,7,5)(g0). We consider the finite time-interval (0, T) and
nearest neighbour interaction and a particular w. For each jump we draw a cross
at the particular point (g,t). There are jumps at (g2,%s), (qo,ts5), (g-2,%4), (q1,13),
(go, t2) and (gs, t1) The last jump at qo is at time #,. We draw a thick horizontal line
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between (qo,t;) and (g, t2) for all nearest neighbours ¢ of g, because the updating
of g, depends also on these sites. So we have to consider the ‘histories’ of gy and
its nearest neighbours before time ¢;. Note that g3 € Affy 1.4)(g0) and it is updated
at time ¢; (and so affected by g4 for example) but that updating has no influence
on go (at time T). We also note that, for example, g_; affects gy (wrt (1, T,w)) but
not the other way around. So we have to consider only the time- and space-ordered

percolation.

Proposition 2.2.1 Qg has P-measure zero:
P(Q2z) =0. (2.79)
Proof Aff(g:.)(q) is increasing in ¢ and so

Qr = U U {w: lAff(R,t,w) (9)| = o0}. (2.80)

teN qezd

So it is sufficient to show that for fixed ¢ € A and ¢ > 0 the set {w : |Affgs0)(g)] =
oo} has P-measure zero. If we set "

def
An = {w: Aff(rw)(9) € Bn(9)} (2.81)
it is sufficient to show that .
Am P(Ay)=0. (2.82)
If q is affected by some § ¢ Bn(q) wrt (R, t,w) then there is a maximal causal path

of step size at most R from ¢ to ¢ with at least NV steps, where N, is the smallest

integer greater than &.
Consider any maximal causal path Q = (90 =4¢,...,qn) of step size at most R and
with n > Np. Q is a maximal causal path wrt (¢,w) iff the trajectory of w wrt the

Poisson process induced by @ has exactly n jumps. The probability of this is px(n, t)

(which was defined in (2.4).)
We set

def
car = |Br(9)|- (2.83)
(Recall that Bg(q) was defined in (2.29) and | - | denotes the cardinality.)
Then

|Path(q,n, R)| = cj g (2.84)
because at each step in the path one can choose between ¢y g lattice-points.
So we have e
Ay C U U {w : Q is maximal causal wrt(R,n,w)} (2.85)

n>No  QcPath(q,n,R)
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and so

P(An) < Zcz,Re'”Qg (2.86)

n>No

1
No!

which converges to 0 as No — oo which was to show. For the last inequality we
have used the estimate for the Lagrange remainder in Taylor’s formula .

< elear (e, pat) (2.87)

O

Definition 2.2.2 Let a finite range interaction (i.e. a family of updatings) be given
by (Sp)gez+- Fixw € Q\(QrUM), 0 # A CA e F, {€ Mandt > 0.
Then w has only finitely many jumps in A x (0,t), say at (g1,%1),. .., (Gn,ta) With
0<t;1 <...<tp <t

We denote by X3 V e the point in M that has the same A-coordinates as x and
the same AC-coordinates as §.

We define
Sui (SOF = (SHE (2.88)
Sghe(Xx) = 5 © Sg(%z V €x0)
and
weEN\(MUQR) — S}\,{(w) eC® ((Sl)", (51)7\) (2.89)

def :
S @) = S igo- 08 qe(xz)-

The maps S‘ ( ) are continuous as composites of continuous maps. Furthermore
S% ( ) depends only on wj (i.e. on 75 0 X, (w)) and (2.89) gives rise to a countable,

measurable partition of @\ (M UQg): w and & belong to the same set of this
partition if they have the same list of jump sites (q1,--.,qs) (ordered wrt the jump

times).
Now let A D Affrsw)(A) and € € M and define

oS\ (MUQR) — CU(M,(SHY), (2.90)
mao SHw)(x) =m0 Sk (W) (xz)- (2.91)

The definition does not depend on the choice of A or ¢ because the right-hand side
(rhs) of (2.91) depends, by definition, on the Aff(r)(A)-coordinates of x only.
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Further the family (m o S*(w)(x))aer\g is consistent in the sense that for any A; C
A e F \ 0:

A, (Taq © SH(W)(2)) = ma, 0 St(w)(), (2.92)

and so defines a map
Shw): M — M. (2.93)

Proposition 2.2.2 The map S*(w), defined in (2.93) and (2.91) is continuous and
depends measurably on w.

Proof We want to apply Lemma 2.1.4. For that we define for w € Q\ (M, U R)
maps

St w:M - M (2.94)
X S,%,g(w)(xﬂ)v&&"

The net (5’1‘\ E) ker\(g) Satisfies the assumptions in Lemma, 2.1.4 and so all statements

of Propositfon 2.2.2 follow.
(]

2.2.2 Infinite Range Interaction

We extend our notion of ‘S*(w)’ to interactions that are not necessarily of finite
range. : _
Consider a family (S;)geze of maps Sy : M — M such that S, does not change the
Z%\ {g}-coordinates and m,05, : M — S' is Lipschitz-continuous wrt all coordinates
and the Lipschitz constants depend only on the relative positions of the sites, i.e.
there are constants w(r) for all 7 € Z% such that for all ¢,§ € Z% and x,y € M with
Xzd\(5} = Yza\{5 (i-e. x and y differ at most in their §-coordinates.)

051 (g © S (x), g © Sg(y)) < w(§ — q) 051 (v, 29)- (2.95)
We further assume summability of the Lipschitz-constants, i.e.

duw(@)=a (2.96)

qcZd

with a positive constant c;.
We need the following technical lemma.
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Lemma 2.2.1 If (’U)(Q))q'ezd is a family of non-negative real numbers satisfying
(2.96) then there are families (w1 (Q))qezd and (’wz(q))qezd of non-negative numbers

such that

w(g) = wi(q)wz(g) forallgeZ?, (2.97)
Y wie) £ 20+1 (2.98)
g€z
and  lim a(R) = 0, (2.99)

where a(R) is defined by

def
a(R) = sup wa(r1) « ... wa(rn
( [lrifi+-tHrali=R 2\ 2(Tn) (2.100)

(The empty product 1s defined to be equal to 1.)

Proof We can choose g =0<71<... € N such that

Y wlgza-4 forizl (2.101)
lgli<rs
Then we have
Y ou@ < a (2.102)
llgll<r:
and E w(g) < 4G+ for i >1.
ri<Jlgll<ris1

We set for s> 1 and ri1 < lgll < 7

wy(g) & 27 (2.103)
wi(g) ¥ 2w (2.104)

Then (2.97) is obviously satisfied. To prove (2.98) we use (2.102) and (2.104):

Sw) = Y, D, w@ (2.105)

g€ezZd i=0 r;<Jlgli<rit1

oo
< 2+ Z 9t
=1

261+ 1.

I
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Now we prove (2.99). We show by induction (wrt ) that for every 4 > 1 there is an
n; such that

a(R) <27 forall R>n;. (2.106)

For i = 1 the statement is true with n, = 1 because a(R) < 1 for every R > 1 as
there is at least one factor on the right-hand-side in (2.100) and each such factor is
at most 1.

Now we assume pow that that the statement holds for 7 and n;. We set

i1 S 1+ 2n. (2.107)

Then every path (qo,-..,qn) of length R > n;,, has at least one step of size at
least r; (i.e. there is an 1 < I < n such that [l — g1|| > 7;) or it can be divided
into two paths both of length at least n; (i.e. there is an 1 <! < m — 1 such that
llgo — aull + ... llg-1 + @l = ni and |l@41 — @l + ... llgn + ga-a]l > 7ms). So each
product on the right-hand side of (2.100) has at least one factor less than or equal
to 2-6+D or two factors less than or equal to 27%. As the other factors are smaller
than 1 the product is bounded by 2¢+V as was to be shown.

0O

Now we fix (like in Lemma 2.2.1) a choice of (w1(g))gez¢ and (w3(g))gez+ and so the
function a.

Definition 2.2.3 We fix the metric gps on M by

def
em(%,y) = Suzga(llrll) 051 (Tr, ¥r). (2.108)
re

Remark 2.2.1 It follows from Remark 2.1.5.1 and (2.99) that g is a metric and
compatible with the product topology.

Lemma 2.2.2 The maps Sy : M — M are continuous (wrt the product topology on
M).

Proof According to Remark 2.1.5.2 and the uniform choice of the Lipschitz-
constants (cf. (2.95)) we only have to show that the maps m;0 So : M — S' are
continuous.

If ¢ # 0 then the gth coordinate is not changed by Sp and

a(llall) @51 (g © So(x), 100 So(y)) = a(llall) es: (zerva)
a(nqu)mw(x,y) (2.109)

om(%,y).

IN

IN
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If ¢ = 0 we estimate

a(0) ps1(mo © Sp(x), o © Sp(y)) (2.110)
< a(0) Z QSl(xr:yr)

rezd

< a(O)Zw() “ oY)

rezd

< a(0) (21 + 1) pm(x,y)

where we have used (2.95) for the first, the definition of gy, for the second and (2.97)
for the third inequality. So mq 0 Sy is continuous for all q € Z¢.
a

In the followmg we estimate the distance (wrt the uniform norm) of m o S% E( w)
and mpo S (w) for different boundary conditions &y¢ and €0 (that might even
depend on the time) at the AC-sites. Conditions (2.95) and (2.96) allow us to apply
standard estimates for the ‘error-growth’ for composites of maps. Using the linear
nature of the ‘Lipschitz-condition’ (2.95), we write the products of sums (over all
coordinates, like in (2.95)) as sums (over paths) of products (corresponding to the

particular paths).
We fix t > 0, A € F and w € @\ N;. By definition of M (cf. (2.27)) w has no

jumps at 0, no simultaneous jumps and only finitely many _]umps in A x (0,1), say
at (q1,t1),..., (g, tn) With 0 <#; < ... <ty <t. Weset £, %10 and fix arbitrary
€ = (£to), -, E(tN)), & (€(to) ,£(tN)) € MM*! and x,y € M.

We set x(0) def xA VErc(0), y(O) = yAV£Ac(0) and define for 1 < ¢ < N recursively:

¢ g © Sq(x(tizy)) for g=g¢
xg(t:) = Zq(ti-1) for ge A\ {a} . (2.111)
&q(t:) for gqe A°

We define y(t;) analogously, using y and § instead of x and &, respectively.
Two points in S can have distance at most ¢, = diam,, (S'). For estimating the

distance between z,(t;) and y,(t;) we define

8,0 2 a0 { £ EDulO) o g€ 8
and for 1<i< N '
B
» 'Eremw( —q)An(i=1) for g=g;
D) = Dg(i—1) for geA\{qg} (2.113)
Cs for g€ A€
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Ag(i—1) for geA\{q}

X o def { max{cs, 3, ezaW(r — @) Ar(i = 1)} for g=g
Cs for ge A€

The functions A, and A depend on x, y and A but we do not refer to this in
our notation. We have mtroduced them for estimating the difference between z,(t;)
and y,(t;) (cf. 2.114)) and so the difference between z,(t) and Yq(t). This dlffer-
ence depends also on w and so do the corresponding estimates for A, and A
Definition 2.2.4 we will relate them to families of random variables (YA) AeF\{0) and
(YA) e F\{0}, respectively. For A, we find a partlcularly nice expansion (cf. (2.115)).
From this follows the convergence of Y to zero in expectation (as A — Z%). We will
show that Y} is bounded by Y, and decreasing and so converges P-almost surely to
zero by the Monotone Convergence Theorem (cf. Theorem 2.2.1).

Proposition 2.2.3 The following holds for 0 <1 < N:

1.
051(2q(t:), a(t:)) < Bg(i) < Ag(i) (2.114)
2 |
Afi)= D wlri—ro)oe wlra—ras) A, (00 (2115)
Bttty

3. If in particular x5, =y then

Ao(N@)) | (2.116)
< csa(distza(g, A°))
Z wi(ry—710) + v wi (T = Tpy)

(70=qﬂ'1 Y"'lrn)
ePathe(t,w,g-AC)

where N(w) is the number of jumps of w in A x (0,1).

Proof We prove (2.114) and (2.115) by induction wrt i.

i=0: (2.114) holds by definition of A4(0) and A4(0) (cf. (2.112)). At time 0 no jump
has happened and the only summand on the right-hand-side in (2.115) corresponds
to the empty path at site ¢ and so the equality in (2.115) holds.

i —1— i: (2.115) holds obviously for ¢ and q # ¢; as there is no updating at site ¢
and

PathC(ti’ w,q, A) = Pathc (ti—h w,q, A) (2117)
At site g; there is a jump at-time £; and so we have
Dy @)=Y wlr —g) A(i-1) (2.118)
rezd .
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Using the representation (2.115) for A,_,(i—1) and the fact that every (g;,71,...,7,)
€ Pathe(t;, w, g;, A) can be (uniquely) split into (¢;,71) and (r1,...,7s)

€ Pathe(t;-1,w, 71, A), we see that (2.115) holds for i.

Next we show the first inequality in (2.114) for i. For ¢ € A° the distances between
zqo(t;) = & (t:) and y,(t;) = & (t:) is bounded by ¢, and for ¢ € A\ {¢;} we have
Tq(t;) = z4(ti-1) and y,(t;) = y4(ti—1)- So in both cases the first inequality in (2.114)
holds.

Now we consider the site ¢; where a jump happens at time t;. Using (2.95), assump-
tion (2.114), for ¢ — 1, and (2.118), we get

0s1(xq(t:), yg(t:)) < Z w(r — ¢;) 051(xq(tiz1), Yo (tiz1)) (2.119)
reZd

> wl(r—g) &6 —1)

rezd

< Agl)

IN

So the first inequality in (2.114) is proved for i. The second follows immediately

from (2.113). So statements 1 and 2 are proved.
Finally (2.116) follows from (2.115)): A,(0) = 0 for ¢ € A. So we only have to sum
over paths (ro =0,...,r,) that end in r, € AC.

In particular, if we set R o |l7x|l, then

A 0) = ¢, (2.120)
distza(q,A°) < R, (2.121)
R < |lrn—raall+-. +lr =m0l (2.122)

and so by the choice of w;, we and a, made before Definition 2.2.3, we get

’LU(TI _ ’I"0) LI 'LU('rn - Tn—l) (2123)
_<_ ’LU1(T1—To)'...‘wl(Tn—Tn_l)a(R)
< wi(ry —10) ... wi(Tn — Tao1) a(distza(g, A)).

Using (2.115), (2.120) and (2.123), we get (2.116) .
0O

Remark 2.2.2 The summing over causal paths in Proposition 2.2.3 reflects that
the result of an updating depends only on what has happened before.

Definition 2.2.4 We define two families (YA)aer\(o) and (Y) aer\{e) of random
variables on 2\ V;. Let A € F\ {0} and w € Q\ M, say with exactly N(w) jumps
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in A x [0,t]. If we choose x,y € M with x5 = y, the value of Ay(N(w)) (as defined
by (2.112) and 2.113) does not depend on x or y. We define Y3 (w) to be equal to
this value:

Ya(w) & Ag(N(w)) (2.124)

Y, is defined analogously, using Ag(N(w)) instead of A, (N(w)).

Remark 2.2.3 1. We remark that Y, depends measurably on w. In fact there
is a countable, measurable partition of 2 \ N; such that w and & belong to
the same set (of that partition) if the sums for Ag(ty(,)) and Ag(tnw)) (cf.
(2.115)) are over the same paths (This gives rise to a measurable partition of
£, as considered in Lemma 2.1.2).

2. From (2.114) we see that

YA < Ya (2.125)
Now we fix ¢ € M, x € 5! and define the map S} ;(w) like in (2.89).

Theorem 2.2.1 1. There is a set N3 of P-measure zero such that

lim Va=0  forweQ\(MUN). (2.126)
2. The limit
def .
mo 0 St (w) = Al-];?Zld o © Sf ¢ (w) (2.127)

ezists in C°(M,S") for allw € @\ (N UN,). It is measurable in w and does
not depend on §.

8. There is a set N C Q of P-measure zero such that we can define maps

g 0 SH(w) ' lim 7,0 Shew) (2.128)

gEA—Z4

forallg€e 2% andw € Q\N.
Further we can define a map St(w) € C°(M, M) by

(S4w) (%)), & mg0 St(w). (2.129)

St(w) depends measurably on w.
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Proof First we show that
All?zldE(YA) =0 (2.130)

We set R & distza(g, A€). Using (2.116) we get

E(Ya) (2.131)
< /Q dP(w) cs a(R)
X Z wi(ry — 7o)+ .o w1 (Th — Thoy)

(r0=q:"1+:+s™n)
ePathg(t,w.g+A0)

= c¢,a(R) Z wi(ry—7o) oo wi(rp — rpoy)
QePath(0-+A0)
xP({w: @ € Path¢(t,w,0 = AC)})

A path Q = (g0, @1, . - -, @n) With g, € AC is causal wrt (2, w),
(i-e. Q € Pathe(t,w, 0, A)) iff the Poisson process induced by @Q has at least n jumps.
So we can estimate the probability

P({w: Q € Pathc(t,w,0,A)}) = ) e‘”(—’:%i (2.132)
< % (2.133)

For the last line we have used Taylor’s formula, as we did in (2.87). So we get, using
(2.98),

n

E(Y) < cfa(R)i(/\t!)n (Zwl(r)) (2.134)

reZd

< ca(R) (2.135)

n=1

whith ¢, = ¢, M2+, (Recall that we consider a fixed ¢ at the moment, so c; is a
constant.) By (2.99) we get

Alinzld E(YaA)=0 (2.136)
and, using (2.125),
Jlim, E(¥) =0. (2.137)
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Yj(w) is decreasing for all w € Q\ N;: For a fixed w and 0 € ANl C AN eF

we consider the (time-ordered) sequence of jumps (q1,t1),..., (gn,tn) of w at sites
q1,---,92 € Ay It is a subsequence of the sequence of jumps (g,%),. .., (@, tm)
of w at sites 7,,...,7,, € A2. The jumps (g;,¢;) in the first sequence correspond to

jumps (q](,), t;(;)) in the second one. Then ¢; = ;) and t; = T;(;) but the indices are
different in general.

We define A‘(z) and A2(]) as in (2.112) and (2.113) for the sets A; and Az, respec-
tively. We show that

A) = A3((3)) (2.138)

If ¢ € A;€ then (2.138) obviously holds because A;(i) = ¢g is an upper bound for

Ag(j). For g € A, we show (2.138) by induction wrt 3.
If ¢ = 0 then (2.138) is true by (2.112). Now assume that (2.138) holds for all g and
a particular i < n. For ¢ € A; \ {gi+1} we have

Ali+1) = AY6) > A(j(3)) = AX(j(i + 1)) (2.139)
where the inequality holds by assumption and the equalities by (2.113). For the site
g = g;+1 we have by (2.113)

Ali+1) = max{es, Y w(r—q)Ai)}  (2.140)
rezd .
> max{es, Y w(r — q)AX(j(i +1) — 1)}
rczd
= AXji+1))

which was to be shown. Here we have used that AL(s) > A2(j(i + 1) — 1). This
follows for r € A, from the definition of Al and A2 and for r € A; from assumption
(2.138) and the fact that A2(j(i + 1) — 1) = A2(j ( ). ‘

Using the definition of Y}, (w) and Ya,(w ) (cf. Definition 2.2.4) we conclude

7, (W) > Ya, () (2.141)

which was to be shown. _

We have proved (2.137) and that (Ya)acr (o} is decreasing. So we conclude (2.126),
by using the Monotone Convergence Theorem.

Now we prove the second statement in Theorem 2.2.1, using the first one. First
we note that for w € 2\ (M UN?) the map S} ;(w) is continuous since it is the
composite of finitely many continuous (cf. Lemma 2.2.2) updatmg maps.

For A C A we have
\

geo(ms1) (Mo © S ¢ (W), o 0 5%, (w)) < Ya(w). (2.142)
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So by (2.126) the net (my o Sf (w))aer\o is a Cauchy net with values in CO(M, S1)
for w € @\ (M UN,) and so converges. Furthermore it is a pointwise limit, i.e. for
each particular w, and so my o S%(-) is measurable in w. (The last conclus1on uses
the theorem that the pointwise limit of measurable functions with values in a metric
space is measurable. (cf. for example [22], p. 117)).

As mentioned in Remark 2.1.5.3 there is no distinction of the point 0 by the product
topology. So for all ¢ € Z* we can define 7, o S*(w) for all w € Q \ N where
P(N?) =0. In the same way we can define for each A € F\ {#} and w € Q\ NA
(with P(MA) = 0) maps 7 o St(w) € C°(M, (S*)*) that depend measurably on w,
and such that S*(w)(x) depends measurably on (w,x).

The set

2 U (2.143)

AeF\{0}

has P-measure zero. So by Lemma 2.1.4 the map S*(w) is well-defined for w € Q\N

and the statements in 3. hold.
0

2.2.3 Markov Kernels

In Section 2.1 we defined the Poisson process (2, A, P, (X¢)icpo,r)) with parame-
ter A and values in N*, the measure space (M, By, 1) and the measurable space
(C°(M, M), Beo(a,my)-

We have nets (S])acr\(ey of maps S§ : Q\ N — C°(M, M) with limit ST €
C%(M, M), and the following statements hold

1. S§ and ST are (A, Beog M,M))-measui*able.
2. ST is the pointwise limit of the net (S} )acr\({g}-
3. For fixed x € M the map S¥()(x): @ — M is (A, By)-measurable.

More precisely, for finite range interaction (cf. Section 2.2.1) ST was defined in (2.93)
and the approximate ST in (2.94) (Now we drop the fixed boundary condition £ and
the ‘™ in the notation for convenience.) For infinite range interaction (cf. Section
2.2.2) ST is defined in the same way as for finite range interaction (cf. (2.128)) and
the existence of the limit ST is established in (2.129). Note that these maps are a
priori not defined on a set of P-measure zero. For these exceptional w € 2 we define
ST(w) and ST (w) to be equal to the identity on M.

Statement 3. follows from measurability wrt (w,x) of ST (w,x) (Proposition 2.2.2
and Remark 2.1.6.2 for finite range interaction and statement 3. of Theorem 2.2.1
and Remark 2.1.6.2 for infinite range interaction), the fact that one-point-sets in M
are measurable, and Fubini’s Theorem.
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Like in Example 2.1.1 we set

KT :MxBy — [0,1] (2.144)
KT(x,4) ¥ P({w: ST(w)(x) € A}).

The corresponding operator, applied to an f € C°(M), is

KEN = [ Kieady) 1) (2.145)
= [dP@ fosTw)w. (2146)

(2.145) is the definition (cf. (2.37)), and (2.146) is a consequence of (2.144). )
We define analogously the Markov kernels K%, and corresponding operators for
the Poisson process with values in N* and Kg a,n for the Bernoulli process with
parameters A, T, N and values in N* (cf. Definition 2.1.6).

Proposition 2.2.4 K7 and K3, are bounded linear operators on C°(M).

Proof We give the proof for K7. The one for K§, is analogous. Let w € \ WV,
f €CO(M) and (x(),cn a sequence in M with limit x. Then

Jim §7(w)(x) = ST (w)(x) (2.147)
andso lim foST(W)(x™) = foST(w)(x). (2.148)

Further
|f o ST(w)“oo < flloo (2.149)

Using the Dominated Convergence Theorem, we conclude

lim (KT )x™) = lim [ dP() fo ST (w)(x™) (2.150)
n—oo n—oo 0
- / dP(w) f o ST(w)(x)
Q
= (K5f)(x).
So KT f is continuous. Continuity of the operator follows from (2.146) and (2.149).
O
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Proposition 2.2.5 The net (K3 )acr\(0) converges weakly to KT (as A — Z4),
i.e. for all f € CO(M):

lim K3\f=Kif.
Jlim Kg\f=Ksf (2.151)

Proof We have

IKZf - KE\flloo < / dPW)[If o ST(w) — f o ST(W)loor  (2.152)

Because of condition 2 on page 73 and (2.149) the rhs converges to 0 (as A — Z9).

a
2.3 'Transfer Operators
We recall some definitions and notations from [12].
For § > 0 we denote by A; the annulus
A% {zeC|-6<Inlz| <6} (2.153)

and by I' its positively oriented boundary.
For § # A C Z? the normalized Lebesgue-measure on (S')? is denoted by u*. For
finite A it is given by .

A dz__1 get 77 42 1
du’(z) = @z H 2m'-z:' (2.154)
We also use du?(z) as a shorthand notation for the right-hand side of (2.154) for
z € AN

In Assumption I (see below) we will fix a § > 0. For A € F we denote by H,
the space of continuous functions on the polyannulus A% that are holomorphic on
its interior and write || - ||z for the uniform norm on H,. As a function on A2 is
also a function on A%° we can drop the index A and mean the uniform norm on
the infinite-dimensional polyannulus. H is the vectorspace of all consistent families
¢ = (#r)aer of functions ¢5 € Ha where consistency means

def
(WA1 ¢A2) (zA1) = /(51)/\2\/\1 d:u’Az\Al (zAz\A1) ¢(ZA1 \ ZA2\A1) (2'155)

= ¢A1

for all A C Ay € Fand zy, € Af,\‘. (Note that we use the same symbol ‘m,’
for projections of functions and projections of coordinates, for example from M to

(SYA)
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For 0 <9 <1 and ¢ € H we define

Iglls = sup 9™M||@alla (2.156)
AeF
def 4. A
Il & tim, [ antignl (2.157)
We set
Ho & {peH:|glls < oo} (2.158)
HY E {geH:[$llvar < 00} (2.159)
e oy, (2.160)

Then (M, || - ||s) is a Banach space. For ¢ € H"™ and 4 € C°(M) we define

Yalza) ¥ / _ 4™ (2a0) $(zA V 7p0) (2.161)
(SHA
/M dup¢ = Jim_ /M dpsn YA Pa- (2.162)

Finally we recall the definition of a transfer operator: Let ii be a measure on the
(completed) Borel o-algebra of a metric space M and S : M — M be a non-singular
measurable map. The Perron-Frobenius operator (or transfer operator) L;,

acting on L!(M), is defined via the equation

/~dﬁ¢vo§ ¢ = /~dﬁ¢£§¢ (2.163)
M M

that must hold for all ¢ € L®(M) and ¢ € L}(M).

The Markov kernels for our stochastic systems are analogous to the composition
operator ‘oS’ (with deterministic S), acting on functions. We define transfer op-
erators for this case analogously. These operators act on elements of Hy that do
not in general correspond to elements of L'(M). Recall (see [12]) that %’ can be
identified with a subset of rca(M) (or, in other words, a subset of Borel measures).
So for example in Theorem 2.3.1 we will show that the equation analogous to (2.163)
holds for 9 € C°(M) (rather than L*°(M)) and ¢ € HY'.

Now we consider a special class of interactions (cf. [12]), namely a family (S))aer
of maps on M that can be written as

S\:M —- M (2.164)
SA(Z) = FAOTA(Z)VZAC
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where

Fp:(SH* = (sYHr (2.165)
zr = (20)aer > (fo(2g))gen

and

Th:M - (S (2.166)

(Ta(z)), def 2, €Xp (ZWieigq,k(z)) forge A (2.167)

k=1
and f; and g, satisfy the following assumptions:

Assumption I F(z) = (f5(2))eez¢ where fy : S* — S' are real analytic and
expanding (i.e. f; > Ao > 1) maps that extend for some d; holomorphically to the

interior of an annulus Ay,. In Proposition 1.3.1 and 1.3.2 of [12] we have shown that
the holomorphic extension to a sufficiently thin annulus A; is expanding in the sense
that the preimage of As wrt f; lies in the interior of A;. We fix such a d;. Then
for every ¢ € Z? the Perron-Frobenius operator Ly, acting on H,, has a simple
largest eigenvalue 1 with eigenvector h, , such that g (hq) = 1 and the restriction

of hy to S? is positive’ and it splits into
q p

Ls, = Qg+ Ry, (2.168)

where Q, is a projection onto span(h,). We assume that there are positive constants
¢ and ¢, such that the following two estimates hold for all ¢ € Z%

Iallty < ca (2.169)
IRl < en” (2.170)
where || - ||(g) denotes the uniform norm on #g (for this we might have to take 1

even smaller) and the induced operator-norm, respectively. We note that this holds
in particular if f, does not depend on gq.

Assumption II For all ¢ € Z¢ and k > 1 each map g, extends to a holomorphic
map gk : A(ﬁ" @ _ C and its sup-norm (of modulus) is exponentially bounded by

Il 0 1l y2eer < c3exp (—cok?) (2.171)
1

with ¢z > 0 and ‘large’ cg > 0. (In several statements in Sectfg}l 23 and 2.4 a
lower bound for cg will come out of our computations. The idea is always that our
estimates work, provided ¢, is bigger than a certain constant.)
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For A € F\ {0} we denote by hy the function
def
ha(za) = [ [ ho(z), (2.172)
qeA

where h, is as in Assumption I. We set hg = 1 and

hya & (ha)aer € . (2.173)

We further define for a fixed £ € M and A € F \ {0} and A, C A the updating at
the A,-sites with fized boundary conditions {po outside A (or cut-off of Sa,):

Saa: (SHA = (Y (2.174)
zyn > A0 Sp, (Za Vo).

And for zp\p, € (S)M\t we define

a0 Sapa(-Vzaw) (SN - (SHM (2.175)
Zp, P A O Saa(Zag V Zaw,)-

Remark 2.3.1 1. The map defined in.(2.175) is the cut-off of S wrt A; and
boundary conditions za\a, V €a. So.we can use the special representation in
terms of integral kernels for its transfer operator, restricted to H,,, for the

proposition below.

2. The family (S;)4ez¢, defined by (2.164), satisfies conditions (2.95) and (2.96)
as one can see from [12]: The partial derivatives are estimated in the proof of

Proposition 1.3.1 there.

Lemma 2.3.1 Let A € F\ {0} be the disjoint union of Ay and A;. The transfer
operator, restricted to Hy,, of the map Sy, a @ (SH)A — (SY)A, defined in (2.174)
has the following representation in terms of integral kernels:

(Lsy, 49) (Wa, V Wa,) (2.176)

Sh A(ZA V Wy ))
= du’(zp, ) (zp, VW (Sh, ! 2:74
/I‘M # ( Al) ( At Az)qgl (SAl,A(zM VwAz))q — Wy

for ¢ € Hy.

Proof Let ¢ € C°((S")*). We use the notation @y, for the function wy, +»
¢(WA1 V wy,).
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/( sip dpt(wa) 9 0 Say,a(Wa) $(Wa) (2.177)

— A A
= /(SI)A2 dp?(wa,) </(‘51)A1 d ‘(WAl) Y(-Vv Wp,) 0Ty, © SAl,A(WAl V wy,)
X ¢(WA1 v wAz)
= dp / C duM
/(‘S‘)"2 #na) (S1)A1 HHWa) Y(Wa v wa,)
X (EWAI °SA;,A ('VWA2)¢WA2 ) (WA1)

= /(.Sl)/\ d,LLA (WA) ¢(WA) (‘C”A1 °SA1yA(‘VWA2)¢WA2 ) (WAl)

Using the representation of the transfer operator for mx, o Sx, A(- V wy,) that we

established in Proposition 1.3.3 of [12}, we obtain the rhs of (2.176).
0

Remark 2.3.2 We see in particular that Lg, , ‘acts on the Aj-coordinates’ only.
There is no integration wrt the Az-coordinates.

For ¢ € A, we can split the factor

(SAI A(zAl 4 WAz))lI &
) — h
henon V) 1o 2 E Tl 2 4 Bz, VvV )
(2.178)

as in [12] and we can represent the particular summands graphically as h-line, r-line
or k-triangles. For ¢ € A, there is no integration and we draw an identity-line in

the configuration.

Definition 2.3.1 We define for fixed A € F \ {0}, £ € M and a finite sequence
j = (A1,...,An) € J of subsets of A the map

Sia: (SHY = (SH* (2.179)
Sj A déf SA,.,A 0...0 SAl,A-

Recall that in Lemma 2.1.2 we defined the maps j and jy for the Poisson and
Bernoulli process, respectively. For almost all w € Q there is a finite sequence

jw) = (Ay,...,A,) and so

f
Esj(?),A (_ié [’SA,.,A 0...0 ESAI,A (2.180)

is well-defined.
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We set

def
Lsan = Z Prn(w)Ls; 0 (2.181)

wEQ N

where Py y is the probability measure for the Bernoulli process with parameters ),
T, N and values in N*, as defined in Definition 2.1.6.

Formula (2.181) defines the transfer operator for K7, v (cf. (2.144) - (2.146)) as
we will show in the following proposition. The limit (as N — o0) is the transfer
operator for KZ . Our proof of the latter statement is quite long and technical and
will be completed in Proposition 2.3.6. :

Proposition 2.3.1 L5, y is the transfer operator for KT, v, i.e.

/W dut(zn) (KEA ) (24) 6(24) (2.182)
- /() dpt(za) ¥(z) (L5 n8) (1)
for all p € L®((SY)A) and ¢ € LY((SHH).
Proof
/(SI)A dpt(zn) (K5pn0) (2a) $(2a) (2.183)
- /(SI)A dpt(za) Y Pan(w) o Sjwya(za) d(za)

wWEQA, N
= > Pan(w) /S1 dp™(2a) ¥ © Sicw)a(2n) 6(zn)
= X o) [ e vlen) (Lonas) )

= /(51)A dut(za) Y(za) Z P n(w) (Csj(w),M)(zA)

wEQA N

/( s dp™(z) B(za) (L5 4 n0) (Za)
m

Now we are studying the rhs of (2.181), for the restriction of the operators to Hj, |
in more detail for. The sum is over all w € Qy n. If w(q,%) = 1 then the gth site is
updated at time . The updating 2,(:) = S,(za(¢ — 1) V €xc) depends in general on
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all other sites at time i — 1. In the representation (2.176) for the transfer operator
a factor like (2.178) and an integration wrt the corresponding coordinate z, occurs.
We represent the particular summands on the rhs of (2.178) graphically as h-line,
r-line or k-triangle (cf. [12] and also Figure 2.2).

If w(g, i) = 0 then the site g is not changed at time i. We have z,(i) = z,(s — 1) and
represent this by an identity-line from (g, — 1) to (g, 1).

By Definition 2.1.6 of the Bernoulli process we have for each (g, 1):

1 with probability p

w(9,1) = { 0 with probability 1—-p °’ (2.184)

where p = 4T as in (2.22). The family (w(g,))(geaxs is independent. For a
particular w € Q2 y we get a reduced configuration C, by choosing h-lines, r-lines
or k-triangles at all (g,1) for which w(g,3) = 1. At the other points (g,7) (with
w(g,i) = 0) there are identity-lines. This reduced configuration corresponds to an

operator Leg,.
Definition 2.3.2 Let Ay CA € F\ {0} and I ={1,...,N}.

1. A full configuration C on A x I is an assignment of each point in A x I to
either an h-line, r-line or k-triangle. We denote the set of all full configurations
on A x I by Conf(A,N). (Figure 2.3 shows a full configuration. The r-lines
are drawn thick and the h-lines thin.)

2. A reduced configuration C; on A x I is an assignment of each point in
A x I to either an h-line, r-line, k-triangle or an identity-line. We denote the
set of all reduced configurations on A X I by Confy(A,N). (Figure 2.2 shows
a reduced configuration. The h-lines and r-lines are drawn as in Figure 2.3

and the identity-lines are dotted.)

3. We call the h-lines, r-lines, k-triangles or an identity-lines the items of the
configuration.

4. If (¢,1) € Ax I is assigned to an h-line then we also say that there is an h-line
from (q,i— 1) to (q,i). In this case we also say that there is an h-line at
(q,1i). Our terminology for the other items is analogous.

5. The basepoints of a k-triangle at (g,4) are the points (g, — 1) with § €

Bi(q).
ndef | O if (q,%) is assigned to an identity-line
w(Cr)(g,0) = { ] Oﬂ(lervgise RS (2185)
We set
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WCIE D W) . (2.186)

(g.5)eAxT
A A

0 . . ) 0'g [) * )
14 . . ¢ ¢ 1 ¢ ¢
2o W o s 4 2% T
3 @ : : ¢ ) 30 * ¢ ¢ )
19 4 » ¢ 49 $
se o W ¢ ¢ 59 ¢
66 o e ¢ G ¢

Q1 42 R G4 a5 QG qs

Ay

Figure 2.2: A reduced éonﬁguration Figure 2.3: A full configuration

Remark 2.3.3 A full configuration is, of course, the same as a configuration de-
fined in [12]. In contrast the reduced configurations can have identity-lines as items.
Recall the definitions of mazimal chains (see Definition 1.5.2 of [12]) for full config-
urations. We define these for reduced configurations analogously.

We remark that, as in [12], certain combinations of lines and triangles lead to the
operator L¢, being equal to zero, namely if

1. an h-line follows (wrt the time-order) or is followed by an r-line and their

common endpoint is not a basepoint of any triangle (cf. Figure 2.4(a).)
. A
2. a triangle is followed by an h-line and their common point is not a basepoint
of any triangle (cf. Figure 2.4(b).)
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3. an h-line is followed by an identity-chain and then an r-line and no endpoint
of the identity-chain is a basepoint of a triangle (cf. Figure 2.4(c).)

4. an r-line is followed by an identity-chain and an h-line (in this order) and no
endpoint of the identity-chain is a basepoint of a triangle (cf. Figure 2.4(c).)

5. (the apex of) a triangle is followed by an identity-chain and an h-line (in this
order) and no endpoint of the identity-chain is a basepoint of a triangle (cf.
Figure 2.4(d).)

The proofs for the first two cases are given in [12]. The proofs of the other statements
are (modulo notation) the same.
We further note that for A; € A and the expansion

A, © ﬁgl\’ﬁ = Z PA,N(UJ) Ay © ch(“',) (2.187)
wENZ N .
= Z ' PA,N(w(C,)) A, © Ec,, (2.188)
¢.€Confy(a,N)

where the second sum is over all reduced configurations, we get w5, o Lc, = 0 if

6. C, ends with an r-line or a triangle in (A \ A;) X {N} (cf. Figure 2.4(¢) and
Figure 2.4(f).) ' .

7. C, ends with a maximal identity-chain in' (A \ A;) X {N}, say from (gq,%;,—1) to
(g, N), such that (g, —1) is the endpoint of an r-line or the apex of a triangle
but not a basepoint of any triangle (cf. Figure 2.4(e) and Figure 2.4(f).)

In view of this we make the following definitions.

Definition 2.3.3 Let A; C A € F\ {0} and N be fixed.

1. We call a reduced configuration, as considered in the expansion (2.188), a
non-zero reduced configuration on A x I that ends in A; if none of
the cases 1 - 7 occurs. (Figure 2.2 shows a non-zero reduced configuration on
A = {q,...,q5} ending in A; = {g3,q4,¢5}. Note that such a configuration
could also end with an h-line in A; x {N}.)

2. We define Confr(A, N, A;) to be the set of all non-zero reduced configurations
on A x I that end in A;.

3. We call a full conﬁguration on A x I a non-zero full configuration that |
ends in A; if none of the cases 1,2 or 6 occurs. (Figure 2.3 shows a non-zero
full configuration on A = {qi,...,¢s} ending in A; = {g3,q4,95}.)
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Figure 2.4: Patterns in reduced configurations that give rise to the zero-operator

4. We denote by Conf(A,N, A;) the set of all non-zero full configurations on
A x I that end in A;.

We would like to find for our stochastic system similar estimates as for the deter-
ministic coupled map lattices (cf. [12]). For this we eztend reduced to a full config-
urations and estimate the sums, weighted by probability factors, by introducing an
effective decay rate and an effective coupling parameter.

Definition 2.3.4 We define the extension map

Ext : COIlfr(A, N, Al) - COIlf(A, N, Al) X QA,N (2189)
C, > ext(C,) X w(Cy). (2.190)
w(C,) was defined in (2.185) and ext(C,) is defined as follows:
If C, has an h-line, r-line or k-triangle at (g,¢) then so has ext(C,). Suppose C, has

a maximal identity-chain, say from (g,%; — 1) to (g,%,). Then ext(C,) has an h-chain
from (g,% — 1) to (g,4,) in any of the following three cases:
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1. (g,%; — 1) is the endpoint of an h-line, but not a basepoint of any triangle.

2. (g,1,) endpoint of an h-line, but not a basepoint of any triangle.

3. (g,%) € (A\ A1) x {N}.
Otherwise ext(C,) has a maximal r-chain from (q,% — 1) to (g,1,).

We remark that ext(C,) has the same triangles as C,.

The full configuration C € Conf(A, 6, A) in Figure 2.3 is the extension ext(C,) of the
reduced configuration C; € Confg(A,6,A;1). C has for example a maximal h-chain
from (g3, 1) to (g3, 4) because C, has a maximal identity-chain from (g3, 1) to (g3, 3)
and (g3, 3) is the endpoint of an h-line but not the basepoint of a triangle, so case 2
applies. .

The maximal identity-chain of C; from (g3,4) to (g2,6) corresponds to a maximal
h-chain of C because it ends in (g2,6) € (A\ A1) x {N} and case 3 applies.

As g5 € A; the identity-chain of Cy from (gs,0) to (gs,6) gives rise to a maximal
r-chain of C.

The map Ext is a bijection onto its image. So we can rewrite the representations in
(2.187) and (2.188):

A, Oﬁg’A,N = E Z PA,N(w) TA, Oﬁc,.. (2.191)
CEConf(A,N,A1)  (Crw)eConfr(A,N,A1)x 0 y: -
Ext(Cr)=(C.w)

In general C, is not uniquely determined by the condition ¢ = ext(C,). If C has
for example a maximal r-chain, from (g,4 — 1) to (g,4%,) say, then C, can have any
sequence of r-lines and identity-lines from (g,% — 1) to (g,1,), corresponding to the
different values of (w(g,%),...,w(g,%)) € {0,1}~*. For any chosen w = w(C,) the
reduced configuration C, has exactly

k = card{(q,1) : 44 < i < i, and w(q,?) =1} (2.192)
r-lines between (g,%; — 1) and (g,4,) and the sequence of r-lines and identity-lines
corresponds to an operator Rf.

The event that w(q, i) = 1 for exactly k values 4 < i < i, has probability (}) p*(1 —
p)"~* where n =4, — 4, + 1. So if C (in (2.191)) has an r-chain of length n the sum

over all possible corresponding sequences of r-lines and identity-lines in C,, weighted
with the corresponding probabilities, gives rise to an operator

n

Rugn) & ")pr (1 - p)n R 2.193
() Z(k)p( ) (2.199)

= (PRy+ (1 —p)idy)"
= (idg —p(idg — Ry))"
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with p = 2%, as in (2.22). We note that

Rng(n1) Rug(n2) = Ruvg(ni + ny). (2.194)
Using (2.170), we estimate the norm of (2.193) by

ef
Rv(n) E [Rugm)lzeng,) (2.195)
n n
< k(1 — p\r=Fkp nk
< g(k>p( p)" *e,n

= (1= (1-n)p)"
We therefore make the following definition.

Definition 2.3.5 The effective decay rate is defined as:
7 ZE1-1-n)p (2.196)
Then (2.195) reads

Ry(n) < e (2.197)

Ne = (1 —p) + 1+ p- 7 is the convex combination of 1 and the original decay rate 7.
For p — 0 (equivalently N — 00) 7, tends to 1.

Now we consider a maximal h-chain in ext(C,), say from (g, — 1) to (q,,). If
(g,%) € (A\ A1) x {N} then C, can have any sequence of h-lines and identity-lines
from (g,%; — 1) to (g, N) (in particular a maximal identity-chain). This sequence
corresponds to the composite of operators @, and id,. Summing over all possible
sequences, we see that the corresponding operators, weighted with their particular
probabilities, give rise to an operator:

(1-p)*id +Z( )(1 —p)p" QI * = (1-p)*id,+ (1 - 1 - p)")Q, (2.198)

The projection 7y, in (2.191) is an integration wrt all (A \ A;)-coordinates, in par-
ticular also wrt the g-coordinate. As my = 7y 0idg = 7y 0 Q, we can replace the full
operator in (2.198) simply by Q,.

If the maximal h-chain does not end in (A \ A;) X {N} then C, has a sequence of
h-lines or identity-lines from (g,%; — 1) to (g,%,) in which at least one h-line occurs.
(For otherwise, if no h-line occured, ext(C,) would have an r-chain from (g, — 1)
to (g,%r).) It corresponds to an operator
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QAng(n) = > (M- fprEQl 2.199
CEDWIEY (2:159)
= (1-(1-p" (2.200)

So we see that each maximal h-chain in a full configuration C in (2.191) gives rise
to an operator which is a scalar multiple of Q,.

For h-chains ending in (A\A;) X { IV} the scalar factor is equal to 1 and for a maximal
h-chain of length n and not ending in (A \ A;) x {N} it is equal to 1 — (1 — p)™.
The product of all these factors is

en(C) & TT(1 - (1 — p)lenethim (2.201)
H

where the product is over all maximal h-chains H not ending in (A \ A;) x {N}.

As mentioned before, C, has exactly the same triangles as ext(C,), so if there is a
triangle from (g,i — 1) to (g,%) then w(q,) = 1 which happens with probability p.
(Note that if w(g,4) = 0 then Ext(C,,w) # C for any C, € Confr(A, N, A;).) So
in (2.191) we just sum over such C, with w(C,)(g,%) = 1 which leads to a factor p.
In our estimates for the deterministic coupled map lattices we have seen, that each
triangle contributes (among other factors) a factor € in the estimates. In case of the
system we are considering it also contributes an additional factor p. This motivates

the following definition.

Definition 2.3.6 We define the effective coupling parameter:

e Lep. (2.202)

Recall from [12] that for C € Conf(A, N, A;) we have the representation

mp 0Le = mp 0O0p(N,C)o-+-00p(1,C) (2.203)

with Op(i,c) ¥ ® Qq ® R, ® B

geAg(iC) g€AR(i,C) quB k(' o

where Ag(%,C) is the set of ¢ € A such that there is an h-line from (g,%— 1) to (g, 1),
Ax(i,C) is the set of ¢ € A such that there is an r-line from (g,7 — 1) to (g,) and
A (i,C) is the set of ¢ € A such that there is a k-triangle from (q,% — 1) to (g, %)
in C. The operators Q,, Ry and By, are integral-operators with kernels h,, r, and
Bk,q, Tespectively. (In [12] we only used the representation by integal kernels. The
notation ‘®’ here means that the integral kernel for the operator L in (2.203) is
the product of the particular integral kernels. It should not be mixed up with the
notation of tensor products. The representation in (2.203) is more convenient for
the following considerations.)
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Definition 2.3.7 For fixed T’ > 0 we define the operator with effective param-
eters corresponding to C € Conf(A, N, A;):

ST def . ~ o~
AL © ,Cg = CN(C) AL © Op(N, C) 0-++0 Op(l, (,') (2.204)
. ~7 def
with Op(l, C) = ® Qq ® RN,q ® ka,Q'
g€Ag(i,C) geAR (i,C) k>1
qEAB,k(':vc)

Remark 2.3.4 We point out that the term effective coupling parameter is rather
heuristic. It does not mean that we took a different coupling strength for our origina]
system. But, as we see from (2.203),we use an operator pl3,  rather than Just B,
(like in (2.202)) for each triangle and 50 in our estimates we use €, rather than tf{e

original coupling parameter €.

In the next proposition we summarize our study of the relation between ful] and
reduced configurations. First we recall some definitions.

Definition 2.3.8 (cf. Definition 1.5.2 in [12])
e For C € Conf(A, N, A;) we denote by A¢ the set of points ¢ € A that appear
as the Z%coordinate of a base point (g,¢t) of a triangle in C.

o Ac is the set of those points ¢ € A}t_hat appear as the Z%coordinate of an
apex (g, t) that does not lie above any other triangle.

e A, isthesetofg € A \f\c that appear as the Z? coordinate of an r-line. (So
A, CAL)

. f %
o We write A(C) & AcUA,.
1. We can write the transfer operators in terms of full con-

Proposition 2.3.2
figurations and reduced parameters:

Y maoLf (2.205)

T —
Ay © LS,A,N =
CeConf(A,N,A1)

2. If C € Conf(A, N,A;) has ezactly g k-triangles, n. r-lines, ny h-lines, T
mazimal r-chains, fin mazimal h-chains, and A(C) is as in Definition 2.3.8,

then we have for all ¢ € Hy the estimate:

(2.206)

P | ace) lace)

llma, o LSS, © )

o
_<_ (C363)Jnﬁ' exp | —Cq Z /ﬂ}dnﬂ,k
k=1
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and

layllaey < O A I-ZRaGR nae| g1y (2.207)

< oMo gl

Proof Representation (2.205) results from our considerations beginning with
(2.191). We have seen that we can replace the operator sum over reduced configu-
rations, weighted with probability factors, by an operator with effective parameters
and corresponding to a full configuration.
Note that for each triangle in C we get a probability factor p = % The proof of
(2.206) is analogous to the one of (1.57) in [12]. We only have to use the effective
parameters 7, and €. instead of 17 and e, respectively. Note that the factor éy,
defined in (2.201), is bounded by 1. (2.207) is formula (1.58) in [12].

a

Using (2.206) and (2.207) we will estimate (2.205) analogously to the estimate of
(2) in [12]. Again we sum over all C € Conf(A, N, A;) but this time we have to use
the effective parameters €. and 7.. A problem is that 7. is not uniformly (in N)
bounded away from 1 (cf. Definition 2.3.5 and the remark thereafter). However in
the following proposition we establish a bound for (2.205) that holds uniformly in
N. :

Proposition 2.3.3 For sufficiently small ¢ and large decay parameter ¢, of the
interaction we can choose 9 > 0, 9 >0 and ¢ > 0 such that for all T > 0 and
N > AT the following estimate holds for all ¢ € Hy and Ay C A € F:

>

CceConf(A,N,A1)

ma, 0 Z0a]| < cul19llo (2.208)

Further for sufficiently large T we can choose 9 = 9.

Proof The estimates in this proof hold, provided ¢, is sufficiently large and € small.
We can choose the bounds for these parameters independently of A, A;, T and N.
We pointed out in [12] in detail how to get such bounds and do not repeat the
arguments here again.

We fix A, N and A,. First we estimate the sum over all C € Conf(A, N, A;) with
length(C) = N. Let C have exactly ng k-triangles. We can assign to it a set A¢ (cf.
Definition 2.3.8) and a labelled tree-graph with parameter |Ac| like in [12]. (Recall
that, if we consider a particular A¢ and set |A¢| = K, there are not more than

45 T2, ¢ k "% such graphs.) Each triangle has an a-r-chain of length between 0
and M. The labelled tree-graph and the length of all a-r-chains (cf. the proof of
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Proposition 1.8.1 in [12] for a definition) determine the positions of all triangles and
a-r-chains in a configuration C. At each k-triangle there can be attached upwards or
downwards going r-chains or h-chains. Summing over their particular choices gives
rise to a factor

¥ < exp(csk?) (2.200)

for each k-triangle. We split
€c = E€EE€ E 2.210
. = e (2:210

with ¢ ¥ /e

So the estimate for the norm of the operator corresponding to a k-triangle gives rise
to a factor

E AT
t( EE— exp(—czk?) (2.211)

For the number ! of long :ichains (i-e. long r-chains from (q, 0) to (¢,N)) in C we
have the bound 0 < ! < |A{| — K. _
Further we can split

Ne = flefle (2.212)
with 7 & /7,

and as length(C) = N we can extract from each summand in (2.214) a factor 7 (as

in the proof of Proposition 1.8.1 in [12]).
In the step from (2.215) to (2.216) we make use of the bound

AT i~, AT 1

it < =
N 2 S Nith (2.213)
AT 1
< N 1 AT
2(L=m4r
- 2
= T
We get, provided that € is sufficiently small and ¢, large:
dh Sl 0 £oga llay (2.214)
ceConf(A,N,Ay)
length(¢c)=N
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|A1| [o}
< N (IJI\{ll)(ch+19"1c,ﬁév)'Al|’K4KZ - (2:215)
K=0 n=K
> d d N "
X <6e (Z exp(—cyk?) exp(cek?) ¢k 9~* ) > 1’;) 7 6lls
k=1 =0
A
an o (Al IALI-K K |
< MY K (ch + 97 e, 7N) (2.216)
K 0 .
X 2(076 "7y |6lls
= 0 3 AL =
< cs (ﬁch+50rﬁiv+196)"\"ﬂivll¢llo- (2.217)

We remark that (2.215) also includes the estimate for the special case K = 0. Then
the configurations have no triangle and ng = 0. The sum ‘Y > ’ should then be
replaced by a factor 1 (to avoid confusion). However, this sum is at least 1 and so
the estimate is correct.

Now we consider the case length(C) = L for fixed 1 < L < N —1. Let C have n
triangles. At least one of them has to be assigned to a point in A x {N — L + 1}
because C has length L. (C has to have a triangle at that level and not an r-
chain because otherwise C would be a zero-configuration.) So for each C we have
a labelled tree-graph and can distinguish one triangle. The number of all possible
choices of a distinguished triangle (for a given tree-graph) is bounded by n and so
by 2". With the choice of the lengths of the a-r-chains of the other n — 1 (non-
distinguished) triangles the positions of all n triangles and the lengths of all a-1-
chains are determined. This time we get a factor (vaol nt)"~! (with exponent n— 1
rather than n.) We estimate

S fmaco ZEdall, (2.218)
ceConf(A,N,Ay)
length(c)=L
< 1§A1 a |A1l |A1| K4K~K Z ’\T Z " (2 219)
B KZ=1 K n=K .

BANSY
9 (26@1 3 exp(-esk) explesk) &0 ) 5 6l
k=1

- = AT .
< ey (Jep + &) an 11l (2.220)

Finally we get for the special case that C has neither triangles nor r-lines (i.e.
length(C) =0):

G lma, © LE lla, < (Ben)™ [18llo (2.221)
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So, using (2.217), (2.220), (2.221) and the bound 7, < 1, we conclude

N-1
= ~ AT . .
Z IM||ma, 0 LEBAlA, < (1 ooy Z cfil + niv) |#lls (2.222)
CEConf(A,N,A;) L=1

2
< (1+1f’j°n +csﬁ3§) s (2229)
< cullgllo (2.224)
| O

We want to take the limit (as N — oo) of the rhs of (2.205) for fixed A;, A and
T. Considering the sum over all full configurations, we can collect (into the same
class) configurations with the same ‘constellation of triangles relative to each other
in time and space’ but different lengths of their chains. The h- and r-chains can
be thought of as being flexible (made of gum) so that we can move the triangles in
time-direction. So the sum over all configurations is the double sum over all classes
(outer sum) and all possible time-positions of the particular triangles (inner sum).
In the limit the inner sum, say for a class with exactly n triangles, becomes an
integral over a subset of R*. We will choose our classes (the gum configurations,
cf. Definition 2.3.10) so that they determine a linear order on the set of branchings
(that correspond to the triangles). So the domain of integration corresponding to a
gum configuration is a simplex. '

To make these ideas more precise we give some rather formal definitions. (Figure
2.5 might assist to understand these better.)

Definition 2.3.9 In a labelled tree (as defined in [12]) we call the vertices that have
no maximal label (i.e. they are not leaves of the tree and there is a vertex with a
greater (wrt to the partial order) label) and that are different from the root vertex,
branchings. (Each branching corresponds to a particular star-graph (like we used
to define the term labelled tree in [12].) It is called k-branching if it corresponds
to a star-graph with exactly v(k) vertices (and hence to a k-triangle). k is called
the degree of the branching. '

Recall that in [12] we have introduced a linear order < on the set of labels of vertices.
In the following we will use the same symbol for linear orders on different sets as
well. It should be clear from the context to which order we refer.

We say that a linear order < on the set of branchings is compatible with the
labelling if the following condition is satisfied: If v; and v, are branchings, labelled
by label(v;) and label(vz), respectively, then B

}label(vl) > label(ve) = vi<va (2.225)

We introduce a linear order (also denoted by <) on Z%
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(kyy.ooykg) < (151, ey Ed) if k; < k; for the lowest index i such that k; # k;
(2.226)

Definition 2.3.10 A gum tree 7, with parameters n, = (n6,1,7p2,...) and A, €
F \ {0} is given by the following data:
1. A labelled tree 7 with parameters ng and |A,| (as defined before Lemma 1.8.2
of [12]). ‘
2. A map pin from the set of vertices (except the root) of 7 to Z9 that satisfies
the following conditions:

o The restriction of pin to the set of vertices, that are labelled by 0,1),...,
(0,]A2]) (We denote the restriction of pin to this set by pin,.), is an

order-preserving bijection onto A, i.e. for any two such vertices v and v
label(v) < label(v) = pin(v) < pin(¥). (2.227)

o If v with label(v) = s = (s1,...,5m) is a k-branching and pin(v) =
q € Z° then the restriction of pin to the set of vertices with labels
(s,1),...,(s,v(k)) (We denote the restriction of pin to this set by pin,.)

is an order-preserving bijection onto By(g) C Z%

A gum configuration C, on A ending in A; is given by the following data:

1. A gum tree 7, with parameters ng and Az such that Ay C A;. The correspond-
ing tree has branchings vi < ... < Vn, 83y, with branching-degrees b,, . .., by,

respectively.

2. For each 1 <1 < n there are maps

w : By(pin(vi)) NA— {0,1} (2.228)
d; : By(pin(vi)) N A —{0,1}. (2.229)

such that »
(a) If g € By, (pin(vi)) N A and j is the smallest number greater than 5 such
that ¢ € B, (pin(v;)) (if such a j exists at all) then d;(g) = u;(q).

(b) Forevery 1<i<n
d;(pin(vy)) = 1. (2.230)

93



(c) If ¢ € By, (pin(vs)) N (A \ A;) and there is no j > 4 such that ¢ € Bj, (g;)
then d;(g;) = 0.

(We will see later that the maps u; define from a vertex upwards going h-strips
(if u; = 0) or r-strips (if u; = 1). Similarly the maps d; determine downwards
going strips. For a strip between two vertices it should be wel!-defined if it is
an h-strip or an r-strip. Hence we impose condition (a). Condition (b) says
that a strip that goes downwards from a branching must be an r-strip.)

3. A map long from A\ J._, Bs, (pin(vi)) to {0,1} such that

long(q) =0 ifq¢ A (2.231)

We define in analogy to Definition 2.3.8

Ac,) ¥ OBb‘.(pin(vi))ﬂA, (2.232)
i=1

A(C) ¥ {ge A\A(C,) : long(q) =1}, (2.233)

AC) % AC,)UA(C,). (2.234)

We introduce the following notation:

e In the situation of 2.a the point g is the image (wrt pin) of the vertices piny'(q)
and pin;!(g). We say that C, has an h-strip (r-strip) from pin,'(g) to
ping, (q) if di(q) = 0 (di(g) = 1). (We note that we do not distinguish the
order of the vertices in this notation: A strip from v to Vv is the same as a
strip from ¥ to v.)

e If ¢ € By,(pin(vi)) N A and v = ping'(g) and there is no j > i such that
q € By, (pin(v;)) and if di(g) = 0 (di(g) = 1) we say that C; has an h-strip
(r-strip) from v to the bottom.

o If g € By, (pin(vi))NA nd v = pin; (¢) and there is no number j < 4 such that
q € By, (pin(vy)) and if ui(g) = 0 (ui(g) = 1) we say that C; has an h-strip
(r-strip) from v to the top.

e In the situation of 2.b we call the corresponding r-strip an apex-r-strip.

e Ilfge A\ K(Cy) and long(g) = 0 (long(g) = 1) then we say that C, has a long
h-strip (long r-strip) at g. So A.(Cy) C A, is the set of ¢ where C, has long
r-strips. ’

e If C, has an r-strip to the top or a long r-strip we say that C; reaches the
top.
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We denote by Confg(A, A;) the set of all gum configurations over A ending in A;.

Definition 2.3.11 Let C; be a gum configuration over A ending in A; with branch-
ings vy < ... < vy, of branching-orders by, ..., by, respectively, and let T' € (0, co].
Then we define

Slmplex(Cg,T) e vtn) T <ty <...<tp < 0}. (2.235)

Simplex(C,, T') is an open subset of R* and so carries the induced Lebesgue-measure.
For the special case ng(C,) = 0 we define Simplex(C,, T') to be a single point having
measure 1.

Definition 2.3.12 For C; € Confg(A,A,), T € (0,00] and t € Simplex(C,,T) we

call the triple (C,, T, t) a specific gum configuration.

Specific gum configurations can be viewed graphically: The vertices are placed in
¢ x [0,T] and the strips are ‘spanned’ between vertices, the top (¢t = —T') and the

bottom (t = 0):

e We assign to each vertex v in 7(C,) a point in Z¢ x [-T,0] in the following
way. If v; is a branching of degree b;, q € By, (pin(v;)) and v = pin'(g) then
v has time-coordinate ¢;. In particular v; has time-coordinate ¢;. As further
pin(v;) = ¢ we assign v to (g,t;).

Let for the following two vertices v and ¥ be assigned to (g,t) and (q,?),
respectively.

e If C, has an h-strip (r-strip) from v to ¥ we say that (C,,T,t) has a maximal
h-strlp (maximal r-strip) from (g,t) to (g,f). We define its length to be
|t —¢].

e If C, has an h-strip (r-strip) from v to the bottom (this has time-coordinate
0.) we say that (Cy,T,t) has a maximal h-strip (maximal r-strip) from
(g,t) to (g,0). Its length is [¢].

e 1f C, has an h-strip (r-strip) from v to the top (this has time-coordinate —T'.)
we say that (C,,T,t) has a maximal h-strip (maximal r-strip) from (g, 1)
to (¢, —T). Its length is T' — |t|. (Note that for T = oo this length is 0o.)

e If C, has a long h-strip (long r-strip) at ¢ we say that (Cy, T,t) has a long
h-strip (long r-strip) at ¢. Its length is T. (Long h-strips (long r-strips) are
also considered as maximal strips.)

If (C,, T, t) has a maximal h-strip (r-strip) from (g, ) to (q,t5) and ) <ty <t3 < 14
then we say that (C,, T, t) has an h-strip (r-strip) from (g, %) to (g, s) (or from (g, 23)
to (q’ t2))
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For a branching v; and a g € By, (pin(v;)) we call the maximal h-strip (if any) from
(g,t;) to (g,t) with t; < ¢t (t; > t) a downwards going (upwards going) h-strip
associated to the branching. (Note that in our pictures the positively oriented
time-axis goes downwards.) The notation for r-strips is analogous.

(C4, T, t) must have a downwards going r-strip at the points (pin(vj), t;) because of
condition 2.b. We call it an apex-r-strip.

An h-strip (r-strip) in (C,, T, t) goes to the bottom (to the top) if the corre-
sponding h-strip (r-strip) in C, goes to the bottom (to the top).

In analogy to (2.201) we define

&(C,, T, t) & H (1 - exp(Alength(H))) (2.236)

where the product is over all maximal h-strips H that do not end in (A \ A;) x {0}.

We draw in the specific gum configuration in Figure 2.5 thick horizontal lines for
branchings and thin or thick vertical lines for h-strips or r-strips, respectively. There
are two branchings of degree 1, at (go,t;) and at (g3, ;). The specific gum configu-
ration has, for example, a long r-strip at site gs, an r-strip from (g;,;) to the top
and an h-strip from (ql, t1) to the bottom.

Note that the vertices in the labelled gum tree (except the root) are assigned to
points in Z¢ (in this example d = 1) by the map pin. For example pin(v;) = go.
Also note that the specific gum configuration in Figure 2.5 ‘has the same structure’
as the full configuration in Figure 2.3. We will make this analogy more precise in
the proof of Proposition 2.3.5 where we use the approximation of a specific gum
configuration (or more precisely the approximation of the corresponding operator)

by full configurations.

—TT- ¢ ® L ? ? 0,1,1,2)

ti+

OJ- o i L L o

¢ q2 g a4 gs : *©

Figure 2.5: Specific gum configuration and its labelled tree

Definition 2.3.13 We define in analogy to (2.193) for ¢ > 0:
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R(t) = e M - MR'C
ot) = ™M) R, (2.237)
k=0 :

= exp(At(id, — R,)). (2.238)

Then we have, using (2.170),
Ro(t1) Re(tz) = Rg(ts+12) (2.239)
IR DI < ce =X (2.240)

For C, € Confg(A, A1) with n > 1 branchings at vi < ... < v, of degree by,..., by,
respectively, we set tg = —T, t,41 = 0 and define in analogy to (2.204):

Op(i,CpTht) ¥ QR & &  Ryltin—t), (2.241)
qEAQ (i:cy »Tyt) q€AR (ircg ,T,t)
Opy(isk) & ABipiney Q) idg, (2.242)
geA\{q}
LL . % &C,,T,t)Opy(n,Cp, T,t) 0 Opy(n,by) 0. (2.243)
o0p, (1,84, T, t) 0 Op,y(1, 1) 0 Op,(0,C,, T, t)
and € & / dt LT (2.244)
Simplex(Cy,T) :

where Ag(i,C,, T, t) is the set of ¢ € A such that (C,, T, t) has an h-strip from (g, t;)
to (q,t:i+1) and Ar(i,Cy, T, t) is the set of ¢ € Z¢ such that (C,, T, t) has an r-strip
from (g,t;) to (g, ti+1).

If n(C,;) = 0 we simply set

def
2, = Q& 24 @ R, (2.245)
g:long(g)=0  g:long(g)=1
cr = L, (2.246)

Remark 2.3.5 1. If H is an h-strip from time ¢; to time ¢; with 1 < i < j < n+1
then length(H) = |t;—t;| and so the factor 1—exp(—A |ti—t;|) does not depend
on T. However, in the case ¢ = 0, i.e. t; = —T, the factor 1 —exp(=X (T —|t;|))
depends on T'. For T = oo this is equal to 1.

2. From (2.236), (2.241), (2.242) and (2.243) we see that the map t — m, 0 LT .,
defined on Simplex(C,,T), is uniformly continuous (because all factors are
uniformly continuous wrt t), hence integrable if T < oo. We will see in the
next proposition that the integral also exists in the case T = oo. So (2.244) is
well-defined.
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3. We see that if (Cy, 00,t) has an r-strip going to the ‘top then cg:,t =0.

Definition 2.3.14 Let ¢,T > 0. We set ¢y = —T and ¢,,; = 0 and define

def n :
D(n,T,c) = {t=(t,...ta) €R :og<1§1£n+l |t = tj| <c} formn 1 (2.247)

e i <
D(,T,c) {{%t} g ;;z : (2.248)

For the special case n =0 we have to define the notation for some sets:

e {pt} denotes a one-point set.

e The set Simplex(C,,T) \ D(0,T,c) for n(C;) = 0 is defined to be equal to
Simplex(Cy,T) if T > cand to B if T < c.

e Similarly Simplex(C,y, T)ND(0,T, c) is equal to @ if T > c and to Simplex(C,, T)
ifT<ec

e We define Simplex(C,, T) \ Simplex(Cy, T) ¥ Simplex(C,, T) for C, with
n(Cy) = 0. .

Proposition 2.3.4 1. For sufficiently small € > 0 and large c, there is a constant
c12 > 0 such that for all 7> 0, A; CA € F\ {0} and ¢ € Hy

SIAl / dt a0 L5 dall < crallplls  (2:249)
c,GCOnfg(A Ap) Y Simplex(Co.T)

For sufficiently large T this also holds for suitably chosen 9 = 9.

: qlA1f T —
41:1—13(} o Z Simplex(cg,T) at “WA‘ ° 'ch ¢A” =0 (2'250)
C4€Confg(A,A1) ¥ ND(Ing (Cg)l Tc)

Proof For each C, € Confg(A,A;) and t € Simplex(Cy, T) we get an estimate
analogous to (2.206) ( or (1.57) in [12]):

”71’/\1 © [’gg,td’A”/h (2.251)
< (ce)slexp ("Cg denﬂ,k> chref” |
k=1
xHexp n) Alength(R)) &(Cy, T, t) |éacc,)lIacc,)»
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where the product is over all maximal r-strips R of (C,, T, t).

Consider a labelled tree 7 with parameters ng; and K, a set Ay C A; with [Az]| = K
and the set A(7,Ag) of all C, € Conf,(A, A;) whose labelled tree is 7 and whose
gum tree has parameter A;. Note that there can be different linear orders on the
branchings of 7. We want to estimate

gml 3 / dt |ma, o LT, (Sl (2.252)
CyeA(T,Az) Simplex(Cy,T")

and consider this expression as integral over the union of all sets Simplex(C,, T).
We change the variables of integration: Let £y,...,%,, denote the lengths of the
a-r-strips (where #; corresponds to the branching v;). They are bounded by T. For
each t = (t1,...,tn,) € cheA(,) Simplex(C,, T) there is a unique t = (43, ..., f,nﬂ,).
Note that the union is of disjoint sets and its image is a subset of [0, 7]". Further
the change of variables from t to t is linear and has a determinant of modulus 1. We
see that by doing the transformation successively: #; is given by a linear equation

| t; = Liny (t2,...,t,) — &1 (2.253)
and {2 by

52 = Linz (El, ta, ey tn) - t2 (2254)

etc. and the statement about the determinant follows. So we can estimate in (2.252)
“ D¢, eA(r ) Jsimplex(c, ) @8 Y Jo st dt’ and~so in the estimate of (2.249) we
replace ‘ 3¢ [omtextc,m) @ BY * 2ony r Jiomjetr db” where the sum is over all A C
A; and labelled trees 7 with parameter |Az|.

We are using the ‘usual estimates’ (cf. Proposition 2.3.3 and also [12]). For fixed
Ay C Ay and ng with |ng| > ]JA2| the number of labelled trees with parameter
|A2| and ng is bounded by 4/A2! [T;2, (exp(é4k?))™+. For each k-branching we get
a factor A eexp(—cyk?) from the uniform estimates for the corresponding operator.
Summing over all possible choices of upwards or downwards going h-strips or r-strips
associated with the branching, we get a factor exp(ci2k¢). There are not more than
|A1]| — |Asz| sites for which we can choose between long h-strips and long r-strips. A
long r-strip gives rise to a factor ¢, exp(—(1 — 7)AT’), and a long h-strip to a factor
at most c¢,. The norm ||¢ac,)llac,) is estimated by (2.207). Gum configurations C,
without branchings (i.e. ng(C,) = 0) can only have long r-chains (that must end in
A1) or long h-chains. This case corresponds to the summand for K = 0 in (2.256).
The sum 3 o>’ could be replaced by the factor 1 (cf. the remark on the analogous

n=0

situation after (2.217).)
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We estimate the left-hand side (lhs) of (2.249):

o / dt [|ma, 0 L¢, o ¢al (2.255)
CgEConfg(A Ay) Y Simplex(C,,T)

|A1] l l
< 0“1'2( 1)(c + 97 e, exp(—(1 — p)AT))MI-K4K  (2.256)

X Z (e )" exp(—cgk?) exp((és + c12)k®)cH 9=

k=1

< Tdtc,exP(—(l—fl)/\T)) 161l

[A1]
.9 ~
< a3 <19Ch + 56 exp(—(1 = n)AT) + 1961) llolls

with lim._,o€; = 0. So there ared >0, € > 0 and 9 > 0 such that

-~

- P -
den+ 5 er exp(=(1 = n)T) + e <1 (2.257)

and so (2.249) holds uniformly in A; and A. For sufficiently large T we can choose
9 = 9 such that (2.257) holds. So statement 1 is proved.

(2.250) follows immediately from (2.249) and the fact that for all C; € Confg(A, A;)
and T > 0 the family (Ac)c>o of sets

A, = Simplex(Cy, T) N D(|ns(Cy)|, T, c), (2.258)
is increasing, i.e.
Ay CA, for c <o, (2.259)
and from
0=)A (2.260)
c>0
a

We prepare the proof of Proposition 2.3.5 which relates our representations of the
transfer operators for discrete and continuous time.

Definition 2.3.15 For fixed T > 0, N > T,n > 1l and t = (,...,t,) € R* we
define [t]rn to be the n-tuple k = (ky,...,k,) such that k; is the smallest integer
greater than or equal to LTE + N (for all 1 < ¢ < n). Note that we add N so that
[Jr,~ induces a map from (-T,0) to {1,...,N} for every single coordinate. We
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define D(n, T,N) to be the set of t such that k = [t}r v satisfies (at least) one of
the following two conditions:

k; = k; forsomei#j (2.261)
ki € {1,N} for some i. (2.262)

Consider C, € Confg(A,Al) with branchings v; < ... < vy, of degrees by,...,b,,
respectively, and t € Simplex(C,,T) N D(n,T,N). We define appry(Ce, T, t) €
Conf(A, N, A,) as follows: :

appry (Cy, T, t) has a bi-triangle from (pin(vy), ki — 1) to (pin(v;), k). For ¢ €
By, (pin(vy)) there is an h-chain (r-chain) going upwards from (q, k; — 1) if u;(g) = 0
(ui(g) = 1), and, if ¢ # pin(v;) and di(¢g) = 0 (di(¢) = 1) an h-chain (r-chain)
going downwards from (g, k; — 1). There is an a-r-chain (possibly of length 0) going
downwards from (pin(vy), k;)-

Forg e A\ K(Cg) the configuration appry(Cy, T, t) has a long h-chain (long r-chain)
at site q if long(q) = 0 (long(g) = 1). ‘

We define for t € Simplex(C,, T):

LT, appr 5 (Cy.T't) ~ .
x3 0 if t € Simplex(C,,T) N D(n,T,N)

T def{ (Zyme @l £T if t e Simplex(C,, T) \ D(n, T, N)
(2.263)

where we define for C; without triangles .
Simplex(Cy, T)\ D(0,T,N) ¥ Simplex(C,, T) (2.264)
and Simplex(C,,T) N D(0,T,N) & ¢. (2.265)
Recall that'L’ denotes an operator with effective parameters (cf. Definition 2.204).

Remark 2.3.6 1. Ast¢ 5(n, T, N), the time-coordinates of two different tri-
angles in appry(Cy, T, t) are not the same and no time-coordinate of a triangle
is equal to 1 or N, i.e. k; # k; for i # j and k; & {1, N} for all 4.

2. We have the relation
T -
t € D(n,T, N) = [t]T,N € D(n,T, N). (2.266)

Definition 2.3.16 For ¢,T > 0, N > max{2,A\T} and 0 # A, C A C F we
denote by Confg(A, N, Ay, T, c) the set of all C € Conf(A, N, A;) with the following

property: If C has triangles at (g1, k1), - . ., (¢n, k) with &y < ... < k, (This is meant
to include the case n = 0.) then

. cN
0$ig'1£n+1 ks = kj| < T +1, (2.267)

where we have set kg = 0 and k,; = N.
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We remark that Confy(A, N, Ay, T, ¢) has no configurations without triangles if ¢ <
T.

Lemma 2.3.2 For all T, Ay, A we have

lim Z |7, © Eg”L(u,,,uAl) =0. (2.268)

c—0

N—oo  CeConfo(A,N,A1,T\c)

Proof The proof is fairly similar to that of Proposition 2.3.3 and will therefore
only be sketched. We fix an N and 0 < N < % + 1. First we consider a
C € Conf(A, N, A;) with triangles at (k1,q1),...,(kn,¢n) with k; < ... < k, and
such that there are indices 1 <4 < j < n with k; — k; = Ny. Let the corresponding
triangles be called a and b. We note that there are n(n — 1) < 2" pairs of trian-
gles. (The factor 2" will be compensated for by €” in the usual way, provided e is
sufficiently small.) The labelled tree-graph of C together with the lengths of the a-r-
chains corresponding to the n — 1 triangles different from b determine the positions
of all triangles and the lengths of all a-r-chains. So if we do the estimates like in the
proof of Proposition 2.3.3 we get in the formulae analogous to (2.215) and (2.219)
one factor Y, 7. less (because there is no summation over possible lengths ! of the
a-r-chain corresponding to triangle b as there is a unique choice for that.) That
gives rise to an additional (i.e. not cancelled) factor 4 that we can extract from
the sum. So the restriction of the sum on the lhs of (2.268) to such configurations
that have a pair of tnangles whose time-coordinates have difference N, is bounded
from above by c14 I And so the sum, restricted to configurations that have a pair
of triangles whose t1me-coord1nates have difference at most ¥ + 1, is bounded from
above by (& + 2)c4 4T and this tends to zero as ¢ — 0 and N — oco. We can
similarly estimate the sum restricted to configurations that have a triangle with
time-coordinate in {1, ..., [E}! +1JU{N —[$¥ +1]...,N}, and so (2.268) follows.
(Here we have used the notation [cN] for the biggest number not greater than cN.)

0

Proposition 2.3.5 For C, € Confg(A, A,) the map

Simplex(C,, T) — L(Ha, Ha,) (2.260)
t —> 7!',\1 o E(T:;’t

is the pointwise limit of the step-functions t — ma, 0 LT ¢ n (as N — 00). We

further have
i

Y. maoL (2.270)
Cy€Conf(A,A;)
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= Jim Z / dtmp, 0 LT ¢ - (2.271)
Cy€Confg(A,A) ¥ SimPplex(Cy,T)

— : AT
= lim > moLf (2.272)
CeConf(A,N,A1)

For the proof of Proposition 2.3.5 we need the following Lemma.

Lemma 2.3.3 Let Ay,..., A, Ay, .. A, be operators on the same Banach space,

0<é<1 anday,...,a, positive numbers such that:
l4ill € a; foralll<i<n (2.273)
and ||4;i— A < &a; (2.274)
Then
|Aro...0An—Ajo...0 A || <S(1+8)ay-..." an. (2.275)

Proof From (2.274) we get

4]l < (1+6°) . (2.276)

So we get via ‘telescope expansion’:

”Alo...oAn—filo...o)‘in” (2.277)

< ||Alo...OAn—filoA2o...oAn”+...
+||/Lo...ofin_loA,.——filo...o/inH

SEA+A+3)+...+1+H)"YHay ... a,

= (1+8)"-1)ay:... an

= i(:)ézkal-...'an

k=1

52 (:)5ka1-...-an
k=1

< 6(14+0)"ayr... an

IA

IN

and the lemma is proved.

Proof of Proposition 2.3.5 We first show that

Z /;implex(cg,'r) dt Ay © ’ng»t,N = Z TA © Lg (2.278)

Cg€Confg(A,A1) Y  ND@,T.N) ceConf(A,N,A)
\Confy(A,N,A1,T,0)
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For Cy € Confg(A, A;), say with exactly n triangles, we have a map

t= (tl, . .,tn) — k= (kl, . ..,kn) = [t]T,N (2279)

where the k; are as defined in Definition 2.3.16. This map is constant with value
(l1,...,1,) on the cube

T
Cube(T, N, ll,...,ln) = (N(_N-i‘ll - 1),71\;(—N+l1)} X... (2280)
T T
x (N(_N”" - 1),N(—N+z,,)] ,

i.e. the configuration appry(C,,T,t) € Conf(A,N,A;) is the same for all t €
Cube(T, N, li,...,1,). Iffurthert € D(n,T,N)then1 <k <k <...<k, < N-1
and appry (Cy, T, t) € Conf(A, N,A) \ Confy(A, N, A1, T,0). We also see that each
C € Conf(A, N,A)\Confy(A, N, Ay, T, 0) determines uniquely a Cy € Confg(A, N, A,)
and a Cube(T, N, ki, ..., k,) such that appry(C,, T, t) = C for all t in this cube. And
as

T = AT
/C‘ube(TN,h , )dt A © ﬁCg,t,N =Tp © ‘CaPPI'N(Cg,T,t)a (2281)

we conclude (2.278). Using (2.266), we get

r .,
Y /31 dtma oL en— D, T 0 LL llL(uamay)

C,€Confg(A,A) ¥ Simplex(Co,T) CEConf(A,N,A;)
E dt ||ma, o LT .
S Simplex(cg,T) “ Ay cﬂ,t,N”L(’H'\’H/\l) (2 282)
Cy€Confg(A,A1) ¥ nD(Ing(Cy)I. T, )
AT
+ Z ||7rA1 o Ec ”L(’HA)’HAI)'

CeConfo(A,N,A;,T,1)

Because of (2.250) and (2.268) the rhs of (2.282) tends to zero (as N — 00). So the
equality between (2.271) and (2.272) is proved.

Now we fix a ¢ > 0 and consider a labelled tree T on A ending in A;. For any
C, € Conf(A, A;) whose labelled tree is equal to 7 we have the estimate (2.251).
Recall that in the proof of Proposition 2.3.4 we concluded formula (2.249) from this
estimate (for every 7). For & > ¢! and t € Simplex(C,, T) \ D(|ng(C,)|, T, c) we
compare L ¢ with LT 4 v, usmg representations (2.204) and (2.243). We see that
these operators have the same structure because each k-branching (maximal h-strip,
maximal r-strip) in (C,,t) corresponds to a k-triangle (maximal h-chain, maximal
r-chain) in appry(C,, T,t). More precisely:
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1. Each operator A B, in (2.243) corresponds to an operator pB,; in (2.204),
and so to an operator A B, in the representation of »C?:;,t,N (cf. (2.263) and
note the cancellation £p = \.)

2. A maximal h-strip H in (C,T,t), say from (g,t;) to (g,t;), corresponds to a
maximal h-chain Hy in appry(Cy, T, t) from (g, k;) to (g, k;) where k; and k;
are as defined in Definition 2.3.15. This implies that

|t: — 3] |t — 351
——2LN-1< |k —k;| < ——= )

T N <| il < T N+1 (2.283)
If H does not end in(A\A;) x {T'} then it gives rise to a factor (1—exp(—A[t; —
t;]) in (2.243) and Hy gives rise to a factor (1 — (1 —3T)*=kil) in (2.204). We
compare these factors. Clearly we have

AT Jei—k;| .

Further, as |t; — t;| > ¢, we have that

1 — exp(—Alt; = t5]) > 1 — exp(—Ac), (2.285)
and so for
can®  sup  sup 1 —exp(=Alti = ¢]) = (1 = (1 = &L)lkhil)
N teSimplex(Cg,T) i#J 1 —exp(=A|t; = ;)
e (2.286)
we have
1\}1—1»20 CHN = 0. (2.287)

3. A maximal r-strip in (Cy, T, t), say from (g,t:) to (g,t;) with |t; — t;] > ¢
gives rise to an operator R,(|t; — t;|) = exp(—AJt; — t;|(id, — R,)). There
is a corresponding maximal r-chain in appry(C,, T,t) from (g, k;) to (g, k;),
where k; and k; are as in Definition 2.3.15, and satisfy the esimates (2.283).
It corresponds to an operator

) \T . lki~k;]
Ruvalls = ) = (idg = 74 ~ %)) 2.288)
We have, analogously to (2.284),
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dim Ry q(lki — k) = Ry(It: — 1) (2.289)

As |t; — t;] < T, we further have for our estimate (2.240) of ||R,(|t: — t;])]I:

exp(—(1 = n)Alt; — t;]) > exp(—=(1 —)AT), (2.290)

and for

def IR q(|%: = Kil) = Rq(|t: — ¢5])]]
CRN = su sup 2.291
BN = csimplencym 175 €XP(—(1 — MAJt; — 1)) (2:201)
\D(Cgq,T\c)

we have

131330 cr,N = 0. (2.292)

We have seen that certain maximal h-strips and r-strips in (C,T,t) give rise to
operators that only differ from the ones that arise from the corresponding maximal
h-lines and r-lines in appry(C,, T, t). We bound the number 7(C,) of such strips.
They are attached to a branching or they are long h- or r-strips in A;. (Recall that
every long h-strip ending at site ¢ € A\ A; and its corresponding long h-chain both
give rise to the same operator @Q,. The scalar factors are both 1 in that case. So

U(Cs) <2 mpx(3K)? + |A1| - K (2.203)
k=1

where ng ; and K are defined by the condition that C, has a labelled tree with these

parameters.
We can think of L7 , abstractly as

LE . =Aro...0An (2.294)

(For examplé if A; corresponds to a k-branching at ¢ then

A; = Mk Qjear(qy ids- If Ai corresponds to a maximal h.-chain at site ¢ and of
length |t; — t;| then A; = (1 — exp(=Alt; — t])) @, ®q"€/\\{q} id;.)

As we have seen my, o L‘Z.'g,t, ~ has the same structure as Ea,t and we can write

LF on=Ao.. 0dn (2.295)

Because of (2.286) and (2.292) we can apply Lemma 2.3.3 with an arbitrarily small
§ in (2.274), provided N is sufficiently large. This implies in particular that the
maps t — my, o ng,t, n» Testricted to Simplex(Cy, T') \ D(n, T, c) converge uniformly
to mp, © ‘ng,t'

106



We show for fixed ¢ > 0 that

: T T
I‘}}—I»n Z /Slmplex(Cg .T) dt ”WAI ° (ﬁcy’t - £cs’t'N) ”L(H“”HAL) =0. (2'296)
CyeConfg(A,AL) ¥ \D(Ing(Cg)i,T\c)

Using (2.251), Lemma 2.3.3 and (2.293), we get for every C, € Conf(A, A;)

Iy, 0 (£F, 4 ~ £F, o) 4l (2.207)

< 6(14 8)M)(cze)m! exp (—cg > kdnﬂ,k) chrchir

k=1

X H exp(—(1 — ) Mlength(R)) &(C,, T, t) l6ace,) llace,)-
R

The factor [J22, (1 + 8)**s.#** will be compensated for by exp (—co Xpey k%ng),
provided that c, is sufficiently large. So with the same argument that leads from
(2.251) to (2.255) we can estimate (2.297) by

S S o (€E = £F ) ol (2.298)
CgeConfg(A,Al) .

-~

[A1]
< e (&ch(1+6)+%cr exp(—(l—n))\T)+1§ez) l8]ls,

where lim._,ge; = 0.

As we take the limit (for N — oo) for fixed A; we do not have to estimate the term
in brackets (which could be easily done in the usual way). However we remark that
to get (2.298) we have assumed that e is sufficiently small (depending on ¥) and ¢,
large. We conclude

dt |, o (C5,¢ = L5 on) <csd (2299
Z Simplex(cg,T) A, Cot Cq.t,N ”L(’HA,’HAL) SO (2.299)
Cg€Confg(A,A1) ¥ \D(Ing(Co)l,T\c)

for every ¢ and with limy_,000 = 0.
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Using (2.266), we estimate

/ . dtllma, o (€5, — LT, w) Nzt un, (2.300)
Cy€Confg(A,A,) ¥ Simplex(Cy,T)

< Z /Slm lex(Cg,T) dt ”7!',\1 (‘C ‘CCg,t N) ”L(’HA,’HM) (2 301)
Cg€Confg(A,A1) * \D(Ing(C)I,Tse)

i T
+ E /Slmplex(c ,T) dt ”WAI ° £ngt”L(uA,7'lA1) (2302)
Cy€Confg(A,A1) © ND(Ing(Cy)l Te) .
T
+ Z /Slmplex(c ,T) d ”ﬂAl ° ECg,t,N”L(HA,HAI)' (2303)

Cy€Confg(A,A1) ¥ ND(ing(Cg)l\T.e)

The first and second summand on the rhs tend to zero (as ¢ =& 0 and N — oo)
because of (2.299) and (2.250), respectively. The third summand is bounded from

above by 3 cc contoaNALT0) 1T © LZ]| which also tends to zero because of (2.268).
0

The following proposition is a corollary of Proposition 2.3.5.

Propos1tlon 2.3.6 ﬁs A def A © ES A 18 the transfer operator, restricted to Hy, for
KT sAs b€

[ au(®Entn) 6n = / dun L5 p6n (2.304)
M M
For all ¢ € CO((S")) and ¢ € Ha.

Proof We know from Proposition 2.3.1 that £ sa,n 18 the transfer operator for
K7, n- Taking the limit (as N — o0) in (2.182) and using the equality of (2.270)
and (2. 272), we conclude (2.304).

a

For the representation of the transfer ope’rator for the infinite dimensional system
we need the following definition.

Definition 2.3.17 Let Aj,A; C A € F\ {0} and C; € Confg(A, A;). We say that
Cg lies in A, if A(C,) UA; C As.

Let both C, € Confg(A,A;) and C, € Confg(A A1) lie in ANA. If further Cy and
C have the same gum tree with the same linear order and if they have the same r-
strips then we say that C; is equivalent to C Then we have defined an equivalence
relation and further, for C, equivalent to é;, we have:
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Simplex(C,, T) = Simplex(gg,T) for all T € (0, 00], (2.305)

A, © ng,t OpA = M, © [.gv;,t omy for all t € Simplex(C,y, T') (2.306)

and A 0 LT omA = Tp 0 E‘% o Tg. (2.307)

(2.306) and (2.307) say that the operators in L(Hs,H,,) are the same. We define
by Conf(Z4, A;) the set of equivalence classes. Because of (2.305) and (2.306) the
simplices and operators for each equivalent class can be defined as being equal to
the corresponding object for any representative.

We will write mz, 0 LZ, ; instead of 7z, 0L, om and mp, 0 LT instead of ma, 0 LF, omp
for the operators from Hyg to Ha,.

Theorem 2.3.1 1. For sufficiently small ¢, large ¢, and every T € (0, 0] we
can define an operator LE from Hy to Hz by

moL§e= Y,  myoLL (2.308)

Cy€Confy(Z4,A;)

There is a Ty > 0 such that for T > Ty the operator LL maps Hy into Hy.

LY is the transfer operator, restricted to HY’, for the kernel KT, i.e.

[ anEwys= [ duycts (2.309)
M M

for all € C°(M) and ¢ € HY'.

2. The family (L5)r>0 in L(Hy) converges exponentially fast to LY :

1£5 = L5 Legmz) < cse™T (2.310)

for some positive constants cig, 17. For sufficiently large T (2.810) holds also
in the norm of L(’H,,). So among the probability measures corresponding to
elements in Hy there is a unique KX -invariant probability measure v* on M ,
say corresponding to v € Hy. The operator LY is a projection onto spanv:

L34 = (@) v. (2.311)

Proof The infinite sum on the rhs of (2.308) converges as the prove of estimate
(2.249) applies literally to the case A = Z% Next we want to show that 74, o L3
is the limit of mp, o LT, (as A — Z%). The difference between these two operators
is due to configurations Cy in Confg(A,A;) or in Confg(Z% A;) with A(Cy) ¢ A.
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For these we can split in estimate (2.251) the factor that arises from the decay of
interaction in the following way (which is the same as the splitting (1.110) in [12]).

exp (—cg Z k“nﬂ,k) < exp (—59 Z kd"ﬂ,k) exp(—¢ dist(A;, A°)) (2.312)

k=1 k=1

with a £ > 0 such that ¢, = ¢, —& > 0. (Note that we can choose £ so small that the
estimates, formerly done with ¢, work with ¢, instead as well.) So we can estimate

illim, o L = may © Lzt ta, (2313)
<2 > Mma oL o)
¢geConf(zd,Ay),
A(Cg)ZA

< c5 exp(—£€dist(Ar, A)).

Next we show (2.309) for the special case that 1) depends only on the A;-coordinates,
using (2.304):

/M du(z) (KT)(2) 6(2) (2.314)

= lim | du(zr)(K5A%)(ZA)bA(2A)
A-Z8 [

= lim dpt(za) ¥(za) (L5 294)(22)

A-Z4 J(s1)A

= lim du™ (za) ¥(za,) (ma, © LTPa)(z4,)
A-Zd Jgnyay

= /d,u(z)l/)(Z) (L59X2)-
M

We conclude (2.309) for general ¢ € C°(M) by approximating it by ¢, (cf. (2.161)),
depending only on the A;-coordinates and using continuity wrt 1 of both sides of
(2.309). So 1. is proved.

Next we show (2.310). We note that for A; =  the lhs (2.315) in the following
estimate is equal to zero as both transfer operators preserve the Lebesgue integral
(1 is a ‘left eigenvector’ with eigenvalue 1.) So we only have to consider the case

|Ar| > 1.

GMl||7p, 0 LF — ma, © LE | L(ra,40) (2:315)
< gl Z llma, © £& = 7y © LE, L3540,
Cy€Conf(Z4,A)
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< MI|Qy, omy, — (1 - T)MIQ, o Taallees 2ay) (2:316)
+OML N i, 0 £F nie puay) (2:317)

cgeConfg (A,Ar),
cgreaches the top

9lA1] T
+9 dt ”7|'A1 ° [’C bt T TA 0 ['Cg,t”L(’Ho,HAl)(z'C;IS)
cgeConfg(A,Ay), Simplex(C;,%)
cgdoes not
reach the top,
Ing(Cg)I21
glAL] Z oo
+0 Simplex(cg,o0) dt [|ma, o EC,,t”L(’H.,,'HAl) (2.319)
cgeConfg(zdAy), \Simplex(cy, %)
cgdoes not reach the top,
Ing(Cg)i21
9lA1l E : T
+9 Simplex(cy,T) dt [|m, o Le, ,t”L(ua,uAl) (2.320)
cgeConfg(A,Ay), \Simplex(cg, %)
cgdoes not reach the top,
Ing(Cg)l21

We have distinguished between the following classes of gum configurations. The
first summand (2.316) corresponds to the operator ms, o L — A, © Ec where C,
is the gum configuration that has on ly long h-strips (no branchmgs or r-stnps)
The second summand (2.317) takes all Cy into account that reach the top. So all
specified configurations (C,, T, t) have an r-strip ending at time —T. All (C,, 0o, t)
have an infinitely long r-strip and so the corresponding operator is zero (cf. Remark
2.3.5.3) and does not appear in (2.317). The last three summands, (2.318), (2.319)
and (2.320), correspond to Cy that do not reach the top and do not consist only
of h-strips. That implies that it has at least one branching and the corresponding
domains of integration, Simplex(C,, 00) and Simplex(Cy, T'), are not degenerated to
a point. We divide them into Simplex(Cy, %) and the particular complements. (The
reason for this will become clear when we do the estimates.) In (2.318) we integrate
the norm of the operator difference m,, o [Zc —~ A, © Lc over Slmplex(Cg, ’5) and in
(2.319) and (2.320) we integrate the norms of the two operators separately over the
particular complement sets.

Now we estimate each summand: The first summand (2.316) is estimated by

[Ai]

FMIMI() _ (1 — e < (Fey) '“"E('Al) DI (2.321)

( (1 +e—2AT))|A1|e—§,\T
[

L
2 X

<
<

where the last inequality holds if 9 is chosen sufficiently small.
For estimating the last summand (2.320) we note that for t € Simplex(C,,T) \
Simplex(Cy, ) the sum of the lengths of all r-strips of (Cy, T, t) is at least 2. (This
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is because (Cy, T, t) has a branching, say at time ¢; with |t;| > Z and there must be
a sequence of apex-r-strips whose lengths add up to at least %o 5.) Using the remark
at the end of Definition 2.3.14, we see that

~ 1-9T
A T
19] 1l E /simplex(cg'T) dt “7rA1 o ['cg,t”L(Ho,’HA) < C19 €Xp (— _T E) i
Cg€Confg(A,A1) ¥ \Simplex(cg, %)

(2.322)
Similarly we can estimate the second (2.317) and the fourth (2.319) summand:

Ml N w0 £F, g, (2.323)

cgeConfy(A,Ap),
cgreaches the top

< eg9 €Xp (——-l——g-ﬂ/\T) .

3IA
19' ! Z Simplex(Cg,00) dt ||1rA1 ° Eg:'t”L(%"’%M) (2324)
Cg€Confg(Z4,A1) ' \Simplex(cg, )

<cn exp( l—n)\T>

For estimating the third summand (2.318) we use a similar idea as for the proof
of Proposition 2.3.5. For C, € Confg(Z% A;) and t € Simplex(Cy, L) the difference
between the operators ma, © Ec t and my, © Lc + 1s only due to h-strips going to the
top or long h-strips in A; as we can see from representation (2.243) for £, (and
Ec + and also from Remark 2.3.5.1. ) So they differ only in the constants c(Cg, 00, t)
and ¢(Cq, T, t). More precisely, an h-strip in C, that goes to the top and therefore
corresponds to an h-strip in (Cy, 7' t), say from (q, t;) to (¢, —T), and so gives rise to
a factor 1 — exp(—A(T — |t;])) (note that |t;} < T) whilst the corresponding h-strip
in (C4,00,t) ends at time —oo and gives rise to a factor 1. Similarly a long h-strip
of Cg in A, gives rise to factors 1 — exp(—AT) and 1, respectively. In both cases the
difference between the scalar factors (for each h-strip to the top) is bounded by

A
6% = exp (—5 T) : (2.325)
The number of h-strips to the top is bounded by Y";2 | 3%ns xk? and the number of

long h-strips at sites in A; by |A1| — K (where ngy and K are the £arameters of the
labelled tree of C,.) . N
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So we estimate

llmas © LZ ellLirg,pa,) (2.326)
o0 00
< 4 H(l + 8)3 ek (1 4 )MI=K (¢re,)imol ey (—-cy Z kdnﬂ’k> e
k=1 k=1

X H exp(—(1 — n)Alength(R)) &(C,, T, t) l|Pacey) llace,)-
R

The factors (14 8)3“"s.4¥* are compensated for by exp(—cgk®ng ) ‘in the usual way’.
If € is sufficiently small and ¢, large we can estimate

3IA ~ r
9 1| Z Limplex(cg,%) dt ”7TA1 o L?;j,t 7rA1 o ch,t”L('Ha,'HAl) (2.327)

cgeConfyg(A,Ay),
cgdoes not reach the top,
Ing(Cgll21

_1
< cpe#T,

From (2.321), (2.323), (2.327), (2.324), and (2.322) we conclude (2.310) with ¢;7 =
-1%'1/\ and c; sufficiently large.
For any ¢ € Hy and any A € F we have

T 0 LT = Yo oL (2.328)

cgeConfyg(z9,A,),
cgdoes not reach the top

- S (ao£8hae) u(e)

¢geConfy(zd,A;),
cgdoes not reach the top
The sum in (2.328) is a priori over all C; € Confy(Z% A;) but, as we have seen
before, if C, reaches the top the corresponding operator my, o ng is zero. If C, does
not reach the top there are only h-strips going to the top (—oo) and m, o L is a
projection onto span(hga). v
def 00 3 j—
We set vy = mp, o LEhga and this defines v = (y5)per. Note that the transfer
operator L3 preserves the Lebesgue-integral and so 1 = 1, i.e. v corresponds to a
probability measure.
O

2.4 Decay of Correlations

In the following theorem which is completely analogous to Theorem 1.7.1 in [12], we
state the mixing properties for the invariant probability measure v* in terms of the
weighted norms.
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Theorem 2.4.1 For sufficiently small 9, 9, € and big c; there is a & (0,1) and
positive constants g3, 23, Coa GNd o5 such that for all finite disjoint A, A, C 79
and ¢ € Hy, the following holds:

lvawns = YAV llay0n, cpdMioMal clistlArAa) (2.329)

I, (v) = v(®)oarllag < g™l isthuha) (g 330,
Ima, 0 LE(Ww) —v(®)omlian < cagg eyl cditihida) (g 537y
% exp (—co5T)

<
<

for every T > 0.

Proof For a gum configuration Cy we define in analogy to (1.109) in [12]

b(C,) = > " kngi(Cy). (2.332)
k=1

In the following we split gum configurations C; € Conf(Z¢, A, U A,) with b(C,) <
3dist(A1, Ag) into C; = C; U CY with €7 € Conf(Z4, Ay), C? € Conf(Z4,A,;) and
A(C;) NA(CE) = 0.

We write, using (2.311) and the notation of (2.173):

— T T
VAjuA, = § : (7!‘,\1 ° ‘C’Cg hZ") (7”\2 ° Ecghzd)
c,=c§uc§eConfg(zd,A1uA2),
b(Cg)< hdist(A1,Az)

T
+ Z 7rAluA2 o] ch hzd
cgeConfg(zd,A UAy),
b(Cg)>$dist(Ay,Ap)

In estimating the norm of the second summand in (2.333) we can take out from the
estimate for ||ms, o LZhz a factor

1 .. .
exp ("5 3 dist(Ay, Az)) = glitAAz) (2.333)
like in (2.312) such that we get

I Y maun 0 LT | S epp il gdintAnha), (2.334)

cgeConfg(zd,A1UA2),
b(Cg)> 4 dist(Ar,Ap)

We write the first summand in (2.333) as

114



T T :
E : (ma, © Lc; hza)(ma, © ﬁcghzd) (2.335)
cg=clucZeConfg(z4,A,UA7),
b(Cg)< Adist(Ag,Az)
— T T
= VA UA, — Z (7!’,\1 o Lcslv hza) (7TA2 o ﬁcghzd)
cg=chucZeConfg(zd,A;UAy),

b(Cg)> % dist(A} ,A2)

and estimate

I > (7, © Lyhaa) (Th, © Lizhga)|| < cp 9h1Ohel cisthiha),

eg=clucteConfg(zd,A;UAy),
b(Cg)> 4 dist(Ay,Az)

(2.336)
From (2.334), (2.335) and (2.336) we conclude (2.329). The proof of (2.330), using

(2.329), is the same as in [12].
To prove (2.331) we set ¢ = v — v(¥)v. So

ma, 0 L5G = M, 0 LS (Yv) — v(Y)wa, (2.337)

and in particular

Lg¢=0. (2.338)
We estimate (2.337), analogously to (1.129) in [12], using the finer estimate

lpaeyllace (2.339)
< 623'19_|A2| ”¢,”Azﬁ-‘ll\r(c)l-Ezo=x(3k)d"ﬁ,k,§di8t(/\1,Az)—ZZ":l kng x '

that we get from (2.330). For each C; we get a ‘good’ factor sdistA1.A2) that we
can take out of the sum (over gum configurations), and a ‘bad’ factor k= Thz1kns.,
The latter is compensated for in the usual way by the factor exp(—c, 52, k%ng ),
provided that c, is sufficiently large.

Using (2.338) and (2.339), we get with the same argument as for the proof of (2.310):

@'A‘IHMI o L34|| < 02819_|A2'H1/1|| rlishnha) exp(—cysT) (2.340)

and (2.331) follows.
O

We can state the mixing properties of v* wrt spatio-temporal shifts in terms of
correlation functions for observables 11,1, € C°(M) like in Theorem 1.2.2 of [12].
The proof of the following theorem, using Theorem 2.4.1, is analogous to the one of
Theorem 1.2.2 in [12]. For the definition of the spatial shift 7 and its size m(r) (or
number of its single steps) we refer to the definition before Theorem 1.2.2 in [12].
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Theorem 2.4.2 For sufficiently small ¥, € and large c, there is a k € (0,1) such

that for all nonempty Ay, Az € F the following holds with the constant c(Ay, Az, &) def
k~ max{llp=qll:p€A19€A2}) gnd some positive constants cyg, C39:

1. If by € C((SYYM) and 4 € C((SY)N2) then

forsn- (L) ([os)] o
< 0l o [ o A0A9).
2. If € C((SHYM) and ¢, € HNC((S*)A?) then
‘/ dv* KX (1 o 7)1 — (/ av* ¥, 07') (/ dv* ¢v2) (2.342)
M M M

< o(Ar, Ag, )Ml gy [l I, |4, £™7) exp(—cT).

3. Ifg, f € C(M) then

max{ml(irTT}aoo /M dv* KX(y07) ¢ = (/M dv* wl) (/M dv* 1/)2> . (2.343)

O
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