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Summary 

In Chapter One we consider analytically coupled circle maps (uniformly expand­
ing and analytic) on the Zd-Iattice with exponentially decaying interaction. We 
introduce Banach spaces for the infinite-dimensional system that include measures 
whose finite-dimensional marginals have analytic, exponentially bounded densities. 
Using residue calculus and 'cluster expansion'-like techniques we define transfer op­
erators on these Banach spaces. We get a unique (in the considered Banach spaces) 
probability measure that exhibits exponential decay of correlations. 
In Chapter Two we consider on M = (81 )Zd a family of continuous local updat­
ings, of finite range type or Lipschitz-continuous in all coordinates with summable 
Lipschitz-constants. We show that the infinite-dimensional dynamical system with 
independent identically Poisson-distributed times for the individual updatings is 
well-defined. In the setting of analytically coupled uniformly expanding, analytic 
circle maps with weak, exponentially decaying interaction, we define transfer op­
erators for the infinite-dimensional system, acting on Banch-spaces that include 
measures whose finite-dimensional marginals have analytic, exponentially bounded 
densities. We prove existence and uniqueness (in the considered Banach space) of a" 
probability measure and its exponential decay of correlations. 
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Chapter 1 

Transfer Operators for Coupled 
Analytic Maps 

1.0 Introduction 

Coupled map lattices were introduced by K. Kaneko (cr. [20] for a review) as systems 
that are mixing wrt. spatio-temporal shifts. L.A. Bunimovich and Ya.G. Sinai proved 
in [7] (cf. also the remarks on that in [4]) the existence of an invariant measure 
and its exponential decay of correlations for a one-dimensional lattice of weakly 
coupled maps by constructing a Markov partition and relating the system to a two­
dimensional spin system. 
JBricmont and A. Kupiainen extend this result in [3] and [4, 5] to coupled circle 
maps over the Zd-Iattice with analytic and Holder-continuous weak interaction, re­
spectively. They use a 'polymer' or 'cluster'-expansion for the Perron-Frobenius 
operator for the finite-dimensional subsystems over A C Zd and write the nth iter­
ate of this operator applied to the constant function 1 in terms of potentials for a 
d + I-dimensional spin system. Taking the limit as n ~ 00 and A ~ Zd they get 
existence and uniqueness (among measures with certain properties) of the invariant 
probability measure and exponential decay of correlations. 
V. Baladi, M. Degli Esposti, S. Isola, E. Jarvenpaa and A. Kupiainen define in [1], 
for infinite-dimensional systems over the Zd lattice, transfer operators on a Frechet 
space, and, for d = 1, on a Banach space; they study the spectral properties of these 
operators, viewing the coupled operator as a perturbation of the uncoupled one in 
the Banach case. 
In [21] G. Keller and M. Kiinzle consider periodic or infinite one-dimensional lattices 
of weakly coupled maps of the unit interval. In particular they define transfer 
operators on the space BV of measures whose finite-dimensional marginals have 
densities of bounded variation and prove the existence of an invariant probability 
measure. For the infinite-dimensional system they further show that for a small 
perturbation of the uncoupled map any invariant measure in BV is close (in a 
specified sense) to the one they found. 
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Coupled map lattices with multi-dimensional local systems of hyperbolic type have 
been studied by Ya.B. Pesin and Ya.G. Sinai [27], M. Jiang [16, 17], M. Jiang and 
A. Mazel [18], M. Jiang and Ya.B. Pesin [19] and D.L. Volevich [31, 32]. 
Detailed surveys on coupled map lattices can be found in [6], [19] and [4]. 

In the above papers (except [1], [21]) the analysis has been done only for Banach 
spaces defined for finite subsets A of the lattice, and the (weak) limit of the invariant 
measure for A -+ Zd was taken afterwards. 
Here we present a new point of view in which a natural Banach space and transfer 
operators are defined for the infinite lattice of weakly coupled analytic maps (Section 
1.1). The space contains consistent families of analytic densities over finite subsets 
of Zd. We take a weighted sup-norm so that the sup-norms of the densities for the 
sub-systems over finitely many (say N) lattice points is bounded exponentially in N 
(Section 1.2). We identify an ample subset of this space with a set of rea measures 
(Section 1.4) that contains the unique invariant probability density (Section 1.2). 
We derive exponential decay of correlations for this measure and a certain class of 
observables from (the proof of) the spectral properties of our transfer operators. 
(Sections 1.2, 1.7). The operator for the coupled system and also the invariant 
measure are (for a small interaction) in fact perturbations of their counterparts in 
the uncoupled case. So the mixing properties are inherited from the single site 
systems. Section 1.8 contains the proofs. 
Our approach provides a natural setting for an analysis of the full Zd Perron­
Frobenius operator in terms of cluster expansions .over finite subsets of the lat­
tice. Using residue calculus we introduce an integral representation for the Perron­
Frobenius operator for finite-dimensional sub-systems (Section 1.3) which yields a 
uniform control over the perturbation and also gives rise to an easy approach to 
stochastic perturbation (cf. [26]) which however we do not consider here. 
Our 'cluster expansion' combinatorics (Section 1.5) uses ideas from the work of C. 
Maes A. Van Moffaert [26] who have introduced a simplified (compared to the one 
in [3]) polymer expansion. Apart from the analysis of the one-dimensional operator, 
which is fairly standard and for which we refer to e.g. [3], the paper should be 
self-contained. 

1.1 General Setting 

We consider coupled map lattices in the following setting: The state space is M = 
(SI)Zd where SI = {z Eel Izl = I} is the unit circle in the complex plane and 
dE N. 
The map S : M -+ M is the composition S = F 0 Tt of a coupling map Tt depend­
ing on a (small) non-negative parameter € and another parameter for the decay of 
interaction (cf. (1.1)) with an (uncoupled) map F that acts on each component of 
M separately. We make the following assumptions: 
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Assumption I F(z) = (fP(ZP))PEZd where JP : SI -+ SI are real analytic and 
expanding (Le. J; ~ Ao > 1) maps that extend for some 151 holomorphically to the 

interior of an annulus A01 def {z Eel -151 ~ In Izl ~ t5d and the family of Perron­
Frobenius operators C/p for the single site systems satisfies uniformly a condition 
specified in Section (1.5.1) below (1.31). (We need some more definitions to specify 
these conditions. But note that they are in particular satisfied if all JP are the same.) 

We write Tt: : M -+ M asTt:(z) = (T;(z))PEzd and T;(z) = zpexp[27ri€9p(Z)] with 
9p(Z) = E~l 9p,k(Z). The function 9p,k is real valued on (Sl)Zd and depends only on 

those Zq with lip - qll ~ k (neighbours of distance at most k) where IIpII def Et=l Ipd. 
We write Bk(p) = {q E Zd I lip - qll ~ k} and also denote by 9p,k the function from 
the finite-dimensional torus (SI )BJc(p) to R 
We assume the following for the functions 9p,k: 

Assumption II For all p E Zd and k ~ 1 each map 9p,k extends to a holomorphic 
map 9p,k : AZJc(p) -+ C and its sup-norm (of modulus) is exponentially bounded by 

(1.1) 

with Cl > 0 and C2 bigger than a certain constant specified in (1.100). 

The parameter Cl is actually redundant as it is multiplied by E in the definition of 
T;. We also have exp( -C2kd) ~ exp( -e) exp( -c2k.d) for c2 . C2 - e, e > 0, i.e. 
for any E we can make the interaction small only by taking C2 large. But once we 
have chosen C2 large enough to guarantee the convergence of the infinite sums in 
our analysis we can consider perturbations of the uncoupled map depending on the 
parameter E only. 
With the metric 

d-y(x, y) def sup ,I/pll IIxp - ypII (1.2) 
PEZd 

for 0 < , < 1 (M, d-y) is a compact metric space. Its topology is the product 
topology on (SI )Zd. The Borel a-algebra B on M is the same as the product 0'­

algebra. F and Tt: are continuous and measurable. Let C(M) denote the space of 
real-valued continuous functions on (M, d-y) with the sup-norm and f.l the Lebesgue 
(product) measure on M. 
For Al ~ A2 ~ Zd, with Al finite and an integrable function 1/J on M depending 
only on the A2-coordinates, we define the projection 
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1.2 Main Results 

For finite A C Zd let H(At) be the space of continuous functions on the closed 
polyannulus At that are holomorphic on its interior and write 11 • IIA for the sup­
norm (of modulus) on H(A~). Let F be the set of all finite subsets (including 0) 
of Zd. We denote by 1l the vectorspace of all consistent families ifJ = (ifJ".)AEF of 
functions ifJA E H(A~). Consistency means 7rAl ifJAa = ifJAl for Al ~ A2 E F. We 

write J-L( ifJ) ~ ifJ0' 
We want to define a norm on a (sufficiently large) subspace of 1l that should at 
least contain 'product densities' like h = (hAhEF with hA(Z) = TIpEA hp (zp) , where 

hp E H(AJp}) is the invariant probability density for the single system over {p} (cf. 
Section 1.5.1). 
Because of (1.32) the sup-norm IIhA1IIAl does not grow faster than exponentially in 
IAII. Therefore we take a weighted sup-norm. For 0 < tJ < 1 we define 

(1.4) 

and set 1l-o def {ifJ E 1llllifJlI-o < oo}. Then (1l-o, 11 ·11-0) is a Banach space. In fact, 
if (ifJn)nEN is a Cauchy sequence in (1l-o, 11·11-0) then for each A E F the sequence 

(ifJ~DnEN is Cauchy in the Banach space (H(A~), II'"A~) and so converges to ifJA' 
Consistency of (ifJA)AEF follows from taking the limit (as n -+ 00) of 7rAlifJAa = ifJAl 
using the continuity of 7rAl for any Al ~ A2 E F. Analogously we define for A E F 
the weighted norm on spaces 1lA,-o of consistent sub-families (ifJAJAl~A: 

(1.5) 

We get the same (topological) vector space as (H(A~), II·IIA), but the constants for 
the estimates of the norms are unbounded as IAI increases. . 
For given Al ~ A2 E F and N E N we have a map, 

7rAl 0 £~AaoTAa •• 07rAa : (1l-o, 11· 11-0) -+ (1lAl,-o, 11 . !lAl,-o) , (1.6) 

where C~AaoTAa •• is the Perron-Frobenius operator for the finite-dimensional system 
over A2 (cf. Section 1.3) with fixed boundary conditions (not included in the nota­
tion). The following definition of transfer operators for the infinite system does not 
depend on the choice of the boundary conditions. 

Theorem 1.2.1 For tJ, f sufficiently small, C2, No sufficiently big and any Al E F: 

1. The limit 
(1.7) 
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E L ((tlD' 11 . liD)' (tl'll,DN' 11 • IIAI,DN)) exists for suitably chosen 0 < '!91 ~ ... ~ 
'!9 No = '!9 No+! = ... = '!9 and the family of these operators is uniformly (in AI) 

bounded. This defines operators r/:'oT~ 

E L ((tlD' 11 . liD)' (tlDN' 11 . IIDN)) by (.c!J.oT<if» Al def 'lrAI 0 C!J.oT<if>· 

In particular for N ~ No we have C!J.oT< E L (tlD' II . liD)' 
In the case of finite-range interaction we can define a linear map CFoT< on tl 
in the same way, i.e. if r is the range of interaction we set for any Al E F 

(1.8) 

2. There is an F 0 Tt. -invariant, non-negative probability measure v*. It is unique 
in the set of non-negative probability measures whose marginal densities can 
be identified with a v = (VAJAIEF E llD. 

In L(tlD' 11· liD) the sequence (C!J.oT')N>N, converges exponentially _ 0 

fast: 

IIC!J.oT< - J.£(')v*IIL«ll",II"''')) ~ C3fjN 

for some C3 > 0 and 0 < fj < 1. 

(1.9) 

Remark 1) The relation between measures and elements of tl is explained in Section 
1.4, in particular in (1.23). 
2) A formula for v is given in (1.59). 

For the invariant measure v we have exponential decay of correlations for spatio­
temporal shifts on the system: 
Let (el,"" ed) be a linearly-independent system of unit vectors in Zd. We define 
translations 'Tei(p) def p+ei for pE Zd and ('Tei(z))p def ZTe.(P) for Z E M. 
In the following theorem we denote by 'T (acting on M fro~ the right) compositions 
'T = 'TI 0 ••. 0 'Tm(T) and by IJ a composition of spatio-temporal shifts (on M): IJ = 
IJI 0 ... 0 IJm(<T)+n(<T) with IJi E {S, 'Tell"" 'Ted }. We denote by n(IJ) the number of 
factors S and by m(IJ) the number of spatial translations in this product. For a 
translation-invariant system, i.e. fp = f and gp(z) = gTe~l(p)('Tei (z)) for all p E Zd 
and i = 1, ... , d, the time-shift S commutes with the translations. 

Theorem 1.2.2 For '!9,€ as in Theorem 1.2.1 and C2 sufficientlu)arge there is a 
'" E (0,1) such that/or all nonempty AI, A2 E F the following holds with the constant 
C(AI' A 2 , "') def ",- max{lIp-Q":PEAI,QE A2}): 
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1. If g E C((SI)Al) and f E C((SI)A2) then 

IfMdv* gf - (fM dv* g) (fM dv* f)1 ~ c4'!9-IA11-IA21I1glloollfllooKdist(Al,A2), 

where dist(A1, A2) def min{llp - qll : pEAl, q E A2}. 

2. If g E C((SI)Al) and f E 11. nC((SI)A2) then 

IL dv* gOT 0 snf - (L dv* gOT) (fM dv* f) 1 (1.10) 

~ C(AI' A2, K)c~AlI+IA211IgllooIlJIIA2Km(r)ijn 

with suitable Cs and ij as in Theorem 1.2.1. 

3. If the system is translation-invariant and g, f are as in (2. ), then 

IL dv*goaf- (L dv*g) (L dv* f)1 (1.11) 

< C(Ab A2 , K)c~Ad+IA211IglloollfIIA2Km(q)ijn(q). 

4. If g, f E C(M) then 

lim I r dv* gOT 0 sn f - (r dv* gOT) (r dv* f) I = O. 
max{m(r),n}-+oo J M J M J M 

(1.12) 

5. If the system is translation-invariant and g, f E C(M) then 

max{m(!~~(q)}-+oo L dv* g 0 a f = (L dv* g) (L dv* f) . (1.13) 

Remarks: 1) Statement (5.) means that for a translation-invariant system v is 
mixing wrt. spatio-temporal shifts. According to (3.), the decay of correlations for 
observables g and h as specified in (2.) is exponentially fast. 
2) The proof of Theorem 1.2.2 shows that the statements hold for any K E (0,1) 
if f is sufficiently small and C2 sufficiently large (both depending on K). SO a small 
interaction leads to small sp~tial correlations. 
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1.3 Finite-Dimensional Systems 

We first consider 'finite-dimensional versions' of the maps F, Tt etc. Let ~ = 
(~P)PEZd E M be a fixed configuration. For a finite subset A C Zd we define 
TA,t : A~ --+ CA by 

(1.14) 

where ZA V ~AC E M agrees with ZA on its A-sites and with ~AC on its AC-sites. 
We do not specify ~A C in the notation of TA,t. The restriction of F to A~ is denoted 
by FA. 
With the following two propositions we ensure that for sufficiently small 8 and € 

(independent of A and ZAC), the image of A~ wrt. FA 0 TA,E contains a bigger 
polyannulus (cf. [3]) and the image of the boundary, FA 0 TA,E ([}A~), has positive 
distance from A~. 
For A C Zd we have the metric dA on (SI)A defined by 

(1.15) 

Proposition 1.3.1 For all C7 E (0,1), sufficiently small 8 and € (depending on 
C7), and arbitrary A E :F \ {0}, TA,E maps A~ biholomorphically onto its image 
and TA,t (A~) :::> A~6' i.e. the image contains a sufficiently thick polyannulus. Also 
TA,E ([}A~) n A~6 = 0, i. e. the image of the boundary (the same as the boundary of 
the image) does not intersect the smaller polyannulus. 

Proposition 1.3.2 Let the expanding maps fp : SI --+ SI satisfy Assumption I for 
some 81 and an expansion constant Ao and let 1 < A < Ao. Then for all sufficiently 
small 8 (0 < 8 < 80) and all finite A C Zd the map FA : A~ --+ CA is locally 
biholomorphic, A~6 C FA (A~), i.e. the image contains a thicker polyannulus, and 
furthermore all Z E A~6 have the same number of preimages. We also have A~6 n 
FA ([}A~) = 0. 

Combining Propositions 1.3.1 and 1.3.2 we have for fixed C7 (from Proposition 1.3.1) 
and (small) 8 

FA 0 TA,t (At) :::> A~>.6 (1.16) 

and 
(1.17) 

In particular, if we choose C7 > t there is a disc of radius (e7A - 1)8 > 0 around 
each point in A~ that is entirely contained in FA 0 TA,E (A~). We will need this for 
Cauchy estimates. From now on we keep 8 fixed. 
In the next proposition we establish a special representation of the Perron-Frobenius 
operator for our finite system with (SI)N = (SI)A, SE = FAoTA,E, 'I/J continuous (the 
proposition holds also for 'I/J E VX>(M)) and cP continuous on the closed polyannulus 
A~ and analytic in its interior. 
First we give the definition of the Perron-Frobenius operator (cr. for example [23]). 
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Definition 1.3.1 Let ,x be a measure on a metric space M (with the Borel 0"­

algebra) and let S : M -4 M be a measurable map which is non-singular wrt. ,x (Le. 
for all measurable A E M, ,x(A) = 0 implies ,x(S-l(A)) = 0). The Perron-Frobenius 
operator Cs, acting on Ll(M), is defined via the equation 

(1.18) 

that, for given </> E Ll(M), must hold for all 'I/J E LOO(M). The existence and unique­
ness of Cs</> E Ll (M) is equivalent by the Radon-Nikodym Theorem to the absolute 
continuity (wrt. ,x) of the measure associated to the functional 'I/J t-+ fM d,x 'I/J 0 S </> 

(the functional here is restricted to continuous functions 'I/J),. and this follows from 
the nonsingularity of S. 

Remark Setting 'I/J = 1 in (1.18) we get that Cs preserves the integral: 

L d,x Cs</> = L d,x </>. (1.19) 

The normalized Lebesgue measure p, on SI is given by dp,(z) = 2dz. 1 (this lifts wrt. 
the map t -4 eit to the normalized Lebesgue measure ;; on [0, 21r)T ~nd the product 
measure p,A on (SI)A is given by 

d A ( ) _ dz 1 def IT cf,zp 1 
P, z - ---

(21ri)IAI z 21ri zp . 
pEA 

(1.20) 

We also use dp,A(z) as a shorthand notation for the right-hand side of (1.20) for 
z E A~. 
The following representation of the Perron-Frobenius operator for finite-dimensional 
subsystems of our coupled map lattice by means of Cauchy kernels is essential for 
our analysis. Similar Cauchy kernels were used in [28]. 

Proposition 1.3.3 With FA and TA,f defined as above set Sf = FA 0 TA,f and let 
S; be the projection onto its p-th component. Then the Perron-Frobenius-Operator 
(for SE), acting on </> E ?-lA, can be written in the following way: 

CS<</>(W) = f dJ-tA(z)</>(z) IT (8
E

( )1_ S;(z)) JrA pEA p Z wp 
(1.21) 

where r = r + U r _ is the positively-oriented boundary of Ad. 
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1.4 Further Remarks on the Infinite­
Dimensional System 

The subspace of complex-valued functions that depend only on finitely many vari­
ables is dense in (C(M), 11 . 1100)' and each such function (say depending on ZA only) 
can be uniformly approximated by (the restriction of) functions in ll.(At). The dual 
space of C(M) is rea(M) (see e.g. [11]), the space of bounded, regular, count ably 
additive, complex-valued set functions on (M, B) where B is the Borel a-algebra. 
The norm on rea(M) is the total variation. For given {j, A we consider rea measures 
whose marginals have densities 4>AI(Sl)A over (81)A (restriction of 4>A to (81)A) S.t. 
4> = (4)A)AeF E 1l..". We remark that not every 4> E ll.-o with real-valued 4>AI(Sl)A 
corresponds to an element in rea(M) because its variation might not be bounded 
as fA dj.£AI4>AI might be unbounded with A. So we define for 4> E 1l. 

114>lIvar def lim 1 dj.£AI4>AI. (1.22) 
A-+Zd (Sl)A 

We set ll.bv def {4> E 1l. : 114>lIvar < oo} and 1l.':;' def ll.bv n ll.-o. In particular all 
real-analytic and non-negative 4> E 1l., i.e. 4>AI(Sl)A ~ 0 for all A E F, belong to this 
space. 
We can view every 4> E ll.bv as an element of rea(M): For 9 E C(M) the net (gA)AE:F 
given by gA def 'lrA(g) converges uniformly to g. We set 

4>(g) = .lim dj.£AgA 4>A. def 1 . 
A-+Zd (Sl)A 

The limit exists because for Al C A2 

1
1 dj.£A1gAl4>A1 -1 dj.£A2gA24>A21 
J(Sl )A1 (Sl )A2 

= 11 dj.£A2 (gAl - gA2)4>A21 
(Sl )A2 

::; IIgA1 - gA211(Sl)A2114>lIvar 

gets arbitrarily small as Al -+ Zd, i.e. the net has the Cauchy property. 
We further see 

114>llvar - sup 1 dj.£AI4>AI 
AE:F (Sl)A 

sup sup r dj.£Ag 4>A 
AE:F 9EC«Sl)A) J(Sl)A 

1191100S1 

sup 14>(g)l, 
gEC(M) 
1191100 Sl 
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so 114>lIvar is in fact the total variation (the operator-norm, cf. [11]) of the corre­
sponding linear functional on C (M). 
Let 1l(F) def UAEF H(A~) be the subspace of functions depending on only finitely 
many variables. We define the product gl4> E 1lD of gl E 1l(A~l) and 4> E 1lD by 

(1.26) 

Lemma 1.4.1 If gl E H(A~l), g2 E H(A~2), g E C(M) and 4> E 1lD the following 
holds 

1. The product in (1.26) is well-defined and IIgl4>IID ~ IIgII1Al'l9-IAtllI4>IID' 
2. (glg2)4> = gl(g24». 

3. g2 can be considered as an element of 1-£19 and the product ylg2 as defined in 
(1.26) is the same as the usual product between functions on M. 

4. (gl4>)(g) = 4>(glg) where (gl4» and 4> act as functionals in the sense of 
(1.23). 

5. 1l~v is also a module over the ring 1-£ (F), i. e. in particular 

Ilgl4>IIvar ~ IIgIIIA1II<l>llvar. 

1.5 Expansion of the Perron-Frobenius Operator 

We split the integral kernel of the Perron-Frobenius operator for a finite-dimensional 
system. Recall that r;(z) = zp exp (27rif E%:1 gp,k(Z)) 
= zp n~1 exp(27rifgp,k(z)) and that Sp(z) = fp 0 r;(z). 
If we consider only finite range interaction, say up to distance l, we have . 

l 

r;,l(Z) def zp exp(27rif L gp,k(Z)). (1.27) 
k==1 

For a finite-dimensional system (say on (SI )A2) with fixed boundary conditions we 
have a special representation of .c FA2oTA2 ,. in terms of the integral kernel (Proposition 
1.3.3). 

Lemma 1.5.1 For the factors in the integral kernel in (1.21) we have the following 
splitting: 
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The sum in the right hand side converges uniformly in z E rA and wp E Aa. 

1.5.1 The Unperturbed Operator 

The first summand in (1.28) is just the one which appears in the uncoupled system 
(Le. Tf.=o = id) and in this case each lattice site can be considered separately. 
We denote by C /p the restriction of the Perron-Frobenius operator to the Banach 
space of functions on SI that extend continuously on the closed annulus Aa and 
holomorphicallyon the interior Aa· 11· IIA.s denotes the uniform norm over Aa. The 
operator 

has 1 as simple eigenvalue and the rest of its spectrum is contained in a disc around 
o of radius strictly smaller than 1. It splits into 

C/p = Qp + Rp (1.29) 

with 

RpQp = QpRp = 0 (1.30) 

and 
/lR;/lL('1i(A6),II' IIA6) $ Cr'TJ,n (1.31) 

with Cr > 0 , 0 < 1] < 1. For proofs of these statements see e.g. [3]. 
Qp is the projection onto the one-dimensional eigenspace spanned by hp E 1i(Aa), 
whose restriction to SI is positive and has integral IS1 dJ-t hp = 1. 
We assume in Assumption I regarding the family (JP)PEZd that 

(1.32) 

and the exponential bound in (1.31) both hold uniformly in p. This is the case 
for example if the fp are uniformly close to each other as is shown using analytic 
perturbation theory. 
C/

p 
preserves the integral (cf. (1.19)) and so does Qp, as follows e.g. from (1.29)­

(1.31). Since r + is homologous to SI we can write Qp as 

(1.33) 

(1.34) 
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where we have used that g is holomorphic in Aa and defined: 

h (w z) def {hp(Wp) for zp E r+ 
p P' P 0 for zp E r _ (1.35) 

The idempotency Q; = Qp results in the integral representation 

1 dz; 1 1 dz! 1 ( 2)h (2 1) ( I) -1 dz! 1 1 1 -2·2" -2 ·lhp wP'zp p zP'zp g zp - -2 ·lhp(wp,zp)g(zp). 
r 7r~ zp r 7r~ zp r 7r~ zp 

(1.36) 

Here and throughout the section the upper indices in z!, z; etc. refer to the temporal 
and the lower ones to the spatial coordinate in the space-time lattice Z x Zd. 
According to Proposition 1.3.3 the operator Rp can be written 

with 1 
rp(wp, zp) = !: ( ) _ Jp(zp) - hp (wp, zp). 

p z wp 

Then equation (1.30) results in the integral representation 

1.5.2 The Perturbed Operator 

In view of (1.28) we set 

(1.37) 

(1.38) 

(1.39) 

(1.40) 

def JP 0 r;,k_1 (z) - JP 0 r; k(Z) 
{3p,k(wp, z) = wp (Jp 0 r;,k_1 (z) - wp)(JP 0 r;,~(z) _ wp) (1.41) 

This corresponds to the difference between the operators for systems with interaction 
of finite-range of order k and k - 1, respectively. Using (1.1) we have the estimate 

l{3p,k(Wp,z)1 (1.42) 
< Iwpllfp 0 r;,k_1 (z) - wpl- 1 lJp 0 r;,k(Z) - wpl-1 

x IJp 0 r;,k_1 (z) - JP 0 r;,k(Z) I 
< (1 + (5)lc7A -11-1Ic7A -11-111f;II{p}CIEexp(-c2kd) 

< CSE exp( -c2kd ) 

uniformly in pE Zd, Wp E Aa, Z ErA. 
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1.5.3 Time N Step 

Now we want to estimate the norm of (1.6) or equivalently that of 

(1.43) 

C~A20TA2'f</J(ZO) = JrA2 dp,A2(Z-I) ... JrA2 dp,A2(Z-N) n;~-N nPEA2 (1.44) 

x (hp (z;+l ,z;) + rp(z;+l , z;) + 2:::1 ,Bp,k(Z;+l, zt)) </J(z-N) 

(cf. also the beginning of Section 1.3.) 
Distributing the product we get infinitely many summands. In each factor there is 
for each -N ::£ m ::£ -1, p E A2 a choice between hp, rp and ,Bp,k (1 ::£ k < 00) and 
we can interpret such a choice graphically as a configuration (similar objects were 
introduced in [26] where they were named polymers): 
On A2 x {-N, ... , o} we represent 

• hp (z;+l, z;) by an h-line from (p, t) to (p, t + 1) 

• r p (z;+l, z;) by an r-line from (p, t) to (p, t + 1) 

(p, t) 

h (zHl zt) pp' p 

(p,t+1) 

(p, t) 

r (zHl zt) 
Pp' p 

(p,t+1) 

Figure 1.1: h-line and r-line 

• ,Bp,k (z;+l, zt) by a k-triangle (actually rather a cone or pyramid but in our 
pictures for d = 1 it is a triangle) with apex (p, t+1) and base points (q, t) with 
lip - qll ::£ k. (So some of the base points might not lie in A2 x {-N, ... , -1} 
but all the apices lie in A2 x {-N + 1, ... , o}.) 

Note that if 
(1.45) 

denotes the number of base points of a k- triangle, we have the estimate v (k) ::£ (3k)d. 
Each summand, that we get by distributing the product in (1.44), corresponds to a 
configuration and for each configuration C we have an operator Cc. So we can write 

C~A20TA2" = 2:: Cc. 
c 

Some of these summands are zero namely if 
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(p - 2, t) (p - 1, t) (p, t) (p + 1, t) - (p + 2, t) 

(p,t+1) 

Figure 1.2: 2-triangle 

• a factor h (zH2 zHl) r (zHl zt) or r (zH2 zHl) h (zHl zt) Pp'p PP'p PP'p Pp'p 

appears, but no factor ,Bq,k (Z:+2, zHl) with I/p-ql/ ~ k (Le. an h-line follows or 
is followed by an r-line and at their common endpoint no triangle is attached 
with any of its basepoints. cf. Figure 1.3.) This follows since, by Fubini's 
Theorem, one can first perform the dz;+ldz;-integration and get zero by (1.39) 
or (lAD). (Note that t~e other factors in the integrand do not depend on z;+l. 
So they can be considered as the function g(z;) in (1.39) or (lAD).) 

(p, t) (p, t) 

r (zHl zt) 
Pp' P 

h (zHl zt) 
Pp' p 

(p,t+1) (p, t + 1) 

h (zH2 zHl) 
Pp' P 

r (zH2 zHl) 
Pp' p 

(p, t + 2) (p, t + 2) 

Figure 1.3: Consecutive r-line and h-line 

• if a term hp (z;+2, z;+l) ,Bp,k (z;+l ,zt) appears but no ,Bq,l (Z:+2, zHl) with 

lip - qll ~ l (Le. a triangle is followed by an h-line and at their common 
end point (the apex of the triangle) no other triangle is attached with any of 
its basepoints. Cf. Figure 1.4.) Indeed: 

,Bp,k (wp, z) = wp [1; 0 T~ ~z) - w - f 0 T~ \z) - w 1 
p p,k P P p,k-l p 

By the Residue Theorem: 

1 dwp 1 ( ) 
-2 . -,Bp,k W P' Z = 0 

SI 'lr1, Wp 
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because the poles at wp = JP 0 T:,k(~) and wp = JP 0 T:,k-I (z) (with z ErN, 
in particular zp E r + or r -) both he either outside r + or inside r - as JP is 
expanding, T;,k is close to T;,k-I and the two summands have residue -1 and 

1, respectively. 

Identity (1.48) is a consequence of the fact that /3p,k is the kernel of a difference 
between two transfer operators (for the systems with interaction of range k 
and k - 1) both preserving the Lebesgue integral in the sense of (1.19). So 
the range of this operator difference consists of functions with integral zero 
and these are annihilated by the operator corresponding to hp (cf. (1.33) and 

(1.34).) 

(p, t) 

h (zH2 zHI) 
Pp' P 

(p, t + 2) 
Figure 1.4: Combination 2-triangle and h-line 

Furthermore we note that in 

lI"A1 0 C:A20TA2,' = 2:= lI"A1 0 Cc 
C 

(1.49) 

we get lI"A oCc = 0 unless C ends with h-lines in all points of (A2 \ AI) x {O} because 
of (1.40),1(1.48) and the fact that lI"A1 means integration over (Sl)A2\A1. 

Definition 1.5.1 We call a configuration Cc in the expansion (1.49) a zero configu­
ration if it does not end with h-lines in all points of (A2 \ Ad x {O} or contains one of 
the constellations (consecutive r-line and h-line or k-triangle and h-line) mentioned 
above. Otherwise we call it a non-zero configuration. 

Remark For a zero configuration C we have just shown that its corresponding 
summand in (1.49) is O. So we just have to sum over non-zero configurations. We 
note that the notion non-zero configuration does not exclude that .cc = O. 

Ai;, 
We have to find an upper bound for the norm of each Cc. We do so by collecting 
r- and h-lines into chains and estimating the contributions of integrating the factors 
corresponding to these parts of the configuration. 
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Definition 1.5.2 • Let C be a non-zero configuration with exactly n{3,k 

k-triangles for 1 ~ k < 00. We define 

and 

def ( 
n{3 = n{3,b n{3,2, ••• ) 

00 

In{31 def L n{3,k < 00. 

k=l 

(1.50) 

(1.51) 

• A sequence ofh-linesfrom (p,t) to (p,t+1), ... , (p,t+k-1) to (p,t+k) with 
pE A2 and -N ~ t ~ t+k ~ 0 such that to the points (p, t+1) ... (p, t+k-1) 
no triangles are attached is called an h-ehain of length k. 

• If such an h-chain is not contained in a longer one it is called a maximal 
h-ehain. Then (p, t) and (p, t + k) are denoted its endpoints. 

• The definitions for a maximal r-ehain and its endpoints are analogous. 

• Xc denotes the set of points p E A2 that appear as the' Zd-coordinate of a ba~e 
point (p, t) of a triangle in C and Ac the set of those points p E Zd that appear 
as the Zd-coordinate of an apex (p, t) that does not lie above (Le. having the 
same spatial coordinate) any other triangle. 

• Ar is the set of pE Zd \ Ac that appear as the Zd coordinate of an r-line (this 
implies that there is an r-chain from (p, -N) to (p,O) for otherwise an r-line 
would have a common endpoint (p, t) with an h-line and C would be a zero 
configuration. ) 

def -
• We write A(C) = Ac U Ar • 

In Figure 1.5 there are for example ~aximal r-chains from (1, -3) to (1,0) or from 
(2, -3) to (2, -2). A2 = {I, ... , 8}, Ac = {2, ... , 7}, Ac = {4} and Ar = {I}. 
As each k-triangle has v(k) ~ (3k)d base points we have 

00 

IAcl ~ I)3k)dn {3.k (1.52) 
k=l 

To get the estimate for the norm of (1.43) we proceed in the following order: 

1. We integrate in I7rAl 0 Ccif> (z~J lover all dz; for which a factor 
rp(z;+1, z;) appears. For each maximal r-chain oflength 1 we get according to 
(1.31) a factor not greater than err/. 
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(1,-3) 

(1,-2) 

(1,-1) 

(1,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0) (8,0) 

Figure 1.5: Example for a configuration 

2. For each maximal h-chain starting at (p, t) and ending at (p, t + l) we perform 
the integration 

3. We perform the integration corresponding to 7rAl 

(1.54) 

4. We estimate the contribution of each (from step 2 and 3 remaining) factor 
hp(z;) by IIhpll Ao ::; Ch and, using (1.42), the contribution of each factor 

f3 (zHl zt) via p,k p , 

(1.55) 

Here Irl denotes the euclidean length of r and 'I/J the remaining factors, con­
taining other integrals. Finally the contribution of the factors I~(z-N) I is 
estimated by II~AcUAr IIAcUAr (cf. remark below). 
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Remark For all points q rt Ac U Ar we must have h-chains in C from (q, -N) to 
(q,O). Therefore we have 

(1.56) 

where on the right-hand side we use the same notation 'Cc' for the operator on 

Hil.cUAr/J· 

So if n, denotes the number of r-lines, nr the number of maximal r-chains and nh 
the number of maximal h-chains having spatial coordinates in Ac U Al (for otherwise 
they are 'integrated away' giving a factor of 1) we get, using (1.31) and (1.55), 

1/1I'Al 0 CCcPIIAl (1.57) 

~ (csf)ln.s1 exp (-C2 Ekdnp,k) c:hc~"17n"IIcPAcUA,.IIil.cuA" 
k=l 

and, using (1.52), 

(1.58) 
00 

< '!9- IArl n '!9-(3~)dn.s,k 11 cPlI A2,11 
k=I 

for all A2 E :F and with 11 • IIA2,11 defined in (1.5). 
(1.57) and (1.58) are the basic estimates for a single configuration. We use refined 
versions of them throughout the paper. 
In particular the idea of taking the norm of cP'AcUAr rather than that of cPA2 which 
grows with the size of A2 , is the key point in our analysis. 

1.6 Operators for the Infinite-Dimensional 
System 

Estimates (1.57) and (1.58) bound the particular summands in an expansion like 
(1.49). We see that triangles and maximal r-chains in a configuration C lead to small 
factors on the right-hand side of (1.57). (A maximal r-chain consisting of n r-lines 
contributes a factor cr 17n • The factor er is greater than 1 in general. But either it 
will be compensated for by a small factor due to a triangle e.g. as in (1.99) or n will 
be large, cf. e.g. (1.103)). This motivates the following definition of the length of a 
configuration. The length gives rise to a lower bound for the number of triangles or 
r-lines, i.e. a long configuration will lead to a small contribution in the total sum in 
(1.49). 
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Definition 1.6.1 • The length, length(C), of a non-zero configuration C (that 
we got in an expansion like (1.46)) is the maximal difference 0 - t such that 
there are points (p, t) and (q,O) being end-points of r-lines or base points or 
apices of triangles. (Note that if there are any triangles or r-lines, there is also 
a triangle or an r-line ending at A x {O}.) If there are no triangles or r-lines 
in C its length is zero. 

• We identify two non-zero configurations Cl and C2 if they agree in their tri­
angles, r-lines and their number of max h-chains that go upwards from base­
points oftriangles (but might be defined on space-time boxes A2 x {-to, ... , O} 
of different sizes, i.e. with different A2 and to). We still speak of configurations 
rather than equivalence classes. For a configuration C length(C), Ac, A(C) 
(as in the Definition 1.5.2) and the operator 

7rA 0 Cc E L((1i(A~(C)), 11 'IIA(c)), (1i(At) , 11 • IIA)) is well-defined. 

• For Al E F we define E(Ad as the set of all non-zero configurations C in some 
A2 X {-to, ... , O} with Al C A2 E F, to E N and to > length(C), and that do 
not end in Al x {O} with triangles or r-lines. 

• EN(Ad is the set of non-zero configurations C in A2 x {-N, ... , O} with Al C 

A2 E F and A(C) ~ A2· 

We define 

VA def L 7rA 0 CChA(C)' 
CEE(A) 

(1.59) 

The convergence of this infinite sum and other properties of v are stated in the 
following proposition additional to Theorem 1.2.1. 

Proposition 1.6.1 Let {), the sequence of {)i, f., C2, No and Al be as in Theorem 
1.2.1 and N ~ No. 

1. 
7rAI 0 C1ftoT' = L 7rAI 0 Cc. (1.60) 

CEEN(AI) 

2. 
(1.61) 

3. For Nb N2 E N the operator Cr;~T' is defined on Cr;~T' (1i,,) C 1i"Nl' It maps 
this space to 1i" NI +N2 and 

(1.62) 
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4· For 1> E 1l': we have the estimate 

(1.63) 

For gEe (M) and 1> E 1l': we have the identity 

(1.64) 

and in particular 

(1.65) 

For finite-range interaction the inequality and both equations also hold for 
1> E 1lbv

• 

5. CFoT< is non-negative, i.e. 1> 2:: 0 implies CFoT<1> 2:: O. (1) > 0 means 1>A/(Sl)A 2:: 
o for all A E F.) 

1.7 Decay of Correlations 

We have found the unique invariant v E 1£,0 with J.t(v) = 1. This corresponds to a 
non-negative measure on (M,8) whose marginal on (SI)A has density V/~Sl)A wrt. 
J.t

A
• In the next theorem we state the decay of correlation for v in terms of the 

weighted norms. We will use these results in the proof of Theorem 1.2.2. 

Theorem 1.7.1 For sufficiently small ~ and E, big~, finite disjoint AI, A2 and 
f E H(At2) there are a", E (0,1) and a {) E (0,1) such that 

11 11 < C ",dist(Al,A2) 1. VA1UA2 - VA1 VA2 A1 UA2,t? _ 10 , 

2. I/1rAl(jV) - v(j)vA1IIA1,t? S cu{)-/A2/IIJIIA2",dist(Al,A2), 

3. I/1rAl 0 C'JoT<(jv) - v(j)vA1IIA1,J S C12{)-/A21I/fI/A2",dist(A1 ,A2)fiN 

for every N ~ o. 

Remark As in Theorem 1.2.2 we can choose the rate of decay", first and then the 
other parameters. 
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1.8 Proofs 

In the proof of Proposition 1.3.1 we use the following lemma which is rather standard 
in real analysis. Here we formulate it in the setting of holomorphic functions. 

Lemma 1.8.1 If T : U ~ en is a holomorphic map on a convex set U c en 
and satisfies the estimate I/DT(z) - idl/ :::; CIB < 1 then T is biholomorphic onto its 
image (in this lemma the chosen norm on en and the corresponding operator norm 
are both denoted by /I . I/J. 

Proof T is locally biholomorphic by the Inverse Function Theorem. So we only 
have to show injectivity. Let zo, ZI E U with T (Zo) = T (Zl) and 'Y : [0, 1] ~ U , 
'Y(t) = Zo + t(Zl - Zo). Then 

IlzI - z011 

which implies zl = zO. 

liT (Zl) - Zl - T (ZO) + z011 
- liT 0 'Y(1) - 'Y(1) - To 'Y(O) + 'Y(O) /I 

- 1111 (DT (-y(t)) -,id) (Zl - ZO) dtll 

< Ilzl - zOllll I/DT(-y(t)) - idll dt 

< Ilzl - z011 ClB (1.66) 

o 

Proof of Proposition 1.3.1 We have a Cauchy estimate for the partial derivatives 
of the functions gp,k : A:"'(p) ~ C on a smaller polyannulus. Let q E Bk(p), Then 

1 d 
< I 6 £ I Cl exp( -C2k ) e - e"l 

Also note that a~q gp,k = 0 for q ~ Bk (p). Therefore 

00 

< C13 L exp( -c2kd) 
k=llp-qll 
, 1 

< C13
1 

() exp (-c2I1p - qlld) 
- exp -C2 

- C14 exp (-c2I1p _ qlld) . 
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Now we consider the lift given by pr : c~ --+ A~, (i'p)PEA t-+ (eizp )PEA' where 

C6 def {w E C I Imw E [-8, 8]} . 

Then we have for the lifted functions (TA,f: (z)) P = zp + 27rf§p(Z). The function 

gp(z) = gp(pr(z)) satisfies the same estimate (1.1) with a different constant ci for 
8 < 81 sufficiently small since pr and its partial derivatives are uniformly bounded 
on C~. 
Then we have 

In particular the row sum norm (the operator-norm induced by the lOO-norm on CA) 

of (ny;;:;. - id) is smaller than 1 for f s~ enough, independent of A. According 

to Lemma 1.B.l (note that Cs is convex), TA,f: is a biholomorphic map onto its image 
and so is TA,E.. 
Now fix 8 < 81 according to the first part of the proof. If z E 8A~ we have zp E 8A6 
for at least one pEA. From the formula z~ def T/'£(z) = zp exp (27rifgp(Z)) and the 
assumption that gp is uniformly bounded on A61 we see that 

(1.70) 

for sufficiently small f. 
Now assume 0 f:. AC76 \ TA,E. (A6) 3 z. Let s be the line-segment between z and its 
nearest point won (SI)A (wrt. the metric dA ). For each point y on s the inequality 
In dA(w, y) ~ In dA(W, z) ~ c178 holds. 
In particular there is ayE TA,f: (8A~) on s with IYpl ~ c78 for all pEA, but this 
contradicts the estimate (1.70) above. 

o 

Proof of Proposition 1.3.2 As F acts on each coordinate separately by an JP we 
have (in view on the chosen metric (1.15)) to show the statement just for the map 
J (we drop the index p), i.e. the case when A contains just one element. 

Consider the lift lRc; x R 3 (r, </J) t-+ reit/J where lRc; def [1 -In 8, 1 + In 8]. This defines 

(modulo (0,27r) ) a (0, 27r)-periodic map I = (IT! It/J) via 

J (reit/J) = f,.(r, </J)eij",(r,t/J). On {I} x R one has !Ir ~ Ao and so because of periodic- . 
ity and a compactness argument, !Ir ~ A on a thin (0 < 8 < 80 small) strip lRc; x Ht 
It follows similarly, as in the proof of Proposition 1.3.1, that I (lRc; x R) J RA6 X R, 
I is diffeomorphic onto its image and each point in lRc; x R has the same number of 

preimages (which is equal to (j(1,27r) - j(1, 0)) /27r). Fr~m this the claim about 

J follows. 
o 
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Proof of Proposition 1.3.3 We substitute the expression (1.21) into the right­
hand side of equation (1.18) and get 

r dw 1 r dz rr ( 1 S; (Z)) 
J(Sl)A (211"i)IAI W 'I/J(w) JrA (211"i)IAI4>{z) pEA S;(z) - Wp Zp • 

(1.71) 

To simplify notation we assume that A = {I, ... , N}. As (1.18) is linear in 'I/J 
we can assume (by using a continuous partition of unity) that 'I/J vanishes outside 
a small set K C {Sl)N having distinct preimages under st (for all 0 ~ t ~ €) 
contained in Ko = KOl X ••• x KON such that each Ko is contained in a polydisc 

Do = DOl X· •• x DON' These are mutually disjoint and S~ def StDa is biholomorphic 
onto its image (for all 0 ~ t ~ i). (To make this more precise we note that for 
t = 0 the map SO is the product of maps fi (1 ~ i ~ N) and each fi gives rise to 
an Mi-fold covering map of A6. So locally we can index the disjoint preimages of 
K under SO by 0' = (a1,"" aN) where 1 ~ ai ~ Mi • If we take the set K small 
enough this is still true under small (0 ~ t ~ €) perturbations.) 
For given W E K, index a as above, k E {I, .. ;, N} and fixed Zl E A6l (l #- k) the 
function Zk H- (Sk(z!, ... , Zk,"', ZN) - Wk)-l has exactly one simple pole in each 
Do,. and is holomorphic in A~ away from these poles. Therefore we get the same if 

• 1 
we Just integrate around these poles. 

r dw 1 "" (rrN r dZk) rrN $~ k{Z) rrN 1 . 
= J K (211"i)N ~'I/J(w) ~ k=l JaDa/o 211"i 4>(z) k=l ~k k=l S~Jk{Z) - Wk' (1.72) 

For each a we can write each of the inner integrals as an integral of a differential 
form over the distinguished boundary boDo def aDol x '" x aDON ' parameterized 
by [0, I)N 3 t H- (e21ritl, ... , e21ritN) , whence 

(1. 73) 

We want to split the singular factor into a product of single poles in each variable. 
So we apply the transformation u = St{z) def S~(z) to get: 

where (St- 1
)' is the complex derivative and so is holomorphic in u. To apply Cauchy's 

formula we have to integrate over a product of cycles (each lying in C). For exam­
ple boD or So{boD) are such products of cycles, but St(boD) in general is not. So 
first we have to deform St(boD) into So(boD). The map t H- St def S~ is a smooth 
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homotopy between S£ and the product map So and avoids singularities of the inte­
grand in (1.74) since for € small enough the set {St(boDo)J 0::; t::; €} has positive 
distance (uniformly in A) from the set of singularities Uk=I{U E Do : Uk = Wk}. 
So(boDo) = So,I(8DoJ x ... x So,N(8DoN ) is a product of cycles and hence a cycle. 
The differential n-form in (1.74) is a co cycle because its coefficient is holomorphic. 
So we get by Stokes' theorem 

and by Cauchy's formula 

-1( )rr
N 

Wk 1 
= ljJ 0 S£ W k=1 (S;I(w))k det(S~(S;l(w)))' (1.76) 

So (1. 72) is equal to 

~ 1 dw 1 ( £) -1 ( ) 1 rrN Wk 
~ K (27ri)N W 'Ij;(w)ljJ 0 So w det(S£)'((S~)-I(w)) k=1 ((S~)-I(w)h' (1.77) 

For each index a, the coordinate transformation u = (S~)-I(w) yields 

As 'Ij; 0 F = 0 outside Uo Ko and the Ko are mutually disjoint this equals 

as was to be shown. 

Proof of Lemma 1.4.1 Consistency follows from 

7r Aa (glljJ) A4 7r Aa 0 7r A4 (glljJ Ai UA4) 

7r Aa (glljJ Ai uA4 ) 

- 7r Aa (glljJ Ai UAa) 

(glljJ) Aa 
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(1.78) 

(1. 79) 

(1.80) 

o 

(1.81) 



for all A3 C A4 E :F. 
As gl depends only on the AI-coordinates we have 

and so 

and 

lI(glcl»AiUAIIAlUA - IIg
1

cl>AiuAII AlUA 

< IlllIAlllcl>AluAIIAluA 

< II g1llAi -a-IAd-IAlllcI>IID 

For Al fixed the product is continuous in both factors. 
(2.) follows from 

((glg2),I.)A 7r (gl g2 ,I. ) 'I' - A Ai A2 'I' AuAi UA2 

- 7r A (gt 7r AUAi (g~2 cl> AuAi UA2) ) 

- 7rA,(gt 7rAUAi (lcl>)) 
(gl(lcl»)A. 

To see (3.) we note that the projection of the product of gl and g2 is 

7rA(glg2) = 7rA(gtg~2) 

and the product in the sense of (1.26) projects to 

7rA(glg2) = 7rA(gtg~uA2) 

= 7rA(gtg~2) 

as g2 does not depend on A \ A2-coordinates. 
If Al ~ A2 then 

gA2(glcl»A2 gA2g1cl>A2 
- (glg)A2c1>A2 

and so (4.) follows from 
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JZ;. .• 

(1.82) 

(1.83) 

(1.84) 

(1.85) 

(1.86) 

(1.87) 

(1.88) 



(5.) follows from 

lim ( dJl
A2 9 A2 (gllfJ) A2 

A2~Zd l(sl )A2 

lim ( dJlA2 (glg)A2lfJA2 
A2~Zd l(sl )A2 

lfJ(glg) 

lim { dJlA I (gllfJh I 
A~zdl(sl)A 

lim ( dJlAlgllllfJAI 
A-+zd l(sl)A 
A:>Al 

< IIgIIIA111lfJllvar 

Proof of Lemma 1.5.1 We get recursively 

(1.89) 

(1.90) 

o 

f 0 Tt ~Z) _ W JP 0 r;,I(Z) (1.91) 
P p,l P 

1 
f Tt () _ JP 0 r;,I_l(Z) 

pO p,l-l Z wp 

JP 0 r;,l-l (z) - JP 0 r;,I(Z) 

The estimate (1.42) yields uniform convergence of this sum as l --+ 00. So we get 
(1.28). 

o 

In (1.57) we estimate the norm of the operator corresponding to one particular 
configuration in terms of the lines and triangles it contains. Now we have to bound 
sums over all such configurations as they arise in expansions for the full operators. 
For this we use our analysis and some combinatorics at the same time. The idea 
is that a configuration of a given length must have at least a certain number of 
triangles and r-chains that lead to small factors in the estimates. In fact, certain 
r-chains could not be replaced by h-chains in the configuration as we would get a 
zero configuration. 
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Definition 1.8.1 • A maximal r-chain going from an apex of a triangle down-
wards to the next basepoint of a triangle or to a bottom point is called an 
a-r-chain. (If the apex coincides with a base or bottom point the a-r-chain 
has length zero.) 

• The a-r-length of a configuration C is the sum of the lengths of all its a-r-chains 
plus the number of its triangles, i.e. if C has Inpl triangles with corresponding 
a-r-chains of length 1I, ... ,1lntll then 

a-r-Iength(C) def 11 + ... + llntll + Inpl (1.92) 

- (11 + 1) + ... + (llntll + 1) 

(In particular a-r-Iength(C) ~ Inpl·) 
• We call a maximal r-chain going from a base point (p, t) of a triangle to (p, -N) 

(such that (p, -N) is not a base point of another triangle) a u-r-chain (upwards 
going r-chain), a maximal r-chain going downwards from a basepoint a d-r­
chain (d-h- chains are defined analogously). 

• A maximal r-chain going from a bottom point (p,O) to (p, -N) is called an 
l-r-chain (long r-chain). We denote the number of l-r-chains of C by l(C). 

The configuration in Figure 1.5 has length 3, a-r-l~ngth 6, only one a-r-chain of 
positive length from (6, -2) to (6, -1), only one u-r-chain of positive length from 
(2, -3) to (2, -2), and only one l-r-chain from (1, -3) to (1,0). 

We prepare the proofs of Theorem 1.2.1 and Proposition 1.6.1 in the following tech­
nical proposition that provides the key bounds and basic analysis and combinatorics 
for the other proofs. 

Proposition 1.8.1 For sufficiently small {), € and big C2 and N we have for all 
Al ~ A2 E :F the following bound for the terms in the expansion of {1.49} for 

'!rAl 0 £~A20TA2" with constants C19, C20: 

1. 
(1.93) 

. th - def r.n < 1 
Wl 'f/ = v'f/ 

2. 
(1.94) 
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For the proof of Proposition 1.8.1 we need a graph-theoretical lemma. We consider 
labelled tree graphs that are constructed in the following way (cf. Figure 1.6): 
We start with a star graph with a root-vertex, labelled (0), to which K edges are 
attached, each connecting to one leaf. The leaves are labelled by (0,1), ... , (0, K). 
Then we add successively star graphs (~ach of these has a certain finite number v(k) 
of leaves. These numbers are defined In (1.45).) to the already built up tree: We 
identify one of the leaves of the tree, say labelled by S = (Sb ... , sn), with the root 
of the added star and label the new leaves by (SI"",Sm1)"",(Sb""Sn,v(k)). 
In total we use besides the star graph with K leaves exactly n(J,k star graphs with 
exactly v(k) leaves. We say the tree has parameters K and n(J = (n(J,I, n(J,2, ... ) 
We also introduce a linear order on the set of tuples (and so on the set of vertices 
of the labelled graph): 
We say S = (st, ... ,sn) -< t = (tl, ... ,tm ) ifn < m and Si = ti for 1 ~ i ~ n or if 
Si = ti (1 ~ i < k) and Sk < tk for some k. 

Lemma 1.8.2 1. The number of labelled tree graphs with exactly n edges is not 
greater than 22n 

2. Given K, n{3,b n(J,2, .... with K + 2:::1 n(J,k < 00. The number of labelled tree 
graphs with parameters K and n(J is bounded from above by 

4K n:l ~:np,k with C2l = 4
3d

• 

Proof of Lemma 1.8.2 We first prove (1.) For every' labelled tree graph in question 
we can define a path starting and ending at the root point (0) and running through 
each edge exactly twice in the following way. From a (labelled) vertex t = (tb ••• , tk ) 

we go to the next greater (wrt. -<) vertex where we haven't yet been (going up), or if 
this is not possible (i.e. t is a leaf or we have already been at all vertices (tl, ... , tk+l)) 
back to (tl,.'" tk-d (going down). So we return to (0) after 2n steps. We encode 
the path in a word (al,"" a2n) with ai = 1 if we go up in the ith step and ai = 0 
otherwise. Obviously the labelled graph is uniquely determined by its word. (Note 
that not every word of length 2n with symbols '0' and '1' corresponds to such a 
labelled graph. But the map between these two data is injective.) As there are 22n 
words of length 2n with at most two different symbols this is also an upper bound 
for the number of graphs in question, so (1.) is proved. 
To see (2.) we note, using the estimate for v(k) that we got after (1.45), that the 
number of edges in such a tree graph is not greater than K + 2:::1 (3k)dn(J,k. 

o 

Proof of Proposition 1.8.1 We estimate the norm of each Cc in (1.93) in terms of 
the number of particular triangles, r-chains etc. of C as we do in (1.57). We also have 
to bound the number of configurations in (1.93) that have the same set of triangles. 
We do so by assigning in (i) to (iv) to each confi~ration ~ labelled tree graph and 
estimating the number of graphs that have certam properties. 
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(i) We fix 0 ~ K ~ IAII and Aa ~ Al with IAal = K (so there are (I~I) possible 
choices for Aa) and want to estimate the number of configurations C such that 
Ac = Aa. So let us consider such a configuration. We call the triangles whose apex 
lies at, or whose a-r-chain ends in, Aa x {O}, root triangles. We can assign to C 
a graph of the type we consider in Lemma 1.8.2 as follows: We start with a star 
graph with a star point labelled (0) and K leaves, labelled (0,1), ... , (0, K). These 
leaves are in bijection with Aa x {O}. Now we "add successively for each I-triangle 
(cf. def. on page 13) in C a star graph with one star point and v(l) leaves (cf. def. 
of v(l) in (1.45)) to the graph and label the new vertices: If an l-triangle lies with 
its apex or ends with its a-r-chain on a basepoint of another triangle (for which we 
have already assigned a small tree) or on a point in Aa x {O} (this point is labelled 
say S = (SI, ... , Sn)) we add a smalll-tree to the graph by identifying its star point 
with S and label the v(l) new leaves in the graph (SI, ••• , sn, 1), ... ,(SI, ••• , Sn, v(I)). 
Since, for example, an apex could coincide with more than one other triangle's 
basepoint we use the linear order -< (defined on page 28) to define an order in our 
successive assignment of triangles to star graphs. We always choose the next triangle 
such that the corresponding star graph is attached to the smallest (wrt. -<) labelled 
leaf in the graph. This also defines a unique choice of the triangle and the leaf 
where we attach the star graph. So the position of triangles and the a-r-chains of 
C are completely determined by the datum consisting of the corresponding labelled 
graph and the lengths of its a-r-chains. Note that it is not the case that for every 
graph together with a choice of lengths for the particular a-r-chains there was a 
corresponding configuration. 
For the configuration in Figure 1.5, for example, we get the labelled graph in Figure 
1.6. 

(0,1,2,3,1) (0,1,2,3,2) (0,1,2,3,3) 

(01,3,3) 

(0) 

Figure 1.6: The labelled graph for the configuration in Figure 1.5 
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Let n{3,k be, as in Definition 1.5.2, the total number of k-triangles. The number of 

graphs with parameters K and n{3 is bounded by 4K n~1 ~;nl3,/c (by Lemma 1.8.2). 
As mentioned above we have for each of the In{31 a-r-chains a length 0 ::::; li < 00. 

The a-r-Iength is 
L = (it + 1) + ... + (llnl3l + 1). (1.95) 

So L ~ In{3l. For a given n{3 with In{31 ~ 1 and L ~ 1 there are (I~I~I) different 
choices of (ll, ... , Ilnl3l) that satisfy (1.95). For In{31 = 0 we have L = 0 and the 
(unique) configuration without triangles or r-lines. So in any case the number of 
choices is bounded from above by (I~I)· The integration over these In{31 a-r-chains 

leads to a factor Jn
l3l7]L in our estimates (cf. (1.57)) and each k-triangle contributes 

by (1.55) a factor Cg€ exp( -C2kd). 
(ii) There are choices between d-r-chains and d-h-chains in the configuration. 
There are not more than L:~I (3k)dn {3,k base points for which we can choose between 
a d-h-chain (giving factor Ch in our estimates) and a d-r-chain (giving factor at most 
Cr7]). So the total sum over these combinations is bounded from above by 

00 

(Ch + Cr7]) Ek'=l (3k)d n13 ,/c ::::; IT (exp(c22kd)r13,1c . 
k=1 

(iii) There are choices between u-r-chains and u-h-chains in the configuration. 
There are not more than L:~I (3k )dn {3,k basepoints .. To each of them we can attach 
either a u-h-chain, giving a factor Ch, or a u-r-chain, giving a factor Cr7]rnax.{O,N-L} , 

because if N - L > 0, such a u-r-chain cannot have length smaller than N - L, for 
otherwise it would not end in A2 x {-N}. We get in total a factor not greater than 

00 

(Ch + Cr)Ek'=1(3k)d n13 ,1c = IT (exp(c23kd)r13 ,1c . (1.96) 
k=1 

(iv) There are choices left between l-h-chains and l-r-chains in (AI \Ac) x{ -N, ... , O}, 
giving factor Ch or Cr7]N respectively. Let 1 (0 ::::; 1 ::::; IAI \ Acl ::::; IAII - K) denote 
the number of l-r-chains in such a choice. For given 1 there are (IAi )Acl) ::::; (IA1~-K) 
different subsets Ar of Al \ Ac of cardinality 1 (that corresponds to a particular 
choice of exactly 1 l-r-chains.) The configuration C is determined by all the choices 
mentioned up to now. 
Consider now a C with length(C) = N. If N - L > 0 then there must be at least 
one u-r-chain giving rise to an extra factor 7]rnax.{O,N-L} or an l-r-chain giving rise to 
a factor 7]n. To get (1.98) we split 

7]rnax.{O,N-L} 

or 7]N 

ijrnax.{O,N -L} ijrnax.{O,N -L} 

-N-N 
7] 7] 
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with fj def y'1j. Therefore we get the factor fjrnax{O,N-L}. 

In the configuration C there are h-chains at points with Zd-coordinate in 
Al \ (Ac U Ar). The operator Cc acts on ifJA2 by integration over these coordinates. 
So for the uniform estimate of CcifJX(C) we use (1.58). 
First we estimate in (1.97)-(1.104) the sum over C with length(C) = N and then in 
(1.105)-(1.107) the sum over C with length(C) = m < N. We do that separately 
because in the second case C has no l-r-chains while in the first case every l-r-chain 
leads to a small factor Cr'T}N. The idea of making this distinction is similar to the 
idea of 'vacuum polymers' in other papers (cf. [3, 26, 1]). 

t9/A1 / (1.97) 
C:length(C)=N 

< diAd ~ C~I) ~ 4KfI;texP(C21kd))n", (cI<)ln,1 (1.98) 

KSlnpl<oo 

00 

xc~Ad-K-lt9-1 IT t9-(3k)dnp,kllifJIIA2,t? 
k=l 

diAd ~ C~I) ~ 4K(CI<C,)ln,1 (1.99) 

KSlnpl<oo 

00 

x IT exp((c2l - C2 + C22 + C23 - 3d In t9)kdt P,k 

k=l 

x f C~ I) irax{N,L} (t9-l cr1jN + Ch)/Ad-K llifJIIA2,t?fjN. 

L=/np/ f3 

We assume f < 1. We set fl def 4fClCr and f2 def JEi. Then we have f~np/ ~ f:f~np/. 

We set c2 def C2 - C2l - C22 - C23 + 3d In '19. Then C2 > 0 if 

(1.100) 

(We assume this condition on'the d~cay of the coupling. Note that we first have 
to choose '19 below, after (1.104), depending on the other parameters of the system 
(but not on C2) and then condition (1.100) is well-defined.) 
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Then (1.99) can be bounded as follows: 

We have 

00 

00 00 00 

L IT (exp( -c"2kd)) nfj,lo ~ IT L (exp( -i2kd)) nfj,lo 

nfj k=l 
Infjl=n 

k=l nfj,lo=O 

(1.102) 

and the last infinite product converges (to C24 say) since for k sufficiently large 
exp( -c2kd) < ! and E~,Io=O (exp( -C2kd) rfj,lo ~ 1 + 2 ex~( -E:!kd) and 
E~o exp( -C2kd) < 00. (Recall n~l (1 + Uk) convergent {= E~l IUkl < 00.) 

00 

< (E2 + crijN + ch19)IAtI~4 2::(E2 + ij)LII1>II A2,l?ijN 
L=O 

_ (E2 + erijN + ch19)IAtl1 1 _C24111>II A2,l?ijN 
- E2 -1] 

< Cl9ijN 11 1> 11 A2,1? 

(1.103) 

(1.104) 

for 19 and E sufficiently small and N sufficiently large. This also holds for A C Al. 
So (1.) is proved. 
To show (2.) we have to estimate in addition to (1.93) the contribution of non-zero 
configurations C of length 0 ~ m < N in the expansion of 7l"Al 0 C/;'A20TA

2
, •• These 

have no l-r-chains. So this time we have l(C) = O. Using the splitting 1]L ~ ijLijm 
we get in a similar way 
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c:length(C)=m, 
I(C)=O 

< "IAoI ~ ('~I) ~ 4Kll. (exp(c'21kd))"' .• 

K~lnpl<oo 

(Xl 

x IT (exp( -C2kd) rp,,, ijmll4>II A2,t1 
k=l 

< (€2 + Ch19) lAd 1 1 _c25ijmll4>II A2,t1 
- €2-'T] 

< c26ijm 11 4>IIA2,t1· 

Again this also holds for A C Al and so 

19 IA11 L: I17rAl 0 .cC4>A2I1Al,t1 ~ c26114>IIA2,t1ijm. 

Therefore 

c:length(C)=m, 
I(C)=O 

N 

I17rAl 0 .c~A20TA2,.IIL«llA2,",II'IIA2,"),(llAl,"II'IIA1''') < L: c26ijm 
m=O 

(Xl 

< L: c26ijm 
m=O 
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(1.106) 

(1.107) 

(1.108) 



which was to be shown. 
o 

Proof of Theorem 1.2.1 First we consider the case N ~ No. The difference 
between 7rAl 0 r,~A20TA2'. 07rA2 and 7rAl 0 r,~A30TA3'. 07rAa for Al ~ A2 ~ A3 E :F is 
due to the summands involving configurations that do not lie completely (with all 
their triangles) in A2 x {O, -1, ... }. For those summands we have the lower bound 
for the spatial extension of the set of triangles: 

00 

b( C) def L knp,k (1.109) 
k=I 

> dist(AI, Af) 

As the analysis in the proof of Proposition 1.B.1 shows we have in the estimate for 
each such configuration a factor 

00 

IT (exp(-62kd)tP
," (1.110) 

k=I 
00 00 

< IT [exp(-(c2 - e)kd)rp
,,, IT (exp(-eknp,k)) 

k=I k=I 
00 

< IT [exp(-(c2 - e)kd)rp
,,, exp (-edist(AI,Af))· 

k=l 

If we take e > 0 small enough we can take out a factor exp ( -edist(AI, Af)) and do 
the analysis with the remaining factor as before since 62 - e > o. So we get 

I/7rAl Or,~A20TA2'. 07rA2 -7rAl Or,;A30TA3,. 07rA31IL((1l",II./I,,),(llAlo'6,/I'IIA1,")) 

~ C27 exp (-edist(AI! Af)) (1.111) 

with some constant C27 and the limit in (1.7) exists for N ~ No. The proof for the 
case N < No is similar. We use the modified estimates that we get by replacing 
in (1.97) and (1.105) 'l9 by a sufficiently small J. For example, (1.97) and (1.103) 
become 

(1.112) 
C :Iength( C)=N 
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and the term in parentheses is smaller than 1 if J and ~ are small enough. The 
statement for systems with finite-range interaction follows from the fact that in that 
case all limits are already attained for some sufficiently large A2 E :F and that all 
considered sums are finite. 
For the proof of (2.) we use results from Proposition 1.6.1 that we prove below. 
By (1.7) the operators C';oT< E L (1l", 11 ,11,,) are well defined for N ~ No and, 
by part (2.) of Proposition 1.6.1, give rise to a Cauchy sequence. With the same 
argument we see that the infinite sum in the definition of VA (cf. (1.59)) converges 
and v E 1l". v ~ 0 and so v E 1lbv follow from (6.) of Proposition 1.6.1. 
The difference in (1.9) is only due to configurations of length ~ N and we estimate 
it, using part (2.) of Proposition 1.6.1, by C3",N. SO V = limN--+oo C';oT<h and by 
(3.) and (4.) of Proposition 1.6.1, CFoT<V = v and f-t(v) = 1, respectively. For any 
</J E 1l" with CFoT<</J = <p and f-t(</J) = 1 we have by (1.9) 

(1.113) 

That shows uniqueness of v and so of v· and the proof of (2.) is complete. 
o 

Proof of Proposition 1.6.1 Using the same argument as in the proof of (1.) 
in Theorem 1.2.1, we see that the right-hand side term in (1.60) differs from the 
operator in (1.49) only in summands for C with b(C) ~ dist(Ab Af). So the difference 
is bounded by C2gexP (-edist(AI,Af)) for some C/,!g > 0 and (1.60) follows from 
taking the limit A2 -+ Zd. " 
In order to prove (2.) we first observe that configurations C E EN(AI) of length 
~ N - 1 extend canonically to C' E EN+l(AI) with Cc = Cc' because there are 
only h-lines in the step from time -N to -N + 1. So we can extend C to C' on 
A2 x {-N - 1, ... , O} (where A2 is so big that A2 x {-N - 1, ... , O} contains all 
triangles of C) by adding h-lines from (p, -N - 1) to (p, -N) for all p E A2 and 
obviously Cc = CC" 
Note that a configuration C' in A2 x {-N - 1, ... , O} of length ~ N - 1 is the 
extension in the above sense of a (uniquely defined) C. 
So in the difference (1.61), all terms Cc with length(C) ~ N -1 are cancelled. Using 
(1.) of Proposition 1.8.1, (1.107) and (1.) of this proposition we get for all Al E :F 

// 
( 'Tf" 0 rN 'Tf" 0 rN+I) "'// < (CI9;,N + C20;,N + CI9;,N+l) 11"'11_. /lAl J..,FoT< - /lAl J..,FoT< 0/ Al,iJ '/ '/ '/ 0/ 'v 

< c30",NII</JlliJ (1.114) 

with C30 independent of Al. This proves (2.) Next we prove (3.) 
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For Al E F, 

"N2 "Nl,A. 
7rAl 0 I.JFoT< 0 I.JFoT<'P 

- L 7rAl 0 C C2 (C;~T<ifJ) 
C2EEN2(At} 

L (7rAl 0 CC2 0 L 7rA(C2) 0 CCl ifJA(Ct}) 
C2EEN2(At} C1EEN2 (A(C2» 

L 7rAl 0 CC20Cl ifJA(Ct} 
C2EEN2(Al) 

Cl EEN2(A(C2» 

L 7rAl 0 CC3ifJA(C3) 

C3E E Nl +N2 (At) 

"Nl+N2,A. 
- 7rAl 0 I.JFoT< 'P. 

(1.115) 

Note that we sum over infinitely many Cll C2 • A priori, the distribution is only 
valid for finite partial sums. In terms of configurations we 'put CIon C2 ' to get 
C3 = C2 0 Cl (which might be a zero configuration) and in fact such a splitting 
exists and is unique for every non-zero C3 • So the net of finite partial sums over C3 

converges to the infinite expansion (1.60) of the right-hand side of (1.62) and (3.) is 
proved. 
To prove (1.64), we consider first the special case 9 E C((SI)A). 

L dJ1 9 0 S ifJ = lim r dJ1 go SAl ifJ 
Al--+Zd J M 

lim r dJ1Al 9 0 SAl ifJ Al 
Al--+Zd J(Sl )Al 

lim r dJ1A
l 9 CFA1oTAlo<ifJAl 

Al--+Zd J(Sl )Al 

lim r dJ1Ag7rAOCFA10TA1.<07rAlifJ 
Al--+Zd J(Sl)A 

- L dJ1 gCFoT<ifJ· 

So (1.64) is true for 9 E C((SI)A). Taking 9 = 1, we get (1.65). 
Now we show (1.63), using the special case of (1.64) for the second equality . 

. , 
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II£FoT.cI>lIvar sup sup r d/l 9 £FoT'cI> 
AEF 9EC((S1)A) J M 

1191100 :51 

- SUp SUp r d/l 9 0 S cl> 
AEF 9EC((S1)A) J M 

1191100:51 

< SUp SUp IIglloollcl>lIvar 
AEF 9EC((S1)A) 

1191100:51 

- 11 cl> IIvar. 

(1.117) 

We can conclude (1.64) for any 9 E C(M). By assumption cl> and then by (1.63) 
£FoT'cI> are in llbv , i.e. the integrals in (1.64) correspond to continuous linear func­
tionals on C(M). The net (gA)AEF converges uniformly to 9 as A --* Zd, as does 
(gA 0 S)AEF to go S, so (1.64) follows by uniform approximation of 9 by functions 
gA and (4.) is proved. 

We show (5.) by indirect proof. We have, by definition, (£FoT.cI»A def limA1-+zd7TA 0 

£FA10TA1 .• cI>A1' If that was negative somewhere there would be a Ai E :F with 
7TA 0 £FAloTA1 .• cI>A1 having negative values and we could find a non-negative 9 E 
C((Sl)A) such that 

r d/lAg7TA 0 £FA10TAl .• cI>/l.1 < 0 
J(Sl)A 

But by (4.) the integral equals 

So £FoT' is non-negative. 

Proof of Theorem 1.7.1 

r d/lA1 9 0 S cl>A1 ~ O. 
J(S1 )Al 

2: 7TAlUA2 0 £ch 
CEE(A1UA2) 

2: (7TAl 0 £clh)(7TA2 0 £c2h) 
C=C1 uC2 

b(C):5 ;dist(A1.A2) 

+ 
C 

bee»~ ;dist(Al.A2) 

(1.118) 

(1.119) 

o 

(1.120) 

In estimating the second summand we note that if we sum in formula (1.97) and 
(1.105) just over C for which b(C) ~ idist(Al, A2) (b(C) was defined in (1.109)), we 
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can take out from n:l (exp( -c2kd) rt/,,. a factor exp( -~!dist(AI' A2) )(like in the 
proof of Proposition 1.6.1): We do so by choosing a K, E (0,1) so that 

C2 + InK, = C2 - C21 - C22 - C23 + 3d In '!9 + InK, > 0 (1.121) 

and by defining ~ by exp( -~!) = K,. Note that such a choice exists as C2 > 0 by 
(1.100). 
The rest of the analysis is as in the proof of Proposition 1.8.1. We get 

11 
C 

b(c»;dist(Al,A2) 
< K,dist(Al,A2)c31Ilhll~19-IAll-IA21 

. ~ C32'!9-IAII-IA21 K,dist(AloA2). 

We write for the first summand in (1.120) 

C=Cl UC2 
b(c):s;dist(Al,A2) 

C=Cl UC2 
b(c»;dist(Al,A2) 

and estimate in a similar way 

11 
C=Cl UC2 

b(C» ;dist(Al ,A2) 

(1.124) and (1.125) also hold for all A~ ~ AI, A~ ~ A2 and (1.) follows. 

7rAl (fv) 7rAl (fVAlUA2) 

- 7rAl (fvAlVA2 - f(vA l vA2 - VAlUA2)) 

V(f)VAl - 7rAl (f(VAlVA2 - VAlUA2)) 

and, using I17rAllloo = 1, we get 

I17rAl (f(VAlVA2 - VAlUAJ) IIAl ~ IIfllA211vAlVA2 - VAlUA211AlUA2 

and so by (1.) 

I17rAl(f(VAlVA2 -VAlUA2))IIAl ~ CI6'!9-IAII-IA21I1fIlA2K,dist(Al,A2). 
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(1.122) 

(i.123) 

(1.124) 

(1.126) 

(1.127) 

(1.128) 



This holds for all A~ C AI, so (2.) is proved. 
We set </J = fv - v(f)v. So 7rAl 0 C/:'oT<(fv) - V(f)VAl = 7rAl 0 C/:'oT<</J. We estimate 
the 1I·IIA1,J-norm of the last term as in the proof of Proposition 1.8.1, but this time 
using the finer estimates from (2.) 

(1.129) 

def -
where as before A(C) = Ac U Ar• So we get analogously to formulae (1.97) and 
(1.98): 

(1.130) 
C:length(C)=N 

< ,iIAd &. C~I) ~ 4K g (exp(c21kd))'" (Cl f) 1',1 

KSlntll<oo 

x IT (exp( _~kd)) ntl." f (~ ) Jntll 1]L IT (exp( C22kd) f tl ." 

k=l L=lntll 1.01 k=l 

00 IA11-K (I I ) 
x !1 (exp(c,.,kd))"'" qmu{O,N-Lj tt Al 1- K (c,.'lN)'cLAd-K-. 

xcu 'I9-IA21I1fIlA2 '19-1- Ek'=1(3k)d ntl•k ~dist(Al>A2)-Ek':1 kntl." 

< c",iIA,1 &. C~I) ~ 4K(Clfc,.)ln,1 

KS1ntll<oo 

00 

x IT (eXp((C21 - C2 + C22 + C23 - 3d In '19 -ln~)kd)ftl.k 
k=l 

x f Ci') 1]rnax{L,N} ('19-1 Cr 1]N + ch)IAd-K'I9-IA21I1fIlA2~dist(Al,A2). 
L=lntll 

Using (1.121) we get with the same analysis as from (1.98) to (1.103): 

=s C34(€2 + crijN~ + chJ)IAd'l9-IA21I1fIlA2~diBt(Al>A2)ijN. (1.131) 

For sufficiently small €2 and J the term in brackets is smaller than one. Note that 
there is no condition on N. So we get the same estimates for all n 2:: 0 and these 
also hold for A C Al. So in analogy with (1.61) we get 
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11.c~oT.4> - .c~~.4>IIAl ~ C35'!9-IA2111/I1A2KdiBt(Al,A2)ijN 

and as J-t(4)) = 0 we conclude (3.) 

Proof of Theorem 1.2.2 Applying (1.) of Theorem 1.7.1 we get 

IL vd"9! - (L vd" 9 ) (L Vd,,!) I 
< 11 dJ-tA1UA2(VA1UA2 - VA1VA2)g/l 

(Si )Al UA2 

< IIVA1UA2 - VAl VA211A1UA211gllooll/lloo 
< clO'!9-IA1I-1A21I1gIl001l/IlooKdist(Al,A2), 

so (1.) is proved. 

IL vd"9 0T 
0 5"'! - (L Vd"9 0T) (L Vd,,!) I 

- IL dl'9 0 T (" T-' (A.) 0 CFoT' (J v) - V (J)'vT -. (M) ) I 
< CI2C~AtI+IA2111/I1A21IgllooKdiBt(T-l(At},A2)ijn. 

def -Here we have used (3.) of Theorem 1.7.1 and set C5 = '!9-1• From 

follows 

(1.132) 

o 

(1.133) 

(1.134) 

(1.135) 

Kdist(T-l(At},A2) ~ c(AI, A2, K)Km(T} (1.136) 

where C(Al' A2, K) is as defined in Theorem 1.2.2. If 7 and 8 commute, (3.) follows 
from (2.). 
We prove (4.) by approximating 9 and I by functions for which we can apply 
estimate (2.). For any 'Y > 0 we can choose Al E :F so large that IIg - gAl 1100 ~ 'Y. 

- A - d 
Further there exists an IA2 E 1l(A6 2

) with III - fA21100 ~ 'Y (sup-norm on (81)Z ). 
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So 

ILVdj1g0rosnl- (Lvdj1g or) (LVdj1l) 1 (1.137) 

< 1 L vdj1 (g - gAJ 0 r 0 sn 1 I + 1 L Vdj1 gAl 0 r 0 sn (iAa - 1) 1 

+ IL Vdj1 gAl 0 r 0 sn iAa - (L Vdj1 gAl 0 r) (fM Vdj1 iAa) 1 

+ 1 (L Vdj1gAl 0 r) (L Vdj1 (j - iAa)) I' 

+ 1 (L vdj1 (g - gAl) 0 r) (L Vdj1 1 ) 1 

< IIg - gAl 11001111100 + IlgAllloolI1 - iAalloo 
+C(AI' A2, K)C~Ad+IAalllgAllloo lIiA2I1A2ijn(u) Km(U) 

+ 11 gAl 1100111 - ha 1100 + IIg - gAJoolIIAalloo 

~ (21111100 + 211gll00 + 37) 7 
+C(AI' A2, K)C~ll+IA21(lIgIl00 + ,) lliAa 11 Aa ijn(u) Km(u) 

and this gets arbitrarily small as we can first choose 7, and then (depending on 7) 
AI, A2 and iAa and finally max{m(a), n(a)}. . 
(5.) follows from (4.) and the commutation of the re, with S. 

o 
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Chapter 2 

Weakly Coupled Circle Maps 
with Asynchronous Updatings 

2.0 Introduction 
In this paper we study coupled map lattices with indepentent identically (LL) 
Poisson-distributed updatings at the individual sites. 
A deterministic coupled map lattice (CML) is given by a Zd-Iattice with a copy of the 
same Riemannian manifold at each lattice point (i.e. the state space is the product 
of these manifolds with index set Zd) and a map on the infinite space that can be 
decomposed into an uncoupled map that acts individually on each component and 
an 'interaction step' where the change of each coordinate depends also on the other 

sites. 
L.A. Bunimovich and Y.G. Sinai p~ove ~n [7] (cf. also the remarks on this in [4]) 
the existence and uniqueness of an mvanant measure and its exponential decay of 
correlations for a one-dimensional lattice of interval maps with weak coupling. By 
constructing a Markov partition they relate the system to a two-dimensional spin 
system whose Gibbs measure corresponds to the invariant measure of the CML. 
G. Keller and M. Kiinzle prove in [21] the existence and uniqueness of an invariant 
measure for periodic or infinite one-dimensional lattices of weakly coupled interval 
maps by studying the transfer operators on the space of measures whose finite­
dimensional marginals have densities of bounded variation. For small perturbation 
of the uncoupled map any invariant measure is 'close' to the one they found. 
J. Bricmont and A. Kupiainen extend in [3] and [4, 5] the result of Bunimovich 
and Sinai [7] to Zd-Iattices of weakly coupled circle maps with analytic and Holder-

continuous interaction, respectively. 
They represent the iterates of the Perron-Frobenius operat9r for finite-dimensional 
subsystems (over A C Zd) by a 'polymer'- or 'cluster'-expansion that gives rise 
to a representation of the corresponding invariant measure in terms of a (d + 1)­
dimensional spin system. The weak limit (as A -+ Zd) of these measures is the 
unique (in a certain class) invariant probability measure and it is exponentially 
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mixing with respect to (wrt) spatio-temporal shifts. 
C. Maes A. Van Moffaert introduce in [26] for a similar setting as in [3] a simplified 
'cluster'-expansion for the truncated Perron-Frobenius operator and show stochastic 
stability of the CML under stochastic perturbation. 
In [1] V. Baladi, M. Degli Esposti, S. Isola, E. Jarvenpaa and A. Kupiainen define 
Frechet spaces, and, for d = 1, a Banach space and transfer operators for the infinite­
dimensional systems, considered by Bricmont and Kupiainen in [3], and study the 
spectral properties of these operators. 
In [12] we consider analytically coupled circle maps (uniformly expanding and an­
alytic) on the Zd-Iattice with exponentially decaying interaction and introduce Ba­
nach spaces for the infinite-dimensional system that include measures whose finite­
dimensional marginals have analytic, exponentially bounded densities. We define 
transfer operators on these spaces, get a unique (in the considered Banach spaces) 
probability measure and prove its exponential decay of correlations. 
CMLs with multi-dimensional local systems of hyperbolic type have been studied 
by Ya.B. Pesin and Ya.G. Sinai [27], M. Jiang [16, 17], M. Jiang and A. Mazel [18], 
M. Jiang and Ya.B. Pesin [19] and D.L. Volevich [31, 32]. 
For detailed reviews on mathematical results on CMLs we refer to [1], [4], [6] and 
[19]. 

An interacting particle system (IPS) is given by an infinite lattice with a copy of the 
same state space (that is usually a finite or countable set but can also be a Rieman­
nian manifold) at each site. The updating at an indi,vidual site is a deterministic or 
stochastic map (e.g. in the case of finite local state spaces it is given by a stochastic 
matrix with transition probabilities as its coefficients) that is applied with 'expo­
nential waiting times', Le. like the waiting times for jumps in a Poisson process. The 
jump rates for the updating depends also on the other sites. R.J. Glauber intro­
duces in [13] (a special case of) the stochastic Ising model as a model for magnetism .. 
The total state space {-I, +l}Zd represents the spins of the atoms at all sites. The 
rate for a flip of an individual spin depends on the states of the neighbour sites. 
F. Spitzer [29, 30] and R.L. Dobrushin [8, 9] study more general systems where the 
individual jump rates do not only depend on the nearest neighbours. 
A basic problem is to establish the existence of infinite systems with asynchronous 
updatings. The infinitely many jumps in a finite time-interval cannot be 'listed', i.e. 
there is no order preserving bijection between the time-ordered set of jumps and N. 
R.L. Dobrushin obtains in [8] the infinite system as the limit of subsystems over 
finitely many sites. 
By using a percolation argument T.E. Harris proves in [14] that for systems of finite 
range interaction and a sufficiently small time interval the history of an individual 
particle depends on only finitely many sites, and so he provides a natural definition 
of the infinite system. With probability 1 the set /Ed splits into finite clusters such 
that each site is affected at most by sites in the same cluster. 
R. Holley shows in [15] for generators, corresponding to one-dimensional models, 
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and T.M. Liggett in [241 for the d-dimensioanal case, that these operators generate 
in fact, a semigroup, acting on continuous functions. ' 
Here we have only mentioned different methods to establish the existence of the 
infinite systems. For detailed reviews on IPSs and results on invariant measures 
mixing properties, phase transitions and applications to physics and other science~ 
we refer to [101 and [251. 

In this paper we consider the infinite topological product M = (81 )Zd and continuous 
updating maps for the individual coordinates that are of finite range or Lipschitz­
continuous wrt all coordinates with a summable family of Lipschitz constants (cf. 
Section 2.2.2 for the definition). The times for the updatings at the individual sites 
are independently Poisson-distributed with the same constant rate A > o. For the 
finite range case we show that with probability 1 the updatings at any finite set 
of sites and any finite time-interval depend on only finitely many sites. Our proof 
uses time- and space-oriented percolation and is different from the one in [14J. This 
result provides a natural definition of the infinite dynamical system. 
For the systems with infinite range interaction we show that with probability 1 it 
is well-defined as the net-limit of its finite-dimensional subsystems with arbitrary 
boundary conditions. We combine standard estimates for error growth with ideas 
from percolation theory. The limit of the corresponding Markov kernels, acting on 
continuous functions, exists and provides a definition of the infinite process, different 
from the widely used generator approach. 
Our proofs still work if we replace SI by any compact Riemannian manifold or 
stochastic systems with finite state spaces. The assumption of having the same 
constant jump rate at all sites is by no means essential and can be weakened to the 
case of upper bounded individual jump rates that depend on other states as well. 
However we do not consider these generalizations in this paper. 
In a setting similar to that of [121, i.e. for analytically coupled circle maps (uni­
formly expanding and analytic) on the Zd-lattice with weak, exponentially decaying 
interaction but with asynchronous updatings as described above, we define transfer 
operators for the Markov kernels of the infinite system. The operators act on the Ba­
nach space Ut'} (introduced in [12]) that includes measures whose finite-dimensional 
marginals have analytic, exponentially bounded densities. Using 'cluster-expansion'_ 
like techniques, we represent these integral operators in terms of configurations and 
prove the existence and uniqueness (in Ut'}) of an invariant probability measure and 
its exponential decay of correlations. 
The paper is organized as follows. Section 2.1 provides definitions, notation and 
some propositions about stochastic processes and metric spaces. In Section 2.2 we 
define the infinite-dimensional systems for finite range (Section 2.2.1) and infinite 
range interaction (Section 2.2.2) and the corresponding Markov kernels (Section 
2.2.3). In Section 2.3 we study the transfer operators for a specific class of interac­
tions. In Section 2.4 we prove the mixing properties of the invariant measure (found 
in Section 2.3) wrt spatio-temporal shifts. 

44 



2.1 Basic Definitions and Examples 

In this section we present definitions from probability theory and topology and also 
introduce most of the notation used in this paper. We have taken most definitions 
and statements on probability theory from [2]. 

Definition 2.1.1 N denotes the set of natural numbers including zero. Let (E, A2 ) 

be a measurable space, (0, Ab P) a probability space and (Xt)tEI a family (with 
index set I =1= 0) of random variables on (0, Ab P) with values in E. 

• Then (0, AI, P, (Xt)tEI) is called a stochastic process with values in 

(E,A2 ). 

• If 1= N or 1= {O, 1, ... , N} the process is called a discrete time stochastic 
process. If I = lR~o, [0, T] or [0, T) for some T > ° the process is called a 
continuous time stochastic process. 

• For fixed W E ° the map t t-+ Xt(w) is called the trajectory of w. It is also 
denoted by X.(w). 

• We consider the set N as measurable space with the discrete a-algebra. For 
any set A we denote by NA the product space, established with the product 
a-algebra. 

A discrete or continuous time stochastic process with values in NA and with 
index set I and P-a.a. of whose trajectories are non-decreasing (Le. the func­
tions t t-+ 'Irq 0 Xt(w) are non-decreasing for all q E A and P-a.a. w E 0. ''Irq' 

denotes the projection on the qth coordinate.), is called a counting process 
with values in NA We say that such a process is of finite expectation if for 
all t E I the random variable w t-+ EqEA'lrq 0 Xt(w) has finite expectation. 

Remark 2.1.1 1. We will also use the short-hand-notation X. for a stochastic 
process if 0, Al and P are obvious from the context. 

2. The term path seems to be more common than trajectory but we will denote 
something else later on by path. 

3. Finite expectation means that with probability 1 there are only finitely many 
jumps (cf. Definition 2.1.2 below) in every finite time-interval. 

Definition 2.1.2 (cf. [2]) Let (0, AI, P, (Xt)tEI) be a discrete time counting process 
with values in N as in Definition 2.1.1 and w E 0. We say that X.(w) jumps, or 
has a jump, at time t E 1\ {O} if Xt-I(w) < Xt(w). Then Xt(w) -AX"t-I(W) is called 
the size of the jump. 
Now let (0, AI, P, (Xt)tEI) be a continuous time counting process with values in N 
as in Definition 2.1.1 and w E 0. We define 
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+ def X t (W) -

if t> 0 
if t = 0 

(2.1) 

(2.2) 

We say that X.(w) jumps at time t ~ 0 if Xt-(w) < xt(w). Then xt(w) - Xt-(w) 
is called the size of the jump. 
Let X.(w) be a (discrete or continuous time) counting process with values in NA and 
wEn. We say that X.(w) jumps at time t and site q E A if 'Irq 0 X.(w) jumps at t. 
Then we also say that w jumps at (q, t). 
We define the jump set A(w, t) of w at time t as the set of all q E A such that w 
jumps at (q, t). 

Definition 2.1.3 (cf. [2]) Let I = 1R~o or I = [0, T) for some T > O. A stochastic 
process (S'l,A, P, (Xt)tEI) with values in N is called (normalized) Poisson process 
with parameter ,\ > 0 if the following holds: 

1. The process has stationary and independent increments which for all s < t E I 
satisfy . 

with 

P( {w : Xt(w) - Xs(w) = n}). p),(t - s, n) 

(t ) 
def _),t(,\t)n 

P)' ,n = e -,­
n. 

(2.3) 

(2.4) 

2. P-almost every trajectory X. (w) is a right-continuous, increasing function hav­
ing at most jumps of size 1. 

3. At time 0 P-a.a. trajectories have value 0: 

P(w : Xo(w) = 0) = 1 (2.5) 

Theorem 2.1.1 (cf. [2J, Satz 41.2) For any'\ > 0 and I as in Definition 2.1.3 there 
exists a (normalized) Poisson process with parameter A. Any two such processes are 
equivalent {i. e. if X~ and X: are two such processes then for any finite sequence 
tl < .,. < tn in I the projections (Xl1 ,···, XlJ and (Xl

1
, ••• ,Xl,) have the same 

distribution. ) 
o 
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Definition 2.1.4 Let A be a nonempty set and (nq, Aq, Pq, (Xi)tEI )qEA be a family 
of stochastic processes with values in (Eq, Aq), respectively. We set 

n def ®nq, (2.6) 
qEA 

.A def Q9Aq, (2.7) -
qEA 

P def ®Pq, (2.8) 
qEA 

A def 
completion of .A wrt P, (2.9) -

P def 
extension of P to A (2.10) 

and X t 
def Q9 X i. (2.11) -

qEA 

Then the process (0, A, P, (Xt)tEI with values in (®qEA Eq, ®qEA Aq) is called the 
product of the family of processes. 

Remark 2.1.2 1. Products of stochastic processes as in Definition 2.1.4 exist. 
For example the existence of the non-completed product measure follows from 
standard measure theory (cf. [2].) 

2. For non-empty, at most countable A and a family (indexed by A) of Poisson 
processes two such products X~ and X~ are equivalent because for all q E A 
the Poisson processes 7rq 0 X~ and 7rq 0 X~ are equivalent (cf. Theorem 2.1.1). 
It follows from the definition of the product a-algebra ®qEA Aq that X~ and 
X~ are equivalent. 

Definition 2.1.5 Let A > 0 and A a nonempty, at most countable set. A Poisson 
process on A with parameter A is the product of a family, indexed by A, of 
Poisson processes with parameter A. 

Remark 2.1.3 1. For A > 0 the Poisson process on Zd with parameter A is 
clearly not of finite expectation. In fact for any t > 0 there are P-almost 
surely infinitely many jumps in [0, t], i.e. 

P({w: :E 7rq 0 Xt(w) = oo}) = 1. (2.12) 
qEZd 

2. But if Al c Zd is finite then 7r Al 0 X. (w) has finitely many jumps in [0, t] for 
P-a.a. wEn and t > o. 
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3. There are P-almost surely no simultaneous jumps at two different sites: 

P( {w : 3qt # q2 E Zcl, t ~ 0 such that w jumps at (qt, t) and (q2, t)}) = o. 
(2.13) 

4. For 0 ::; to < t 

P({w: w jumps at to}) = O. (2.14) 

Proof of Remark 2.1.3 We only show (2.13). The proofs:of the other statements 
are similar. We set 

A(ql, q2, T) def {w : 3t E [0, T) such that w jumps at (qt, t) and (q2, t)}. (2.15) 

We have to prove that the set 

u 
TEN Ql,Q2EZd 

has P-measure zero and it is sufficient to show that 

P(A(ql, q2,T)) = 0 

for fixed ql # q2 E Zcl and T > O. For this we set 

I ~f [(k _ 1) T k T) 
N,k N' N 

for N E N\ {O} and 1::; k::; N. We have for i = 1,2: 

(2.16) 

(2.17) 

(2.18) 

P ({w: jumps at (qi, t) for some t E IN,d) = 1 - e->'~ (2.19) 

and so, using the estimate eX ~ 1 + x: 

P({w: 3k;tl,t2 E IN,k such that w jumps at (ql,t1) and (ql,t2)}) (2.20) 

< N (1 - e->'~ r 
< ,\2T2..!. 

N 

which converges to 0 as N -+ 00. 

o 

In Sections 2.2.3 and 2.3 we will use discrete time processes to approximate Poisson 
processes. (The convergence in distribution will be made precise in Lemma 2.1.2.) 
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Definition 2.1.6 For d 2:: 1 we denote by F the set of finite subsets of Zd. 
Let A, T > 0, N > AT, 1= {1, .. . ,N}, A E F\ {0}, 

n def {O 1}AXI A,N , (2.21) 

and AA,N the discrete a-algebra on nA,N. Elements of n are denoted by w = 
(w(q, n))(q,n)EAxI. We set: 

def AT 
(2.22) p -

N 

Iwl def L: w(q, n) (2.23) -
(q,n)EAxI 

PA,N({W}) 
def plwl(1 _ p)IAIN-1wl (2.24) -

n 
Xq,n(w) 

def 
L:w(q, k) (2.25) 
k=l 

Xn(w) 
def 

(Xq,n)qEA (2.26) 

The discrete time counting process (nA,N, AA,N, PA,N, (Xt)tE{I, ... ,N}) with values in 
NA is called Bernoulli process with parameters A, T, N and values in NA. 

The following two definitions prepare Definition 2.1.9 that we will need in Section 
2.2. 

Definition 2.1.7 In view of Definition 2.1.3 and Remark 2.1.3 we define (for a 
given Poisson process like in that remark) the set NI of P-measure zero: 

NI def {w: X.(w) is not non-decreasing, has jumps at 0, (2.27) 

simultaneous jumps or jumps of size greater than 1}. 

Definition 2.1.8 For q = (ql,"" qn) E Zd we define 

For R 2:: 0 

BR(q) def {q E Zd: IIq - qll ::::; R} 

is the set of points that have distance at most R from q. 

(2.28) 

(2.29) 

Definition 2.1.9 Let a, b E Zd and n 2:: o. A path from a to b is a finite sequence 
Q = (qo = a, qI, ... , qn = b) of points qi E Zd. We call maxO~i~n-1 IIqi+1 - qill the 
step size of Q. Note the special case of a path Q = (qo). It is called the empty 
path at site qo and we define its step size to be O. 
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Definition 2.1.10 Let (0, A, P, (Xt)t>o) be a Poisson process with parameter A > ° 
and with values in ~d. Let T> 0, w E ° and Q = (qo = a, qI, ... , qn = b) a path. 
We extend Q to the infinite sequence Q = (qo, qI, ... , qn, qn+l = qn, ... ) in which qn 
is repeated. 
We ddine a process (0, A, P, (Zt)tE[O,T]) with values in N as follows. 

Z : [0, t] x ° -+ N (2.30) 
(t, w) t-+ Zt(w) 

If w E NI or it does not jump at (qo, t) for any t E (0, T) we set Z.(w) = ° on [0, T]. 
Otherwise there is a maximal sequence T > to > tl > ... > tm(w) such that with 

t def T' 
-1 - • 

t; def max{t E (0, ti- 1) : w jumps at (qi, t)} for 0$ i $ m(w). (2.31) 

'Maximal' means that w does not jump at qm(w)+l in the time interval (0, tm(w)) and 
the sequence cannot be extended. (Intuitively one can think that one sits at time T 
at site qo and, going backwards in time, waits for the next jump of w at qo (which 
happens at time to), then jumps (instantly) to ql and waits (backwards in time) for 
the next jump of w at ql, then jumps to q2 etc. After n jumps (should this occur) 
one does not change the sites any more, but possibly jumps from qn to qn' m(w) 
is the total number of jumps. It is P-a.s. finite beca;use P-a.a. w have only finitely 
many jumps at qn.) 
We set for t E [0, T]: 

z ( ) def { i for t E [ti' ti- 1) 

t w - m(w) for t E [0, tm(w)] (2.32) 

And Z. (w) is the (uniquely defined) right-continuous function, such that Z. (w) = 
ZT_.(W) everywhere, except possibly where these functions jump. Then 
(0, A, P, (Zt)tE[O,Tj) is a Poisson process with parameter A. (A precise proof of this 
uses that the constructed process is 'made of' independent Poisson processes and 
that these have independent increments.) We call it the Poisson process induced 
by the path Q. 

Definition 2.1.11 In the setting of Definition 2.1.10 we call Q a causal path 
wrt (t,w) if ZT(W) ~ n and a maximal causal path wrt (t,w) if ZT(W) = n. 
(The latter means that Q = (qo, ... , qn) cannot be extended to any causal path 
(qo, . .. , qn, qn+l)') 
We define: 

• Path( q, n, R) to be the set of paths that start at q, have exactly n steps and 
are of step size at most R. 
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• Path(q -t A) for any 0 =I A E Zd to be the set of paths starting at q and 
ending in A. 

• Pathc(t,w,q,A) for q E A to be the set of causal wrt (t,w) paths Q = (qo = 
q, ... ,qn) such that 

1. Q is maximal causal and qo, ... , qn EA 
or 2. qo, ... ,qn-l E A and qn E AC. 

• Pathc(t,w,q -t AC) for q E A to be the set of causal paths (qo = q, ... ,qn) 
such that qo, ... , qn-l E A and qn E AC. (So this is the subset of elements in 
Pathc(t,w,q,A) for which case 2. applies.) 

Remark 2.1.4 1. We have defined the property of being causal for general paths 
and not related this definition to any kind of interaction. When we study finite 
range interaction, of range R say, we will consider only causal paths of step 
size at most R. 

, ' 

2. A term like inverse causal path from a to b instead of causal path would actually 
be more appropiate as it corresponds to b affecting a (cf. Definition 2.2.1) but 
not necessarily the other way around. However, we prefer the shorter notion. 

Definition 2.1.12 (cf. [2]) Let (Ob AI) and (02 , A2) be measurable spaces. A map 
K : 0 1 x A2 -t [0,1] is called a Markov kernel from (01 ; AI) to (02 , A 2 ) if the 
two following conditions are satisfied: 

MKl WI H K(WI' A2) is AI-measurable for all A2 E A2. 
MK2 A2 H K(WI' A2) is a probability measure on A2 for all WI E Al. 

If (01,A1) = (02,A2) then K is called a Markov kernel on (0I,A1). 

Example 2.1.1 Let (Y, (ly) be a metric space and By its Borel a-algebra. CO(Y, Y) 
is the space of continuous maps from Y to Y. It has a uniform metric, defined by 
(lcO(y,y)(gl,g2) = SUPYEY (ly(gI(y),g2(Y)) and the Borel a-algebra Bco(y,y) wrt this 
metric. Further let (0, A, P) be a probability space and 

S : 0 -t CO (Y, Y) 

W H Sw 

a measurable (wrt the a-algebras A and Bco(y,y») map. 
Then 

Ks(y, YI ) def P({w: Sw(y) E Yi}) 

, for all y E Y, Yi E By, defines a Markov kernel on (Y, By). 
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Proof To verify MKl we fix an Yi. E By and show that the map y I-t Ks(y, Y
I

) 

is measurable. First we note that- S can be seen as a measurable map from 0 x Y 
to Y. We write it as the composite of measurable maps S x idy and the 'evaluation 
map': 

(2.35) 

The map S x idy is measurable by assumption and the definition of the product 
a-algebra of CO(Y, Y) x Y. The evaluation map is continuous (wrt to the product 
topology), hence measurable wrt the Borel a-algebras. So -the composite in (2.35) 
is measurable in 0 x M. It follows that the map y I-t P({w : Sw(y) E Yi.}) is 
measurable (cf. Lemma 8.1 on p. 159 in [22]) and so MKl holds. 
Next we show MK2. Consider for fixed yE Y the composite of measurable maps 

w ~ (w, y) ~ Sw(y) (2.36) 

that maps 0 to Y. We see that K(y,') is the image of P wrt this map and so a 
probability measure which was to be shown. 

o 

Definition 2.1.13 (cf. [2]) Let K be a Markov kernel from (01, Ad to (02 , A 2 ) and 
E*(Ai) (i = 1,2) the set of Ai-measurable functions with values in [0,00]. Then K 
defines a map from E*(A2) to E*(Al) as"follows: 

for any! E E*(A2)' 

(K !)(Wl) def r K(Wb dw2)!(W2) 
l 0 2 

(2.37) 

Example 2.1.2 (cf. [2]) For the characteristic function XAa of an A2-measurable 
set A2 we get 

(2.38) 

Now we consider a special case of Example 2.1.1. 

Example 2.1.3 Let S : Y -+ Y be a continuous map map on (Y, (ly) and let 
(0, A, P, (Xt)tEI) be a counting process with values in Nand tEl. 
The map 

S!: Y -+ Y (2.39) 
y I-t SXt(w) (y), 
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where SXt(w) denotes the Xt(w)-th iterate of S, is well-defined for all w E O. Further 
Sw(y) is measurable wrt (w, V). In fact, Sw depends just on Xt(w) and so we get a 
countable, measurable partition of 0: 

0 U U(n) (2.40) 
nEN 

with U(n) 
def 

{w En: Xt(w) = n} (2.41) -

We define a Markov kernel by 

KHy,Y1) 
def 

P( {w : S!(y) E Yi} (2.42) 

- L P(U(n)) 
n:Sn(y)EYl 

- In dP(w) XYl 0 S!(y) 

for y E Y and Yi E By. 

We prepare a generalization of Example 2.1.3 with a definition and a technical 
lemma. 

Definition 2.1.14 Let A E :F\ {0} be fixed. We de~ne .J to be the union of a one­
point set {joo} and the set of finite sequences (Ab"" An) of subsets of A. Then .J 
is countable and we consider it as a measurable space, established with the discrete 
(J -alge bra. 
Let (0, A, P, (Xt)tEI) be a discrete or continuous time counting process with values 
in NA and index-set I = {I, ... , N} or [0, T], respectively. We define a map 

j:O -t :r 
w H- j(w) 

(2.43) 

If X. (w) is non-decreasing, has only finitely many jumps and at most jumps of size 1 
then we define j(w) to be the (time-ordered) sequence of jump sets of w. Otherwise 
we set j(w) = joo. We define for j E .J: 

U(j) def {w : j(w) = j} (2.44) 

Lemma 2.1.1 Let A E :F \ {0} be fixed and (0, A, P, (Xt)tEI) a discrete or con­
tinuous time counting process with bounded index-set I and values in NA such that 
for P -a. a. w the trajectory X. (w) is non-decreasing, has only finitely many jumps 
and at most jumps of size 1. Then the map j, as defined in Definition 2.1.14, is 
measurable. 
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Proof For the discrete time case this is obvious because then all subsets of 0 
are measurable. Now we consider the continuous time case with I = [0, T]. By 
assumption N = U(joo) is measurable and has measure zero. We have to show that 
U(j) is measurable for any j = (AI, ... ,An). For any qI,q2 EA, nl,n2 E N\ {O} 
and t E [0, T] we define AI(qI, nI, q2, n2) to be the set of all wE 0 \N that have at 
least nl jumps ~;,.t ql and at least n2 jumps at q2 and the nl th jump at ql happens 
at the same time as the n2th jump at q2. Similarly A2(ql, nI, q2, n2) is the set of all 
w E 0 \ N that have at least nl jumps at site ql and the nl th jump at ql occurs 
before the n2th jump (if any) at q2' We only show the measurability of the sets 
A2(·). The proof of the measurability of the sets AIO uses similar arguments. 

(2.45) 

is the set of all w E 0 \N that have at least nl jumps at site ql and the nl th of these 
jumps happens at the latest at time t. We define sets A>(ql, nI, t) etc. analogously. 
A~(ql' nb t) and A«ql, nI, t) are measurable, and so is A2(ql, nI, q3, n3) since 

A2(Qb nllq3,n3) = U (A~(QI,nl,t) nA«q3,n3,t)). (2.46) 
tE[O,T)nQ 

Now w belongs to U(j) if and only if, for alII ~ k ~ nand ql, Q2 E Ak and q3 E A \Ak 
the following holds: 

• If for exactly nl indices 1 ~ i ~ k the point ql belongs to Ai and for exactly 
n2 indices 1 ~ j ~ k the point q2 belongs to Aj then w E A I ( ql , nI, q2, n2). 

• If for exactly nl indices 1 ~ i ~ k the point ql belongs to Ai and for exactly 
n3 - 1 indices 1 ~ j < k the point q3 belongs to Aj then w E A2(ql, nI, q3, n3)' 

• If for exactly 1 ~ 0 indices 1 ~ kl < k2 < ... < k, ~ n a point q E A belongs 
to Aki then wE {w E 0 \N: 1rq 0 Xt(w) = I}. 

We see that U(j) is the intersection of finitely many measurable sets and hence 
measurable. 

o 

Example 2.1.4 Let us consider a generalization of Example 2.1.3. Let (Y, (!y) be a 
measurable space, A a non-empty finite set and (0, A, P, (Xt)tEI) a counting process 
with values in NA that has finite expectation and with P-almost surely only jumps 
of size at most 1. Let (SA1)A1CA be a family of continuous maps on YA, such that 
SAl changes at most the AI-coordinates, i.e. if YA E yA and q E A \ Al we have for 
the qth coordinate 1r q 0 SAl (YA) = Yq· 

For t E I and P-a.a. w E 0 with Xt(w) E NA we have a finite sequence of jump-sets 
j(w) = (AI,'" ,An), as defined in Definition 2.1.14, and it depends measurably on 
w, as was shown in Lemma 2.1.1. We define 
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S(w): yA --t yA 
def : 

YA t-+ Sj(w) = SAn 0 ••• 0 SAl (YA) 

We get a representation of KHy, Yl), similar to the one in (2.42): 

for y E Y and Yi E Y. 

KHy, Yi) - P{{w: Sw{x) E Yi}) 

In dP(w) XYl 0 Sw(y) 

I: P(U(j)) 
jE.7:Sj(y)EYl 

(2.47) 

(2.48) 

(2.49) 

We have seen in Example 2.1.4 that S(w) depends on j(w) only. In Section 2.2.3 we 
will approximate the Markov kernels for Poisson processes by kernels for Bernoulli 
processes, and in Section 2.3 do an analogous approximation for transfer operators. 
We prepare this in the following lemma. 

Lemma 2.1.2 Let A E :F \ {0}, T > 0, A > 0, (0, A, P, (Xt)tE[O,T») a Poisson 
process with parameter A and with values in NA and for· each integer N > AT, 
(OA,N, AA,N, PA,N, (Xt)tE{l, ... ,N}) the Bernoulli process with parameters A, T, Nand 
values in N A • Let 

j: 0 --t3 
jN: OA,N --t 3, 

(2.50) 

(2.51) 

be as defined in Definition 2.1.14, for the Poisson process and the Bernoulli pro­
cesses, respectively. We consider jN and j as random variables with different prob­
ability spaces but the same range. 
Then the sequence (jN )N>)'T converges to j in distributuion: 

Proof We define for all J c 3 the sets U(J) def j-l(J) and UN(J) def jN1(J). 
We have to show that for all J c 3 

(2.52) 

Because of 

I: PA,N(UN(j)) = I: P(U(j)) = 1 (2.53) 
jE.7 jE.7 
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and Lemma 2.1.3 (see below) we have to show (2.52) only for the special case J = 
{j}. 
For J = {joo} equation (2.52) holds because P(U(joo)) = 0 (by definition of the 
Poisson process) and UN(joo) = 0. 
If j contains a set with more than one element then P(U(j)) = 0 by Remark 2.1.3.2, 
and for the Bernoulli process with parameters A, T, N the probability of simultaneous 
jumps is 

PA,N({W:W has simultaneous jumps}) 

IAI (IAI) (>..T) n ( >..T) IAI-n < N~ - 1--
- L.J n N N ' 

n=2 

and this tends to 0 (as N -t 00) which was to be shown. 
Finally we consider j = ({ql},"" {qn}). We have 

PA,N(UN(j)) 

- (~) [~(l-~r-T[(l-~rr~ 

(2.54) 

(2.55) 

N(N - 1) ..... (N - n + 1) (>"T)n (1 _ >..T) (IAI-l)n (1 _ >..T) (N-n)IAI 
- n! Nn N N 

N(N - 1) ..... (N - n + 1) (1- >..T) -n (1 _ >..T) NIAI (>"T)n 
Nn N N n! 

and so 

lim P (U(J')) = e-IAIAT (>"T)n 
N A~ , • 

--+00 n. (2.56) 

This is equal to P(U(j)) because EqEA trq 0 X. is a Poisson process with parameter 
IAI>.. and for any nE N the lAin (ordered) sequences of jump-sites have all the same 
probability. 

o 

In the proof of Lemma 2.1.2 we have used the following lemma. 

Lemma 2.1.3 Let (an)nEN, (a~k)) (with kEN) be sequences of non-negative 
nEN 

real numbers such that 

1, (2.57) 
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and 

Then for any N C N: 

2: a~k) - 1 for all k 
nEN 

lim a(k) - an for all n. 
k-too n 

Proof Let € > o. Choose no and ko such that for all k 2:: ko: 

no 

2:an > 1-€ 
n=O 

no 

and 2: lan - a~k) I < €. 

n=O 

Then we also have for k 2:: ko 

no no no 

2:a~k) > 2: an - 2: lan - a~k) I 
n=O n=O n=O 

> 1- 2€ 
00 00 00 

and 2: lan - a~k)1 < 2: a(k) + 
n 2: an 

n=no+l n=no+l n=no+l 

< 3€ 

We conclude from (2.62) and (2.64) that 

00 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

(2.65) 

o 

As we are interested in spatially extended systems we need some definitions and 
facts about infinite-dimensional systems. 

Definition 2.1.15 SI is the one-dimensional sphere. We define it. to be isometric 
... ". as Riemannian manifold to R/27rZ. This defines in particular a metric (2S1 on SI 

and also the normalized Lebesgue measure on the (completed) Borel a-algebra. 
The diameter of SI is 

57 



def. (SI) 
CS = d1aml!Sl = 7r. (2.66) 

(It seems a bit redundant to' introduce the constant Cs instead of using 7r in the 
following. But we indicate that the proofs in Section 2.2 work if SI is replaced 
by any compact Riemannian manifold or more general by a bounded metric space 
with a Borel probability measure. Further we use the letter '7r' as notation for 
projections.) 
We set 

(2.67) 

and give it the product topology and product Lebesgue measure on the (completed) 
Borel a-algebra. 

For A C Zd we denote by 7rA the projection on the A-coordinates. 
Note that the product of the Borel a-algebras is the same as the Borel a-algebra for 
the product space. M is compact and metrizable in the following way: 

Definition 2.1.16 Let (b(q))qEZd be a family of positive numbers such that 

lim sup b(q) = O. 
R-+oo IIqll~R 

(2.68) 

Then the metric {!M on M, associated to !(b(q))qEZd, is defined by 

(2.69) 

for x,y E M. 

Remark 2.1.5 1. One can easily show that {!M, as defined in Definition 2.1.16, 
is in fact a metric and also compatible with the product topology. 

2. A sequence (X(n))nEN in M converges wrt the product topology iff it converges 
wrt to each coordinate, Le. (X~n))nEN converges for every q E Zd. The same 
holds also for nets (xA) AEF. 

3. The product topology does not distinguish any particular sites despite the 
the fact that the weights b(q) depend on q. Spatial shifts, like x I--? x with 
Xq = x q- r for some r E Zd, are homeomorphisms. 

4. The space CO(M, M) of continuous maps on (M, (!M) is complete wrt the metric 
defined by 

(!CO~M,M)(f, g) def sup (!M(f(X), g(x)). 
xEM 

(2.70) 

We denote by BCO(M,M) the Borel a-algebra wrt this metric. 
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Lemma 2.1.4 Let (0, A) be a measurable space and (fA)AE.1\{0} be a net of mea­
surable maps 

fA:O -+ CO (M, M) 

W M It 
(2.71) 

such that for all Al E :F\ {0} and wE 0 the net (7rAl 0 f~)AICAE.1\{0} converges (as 
A -+ Zd) in CO(M, (SI )Al), say to 7rAl olw. 
Then 

(2.72) 

defines a measurable map 

I: 0 -+ CO(M,M) (2.73) 
W ~ fw 

whose qth coordinate function is given by (2.72). 

Proof Fix wE 0, x E M and a metric flM like in Definition 2.1.16. We show that 
Iw is continuous in x. For that let € > 0 and choose Ra E N such that 

(2.74) 

for all q with IIqll > Ro· We note that the qth coordinate function of 7rAl 0 fw E 
CO (M, (SI)Al) is the same as the qth coordinate function Iw,q of Iw. 
By continuity of 7rBRo olw we can choose a 8 > 0 such that for all Y E Bo(x) and all 
q with IIqll s Ra: 

Cs b(q) fls1(fw,q(x), Iw,q(Y)) < €. (2.75) 

From (2.74) and (2.75) we conclude that for all yE Bo(x) 

(2.76) 

which was to be shown. Finally I depends measurably on w because it is pointwise 
limit of measurable functions with values in a metric space (cf. [22], p 117, for 
example). 

o 

Remark 2.1.6 1. Lemma 2.1.4 is in particular based on the compactness on M 
wrt the product toplology. 

M is not compact wrt the different metric, defined by 
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In this case the conclusion from 'local' to 'global' does not hold. 

2. As f in (2.73) is (A, Bco(M,M»)-measurable, the map (w, x) ~ fw(x) is (A x 
BM,BM)-measurable. We have proved this fact in Example 2.1.1. 

2.2 Infinite-Dimensional Systems 

In Example 2.1.4 we used a counting process with values in NA (for finite A) and a 
family of updating-maps on yA to define Markov kernels on the product yA. These 
kernels act on the product space CO (yA) of continuous functions (cf. Definition 2.1.13 
and Proposition 2.2.4). In view of spatially extended systems like coupled map 
lattices or interacting particle systems we would like to define analogous operators 
for infinite-dimensional systems (A = Zd). As counting process we take the Poisson 
process (0, A, P, (Xtk~o) with parameter A > 0 and values in Nl d

• 

Recall that the set NI, defined in Definition 2.1.7, of all w E ° such that X,(w) is 
not nondecreasing, jumps at time 0, has simultaneous jumps or jumps of size greater 
than one, has P-measure zero. So we have to consider updatings only at single sites . 

. They are given by a family of continuous maps (S4)QEZd such that Sq : M -+ M 
changes only the qth coordinate (cf. Example 2.1.4 for a definition.) We remark 
that such a family naturally gives rise to updatings at more than one point at the 
same time. We will use this when we approximate continuous time processes by 
discrete time processes.) . 
A problem is obviously that the Poisson process, restricted to any finite interval 
[0, t] of length t > 0 is not of finite expectation (cf. Definition 2.1.1 and Remark 
2.1.3. 1). P-a.s. there are infinitely many jumps and it is even impossible to define 
an order preserving bijection between them and N. However in Subsection 2.2.1 
we will for systems with finite range interaction show that for P-a.a. w E 0, any 
q E Zd and t > 0 the site q is affected in [0, t] (cf. Definition 2.2.1) by only finitely 
many sites, so that maps '1rq 0 st(w)' from M to (SI){q} and then also 'st(w)' from 
M to M can be defined in a natural way. The proof is based on a percolation 
argument. Percolation techniques, but different from the ones presented here, were 
already used by Harris in [14] for proving the existence of certain interacting particle 
systems of finite range. It follows in particular that 1rA ost(w) : M -+ (SI)A for finite 
A i- 0 is the limit (as A -+ Zd) of maps that are constructed by using the 'cut offs' . 
1rA 0 Sx,e(w), corresponding to a finite A :::> A and boundary conditions e. In fact 
this limit also exists and is independent of the boundary conditions for a huge class 
of infinite range interactions as we will show in Subsection 2.2.2. It gives rise to a 
natural definition of the system. But we also note that for infinite range interaction 
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each site depends with positive probability on infinitely many other sites. So we 
cannot use the same definition as for finite range interaction. 
In Section 2.2.3 we define Markov kernels K1 for the infinite system st and K~ A 

for the system S~ that fixes the AC-coordinates for a finite A. We show that K~ is 
the weak limit of K~ A (as A -+ Zd), i.e. the corresponding operators on continuous 
functions converge w'eakly. ' 

2.2.1 Finite Range Interaction 

Now we are considering an interaction of range R E N \ {O}, i.e. 7rq 0 Sq(x) depends 
only on XBR(q). (Recall that BR(q) was defined in (2.29).) 

Definition 2.2.1 Given R as above, q, if. E Zd, T > 0, w E O. We say that q 
affects q wrt (R, t, w) if there is a causal path from q to if. of step size at most R. 
(Recall that we defined path etc. in Definitions 2.1.9 to 2.1.11). If A c Zd we say 
that q affects A wrt (R, t,w) if if. affects any point in A wrt (R, t,w). 
We set 

Aff(R,t,w) (A) def {if. E Zd : if. affects A wrt (R, t, w)} 

and OR def {W:::It > O,q E Zd such that IAff(R,t,w)(q)1 = oo} 

where I· I denotes the cardinality. 

° 

T 

• 

• 
q-2 

r 
~ 

• 
q-l 

0 4 ~ 

4~ • • 
qo 

Figure 2.1: The history of qo 

, 

T 

• 
qa 

• 

• 
q4 

(2.77) 

(2.78) 

Figure 2.1 is a picture of Aff(l,T,w) (qo). We consider the finite time-interval (0, T] and 
nearest neighbour interaction and a particular w. For each jump we draw a cross 
at the particular point (q, t). There are jumps at (q2, t6), (qo, t5), (q-2, t4), (ql, ta), 
(qo, t2) and (qa, t 1) The last jump at qo is at time t2. We draw a thick horizontal line 
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between (qo, t2) and (q, t2) for all nearest neighbours q of qo because the updating 
of q2 depends also on these sites. So we have to consider the 'histories' of qo and 
its nearest neighbours before time t2. Note that q3 E Aff(I,T,w)(qO) and it is updated 
at time tl (and so affected by q4 for example) but that updating has no influence 
on qo (at time T). We also note that, for example, q-l affects qo (wrt (1, T, w» but 
not the other way around. So we have to consider only the time- and space-ordered 
percolation. 

Proposition 2.2.1 OR has P-measure zero: 

(2.79) 

Proof Aff(R,t,w) (q) is increasing in t and so 

OR = U U {w: IAff(R,t,w)(q)1 = co}. (2.80) 
tEN qEZd 

So it is sufficient to show that for fixed q E A and t > 0 the set {w : IAff(R,t,w) (q) 1 = 
co} has P-measure zero. If we set 

AN def {w: Aff(R,t,w)(q) et BN(q)} 

it is sufficient to show that 

Hm P(AN) = O. 
N-+oo . 

(2.81) 

(2.82) 

If q is affected by some if (j. BN(q) wrt (R, t,w) then there is a maximal causal path 
of step size at most R from q to if with at least No steps, where No is the smallest 
integer greater than ~. 
Consider any maximal causal path Q = (qo = q, ... , qn) of step size at most Rand 
with n ;::: No. Q is a maximal causal path wrt (t, w) iff the trajectory of w wrt the 
Poisson process induced by Q has exactly njumps. The probability of this isp>.(n, t) 
(which was defined in (2.4).) 
We set 

Cd,R def IBR(q)l. 

(Recall that BR(q) was defined in (2.29) and I· I denotes the cardinality.) 
Then 

IPath(q,n,R)1 = cdR . , 

because at each step in the path one can choose between Cd,R lattice-points. 
So we have ,I~ 

(2.83) 

(2.84) 

AN C U U {w: Q is maximal causal wrt(R,n,w)} (2.85) 
n>No QEPath(q,n,R) 
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and so 

P(AN) < L n ->.t (At)n (2.86) cdRe -,-
n"?No' n. 

< e(Cd,R-l)>'t(c At)NO_1_ (2.87) d,R IV, , 
o· 

which converges to 0 as No -+ 00 which was to show. For the last inequality we 
have used the estimate for the Lagrange remainder in Taylor's formula. 

o 

Definition 2.2.2 Let a finite range interaction (Le. aJamily of updatings) be given 
by (Sq)qEZd. Fix w E 0 \ (OR U NI)' 0 =f. A c A E F, ~ E M and t > O. 
Then w has only finitely many jumps in A x (O, t), say at (ql, td, ... , (qn, t n) with 
o < tl < ... < tn < t. 
We denote by xA. V ~A.O the point in M that has the same A-coordinates as x and 
the same AC-coordinates as~. 
We define 

Sq,A.,e : (SI)A. -+ i (SI)A. (2.88) 

Sq,A.,e(XA.) 
def ' 

'TrA. 0 Sq(xit. V ~A.o) 

and 

w E 0 \ (Ni U OR) t-+ Sx,e(W) E CO ((SI)\ (SI)A) (2.89) 

Sx'e(w)(x) 
def 

Sq .. ,A,e 0 ••• 0 Sql,A,e(XA), 

The maps S~ (w) are continuous as composites of continuous maps. Furthermore 
A,e 

S~ (w) depends only on wio.. (Le. on 'Trio.. oX.(w)) and (2.89) gives rise to a countable, 
A,e 

measurable partition of 0 \ (NI U OR): wand w belong to the same set of this 
partition if they have the same list of jump sites (ql,' .. ,qn) (ordered wrt the jump 

times). 
Now let A ::> Aff(R,t,w)(A) and ~ E M and define 

(2.90) 

(2.91) 

The definition does not depend on the choice of A or ~ because the right-hand side 
(rhs) of (2.91) depends, by definition, on the Aff(R,t,w) (A)-coordinates of x only. 
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Further the family (1rA 0 st(W)(X))AEF\0 is consistent in the sense that for any Al C 
A2 E :F\ 0: 

(2.92) 

and so defines a map 

(2.93) 

Proposition 2.2.2 The map st(w), defined in (2.93) and (2.91) is continuous and 
depends measurably on w. 

Proof We want to apply Lemma 2.1.4. For that we define for w E 0 \ (Ni U OR) 
maps 

ste(w) : M --* M (2.94) 

x 1-+ ste(w)(XX) V ~Xo 

The net (stehEF\{0} satisfies the assumptions in Lemma 2.1.4 and so all statements 
of Proposition 2.2.2 follow. 

o 

2.2.2 Infinite Range Interaction 

We extend our notion of 'st(w)' to interactions that are not necessarily of finite 
range. 
Consider a family (Sq)qEZd of maps Sq : M --* M such that Sq does not change the 
Zd\ {q}-coordinates and 1rqoSq : M --* SI is Lipschitz-continuous wrt all coordinates 
and the Lipschitz constants depend only on the relative positions of the sites, i.e. 
there are constants w(r) for all r E Zd such that for all q, ij E Zd and x, y E M with 
XZd\{q} = YZd\{q} (Le. x and Y differ at most in their ij-coordinates.) 

(}Sl (1rq 0 Sq (x), 1rq 0 Sq(Y)) S w(ij - q) (}Sl(Yq, Zq). (2.95) 

We further assume summability of the Lipschitz-constants, i.e. 

(2.96) 

with a positive constant Cl. 

We need the following technical lemma. 
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Lemma 2.2.1 If (W(q))qEZd is a family of non-negative real numbers satisfying 
(2. 96) then there are families (WI (q))qEZd and (W2 (q))qEZd of non-negative numbers 

such that 

W(q) - WI (q) W2(q) for all q E Zd, 

L: WI(q) < 2CI + 1 
qEZd 

and lim a(R) - 0, 
R-+oo 

where a(R) is defined by 

a(R) def sup W2(rl) ..... W2(rn ) 

Ilrlil+ .. ·+llr .. II=R 

(The empty product is defined to be equal to 1.) 

Proof We can choose To = 0 < Tl < ... E N such that 

L: w(q) ~ Cl - 4-(i+l) for i ~ 1. 

Ilqll<ri 

Then we have 

L: w(q) < Cl 
Ilqll<rl 

and L: w(q) < 4-(i+l) for i ~ 1. 
r(:::; 11 ql I <rHl 

We set for i ~ 1 and ri-l ~ IIqll < Ti: 

W2(q) def 2-i 

Wl ( q ) def 2i W ( q) . 

(2.97) 

(2.98) 

(2.99) 

(2.100) 

(2.101) 

(2.102) 

(2.103) 

(2.104) 

Then (2.97) is obviously satisfied. To prove (2.98) we use (2.102) and (2.104): 

00 

L: WI(q) - L: L WI(q) (2.105) 
qEZd i=O ri::;llqll<rHl 

00 

< 2CI + L2-i 

i=l 
- 2Cl + 1. 
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Now we prove (2.99). We show by induction (wrt i) that for every i ;::: 1 there is an 
nj. such that 

a(R) < 2- i for all R ;::: 'ni. (2.106) 

For i = 1 the statement is true with nl = 1 because a(R) ~ ~ for every R ;::: 1 as 
there is at least one factor on the right-hand-side in (2.100) and each such factor is 
at most ~. 
Now we assume now that that the statement holds for i and ni. We set 

def 
nHl = rj. + 2nj.. (2.107) 

Then every path (qo,.'" qn) of length R ;::: nHl has at least one step of size at 
least rj. (i.e. there is an 1 ~ 1 ~ n such that IIql - ql-lll ;::: rj.) or it can be divided 
into two paths both of length at least nj. (i.e. there is an 1 ~ 1 ~ m - 1 such that 
IIqo - qlll + .. ·lIql-l + qdl ;::: ni and IIql+1 - qlll + .. ·lIqn + qn-lll ;::: ni). So each 
product on the right-hand side of (2.100) has at least one factor less than or equal 
to 2-(i+1) or two factors less than or equal to 2- i • As the other factors are smaller 
than 1 the product is bounded by 2-(Hl) as was to be shown. 

o 

Now we fix (like in Lemma 2.2.1) a choice of (Wl(q))qEZd and (W2(q))qEZd and so the 
function a. 

Definition 2.2.3 We fix the metric {}M on M by . 

(2.108) 

Remark 2.2.1 It follows from Remark 2.1.5.1 and (2.99) that {}M is a metric and 
compatible with the product topology. 

Lemma 2.2.2 The maps Sq : M ~ M are continuous (wrt the product topology on 

M). 

Proof According to Remark 2.1.5.2 and the uniform choice of the Lipschitz­
constants (cf. (2.95)) we only have to show that the maps 'lrq 0 So : M ~ SI are 
continuous. 
If q ::J. 0 then the qth coordinate is not changed by So and 

a(lIqll) (}Sl('lrq 0 So (x) , 'lrq 0 So(y)) a(llqll) {}Sl (Xq, Yq) 
1 

< a(lIqlD a(lIqll) (}M(X, y) (2.109) 

< (}M(X,y). 
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If q = 0 we estimate 

a(O) l!Sl(7I"0 0 SO(X), 71"0 0 SO(y)) 

< a(O) L w(r) l!Sl(Xr,Yr) 

< a(O) L w(r) a(l~rll) l!M(X, y) 
rEZd 

< a(O) (2Cl + 1) l!M(X, y) 

(2.110) 

where we have used (2.95) for the first, the definition of l!M for the second and (2.97) 
for the third inequality. So 7I"q 0 So is continuous for all q E Zd. 

o 

In the following we estimate the distance (WIt the uniform ~orm) of 71"0 0 StE(w) 
and 71"0 0 S~,€(w) for different boundary conditions eAC and eAC (that might even 
depend on the time) at the AC-sites. Conditions (2.95) and (2.96) allow us to apply 
standard estimates for the 'error-growth' for composites of maps. Using the linear 
nature of the 'Lipschitz-condition' (2.95), we write the products of sums (over all 
coordinates, like in (2.95)) as sums (over paths) of products (corresponding to the 
particular paths). . 
We fix t > 0, A E :F and wEn \ NI. By definition of NI (cf. (2.27)) w has no 
jumps at 0, no simultaneous jumps and only finitely many jumps in A x (0, t), say 

at (ql, tt), ... , (qN, tN) with 0 < tl < ... < tN < t. We set to def 0 and fix arbitrary 
e = (e(to), ... , e(tN)), ( = (t(to) , ... , t(tN)) E MN+1 and x, yE M. 
We set x(O) def XA VeAC(O), y(O) def YA VtAC(O) and define for 1 ~ i ~ N recursively: 

{ 

7I"q 0 Sq(X(ti-l)) for q = qi 
Xq(ti ) def Xq(ti-l) for q E A \ {qi} . 

eq(ti) for q E A C 

(2.111) 

We define y(ti) analogously, using y and t instead of x and e, respectively. 
Two points in SI can have distance at most Cs = diames1 (SI). For estimating the 
distance between Xq(ti) and Yq(ti ) we define 

6 q(0) def l.q(O) def {l!Sl(Xq(~;,yq(O)) ~~~. ~ ~ ~C , 

and for 1 ~ i ~ N 
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for q E A \ {qi} 
for q E AC 

(2.112) 

(2.113) 



{ 

max{ cs, ErEZd w(r - q) 6 r (i - I)} for q = qi 
def -
= ~q (i - 1) for q E A \ {qi} 

Cs for q E AC 
6 q (i) 

The functions ~q and 6 q depend on x, y and A but we· do not refer to this in 
our notation. We have introduced them for estimating the difference between Xq(ti) 
and Yq(ti) (cf. 2.114)) and so the difference between Xq(t) and Yq(t). This differ­
ence depends also on wand so do the corresponding estimates for ~q and 6 q • In 
Definition 2.2.4 we will relate them to families of random variables (YA)AE.r\{0} and 
(YA)AE.r\{0}, respectively. For ~q we find a particularly nice expansion (cf. (2.115)). 
From this follows the convergence of YA to zero in expectation (as A --+ Zd). We will 
show that YA is bounded by YA and decreasing and so converges P-almost surely to 
zero by the Monotone Convergence Theorem (cf. Theorem 2.2.1). 

Proposition 2.2.3 The following holds for 0 ~ i ~ N: 

1. 

2. 

(ro=qi.rl ... ·.rn) 

EPathc<ti.W .9.A) 

3. If in particular XA = Y A then ! . 

~o(N(w)) 

< csa(distzd(q,AC
)) 

L WI(rl - ro) ..... WI(rn - rn-I) 
(ro=q.rl ... ·.rn) 

EPathc(t.w.q-+AC) 

where N(w) is the number of jumps of w in A x (0, t). 

Proof We prove (2.114) and (2.115) by induc..tion wrt i. 

(2.114) 

(2.115) 

(2.116) 

i 0: (2.114) holds by definition of ~q(O) and ~q(O) (cf. (2.112)). At time 0 no jump 
has happened and the only summand on the right-hand-side in (2.115) corresponds 
to the empty path at site q and so the equality in (2.115) holds. 
i-I --+ i: (2.115) holds obviously for i and q =f:. qi as there is no updating at site q 
and 

Pathc(ti, w, q, A) = Pathc(ti-b w, q, A) 

At site qi there is a jump at time ti and so we have 

~qi (i) = L w(r - qi) ~r(i - 1) 
rEZd 
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Using the representation (2.115) for .6r _ q(i-1) and the fact that every (qi, rb"" rn) 
E Pathc(ti,w,qi, A) can be (uniquely) split into (qi,rl) and (rt, ... ,rn ) 

E Pathc(ti-l, w, rI, A), we see that (2.115) holds for i. 
Next we show the first inequality in (2.114) for i. For q E AC the distances between 
Xq(ti) = ~q(ti) and Yq(ti) = [q(ti) is bounded by Cs and for q E A \ {qi} we have 
Xq(ti) = Xq(ti-d and Yq(ti) = Yq(ti-d· So in both cases the first inequality in (2.114) 
holds. 
Now we consider the site qi where a jump happens at time ti' Using (2.95), assump­
tion (2.114), for i - 1, and (2.118), we get 

eS l (Xq( ti), Yq(ti)) < L w(r - qi) eS l (Xq(ti- 1), Yq(ti-d) (2.119) 
rEZd 

< L w(r - qi) .6r (i - 1) 
rEZd 

< .6qi (i) 

So the first inequality in (2.114) is proved for i. The second follows immediately 
from (2.113). So statements 1 and 2 are proved. 
Finally (2.116) follows from (2.115)): .6q (O) = 0 for q E A. So we only have to sum 
over paths (ro = 0, ... , rn) that end in rn EA c. 
In particular, if we set R def 11 rnli, then 

b.rn (0) Cs, 

distzd(q, A C) < R, 

R < II rn - rn-Ill + ... + IIrl - roll, 

and so by the choice of WI, W2 and a, made before Definition 2.2.3, we get 

w(rl - ro) ..... w(rn - rn-I) 
~ wl(rl - ro) ..... wl(rn - Tn-d a(R) 
~ Wl (rl - ro) ... , . wl(rn - Tn-d a(distzd(q, A C)). 

Using (2.115), (2.120) and (2.123), we get (2.116) . 

(2.120) 

(2.121) 

(2.122) 

(2.123) 

o 

Remark 2.2.2 The summing over causal paths in Proposition 2.2.3 reflects that 
the result of an updating depends only on what has happened before. 

Definition 2.2.4 We define two families (YAhE.1\{0} and (YA)AEF\{0} of random 
variables on n \N1• Let A E F\ {0} and wEn \Nl' say with exactly N(w) jumps 

69 



in A x [0, t]. If we choose X,Y E M with XA = YA the value of 6 0 (N(w)) (as defined 
by (2.112) and 2.113) does not depend on x or y. We define YA(w) to be equal to 
this value: 

YA(w) def 6 0 (N(w)) (2.124) 

YA is defined analogously, using ~o (N (w)) instead of 6 0 (N (w) ). 

Remark 2.2.3 1. We remark that YA depends measurably on w. In fact there 
is a countable, measurable partition of n \ NI such that w and w belong to 
the same set (of that partition) if the sums for 6 0(tN(w)) and 6 0(tN(w)) (cf. 
(2.115)) are over the same paths (This gives rise to a measurable partition of 
n, as considered in Lemma 2.1.2). 

2. From (2.114) we see that 

(2.125) 

Now we fix e E M, x E 8 1 and define the map 8t~(w) like in (2.89). 

Theorem 2.2.1 1. There is a set M of P-measure zero such that 

(2.126) 

2. The limit 

(2.127) 

exists in CO (M, 8 1) for all wEn \ (NI U N2 ). It is measurable in wand does 
not depend on e. 

3. There is a set Ne n of P-measure zero such that we can define maps 

(2.128) 

for all q E Zd and wEn \ N. 
Further we can define a map 8 t (w) E CO(M, M) by 

(2.129) 

8 t (w) depends measurably on w. 
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Proof First we show that 

We set R def distzd(q, A C). Using (2.116) we get 

E(YA) 

< In dP(w) Cs a(R) 

x L: WI(TI - TO) ••••• WI(Tn - Tn-l) 

(ro=q.q •...• rn) 

ePathc(t.w.q-+AC) 

QEPath(o-+A C) 

xP({w: Q E Pathc(t,w,O -+ AC
)}) 

A path Q = (qo,qll'" ,qn) with qn E AC is causal wrt (t,w) 

(2.130) 

(2.131) 

(Le. Q E Pathc(t, w, 0, A)) iffthe Poisson process induced by Q has at least n jumps. 
So we can estimate the probability 

P( {w : Q E Pathc(t, w, 0, A)}) (2.132) 

(2.133) 

For the last line we have used Taylor's formula, as we did in (2.87). So we get, using 
(2.98), 

E(YA) ~ c. a(R) t. (~r (~W1(T) r 
~ C2 a(R) 

(2.134) 

(2.135) 

whith C2 = Cs eAt(2cl +1). (Recall that we consider a fixed t at the moment, so C2 is a 
constant.) By (2.99) we get 

(2.136) 

and, using (2.125), 

(2.137) 
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YA(W) is decreasing for all wEn \ NI: For a fixed w and 0 E Al C A2 E F 
we consider the (time-ordered) sequence of jumps (qI, tI)' . .. , (qn, tn) of w at sites 
qI,· .. , q2 E Al. It is a subsequence of the sequence of jumps (Q'I' td, ... , (Q'm, tm) 
of w at sites 7iI , ••• , 7jm E A2• The jumps (qi, ti ) in the first sequence correspond to 
jumps (7jj(i)' tj(i)) in the second one. Then qi = 7jj(i) and ti = tj(i) but the indices are 
different in general. 
We define ~~(i) and ~~(j) as in (2.112) and (2.113) for the sets Al and A2 , respec­
tively. We show that 

(2.138) 

If q E Ale then (2.138) obviously holds because ~~(i) = Cs is a~ upper bound for 
~~(j). For q E Al we show (2.138) by induction wrt i. 
If i = 0 then (2.138) is true by (2.112). Now assume that (2.138) holds for all q and 
a particular i < n. For q E Al \ {qi+l} we have 

(2.139) 

where the inequality holds by assumption and the equalities by (2.113). For the site 
q = qi+l we have by (2.113) 

~!(i + 1) - max{cs, I: w(r - q)~~(i)} (2.140) , 
rEZd 

> max{cs, L w(r - q)~~(j(i + 1) -I)} 
rEZd 

- ~~(j(i + 1)) 

which was to be shown. Here we have used that ~~(i) ~ ~~(j(i + 1) - 1). This 
follows for rEAl from the definition of ~: and ~~ and for rEAl from assumption 
(2.138) and the fact that ~~(j(i + D - 1) = ~~(j(i)). 
Using the definition of YAl (w) and YA2(W) (cf. Definition 2.2.4) we conclude 

(2.141) 

which was to be shown. 
We have proved (2.137) and that (YAhEF\{0} is decreasing. So we conclude (2.126), 
by using the Monotone Convergence Theorem. 
Now we prove the second statement in Theorem 2.2.1, using the first one. First 
we note that for wEn \ (Ni u N2 ) the map Si,e(w) is continuous since it is the 
composite of finitely many continuous (cf. Lemma 2.2.2) updating maps. 
For A C A we have 

(2.142) 
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So by (2.126) the net (-rro 0 ste(W))AE:F\0 is a Cauchy net with values in CO(M, SI) 
for wEn \ (NI u M) and so converges. Furthermore it is a pointwise limit, i.e. for 
each particular w, and so 11"00 st(-) is measurable in w. (The last conclusion uses 
the theorem that the pointwise limit of measurable functions with values in a metric 
space is measurable. (cf. for example [22], p. 117)). 
As mentioned in Remark 2.1.5.3 there is no distinction of the point 0 by the product 
topology. So for all q E Zd we can define 1I"q 0 st(w) for all w E 0 \ Nq where 
P(Nq) = O. In the same way we can define for each A E :F \ {0} and w E 0 \ NA 
(with p(NA) = 0) maps 1I"A 0 st(w) E CO(M, (SI)A) that depend measurably on w, 
and such that st(w)(x) depends measurably on (w, x). 
The set ' 

N
def U N A 

AEF\{0} 
(2.143) 

has P-measure zero. So by Lemma 2.1.4 the map st(w) is well-defined for w E O\N 
and the statements in 3. hold. 

o 

2.2.3 Markov Kernels 

In Section 2.1 we defined the Poisson process (0, A, P, (Xt)tE[O,Tj) with parame­
ter A and values in NA, the measure space (M, BM., Jl) and the measurable space 
(CO (M, M), BCO(M,M»). 
We have nets (SI)AEF\{0} of maps SI : 0 \ N -+ CO (M, M) with limit ST E 
CO(M, M), and the following statements hold: 

1. sI and ST are (A, Bco(M,M»)-measurable. 

2. ST is the pointwise limit of the net (SI)AE:F\{0}. 

3. For fixed x E M the map Sf(·)(x) : 0 -+ M is (A,BM)-measurable. 

More precisely, for finite range interaction (cf. Section 2.2.1) sr was defined in (2.93) , 
and the approximate SI in (2.94) (Now we drop the fixed boundary condition ~ and 
the ,-, in the notation for convenience.) For infinite range interaction (cf. Section 
2.2.2) SI is defined in the same way as for finite range interaction (cf. (2.128)) and 
the existence of the limit sr is established in (2.129). Note that these maps are a 
priori not defined on a set of P-measure zero. For these exceptional w E 0 we define 
ST(w) and SI(w) to be equal to the identity on M. 
Statement 3. follows from measurability wrt (w, x) of SI(w, x) (Proposition 2.2.2 
and Remark 2.1.6.2 for finite range interaction and statement 3. of Theorem 2.2.1 
and Remark 2.1.6.2 for infinite range interaction), the fact that one-point-sets in M 
are measurable, and Fubini's Theorem. 
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Like in Example 2.1.1 we set 

KI : M x BM -t [0,1] 
T def rfI' Ks (x, A) - P( {w : .,- (w)(x) EA}). 

The corresponding operator, applied to an I E CO(M), is 

(KII)(x) - L KI(x,dy)/(y) 

-1 dP(w) I 0 SI'(w)(x). 

(2.144) 

(2.145) 

(2.146) 

(2.145) is the definition (cf. (2.37)), and (2.146) is a consequence of (2.144). 
We define analogously the Markov kernels KI A and corresponding operators for 
the Poisson process with values in NA and Kt A N for the Bernoulli process with 
parameters A, T, N and values in NA (cf. Definiti~n 2.1.6). 

Proposition 2.2.4 KI and KJ,A are bounded linear operators on CO(M). 

Proof We give the proof for KI. The one for KJ,A is analogous. Let wEn \ N, 
I E CO(M) and (X(n))nEN a sequence in M with limit x. Then 

ST(W) (x) 

I 0 SI'(~)(x). 

Further 

111 0 ST(W) 1100 ~ 11/1100 
Using the Dominated Convergence Theorem, we conclude 

lim (KII)(x(n)) - lim f dP(w) I 0 ST(W) (x(n)) 
n~oo n~ooJn 

- In dP(w) 1 0 SI'(w)(x) 

- (KIf) (x). 

(2.147) 

(2.148) 

(2.149) 

(2.150) 

SO KI I is continuous. Continuity of the operator follows from (2.146) and (2.149). 
o 
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Proposition 2.2.5 The net (KJ,A)AE.r\{0} converges weakly to KI (as A ~ Zd), 
i.e. 101' all I E CO(M): 

(2.151) 

Proof We have 

IIKII - KI,A/lloo ~ L dF(w) 111 0 EfI'(w) - 1 0 sI(w) 1100' (2.152) 

Because of condition 2 on page 73 and (2.149) the rhs converges to 0 (as A ~ Zd). 
o 

2.3 Transfer Operators 

We recall some definitions and notations from [12]. 
For 0 > 0 we denote by A6 the annulus 

A6 def {Z Eel -0 ~ In Izl ~ o} 

and by r its positively oriented boundary. 

(2.153) 

For 0 =1= A C Zd the normalized Lebesgue-measure on (81)A is denoted by J-LA. For 
finite A it is given by 

d A(z) = dz 1 def IT dZp ..!:.. 
J-L (271"i) IAI z 271"i z 

pEA p 

(2.154) 

We also use dJ-LA(z) as a shorthand notation for the right-hand side of (2.154) for 
z E A~. 
In Assumption I (see below) we will fix a 0 > O. For A E :F we denote by 1lA 
the space of continuous functions on the polyannulus A~ that are holomorphic on 
its interior and write ~ . IIA for the uniform norm on 1lA. As a function on A~ is 
also a function on Af we can drop the index A and mean the uniform norm on 
the infinite-dimensional polyannulus. 1l is the vectorspace of all consistent families 
cP = (CPAhE.r of functions CPA E 1lA where consistency means 

(7I"Al CPA2)(ZAJ ~ 1 dJ-LA2\Al (ZA2\Al) CP(ZAl V ZA2\A1) 
(SI )A2\Al 

= CPAl 

(2.155) 

for all Al ~ A2 E :F and ZAl E A~I. (N ote that we use the same symbol '71" A' 
for projections of functions and projections of coordinates, for example from M to 
(SI )A.) 
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For 0 < {} < 1 and cfJ E 1-£ we define 

IlcfJll" 

11 cfJllvar 

We set 

def {cfJ E 1-£ : 11 cfJll" < oo} 
def 
- {cfJ E 1-£ : 11 cfJ 11 var < oo} 
def 1-£bv n 1-£". 

Then (1-£",11'11,,) is a Banach space. For cfJ E 1-£bv and'lj; E CO(M) we define 

(2.156) 

(2.157) 

(2.158) 

(2.159) 

(2.160) 

(2.161) 

(2.162) 

Finally we recall the definition of a transfer o~rator..:.. Let ji, b.!....a measure on the 
(completed) Borel a-algebra of a metric space M and S : M -+ M be a non-singular 
measurable map. The Perron-Frobenius operator (or transfer operator) [,S, 

acting on Ll(M), is defined via the equation 

(2.163) 

that must hold for all 'Ij; E VX>(M) and cfJ E Ll(M). 
The Markov kernels for our stochastic systems are analogous to the composition 
operator 'oS' (with deterministic S), acting on functions. We define transfer op­
erators for this case analogously. These operators act on elements of 1-£" that do 
not in general correspond to elements of Ll(M). Recall (see [12]) that 1-£~v can be 
identified with a subset of rca(M) (or, in other words, a subset of Borel measures). 
So for example in Theorem 2.3.1 we will show that the equation analogous to (2.163) 
holds for 'Ij; E CO(M) (rather than DXl(M)) and cfJ E 1-£';. 
Now we consider a special class of interactions (cf. [12]), namely a family (SA)AEF 
of maps on M that can be written as 

SA: M -+ M (2.164) 

SA(Z) FA 0 TA(z) V zAc 
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where 

FA: (SI)A ~ (SI)A (2.165) 
ZA = (Zq)qEA t-+ (fq(Zq))qEA 

and 

TA:M ~ (SI)A (2.166) 

(TA (z))q 
def 

Z, exp (2"i' t;; g".(z) ) for q E A (2.167) -

and fq and gq,k satisfy the following assumptions: 

Assumption I F(z) = (Jp(Zq))qEZd where fq : SI ~ SI are real analytic and 
expanding (Le. f~ ;::: Ao > 1) maps that extend for some 81 holomorphically to the 
interior of an annulus A61 • In Proposition 1.3.1 and 1.3.2 of [12] we have shown that 
the holomorphic extension to a sufficiently thin annulus A6 is expanding in the sense 
that the preimage of A6 wrt fq lies in the interior of A6. We fix such a 81. Then 
for every q E Zd the Perron-Frobenius operator Cfq, actin~ on ll{q}, has a simple 
largest eigenvalue 1 with eigenvector hq , such that 7r0(hq) = 1 and the restriction 
of hq to SI is positive' and it splits into 

(2.168) 

where Qq is a projection onto span(hq). We assume that there are positive constants 
Ch and Cr such that the following two estimates hold for all q E Zd: 

IIhqll{q} < Ch 

IIn~lI{q} < c,.rt 
(2.169) 

(2.170) 

where 11 • lI{q} denotes the uniform norm on ll{q} (for this we might have to take 8
1 

even smaller) and the induced operator-norm, respectively. We note that this holds 
in particular if fq does not depend on q. 

Assumption 11 For all q E Zd and k ;::: 1 each map gq,k extends to a holomorphic 
map gq,k : AZk(q) ~ C and its sup-norm (of modulus) is exponentially bounded by 

11 gq,k IIABk(q) :::; Ca exp (-cgkd
) (2.171) 

61 

t': with Ca > 0 and 'large' cg > O. (In several statements in Section 2.3 and 2.4 a 
lower bound for cg will come out of our computations. The idea is always that our 
estimates work, provided cg is bigger than a certain constant.) 
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For A E :F \ {0} we denote by hA the function 

hA(ZA) def IT hq(Zq) , 
qEA 

where hq is as in Assumption I. We set h0 = 1 and 

(2.172) 

hZd def (hA)AE:F E 1l. (2.173) 

We further define for a fixed e E M and A E :F \ {0} and Al ~ A the updating at 
the AI-sites with fixed boundary conditions eAO outside A (or cut-off of SAJ: 

SAltA: (SI)A -+ (SI)A (2.174) 
ZA t-t 'irA 0 SAl (ZA V eAO). 

And for ZA\Al E (SI )A\Al we define 

'lrAl 0 SA1,A(' V ZA\AJ : (SI)Al -+ (SI)Al (2.175) 
ZAl t-t 'lrAl 0 SA1,A(ZAl V ZA\AJ. 

Remark 2.3.1 1. The map defined in (2.175) is the cut-off of S wrt Al and 
boundary conditions ZA\Al V eA. So.we can use the special representation in 
terms of integral kernels for its transfer operator, restricted to 1lAll for the 
proposition below. 

2. The family (Sq)qEZd, defined by (2.164), satisfies conditions (2.95) and (2.96) 
as one can see from [12]: The partial derivatives are estimated in the proof of 
Proposition 1.3.1 there. 

Lemma 2.3.1 Let A E :F \ {0} be the disjoint union of Al and A2 • The transfer 
operator, restricted to 1lAl1 of the map SA1,A : (SI)A -+ (SI)A, defined in (2.174) 
has the following representation in terms of integral kernels: 

Proof Let 'IjJ E CO((Sl)A). We use the notation 4JwA2 for the function WAl t-t 

4J(WAl V WA2)' 
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( dJ-LA(WA) 'IjJ 0 SAlIA(WA) 4>(WA) (2.177) 
l(sl )A 

( dJ-LA2(WA2) ( dJ-L
A1

(WAJ 'IjJ(. V WA2) 0 'lrA1 0 SA1,A(WA1 V WA2) 
l(sl )A2 1(s1 )A1 

X 4>(WA1 V WA2) 

1 dJ-LA2(WA2) 1· dJ-L
A1

(WAJ 'IjJ(WA1 V WA2) 
(Sl )A2 (S1 )A1 

x (£1I"A1 OSA1,A('VWA2)4>WA2) (w A1) 

- ( dJ-LA(WA) 'IjJ(WA) (£1I"A10SA1.A(,VWA2)4>WA2)(WA1) 
1(S1 )A 

Using the representation of the transfer operator for 'lrA1 0 SA1,A(' V WA2) that we 
established in Proposition 1.3.3 of [12], we obtain the rhs of (2.176). 

o 

Remark 2.3.2 We see in particular that £SA A 'acts on the AI-coordinates' only. 
1. 

There is no integration wrt the A2-coordinates. 

For q E Al we can split the factor 

(SAl A(ZA1 VWA2))q h ( ) ( )' ~ ( ) 
(S (' )) = q wq , Zq + rq wq , Zq + L...J !3q,k wq , ZA1 V W A2 V ~AC 

AloA ZA1 V WA2 q - Wq k=1 

(2.178) 
as in [12] and we can represent the particular summands graphically as h-line, r-line 
or k-triangles. For q E A2 there is no integration and we draw an identity-line in 
the configuration. 

Definition 2.3.1 We define for fixed A E :F \ {0}, ~ E M and a finite sequence 
j = (Ab' .. ,An) E J of subsets of A the map 

(2.179) 

S'A J, 

Recall that in Lemma 2.1.2 we defined the maps j and jN for the Poisson and 
Bernoulli process, respectively. For almost all wEn there is a finite sequence 
j(w) = (AI,'" ,An) and so 

def ~ 
£S'( ). = £SA A 0 ••• 0 L-SA • J W la n, I,l\. (2.180) 

is well-defined. 

79 



We set 

.cIA,N def L PA,N(W).cSj(W),A (2.181) 
WEnA,N 

where PA,N is the probability measure for th\~ Bernoulli process with parameters .x, 
T, N and values in NA, as defined in Definition 2.1.6. 
Formula (2.181) defines the transfer operator for K'I,A,N (cf. (2.144) - (2.146)) as 
we will show in the following proposition. The limit (as N --+ 00) is the transfer 
operator for KI A' Our proof of the latter statement is quite long and technical and , 
will be completed in Proposition 2.3.6. 

Proposition 2.3.1 .c~,A,N is the transfer operator for K'I,A,N1 i.e. 

Proof 

f dp,A(ZA) (KI,A,N'if;) (ZA) if>(ZA) 
J(Sl)A 

= f dp,A(ZA) 'if; (ZA) (.c~,A,Nif» (ZA) 
J(Sl)A 

f dp,A(ZA) (K~A,N'if;) (ZA) if>(ZA) 
J(Sl)A 

1. dp,A(ZA) L PA,N(W) 'if; 0 Sj(w),A(ZA) if>(ZA) 
(Sl)A WEnA,N 

- L PA,N(W) f dp,A(ZA) 'if; 0 Sj(w),A(ZA) if>(ZA) 
WEnA,N J(Sl)A 

- L PA,N(W) 1S1 A dp,A(ZA) 'if;(ZA) (.cSj(W),A if» (ZA) 
wEnA,N ( ) 

- f dp,A(ZA) 'if;(ZA} L PA,N(W) (.cSj(W),A if» (ZA) 
J(Sl)A wEnA,N 

- 1 dp,A(ZA) 'if;(ZA) (.cIA,Nif» (ZA) 
(Sl )A 

(2.182) 

(2.183) 

o 

Now we are studying the rhs of (2.181), for the restriction of the operators to ?-lA, 
in more detail for. The sum is over all W E o'A,N. If w(q, i) = 1 then the qth site is 
updated at time i. The updating zq(i) = Sq(zA(i - 1) V eAO) depends in general on 
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all other sites at time i - 1. In the representation (2.176) for the transfer operator 
a factor like (2.178) and an integration wrt the corresponding coordinate Zq occurs. 
We represent the particular summands on the rhs of (2.178) graphically as h-line, 
r-line or k-triangle (cf. [12] and also Figure 2.2). 
If w(q, i) = 0 then the site q is not changed at time i. We have Zq(i) = zq(i -1) and 
represent this by an identity-line from (q, i-I) to (q, i). 
By Definition 2.1.6 of the Bernoulli process we have for each (q, i): 

. _ {I with probability p 
w(q,~) - 0 with probability 1 _ p , (2.184) 

where p = >;J as in (2.22). The family (w(q, i))(q,i)EAxI is independent. For a 
particular w E nA,N we get a reduced configuration Cr by choosing h-lines, r-lines 
or k-triangles at all (q, i) for which w(q, i) = 1. At the other points (q, i) (with 
w(q, i) = 0) there are identity-lines. This reduced configuration corresponds to an 
operator Cc ... 

Definition 2.3.2 Let Al ~ A E :F\ {0} and I = {I, ... , N}. 

1. A full configuration C on A x I is an assignment of each point in A x I to 
either an h-line, r-line or k-triangle. We denote the set of all full configurations 
on A x I by Conf(A, N). (Figure 2.3 shows a full configuration. The r-lines 
are drawn thick and the h-lines thin.) 

2. A reduced configuration Cr on A x I is an assignment of each point in 
A x I to either an h-line, r-line, k-triangle or an identity-line. We denote the 
set of all reduced configurations on A x I by Confr(A, N). (Figure 2.2 shows 
a reduced configuration. The h-lines and r-lines are drawn as in Figure 2.3 
and the identity-lines are dotted.) 

3. We call the h-lines, r-lines, k-triangles or an identity-lines the items of the 
configuration. 

4. If (q, i) E A x I is assigned to an h-line then we also say that there is an h-line 
from (q, i - 1) to (q, i). In this case we also say that there is an h-line at 
(q, i). Our terminology for the other items is analogous. 

5. The basepoints of a k-triangle at (q, i) are the points (if, i-I) with if E 

Bk(q). 

We set 

if (q, i) is assigned to an identity-line 
otherwise 
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Iw(Cr)1 def L w(Cr)(q, i). (2.186) 
(q,i)EAxI 

" r " 0 • • 0 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

1 1 • • I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

2 2 • • I I I 
I I I 
I I I 

I I I 
I I I 

I I I 

I I I 
I I I 

3 3 • • • I I 
I I 

I I 
I I 

I I 
I I 

I I 

4 
I • 4 • I I 

I I 
I I 
I I 
I I 

I I 
I I 
I I 

5 5 • I • I I 
I I 
I I 
I I 
I I 
I I 
I I 

6 • I I • 6 • • 
ql q2 q3 q4 qs ql q2 q3 q4 qs , 

V 
, , J 

v 
At At 

Figure 2.2: A reduced configuration Figure 2.3: A full configuration 

Remark 2.3.3 A full configuration is, of course, the same as a configuration de­
fined in [12]. In contrast the reduced configurations can have identity-lines as items. 
Recall the definitions of maximal chains (see Definition 1.5.2 of [12]) for full config­
urations. We define these for reduced configurations analogously. 

We remark that, as in [12], certain combinations of lines and triangles lead to the 
operator CCr being equal to zero, namely if 

1. an h-line follows (wrt the time-order) or is followed by an r-line and their 
common endpoint is not a basepoint of any triangle (cf. Figure 2.4(a).) 

2. a triangle is followed by an h-line and their common point is not a basepoint 
of any triangle (cf. Figure 2.4(b).) 
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3. an h-line is followed by an identity-chain and then an r-line and no endpoint 
of the identity-chain is a basepoint of a triangle (cf. Figure 2.4(c).) 

4. an r-line is followed by an identity-chain and an h-line (in this order) and no 
endpointof the identity-chain is a basepoint of a triangle (cf. Figure 2.4(c).) 

5. (the apex of) a triangle is followed by an identity-chain and an h-line (in this 
order) and no endpoint of the identity-chain is a basepoint of a triangle (cf. 
Figure 2.4(d).) 

The proofs for the first two cases are given in [12]. The proofs of the other statements 
are (modulo notation) the same. 
We further note that for Al ~ A and the expansion 

,.T ' 
7rAl 0 J..,S,A,N - (2.187) 

(2.188) 

where the second sum is over all reduced configurations, we get 7rAl 0 CCr = 0 if 

6. Cr ends with an r-line or a triangle in (A \ AI) x'{N} (cf. Figure 2.4(e) and 
Figure 2.4(f).) . 

7. Cr ends with a maximal identity-chain in' (A \A I ) x {N}, say from (q, i l -1) to 
(q, N), such that (q, il-1) is the endpoint of an r-line or the apex of a triangle 
but not a basepoint of any triangle (cf. Figure 2.4(e) and Figure 2.4(f).) 

In view of this we make the following definitions. 

Definition 2.3.3 Let Al C A E :F \ {0} and N be fixed. 

1. We call a reduced configuration, as considered in the expansion (2.188), a 
non-zero reduced configuration on A x I that ends in Al if none of 
the cases 1 - 7 occurs. (Figure 2.2 shows a non-zero reduced configuration on 
A = {ql, ... ,qs} ending in Al = {q3,q4,qS}. Note that such a configuration 
could also end with an h·line in Al x {N}.) 

2. We define Confr(A, N, Ad to be the set of all non-zero reduced configurations 
on A x I that end in Al. 

3. We call a full configuration on A x I a non-zero full configuration that 
ends in Al if none of the cases 1,2 or 6 occurs. (Figure 2.3 shows a non-zero 
full configuration on A = {qI,"" qs} ending in Al = {q3, q4, qs}.) 
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h r 

r h 

(a) Rule 1 (b) Rule 2 

I 
I 

lid 
I 
I 

rh I~"N)' AfX{N} 

I 
I 

: id 
I 
I 

.. (q,N)E 

AfX{N} 

rh I' 
I I 
I I 

: id : id 
I I 

1, rh 

(c) Rules 3 and 4 

I 
I 

lid 
I 
I 

• (q,N)E 

AfX{N} 

(d) Rule 5 (e) Rules 6 and 7 (f) Rules 6 and 7 

Figure 2.4: Patterns in reduced configurations that- give rise to the zero-operator 

4. We denote by Conf(A, N, AI) the set of all non-zero full configurations on 
A x I that end in At. 

We would like to find for our stochastic system similar estimates as for the deter­
ministic coupled map lattices (cf. [12]). For this we extend reduced to a full config­
urations and estimate the sums, weighted by probability factors, by introducing an 
effective decay rate and an effective coupling parameter. 

Definition 2.3.4 We define the extension map 

Ext: Conf,.(A, N, Ad -+ Conf(A, N, At) x nA,N 

Cr H ext(Cr ) x w(Cr ). 

w(Cr ) was defined in (2.185) and ext(Cr ) is defined as follows: 

(2.189) 

(2.190) 

If Cr has an h-line, r-line or k-triangle at (q, i) then so has ext(Cr). Suppose Cr has 
a maximal identity-chain, say from (q, il -1) to (q, ir)' Then ext(Cr ) has an h-chain 
from (q, i l - 1) to (q, ir) in any of the following three cases: 
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1. (q, i , - 1) is the endpoint of an h-line, but not a basepoint of any triangle. 

2. (q, ir) endpoint of an h-line, but not a basepoint of any triangle. 

3. (q, ir) E (A \ AI) x {N}. 

Otherwise ext (Cr) has a maximal r-chain from (q, i, - 1) to (q, ir). 

We remark that ext(Cr) has the same triangles as Cr. 
The full configuration C E Conf(A, 6, AI) in Figure 2.3 is the extension ext(Cg) of the 
reduced configuration Cg E Confg(A, 6, AI). C has for example a maximal h-chain 
from (q3, 1) to (q3, 4) because Cg has a maximal identity-chain from (q3, 1) to (q3, 3) 
and (q3, 3) is the endpoint of an h-line but not the basepoint of a triangle, so case 2 
applies. 
The maximal identity-chain of Cg from (q2,4) to (q2, 6) corresponds to a maximal 
h-chain of C because it ends in (q2,6) E (A \ AI) x {N} and case 3 applies. 
As qs E Al the identity-chain of Cg from (qS, 0) to (q5,6) gives rise to a maximal 
r-chain of C. 

The map Ext is a bijection onto its image. So we can rewrite the representations in 
(2.187) and (2.188): 

11'" Al 0 .c~,A,N = ~ ~ PA,N(W) 1I'"AI o.cc,.. (2.191) 
CEConf(A,N,AI) (cr,w)eCOnfr{A,N,AI)XOA N: 

Ext{Cr)={C,w) , 

In general Cr is not uniquely determined by the condition C = ext(Cr). If C has 
for example a maximal r-chain, from (q, i, - 1) to (q, ir) say, then Cr can have any 
sequence of r-lines and identity-lines from (q, i, - 1) to (q, ir)' corresponding to the 
different values of (w(q, i,), ... , w(q, ir)) E {O, 1 }ir-il • For any chosen w = w(Cr) the 
reduced configuration Cr has exactly 

k = card{(q, i) : i, ~ i ~ ir and w(q, i) = I} (2.192) 

r-lines between (q, i, - 1) and (q, ir) and the sequence of r-lines and identity-lines 
corresponds to an operator 'R.~. 
The event that w(q, i) = 1 for exactly k values i, ~ i ~ ir has probability G) pk(l­
p)n-k where n = ir - i, + 1. So if C (in (2.191)) has an r-chain of length n the sum 
over all possible corresponding sequences of r-lines and identity-lines in Cr , weighted 
with the corresponding probabilities, gives rise to an operator 

nN.,(n) dof ~ (:)pk(l_ p)"-kn: 

(p'R.q + (1 - p) idqt 
- (idq - p (idq - 'R.q))n 
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with p = ~, as in (2.22). We note that 

nN,q(nd nN,q(n2) = nN,q(nI + n2). 

Using (2.170), we estimate the norm of (2.193) by 

RN(n) def 11'" ()II /'\,N,q n L(ll{q}) 

< t. (~)P'(l- p)"-'c,.~' 
- c,.(1 - (1 - TJ)pt. 

We therefore make the following definition. 

Definition 2.3.5 The effective decay rate is defined as: 

def ( ) TJe = 1 - 1 - TJ p. 

Then (2.195) reads 

(2.194) 

(2.195) 

(2.196) 

(2.197) 

TJe = (1 - p) • 1 + p' TJ is the convex combination of 1 and the original decay rate TJ. 
For p --t 0 (equivalently N --t 00) TJe tends to 1. 

Now we consider a maximal h-chain in ext (er), say from (q, il - 1) to (q, ir)' If 
(q, ir) E (A \ AI) x {N} then er can have any sequence of h-lines and identity-lines 
from (q, i l - 1) to (q, N) (in particular a maximal identity-chain). This sequence 
corresponds to the composite of operators Qq and idq • Summing over all possible 
sequences, we see that the corresponding operators, weighted with their particular 
probabilities, give rise to an operator: 

The projection ?TAl in (2.191) is an integration wrt all (A \ Ad-coordinates, in par­
ticular also wrt the q-coordinate. As ?Tq = ?Tq 0 idq = ?Tq 0 Qq we can replace the full 
operator in (2.198) simply by Qq. 
If the maximal h-chain does not end in (A \ AI) x {N} then er has a sequence of 
h-lines or identity-lines from (q,i l -1) to (q,ir ) in which at least one h-line occurs. 
(For otherwise, if no h-line occured, ext (er) would have an r-chain from (q, it - 1) 
to (q, ir)') It corresponds to an operator 
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QN,q(n) = t (:) (1- p)kpn-kQ: 

= (1 - (1 _ p)n) Qq 

(2.199) 

(2.200) 

So we see that each maximal h-chain in a full configuration C in (2.191) gives rise 
to an operator which is a scalar multiple of Qq. 
For h-chains ending in (A \Al) x {N} the scalar factor is equal to 1 and for a maximal 
h-chain of length n and not ending in (A \ Ad x {N} it is equal to 1 - (1 _ p)n. 
The product of all these factors is 

(2.201) 
H 

where the product is over all maximal h-chains H not ending in (A \ Ad x {N}. 

As mentioned before, Cr has exactly the same triangles as ext (er), so if there is a 
triangle from (q, i - 1) to (q, i) then w(q, i) = 1 which happens with probability p. 
(Note that if w(q, i) = 0 then Ext(Cg,w) =1= C for any Cr E Confr(A, N, Al)') So 
in (2.191) we just sum over such Cr with w(Cr)(q, i) = 1 which leads to a factor p. 
In our estimates for the deterministic coupled map lattices we have seen, that each 
triangle contributes (among other factors) a factor f in the estimates. In case of the 
system we are considering it also contributes an additional factor p. This motivates 
the following definition. 

Definition 2.3.6 We define the effective coupling parameter: 

def 
fe = fp. 

Recall from [12] that for C E Conf(A, N, Al) we have the representation 

1rA
1

0CC - 1rA1 00p(N,C)o ... oOp(1,C) 

with Op( i, C) def ® Qq ® Rq ® Bk,q 

qEAQ(i,C) qEAn.(i,C) . k~l 
qEAS.k(i.C) 

(2.202) 

(2.203) 

where AQ(i, C) is the set of q E A such that there is an h-line from (q, i -1) to (q, i), 
An(i, C) is the set of q E A such that there is an r-line from (q, i - 1) to (q, i) and 
AB,k(i, C) is the set of q E A such that there is a k-triangle from (q, i - 1) to (q, i) 
in C. The operators Qq, Rq and Bk,q are integral-operators with kernels hq, rq and 
i3k,q, respectively. (In [12] we only used the representation by integal kernels. The 
notation '<8>' here means that the integral kernel for the operator kC in (2.203) is 
the product of the particular integral kernels. It should not be mixed up with the 
notation of tensor products. The representation in (2.203) is more convenient for 
the following considerations.) 
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Definition 2.3.7 For fixed T > 0 we define the operator with effective param­
eters corresponding to C E Conf(A, N, Ad: 

~T def 
CN(C) ?rAI 0 opeN, C) 0 ••• 0 Op(1, C) 1rAI 0 Cc - (2.204) 

with Op(i,C) 
def ® Qq ® 'RN,q ® pBk,q. -

qEAQ(i,c) qEA:R-(i,C) k>1 
qEAB~k(i,C) 

Remark 2.3.4 We point out that the term effective coupling parameter is rather 
heuristic. It does not mean that we took a different coupling strength for our original 
system. But, as we see from (2.203), we use an operator pBq,k rather than just B k 

(like in (2.202)) for each triangle and so in our estimates we use fe rather than the 
original coupling parameter f. 

In the next proposition we summarize our study of the relation between full and 
reduced configurations. First we recall some definitions. 

Definition 2.3.8 (cf. Definition 1.~.2 in [121) 

• For C E Conf(A, N, AI) we denote by Xc the set of points q E A that appear 
as the Zd-coordinate of a base point (q, t) of a triangle in C . 

• Ac is the set of those points q EA! that appear as the Zd-coordinate of an 
apex (q, t) that does not lie above any, other tr:iangle . 

• Ar is the set of q E A \ Ac that appear as the Zd coordinate of an r-line. (So 

Ar ~ Al') 

def - A • We write A(C) = Ac U r' 

Proposition 2.3.2 1. We can write the'transfer operators in terms of full con­
figurations and reduced parameters: 

eT - /1r 0 I' L -T 
1r Al 0 S,A,N - 11 Al J..c (2.205) 

CE Conf(A,N,At) 

2. If C E Conf(A, N, Ad has ,exactly n{3,~ k-triangles, ~r r-l~nes, nh h-lines, fir 

maximal r-chains, fih maxzmal h-chams, and A(C) zs as m Definition 2.3.8, 
then we have for all rP E 1[,0 the estimate: 

I/1rAI 0 l~ rPAIIAI ':' 

< (c, <,) In.1 exp ( -c, ~ kdnp,k ) c~· rf' ry;" "<PA(C)/i A( Cl 

(2.206) , 
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and 

(2.207) 
00 

< 19-IArl IT 19-(3k)dnp,k 114>1111. 

k=l 

Proof Representation (2.205) results from our considerations beginning with 
(2.191). We have seen that we can replace the operator sum over reduced configu­
rations, weighted with probability factors, by an operator with effective parameters 
and corresponding to a full configuration. 
Note that for each triangle in C we get a probability factor p = ~. The proof of 
(2.206) is analogous to the one of (1.57) in [12]. We only have to use the effective 
parameters 'fJe and fe instead of 'fJ and f, respectively. Note that the factor eN, 
defined in (2.201), is bounded by 1. (2.207) is formula (1.58) in [12]. 

o 

Using (2.206) and (2.207) we will estimate (2.205) analogously to the estimate of 
(2) in [12]. Again we sum over all C E Conf(A, N, AI) but this time we have to use 
the effective parameters fe and 'fJe. A problem is that 'fJe is not uniformly (in N) 
bounded away from 1 (cf. Definition 2.3.5 and the remark thereafter). However in 
the following proposition we establish a bound for (2.205) that holds uniformly in 
N. 

Proposition 2.3.3 For sufficiently_ small f and large decay parameter Cg of the 
interaction we can choose 19 > 0, 19 > 0 and c > 0 such that for all T > 0 and 
N > AT the following estimate holds for all 4> E 1£11 and Al ~ A E :F: 

L JAl II7rAl 0 l~ 4>AII ::; c4114>1I11 
CEConf(A,N,Al) 

(2.208) 

Further for sufficiently large T we can choose J = 19. 

Proof The estimates in this proof hold, provided cg is sufficiently large and f small. 
We can choose the bounds for these parameters independently of A, AI, T and N. 
We pointed out in [12] in detail how to get such bounds and do not repeat the 
arguments here again. 
We fix A, N and Al. First we estimate the sum over all C E Conf(A, N, Ad with 
length(C) = N. Let C have exactly n{3,k k-triangles. We can assign to it a set Ac (cf. 
Definition 2.3.8) and a labelled tree-graph with parameter lAc I like in [12]. (Recall 
that, if we consider a particular Ac and set lAc I = K, there are not more than 

4K TI~1 C:dnp,k such graphs.) Each triangle has an a-r-chain of length between 0 
and N. The labelled tree-graph and the length of all a-r-chains (cf. the proof of 
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Proposition 1.B.l in [12] for a definition) determine the positions of all triangles and 
a-r-chains in a configuration C. At each k-triangle there can be attached upwards or 
downwards going r-chains or h-chains. Summing over their particular choices gives 
rise to a factor 

(2.209) 

for each k-triangle. We split 

__ )..T 

fe - ff-
N 

(2.210) 

with def Vf f -

So the estimate for the norm of the operator corresponding to a k-triangle gives rise 
to a factor 

" 

(2.211) 
I 

For the number 1 of long r-chains (Le. long r-chains from (q,O) to (q, N)) in C we 
have the bound 0 ~ 1 ~ IAll- K. 
Further we can split 

'TJe - ije ije (2.212) 

with ije def Vile, 

and as length(C) = N we can extract from each summand in (2.214) a factor ij~ (as 
in the proof of Proposition 1.B.l in [12]). 
In the step from (2.215) to (2.216) we make use of the bound 

L )"T 1 )"T ~-l 
N 'TJe < 

N 1- ije 
l=O 

)"T 1 
< 

N i(l- 'TJ)>;J 
2 

-
1-'TJ 

We get, provided that f is sufficiently small and cg large: 

cEConf(A,N,Al) 
length(c)=N 

90 

(2.213) 

(2.214) 



< JA, ~ Cil) (Ch + 11-'c,.ii;")IA,I-K 4K ~ (2.215) 

x (,. (~exP( -cgk
d

) exp( c"k
d

) ~' 11-'*') t. ii!) n ii;" 114> 11. 

< JA, ~ Ci I) (Ch + 11-' c,.ii;") IA,I-K i K (2.216) 

X f (C7 € 1 ~ t ij~II<pIID 
n=K 1] 

< C8(JCh+~c,.ij~+J€)IAdij~II<pIID' (2:217) 

We remark that (2.215) also includes the estimate for the special case K = O. Then 
the configurations have no triangle and np = O. The sum '2::'=0' should then be 
replaced by a factor 1 (to avoid confusion). However, this sum is at least 1 and so 
the estimate is correct. 
Now we consider the case length(C) = L for fixed 1 ::; L ::; N - 1. Let C have n 
triangles. At least one of them has to be assigned to a point in A x {N - L + 1} 
because C has length L. (C has to have a triangle at that level and not an r­
chain because otherwise C would be a zero-configuration.) So for each C we have 
a labelled tree-graph and can distinguish one triangle. The number of all possible 
choices of a distinguished triangle (for a given tree-graph) is bounded by n and so 
by 2n. With the choice of the lengths of the a-r-chains of the other n - 1 (non­
distinguished) triangles the positions of all n triangles and the lengths of all a-r­
chains are determined. This time we get a factor (2:i:~l1]!)n-l (with exponent n-1 
rather than n.) We estimate 

(2.218) 

(2.219) 

(2.220) 

Finally we get for the special case that C has neither triangles nor r-lines (i.e. 
length(C) = 0 ): 

(2.221) 
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So, using (2.217), (2.220), (2.221) and the bound ije < 1, we conclude 

(
AT N-I ) 

1 + CION' t; C8ij~ + ij~ 114>11" (2.222) 

< (1 + 12~~ + C8ij~) 114>11" 

< c4114>II" 

(2.223) 

(2.224) 

o 

We want to take the limit (as N -+ 00) of the rhs of (2.205) for fixed Ab A and 
T. Considering the sum over all full configurations, we can collect (into the same 
class) configurations with the same 'constellation of triangles relative to each other 
in time and space' but different lengths of their chains. The h- and r-chains can 
be thought of as being flexible (made of gum) so that we can move the triangles in 
time-direction. So the sum over all configurations is the double sum over all classes 
(outer sum) and all possible time-positions of the particular triangles (inner sum). 
In the limit the inner sum, say for a class with exactly n triangles, becomes an 
integral over a subset of JR"l. We will choose our classes (the gum configurations, 
cf. Definition 2.3.10) so that they determine a linear order on the set of branchings 
(that correspond to the triangles). So the domain of integration corresponding to a 
gum configuration is a simplex. . 
To make these ideas more precise we give some rather formal definitions. (Figure 
2.5 might assist to understand these better.) 

Definition 2.3.9 In a labelled tree (as defined in [12]) we call the vertices that have 
no maximal label {Le. they are not leaves of the tree and there is a vertex with a 
greater (wrt to 'the partial order) label) and that are different from the root vertex, 
branchings. {Each branching corresponds to a particular star-graph (like we used 
to define the term labelled tree in [12].) It is called k-branching if it corresponds 
to a star-graph with exactly v{k) vertices (and hence to a k-triangle). k is called 
the degree of the branching. 
Recall that in [12] we have introduced a linear order ~ on the set of labels of vertices. 
In the following we will use the same symbol for linear orders on different sets as 
well. It should be clear from the context to which order we refer. 
We say that a linear order ~ on the set of branchings is compatible with the 
labelling if the following condition is satisfied: If VI and V2 are branchings, labelled 
by label{vI) and label{v2), respectively, then 

(2.225) 

We introduce a linear order (also denoted by ~) on Zd: 
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(kl , ... , kd ) ~ (kl , ... , kd) if ki < ki for the lowest index i such that ki, =1= k
i 

(2.226) 

Definition 2.3.10 A gum tree 'fg with parameters n(3 = (n(3,I, n(3,2, ••• ) and A2 E 
F \ {0} is given by the following data: 

1. A labelled tree 'f with parameters n(3 and /A21 (as defined before Lemma 1.8.2 
of [12]). 

2. A map pin from the set of vertices (except the root) of'f to Zd that satisfies 
the following conditions: 

• The restriction of pin to the set of vertices, that are labelled by (0,1), ... , 
(0, /A2 J) (We denote the restriction of pin to this set by pino')' is an 
order-preserving bijection onto A2 , i.e. for any two such vertices v and v 

label(v) -< label(v) :::}- pin(v) -< pin(v). (2.227) 

• If v with label(v) = s = (s}, ... , sm) is a k-branching and pin (v) = 
q E Zd then the restriction of pin to the set of vertices with labels 
(s, 1), ... , (s, v(k)) (We denote ,the restriction of pin to this set by pin

v
') 

is an order-preserving bijectiononto Bk(q) C Zd. . 

A gum configuration Cg on A ending in Al is given by the following data: 

1. A gum tree 7"g with parameters n(3 and A2 such that A2 ~ Al. The correspond­
ing tree has branchings VI ~ .. , ~ vD! say, with branching-degrees b1, • .• , b

n
, 

respectively. 

2. For each 1 < is n there are maps 

such that 

Bbi(pin(vi)) n A -t {O, I} 

Bbi(pin(vi)) nA -t {O, I}. 
(2.228) 

(2.229) 

(a) If q EBb, (pin( Vi)) n A and j is ~he ~mallest number greater than i such 
that q EBb. (pin(vj)) (if such a J eXIsts at all) then di(q) = Uj(q). 

J , 

(b) For every 1 S i sit· 

(2.230) 
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(c) If q EBb, (pin(vi)) n (A \ AI) and there is no j > i such that q E Bbj (qj) 
then di(qi) = o. 

(We will see later that the maps Ui define from a vertex upwards going h-strips 
(if Ui = 0) or r-strips (if Ui = 1). Similarly the maps di determine downwards 
going strips. For a strip between two vertices it should be wel!-defined if it is 
an h-strip or an r-strip. Hence we impose condition (a). Condition (b) says 
that a strip that goes downwards from a branching must be an r-strip.) 

3. A map long from A \ U~=I Bb, (pin(vi)) to {O, I} such that 

long(q) = 0 if q rf- Al 

We define in analogy to Definition 2.3.8 

n 

A(Cg) 
def U Bb,(pin(vi)) n A, 

i=l 

Ar(Cg) 
def {q E A \ A(Cg ) : long(q) = I}, -

A(Cg) 
def A(Cg ) U Ar(Cg ). -

We introduce the following notation: 

(2.231) 

(2.232) 

(2.233) 

(2.234) 

• In the situation of 2. a the point q is the image (wrt pin) of the vertices pin~iI ( q) 
and pin~l(q). We say that Cg has an h-strip (r-strip) from pin~il(q) to 
pin~l(q) if di(q) = 0 (di(q) = 1). (We note that we do not distinguish the 
orde~ of the vertices in this notation: A strip from v to v is the same as a 
strip from v to v.) 

• If q E Bb,(pin(vi)) n A and v = pi~/(q) and there is no j > i such that 
q E Bbj (pin(vj)) and if di(q) = 0 (di(q) = 1) we say that Cg has an h-strip 
(r-strip) from v to the bottom. 

• If q E Bbi (pin( Vi)) nAnd v = pin~/ (q) and there is no number j < i such that 
q E Bbj (pin(vj)) and if Ui(q) = 0 (Ui(q) = 1) we say that Cg has an h-strip 
(r-strip) from v to the top. 

• In the situation of 2.b we call the corresponding r-strip an apex-r-strip. 

• If q E A \ A(Cg ) and long(q) = 0 (long(q) = 1) then we say that Cg has a long 
h-strip (long r-strip) at q. So Ar(Cg ) C Al is the set of q where Cg has long 
r-strips. 

• If Cg has an r-strip to the top or a long r-strip we say that Cg reaches the 
top. 
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We denote by Confg(A, Ad the set of all gum configurations over A ending in Al' 

Definition 2.3.11 Let Cg be a gum configuration over A ending in Al with branch­
ings Vl ~ ••• ~ Vn of branching-orders bI , ••• , bn , respectively, and let T E (0,00]. 
Then we define 

Simplex(Cg, T) def {(tI, ... , tn) : -T < tI < ... < tn < o}. (2.235) 

Simplex( Cg , T) is an open subset of ]Rn and so carries the induced Lebesgue-measure. 
For the special case n.a(Cg) = 0 we define Simplex(Cg , T) to be a single point having 
measure 1. 

Definition 2.3.12 For Cg E Confg(A,AI ), T E (0,00] and t E Simplex(Cg,T) we 
call the triple (Cg , T, t) a specific gum configuration. 
Specific gum configurations can be viewed graphically: The vertices are placed in 
Zd x [0, T] and the strips are 'spanned' between vertices, the top (t = -T) and the 
bottom (t = 0): 

• We assign to each vertex v in r(Cg ) a point in Zd x [-T,O] in the following 
way. If VI is a branching of degree bi , q E Bb,(pin(vi» and v = pin~/(q) then 
v has time-coordinate ti. In particular VI has time-coordinate ti. As further 
pin (VI) = q we assign v to (q, ti)' 

Let for the following two vertices v and v be assigned to (q, t) and (q, l), 
respectively. . 

• If Cg has an h-strip (r-strip) from v to v we say that (Cg , T, t) has a maximal 
h-strip (maximal r-strip) from (q, t) to (q, l). We define its length to be 

It - il· 
• If Cg has an h-strip (r-strip) from v to the bottom (this has time-coordinate 

0.) we say that (Cg , T, t) has a maximal h-strip (maximal r-strip) from 
(q, t) to (q,O). Its length is Itl. 

• If Cg has an h-strip (r-strip) from v to the top (this has time-coordinate -T.) 
we say that (Cg , T, t) has a maximal h-strip (maximal r-strip) from (q, t) 
to (q, -T). Its length is T - Itl. (Note that for T = 00 this length is 00.) 

• If Cg has a long h-strip (long r-strip) at q we say that (Cg , T, t) has a long 
h-strip (long r-strip) at q. Its length is T. (Long h-strips (long r-strips) are 
also considered as maximal strips.) 

If (Cg , T, t) has a maximal h-strip (r-strip) from (q, id to (q, i4) and tl ~ t2 < t3 ~ t4 
then we say that (Cg , T, t) has an h-strip (r-strip) from (q, l2) to (q, l3) (or from (q, l3) 
to (q,l2»' 
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For a branching Vi and a q E Bb.(pin(vi)) we call the maximal h-strip (if any) from 
(q, ti) to (q, t) with ti < t (ti > t) a downwards going (upwards going) h-strip 
associated to the branching. (Note that in our pictures the positively oriented 
time-axis goes downwards.) The notation for r-strips is analogous. 
(Cg , T, t) must have a downwards going r-strip at the points (pin(vi)' ti ) because of 
condition 2.b. We call it an apex-r-strip. 
An h-strip (r-strip) in (Cg , T, t) goes to the bottom (to the top) if the corre­
sponding h-strip (r-strip) in Cg goes to the bottom (to the top). 
In analogy to (2.201) we define 

c(Cgl T, t) def IT (1 - exp(,xlength(H))) (2.236) 
H 

where the product is over all maximal h-strips H that do not end in (A \ AI) x {O}. 

We draw in the specific gum configuration in Figure 2.5 thick horizontal lines for 
branchings and thin or thick vertical lines for h-strips or r-strips, respectively. There 
are two branchings of degree 1, at (q2, td and at (q3, t2). The specific gum configu­
ration has, for example, a long r-strip at site qs, an r-strip from (qb td to the top 
and an h-strip from (ql, td to the bottom. 
Note that the vertices in the labelled gum tree (except th'e root) are assigned to 
points in Ztl. (in this example d = 1) by the map pin. For example pin(vl) = q2. 
Also note that the specific gum configuration in Figure 2.5 'has the same structure' 
as the full configuration in Figure 2.3. We will make this analogy more precise in 
the proof of Proposition 2.3.5 where we use the approximation of a specific gum 
configuration (or more precisely the approximation of the corresponding operator) 
by full configurations. 

-T (0,1,1,2) 

(0,1,3) 

o 
q5 (0) 

Figure 2.5: Specific gum configuration and its labelled tree 

Definition 2.3.13 We define in analogy to (2.193) for t ~ 0: 
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Then we have, using (2.170), 

->.t ~ (-\t)k 'J">k 
e L.J k! '''q 

k=O 

exp(-\t(idq - nq )). 

nq(td nq(t2) = nq(tl + t2) 
I/nq (t) 1/ ~ c;.e-(l-'1)>'t 

(2.237) 

(2.238) 

(2.239) 

(2.240) 

For Cg E Confg(A, Ad with n ;:::: 1 branchings at VI -< ... -< Vn of degree bl! ... , bn , 

respectively, we set to = -T, tn+! = 0 and define in analogy to (2.204): 

OPl (i, Cg , T, t) def Q9 Qq Q9 nq(tHl - ti ), (2.241) 
qEAQ (i,Cg ,T,t) qEA'R.(i,Cg,T,t) 

Op2(i, k) def 
-\ Bk,pin(vt} Q9 idq, (2.242) 

qEA\{q} 

£7 def c(Cg , T, t) OPl (n, Cg , T, t) 0 Op~(n, bn ) 0 ••• (2.243) Cg,t 
oOPl (l,Cg , T, t) 0 Op2(1, bl ) 0 OPl(O, Cg , T, t) 

and £7 def 1 dtL~ t (2.244) -Cg g, 
Simplex( Cg ,T) 

where Adi, Cg , T, t) is the set of q E A such that (Cg , T, t) has an h-strip from (q, ti ) 

to (q, tHd and A'R,(i, Cg , T, t) is the set of q E Zd such that (Cg , T, t) has an r-strip 
from (q, ti) to (q, tHd. 

If n(Cg ) = 0 we simply set 

Q9QqQ9nq (2.245) 
q: long(q)=O q: long(q)=l 

T def T 
LCg LCg,t· (2.246) 

Remark 2.3.5 1. If H is an h-strip from time ti to time tj with 1 ~ i < j ~ n+ 1 
then length(H) = /ti-tj/ and so the factor l-exp(--\ /ti-tj/) does not depend 
on T. However, in the case i = 0, i.e. ti = -T, the factor l-exp(--\ (T-/tj/)) 
depends on T. For T = 00 this is equal to 1. 

2. From (2.236), (2.241), (2.242) and (2.243) we see that the map t ~ 7rAl OL~ t, 
g, 

defined on Simplex(Cg , T), is uniformly continuous (because all factors are 
uniformly continuous wrt t), hence integrable if T < 00. We will see in the 
next proposition that the integral also exists in the case T = 00. So (2.244) is 
well-defined. 
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3. We see that if (Cg , 00, t) has an r-strip going to the top then Cc t = o. 
g. 

Definition 2.3.14 Let c, T > o. We set to = -T and tn+! = 0 and define 

D(n,T,c) def ) - {t = (tl, ... tn E lRn
: .iI;lf Iti - tjl ~ c} 
O~J<3~n+! 

for n ~ 1 (2.247) 

D(O,T,c) def {{Pt} if T ~ c 
o ifT>c· (2.248) 

For the special case n = 0 we have to define the notation for some sets: 

• {pt} denotes a one-point set. 

• The set Simplex(Cg , T) \ D(O, T, c) for n(Cg ) = 0 is defined to be equal to 
Simplex(Cg , T) if T > c and to 0 if T ~ c. 

• Similarly Simplex(Cg , T)nD(O, T, c) is equal to 0 ifT > c and to Simplex(Cg , T) 
ifT ~ c. 

• We define Simplex(Cg , T) \ Simplex(Cg , f) def Simplex(Cg , T) for Cg with 

n(Cg ) = o. 
! ' 

Proposition 2.3.4 1. For sufficiently small € > Q and large cg there is a constant 
Cl2 > 0 such that for all T > 0, Al c'A E F\ {0} and 4J E?iD 

(2.249) 

For sufficiently large T this also holds for suitably chosen J = -8. 

2. 
(2.250) 

Proof For each Cg E Confg(A, Ad and t E Simplex(Cg , T) we get an estimate 
analogous to (2.206) ( or (1.57) in [12]): 

I17rAl 0 C~g.t4JAIIAl (2.251) 

< (c3€)ln,a1 exp(-cg f kdn/3.k) c~hc~r 
k=l 

X IT exp( -(1 - ",),\ length(R)) c(Cgl T, t) II4JA(Cg ) IIA(Cg ), 

R 
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where the product is over all maximal r-strips R of (Cg , T, t). 
Consider a labelled tree r with parameters n{3,k and K, a set A2 C Al with IA21 = K 
and the set A(r, A2) of all Cg E Confg(A, Ad whose labelled tree is r and whose 
gum tree has parameter A2. Note that there can be different linear orders on the 
branchings of r. We want to estimate 

JIAd L ( dt II?rAl 0 £~ tepAII 
CgEA(T,A2) J Simplex(Cg,T) g, 

(2.252) 

and consider this expression as integral over the union of all sets Simplex(Cg, T). 
We change the variables of integration: Let t I, ... , tln/31 denote the lengths of the 
a-r-strips (where ti corresponds to the branching Vi). They are bounded by T. For 
each t = (t I , ••• , tln/3l) E UCgEA(T) Simplex(Cg, T) there is a unique t = (iI , ••• , i 1n/3I). 
Note that the union is of disjoint sets and its image is a subset of [0, T]n. Further 
the change of variables from t to t is linear and has a determinant of modulus 1. We 
see that by doing the transformation successively: iI is given by a linear equation 

(2.253) 

and t2 by 

(2.254) 

etc. and the statement about the determinant follow$. So we can estimate in (2.252) 
'LCg EA(T,A2) fSimplex(Cg,T) dt ' by , Iro,Tj1n/3(T)I dt' and so in the estimate of (2.249) we 

replace' LCg fSimplex(Cg,T) dt ' by , L A2,T Iro,Tj1n/3(T)I dt' where the sum is over all A2 ~ 
Al and labelled trees r with parameter IA21. 
We are using the 'usual estimates' (cf. Proposition 2.3.3 and also [12]). For fixed 
A2 ~ Al and n{3 with In{31 2:: IA21 the number of labelled trees with parameter 
IA21 and n{3 is bounded by 41A21 n::I(exp(cdkd))n/3.A:. For each k-branching we get 
a factor ,x {exp( -cgkd) from the uniform estimates for the corresponding operator. 
Summing over all possible choices of upwards or downwards going h-strips or r-strips 
associated with the branching, we get a factor exp(cI2kd). There are not more than 
lAd - IA21 sites for which we can choose between long h-strips and long r-strips. A 
long r-strip gives rise to a factor c,. exp( -(1 - 'TJ),xT), and a long h-strip to a factor 
at most Ch. The norm IIepA(Cg) IIA(Cg ) is estimated by (2.207). Gum configurations Cg 

without branchings (Le. n{3(Cg ) = 0) can only have long r-chains (that must end in 
AI) or long h-chains. This case corresponds to the summand for K = 0 in (2.256). 
The sum 'L~=o' could be replaced by the factor 1 (cf. the remark on the analogous 
situation after (2.217).) 
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We estimate the left-hand side (lhs) of (2.249): 

JIA11 L r dt 111rAl 0 £~ t<PAII 
CgEConfg(A,At} }Simplex(Cg,T) g, 

< ,iIAd ~ (I~ I) (Ch + d~ 'e,. exp( -(1 - ~)AT)) IAd~K 4K 

x ~ « t. exp( -cgk
d

) exp«c" + c12)kd )c'" d~"" 

x J.T dte,.exp(-(I- ~),\T) r II~II. 
< C13 (.iCh + ~ e,. exp( -(1 _ ~)AT) + .if, yA'III~II. 

with li~-+o fl = O. So there are''19 > 0, f> 0 and J > 0 such that 

- '19 -
'I9ch + -:a er exp( -(1 - TJ)T) + 'I9fl < 1 

(2.255) 

(2.256) 

(2.257) 

and so (2.249) holds uniformly in Al and A. For sufficiently large T we can choose 
J = '19 such that (2.257) holds. So statement 1 is proved. 
(2.250) follows immediately from (2.249) and the fact that for all Cg E Confg(A, Ad 
and T > 0 the family (Ac)c>o of sets 

Ac = Simplex(Cg , T) n D(ln.a(Cg) I, T, c), (2.258) 

is increasing, i.e. 

(2.259) 

and from 

(2.260) 

o 

We prepare the proof of Proposition 2.3.5 which relates our representations of the 
transfer operators for discrete and continuous time. 

Definition 2.3.15 For fixed T > 0, N > T, n ~ 1 and t = (t l , ... , tn ) E ]Rn we 
define [th,N to be the n-tuple k = (kl' ... ,kn ) such that ki is the smallest integer 
greater than or equal to ¥ + N (for alII ~ i ~ n). Note that we add N so that 
[·]T,N induces a map from (-T, 0) to {I, ... , N} for every single coordinate. We 
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define O(n, T, N) to be the set of t such that k = [t]T,N satisfies (at least) one of 
the following two conditions: 

ki = kj for some i ::J j 
ki E {1, N} for some i. 

(2.261) 

(2.262) 

Consider Cg E Confg(A, AI) with branchings VI ~ ... ~ vn of degrees bI, ... , bn , 

respectively, and t E Simplex(Cg , T) n 15(n, T, N). We define apprN(Cg , T, t) E 

Conf(A, N, Ad as follows: 
apprN(C9, T, t) has a bi-triangle from (pin(vi), ki - 1) to (pin(vi) , ki ). For q E 

Bb, (pin(vl)) there is an h-chain (r-chain) going upwards from (q, ki -1) if Ui(q) = 0 
(Ui(q) = 1), and, if q ::J pin(vd and di(q) = 0 (di(q) = 1) an h-chain (r-chain) 
going downwards from (q, ki -1). There is an a-r-chain (possibly of length 0) going 
downwards from (pin(Vl) , ki ). 

For q E A \ A(Cg) the configuration apprN(C9, T, t) has a long h-chain (long r-chain) 
at site q if long(q) = 0 (long(q) = 1). . 
We define for t E Simplex( Cg , T): 

£7 def T apprN(Cg,T,t) 
{ 

( N)ln~(cg)1 £7 if t E Simplex(Cg , T) \ 15(n, T, N) 
Cg,t,N - 0 if t E Simplex(Cg , T) n 15(n, T, N) 

(2.263) 
where we define for Cg without triangles 

Simplex(Cg , T) \ 15(0, T, N) def Simplex(Cg , T) 

and Simplex(Cg , T) n 15(0, T, N) def 0. 
(2.264) 

(2.265) 

Recall that'.c' denotes an operator with effective parameters (cf. Definition 2.204). 

Remark 2.3.6 1. As t (j 15(n, T, N), the time-coordinates of two different tri­
angles in appr N (Cg , T, t) are not the same and no time-coordinate of a triangle 
is equal to 1 or N, i.e. ki ::J kj for i ::J j and ki (j {1, N} for all i. 

2. We have the relation 
T 

t E D(n, T, N) ::::} [t]T N E 15(n, T, N). , (2.266) 

Definition 2.3.16 For c, T > 0, N > max{2, AT} and 0 ::J Al C A c :F we 
denote by ConfO(A, N, All T, c) the set of all C E Conf(A, N, Ad with the following 
property: If C has triangles at (qt, kI), ... , (qn, kn) with kI ~ ... ~ kn (This is meant 
to include the case n = 0.) then 

inf 1 k· - k·1 < cN + 1 
O~i<j~n+1' J - T ' 

(2.267) 

where we have set ko = 0 and kn+1 = N. 
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We remark that Confo(A, N, AI, T, c) has no configurations without triangles if c < 
T. 

Lemma 2.3.2 For all T, AI, A we have 

lim 
c-+o 

N-+oo CEConfo(A,N,Al,T,c) 

(2.268) 

Proof The proof is fairly similar to that of Proposition 2.3.3 and will therefore 
only be sketched. We fix an N and 0 ~ No ~ c; + 1. First we consider a 
C E Conf(A, N, AI) with triangles at (kl' ql), ... , (kn' qn) with kl ~ ... ~ kn and 
such that there are indices 1 ~ i < j ~ n with kj - ki = No. Let the corresponding 
triangles be called a and b. We note that there are n (n - 1) ~ 2n pairs of trian­
gles. (The factor 2n will be compensated for by €n in the usual way, provided € is 
sufficiently small.) The labelled tree-graph of C together with the lengths of the a-r­
chains corresponding to the n - 1 triangles different from b determine the positions 
of all triangles and the lengths of all a-r-chains. So if we do the estimates like in the 
proof of Proposition 2.3.3 we get in the formulae analogous to (2.215) and (2.219) 
one factor E, ij! less (because there is no summation over possible lengths 1 of the 
a-r-chain corresponding to triangle b as there is a unique choice for that.) That 
gives rise to an additional (Le. not cancelled) factor >;J' that we can extract from 
the sum. So the restriction of the sum on the lhs of (2.268) to such configurations 
that have a pair of triangles whose time-coordinates have difference No is bounded 
from above by Cl4 >;J'. And so the sum, restricted to ·configurations that have a pair 
of triangles whose time-coordinates have difference at most c,; + 1, is bounded from 
above by (C'; + 2) Cl4 AJ' and this tends to zero as c ~ 0 and N ~ 00. We can 
similarly estimate the sum, restricted to configurations that have a triangle with 
time-coordinate in {1, ... , [C'; + I]} U {N - [C; + 1] ... , N}, and so (2.268) follows. 
(Here we have used the notation [cN] for the biggest number not greater than cN.) 

Proposition 2.3.5 For Cg E Confg(A, AI) the map 

Simplex(Cg , T) ~ L(llA,llA1 ) 

t t---+- ?rAl 0 C~ t g, 

o 

(2.269) 

is the pointwise limit of the step-functions t t---+- ?rAl 0 C~ t N (as N ~ 00). We g, , 

further have 

?rAl 0 C~ 
9 

(2.270) 
Cg EConf(A,Al) 
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- lim I: 1 dt 11" Al 0 c~ t N' (2.271) 
N-+oo . g, , 

Cg EConfg(A,Al) Slmplex(Cg ,T) 

lim I: -T 
(2.272) - 1I"Al 0 Cc 

N-+oo 
CEConf(A,N,Ad 

For the proof of Proposition 2.3.5 we need the following Lemma. 

Lemma 2.3.3 Let All"" An, AI,,'" An be operators on the same Banach space, 
o < 6 < 1 and ai, ... , an positive numbers such that: 

Then 

11 Ai 11 < ai for all 1 $ i $ n 

and IIAi - Ai 11 < 62 ai· 

IIAl 0 ••• 0 An - Al 0 ••• 0 An 11 $ 6 (1 + 6t al' .... an. 

Proof From (2.274) we get 

So we get via 'telescope expansion': 

IIAI 0 ... 0 An - ..11 0 ... 0 An 11 

< IIA1 o ... 0 An - Al 0 A2 0 ••• 0 Anll + ... 
+11..11 0 ... 0 An-loAn - Al 0 ... 0 An 11 

< 62 (1 + (1 + 62
) + ... + (1 + 62

) n-I) al ..... an 

- ((1 + 62)n - 1) al ..... an 

- t, (~) 0" a, ..... a. 

< ot, (~)o'a, ..... an 

< 6(1 + 6)n al ..... an 

and the lemma is proved. 

Proof of Proposition 2.3.? We first show that 

""' r dt 11" 0 CT = ""' 11" 0 £7. L..J jSimplex(Cg,T) Al Cg,t,N L..J Al C 
CgEConfg(A,Ad nD(n,T,N) CEConf(A,N,A) 

\Confo (A,N,Al ,T,O) 
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For Cg E Confg(A, Ad, say with exactly n triangles, we have a map 

(2.279) 

where the ki are as defined in Definition 2.3.16. This map is constant with v~.lue 
(ll,"" in) on the cube 

Cube(T,N,lb ... ,ln) - (~(-N +ll-1), ~(-N + id] x ... (2.280) 

x (~(-N +In -1), ~(-N + in)] , 

i.e. the configuration apprN(C9 , T, tl E Conf(A, N, AI) is the same for all t E 

Cube(T,N,lt, ... ,ln). Iffurthert f/. D(n,T,N) then 1 ~ kl < k2 < ... < kn ~ N-1 
and apprN(C9 , T, t) E Conf(A, N, A) \ Confo(A, N, AI, T, 0). We also see that each 
C E Conf(A,N,A)\Confo(A,N,A1,T,0)determinesuniquelyaCg E Confg(A,N,A1) 
and a Cube(T, N, kb ... , kn ) such that apprN (Cg , T, t) = C for all t in this cube. And 
as 

1 T-T 
dt7rAl oCCg,t,N = 7rAl oCapprN(Cg,T,t), 

Cube(T,N,lt , ... ,tn ) 

we conclude (2.278). Using (2.266), we get 

(2.281) 

'"' r T '"' -T 11 L..t is dt 7rAl 0 CCg,t,N - L..t 7rAl 0 Cc IIL(llA,llA 1 ) 

CgEConfg(A,At} Simplex(Cg,T) CEConf(A,N,At) 

< L J Simplex(Cg,T) dt 117rAl 0 C~,t,NIIL(llA,llAl) (2.282) 
CgEConfg(A,At} nD(lnp(Cg)l,T,,") 

+ L II7rAl 0 ~IIL(llA,llAl)' 
CEConfo(A,N,Al,T,l) 

Because of (2.250) and (2.268) the rhs of (2.282) tends to zero (as N -+ 00). So the 
equality between (2.271) and (2.272) is proved. 
Now we fix a c > 0 and consider a labelled tree T on A ending in Al. For any 
Cg E Conf(A, Ad whose labelled tree is equal to T we have the estimate (2.251). 
Recall that in the proof of Proposition 2.3.4 we concluded formula (2.249) from this 
estimate (for every T). For ~ > c- l and t E Simplex(Cg1 T) \ D(ln.a(Cg) I, T, c) we 
compare CTc t with C~ t N, using representations (2.204) and (2.243). We see that 

gJ g, , 

these operators have the same structure because each k-branching (maximal h-strip, 
maximal r-strip) in (Cg , t) corresponds to a k-triangle (maximal h-chain, maximal 
r-chain) in apprN (Cg , T, t). More precisely: 
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1. Each operator A Bq,k in (2.243) corresponds to an operator pBq,k in (2.204), 
and so to an operator A Bq,k in the representation of .c'fg,t,N (cf. (2.263) and 
note the cancellation ~ p = A.) 

2. A maximal h-strip H in (C, T, t), say from (q, ti) to (q, tj), corresponds to a 
maximal h-chain HN in apprN(C9 , T, t) from (q, ki ) to (q, k j ) where ki and k j 

are as defined in Definition 2.3.15. This implies that 

(2.283) 

If H does not end in(A \Ad x {T} then it gives rise to a factor (l-exp( -Alti -

tj \) in (2.243) and HN gives rise to a factor (1- (1- ~)!ki-kj!) in (2.204). We 
compare these factors. Clearly we have 

(2.284) 

Further, as It; - tj I > c, we have that 

1 - exp( -Alti - tj \) > 1 - exp( -AC), (2.285) 

and so for 

def 1 - exp( -A Iti - tjl) - (1 - (1 - f)!ki-k j!) 
CH,N = sup sup ( -

tESimplex(Cg,T) i::pj 1 - exp -A Itj - til) 
\D(Cg,T,c) 

(2.286) 

we have 

lim CH N = o. 
N--+oo ' 

(2.287) 

3. A maximal r-strip in (Cg, T, t), say from (q, ti ) to (q, tj) with Iti - tjl > C 

gives rise to an operator nq(lti - tjl) = exp( -,\Iti - tjl(idq - n q)). There 
is a corresponding maximal r-chain in apprN(C9 , T, t) from (q, ki ) to (q, k j ), 

where ki and k j are as in Definition 2.3.15, and satisfy the esimates (2.283). 
It corresponds to an operator 

(2.288) 

We have, analogously to (2.284), 
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(2.289) 

As Iti - tjl < T, we further have for our estimate (2.240) of Ilnq(lti - tjl)ll: 

exp( -(1 - 1])Alti - tj I) > exp( - (1 -1])AT), (2.290) 

and for 

def IInN,q(lk j - kjl) - nq(lti - tjl)lI 
CR,N = sup sup (() 

tESirnpiex(Cg,T) if.j exp - 1-1] Alti-tjl) 
(2.291) 

\D(Cg,T,c) 

we have 

lim CRN = O. 
N-+oo ' 

(2.292) 

We have seen that certain maximal h-strips and r-strips in (CgT, t) give rise to 
operators that only differ from the ones that arise from the corresponding maximal 
h-lines and r-lines in apprN(C9, T, t). We bound the number n(Cg) of such strips. 
They are attached to a branching or they are long h- or r-strips in Al. (Recall that 
every long h-strip ending at site q E A \ Al and its corresponding long h-chain both 
give rise to the same operator Qq. The scalar factors are both 1 in that case. So 

00 

n(Cg) ~ 2 L np,k(3k)d + IAII- K (2.293) 
k=I 

where np,k and K are defined by the condition that Cg has a labelled tree with these 
parameters. 
We can think of .c'f t abstractly as 

g, 

.c~,t = Al 0 ••• 0 Am. (2.294) 

(For example if Ai corresponds to a k-branching at q then 
Ai = ABq,k ®qEA\{q} idq. If Ai corresponds to a maximal h-chain at site q and of 
length Itj - tll then Ai = (1 - exp( -Altj - td)) Qq ®qEA\{q} idq.) 

As we have seen 1r Al o.c'f t N has the same structure as .c'f t and we can write g, , g, 

T - -.cc t N = Al 0 ••• 0 Am. (2.295) g, , 

Because of (2.286) and (2.292) we can apply Lemma 2.3.3 with an arbitrarily small 
c5 in (2.274), provided N is sufficiently large. This implies in particular that the 
maps t t--t 1rAI o.c'f t N, restricted to Simplex(Cg , T) \ D(n, T, c) converge uniformly 

g, , 

to 1rAI o.c'f t. g, 
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We show for fixed C > 0 that 

J~ L !SimPleX(Cg,T) dt I17rAl 0 (.c~,t - .c~,t,N) IIL(llA,llAl) = o. (2.296) 
CgEConfg(A,Ad \D(lnp(Cg)l,T,c) 

Using (2.251), Lemma 2.3.3 and (2.293), we get for every Cg E Conf(A, AI) 

JIAllll7rAIO (.c~g,t - .c~g,t,N) cPlI (2.297) 

< cS (1 + cS)Ii(Cg
} (caf)lnpl exp (-cg t kdn{3,k) C~kC~" 

k=1 

x IT exp( -(1 - 1]) A length(R)) c(Cg , T, t) IlcPA(Cg ) IIA(Cg ). 

R 

The factor n~1 (1 + cS)adnp,A:k
d 

will be compensated for by exp (-cg L~I kdn{3,k), 
provided that cg is sufficiently large. So with the same argument that leads from 
(2.251) to (2.255) we can estimate (2.297) by 

(2.298) 

where lime-+o f2 = o. 
As we take the limit (for N -t 00) for fixed Al we do not have to estimate the term 
in brackets (which could be easily done in the usual way). However we remark that 
to get (2.298) we have assumed that f is sufficiently small (depending on '19) and cg 

large. We conclude 

for every c and with limN-+oo cS = o. 
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Using (2.266), we estimate 

L r dt 111I"Al 0 (.c~g,t - .c~g,t,N ) IIL(llA,llAl) (2.300) 
CgEConfg(A,At} lSimplex(cg,T) 

< L !SimPleX(Cg,T) dt 111I"Al 0 (.c~g,t - .c~,t,N ) IIL(llA,llAl) (2.301) 
CgEConfg(A,At} \D(lnp(Cg)I,T,c) 

+ L /SimPleX(Cg,T) dt 111I"Al 0 .c~,tIIL(llA,llAl) (2.302) 
CgEConfg(A,At} nD(lnp(Cg)i,T,c) . 

+ L /SimPleX(Cg,T) dt 111I"Al 0 .c~,t,NIIL(llA,llAl)· (2.303) 
CgEConfg(A,At} nD(lnp(Cg)i,T,c) 

The first and second summand on the rhs tend to zero (as c -+ 0 and N -+ 00) 
because of (2.299) and (2.250), respectively. The third summand is bounded from 

-T 
above by ECEConfo(A,N,Al>T,c) 111I"Al o.cc 11 which also tends to zero because of (2.268). 

o 
The following proposition is a corollary of Proposition 2.3.5. 

Proposition 2.3.6 .c~ A def lI"A o.c~ A is the transfer operator, restricted to llA' for 
T " KS,A' i.e. , 

/M dJ.1 (KI,A'ljJA) (PA = L dJ.1 'ljJA .c~,A rpA 

For all 'ljJ E CO((Sl)A) and rpA E llA. 

(2.304) 

Proof We know from Proposition 2.3.1 that .cI,A,N is the transfer operator for 
KI,A,N. Taking the limit (as N -+ 00) in (2.182) and using the equality of (2.270) 
and (2.272), we conclude (2.304). 

o 

For the representation of the transfer operator for the infinite dimensional system 
we need the following definition. 

Definition 2.3.17 Let AI, A2 ~ A E :F \ {0} and Cg E Confg(A, AI). We say that 
Cg lies in A2 if A(Cg ) U At ~ A2· 
Let both Cg E Confg(A, At) and ~ E Confg(A, At) lie in A n A. If further Cg and 

~ have the same gum tree with the same l~ear order and if they have the same r­
strips then we say that Cg is equivalent t~ Cg • Then we have defined an equivalence 
relation and further, for Cg equivalent to Cg , we have: 
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Simplex(Cg , T) - Simplex(~, T) for all T E (0,00], (2.305) 

1rAl0.c~ t 01rA - 1rAl o.c~ to 1rX for all t E Simplex(Cg , T) (2.306) g, g, 

and 1rAl o.c~ ° 1rA - 1rAl o.c~ ° 1rk (2.307) 
9 9 

(2.306) and (2.307) say that the operators in L(1if) , 1iAJ are the same. We define 
by Conf(Zd, AI) the set of equivalence classes. Because of (2.305) and (2.306) the 
simplices and operators for each equivalent class can be defined as being equal to 
the corresponding object for any representative. 
We will write 1rAl o.c~g,t instead of 1rAl o.clg,t01rA and 1rAl o.cl

g 
instead of 1rAl o.cl

g 
01rA 

for the operators from 1if) to 1iAl. 

Theorem 2.3.1 1. For sufficiently small €, large cg and every T E (0,00] we 
can define an operator .cI from 1if) to 1i3 by 

(2.308) 

There is a To > 0 such that for T ~ To the operator .cI maps HiJ into 1if) . 

.cI is the transfer operator, restricted to 1i~v, for the kernel KT, i. e. 

L dJl (KI'l/J) if> = L dJl'l/J .c~if> 

for all 'l/J E CO (M) and if> E 1i';. 

2. The family (.cI)T~O in L(1if)) converges exponentially fast to .cs: 

(2.309) 

(2.310) 

for some positive constants CI6, CI7· For sufficiently large T (2.310) holds also 
in the norm of L(1if)). So among the probability measures corresponding to 
elements in 1iiJ there is a unique K'I -invariant probability measure v* on M, 
say corresponding to v E 1if). The operator.cs is a projection onto span v: 

(2.311) 

Proof The infinite sum on the rhs of (2.308) converges as the prove of estimate 
(2.249) applies literally to the case A = Zd. Next we want to show that 1rAl o.cI 

is the limit of 1rAl o.cI A (as A ~ Zd). The difference between these two operators 
is due to configuratio~s Cg in Confg{A, AI) or in Confg{Zd, AI) with A(Cg) et A. 
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For these we can split in estimate (2.251) the factor that arises from the decay of 
interaction in the following way (which is the same as the splitting (1.110) in [12]). 

exp ( -c, ftnp .• ) :0; exp (-c, t.k'np .• ) expHdist(A,.AC
)) (2.312) 

with a e > 0 such that cg = cg - e > O. (Note that we can choose e so small that the 
estimates, formerly done with cg work with cg instead as well.) So we can estimate 

-lA I T T 
'19 1 11ll'A1 O£S,A -ll'A1 O£SllL(1£",1£A1) 

< 2 L JIAd llll'A1 0 £2gllL(1£",1£A1) 
Cg eConf(zd,A1)' 

A(Cg)'lA 

< CIB exp(-edist(AI,AC)). 

(2.313) 

Next we show (2.309) for the special case that 'I/J depends only on the Al-coordinates, 
using (2.304): 

fM dp,(z) (K~'I/J)(z) 4>(z) (2.314) 

_ lim r dp,A(ZA)(K~A 'I/J)(ZA) 4>i.. (ZA) 
A-+ZdJM 

_ lim r dJ-£A(ZA) 'I/J(ZA) (£~,A4>A)(ZA) 
A-+Zd J(Sl)A 

lim r dp,A1 (ZA) 'I/J(ZA1) (ll'A1 0 £; 4>A)(ZA1) 
A-+Zd J(Sl )A1 

fM dp,(z) 'I/J(z) (£~4>Xz). 

We conclude (2.309) for general 'I/J E CO(M) by approximating it by 'l/JA1 (cf. (2.161)), 
depending only on the Al-coordinates and using continuity wrt 'I/J of both sides of 
(2.309). So 1. is proved. 
Next we show (2.310). We note that for Al = 0 the lhs (2.315) in the following 
estimate is equal to zero as both transfer operators preserve the Lebesgue integral 
(p, is a 'left eigenvector' with eigenvalue 1.) So we only have to consider the case 

lAd ~ 1. 

-lA I T '19 1 IIll'A1 oC'; -ll'A1 O£SIIL(1£",1£A1) 

< JIA1
1 L 11ll'A1 0 CC; - ll'A1 0 £2gllL(1£",1£A1) 

CgEConf(Zd,Ad 
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< JIAtlllQAl 01l"Al - (1- e->'T)IA1IQAl 01l"AlIIL(1l",llAl) 

+JIA11 L 111I"Al 0 C~ IIL(1l",llA
1

) 

Cg EConfg (A,Al), 
cgreaches the top 

(2.316) 

(2.317) 

+JIA11 L r ~t 111I"Al 0 C~,t - 1I"Al 0 C~,tIlL(1l",llAl)(2.318) 
C EConf (A A ) }Simplex(C9 '2) 9 g, 1 , 

cgdoes not 
reach the top, 

Inp (Cg )12! 1 

+JIAd L 
cgEConfg(zd,Al)' 

cgdoes not reach the top, 
Inp(Cg )l2!l 

+JIAd L 
CgEConfg(A,Atl, 

cgdoes not reach the top, 
Inp (Cg )l2! 1 

(2.319) 

(2.320) 

We have distinguished between the following classes of gum configurations. The 
first summand (2.316) corresponds to the operator 1I"Al 0 Cc - 1I"Al 0 C'f where Cg g. 9 

is the gum configuration that has on ly long h-strips (no branchings or r-strips). 
The second summand (2.317) takes all Cg into account that reach the top. So all 
specified configurations (Cg , T, t) have an r-strip ending at time -T. All (Cg , 00, t) 
have an infinitely long r-strip and so the correspondi;ng operator is zero (cf. Remark 
2.3.5.3) and does not appear in (2.317). The last three summands, (2.318), (2.319) 
and (2.320), correspond to Cg that do not reach the top and do not consist only 
of h-strips. That implies that it has at least one branching and the corresponding 
domains of integration, Simplex(Cg , 00) and Simplex(Cg , T), are not degenerated to 
a point. We divide them into Simplex(Cg , t) and the particular complements. (The 
reason for this will become clear when we do the estimates.) In (2.318) we integrate 
the norm of the operator difference 1I"Al 0 C£; -1I"Al 0 C'f

g 
over Simplex(Cg , t) and in 

(2.319) and (2.320) we integrate the norms of the two operators separately over the 
particular complement sets. 
Now we estimate each summand: The first summand (2.316) is estimated by 

(2.321) 

where the last inequality holds if J is chosen sufficiently small. 
For estimating the last summand (2.320) we note that for t E Simplex(Cg , T) \ 
Simplex(Cg , t) the sum of the lengths of all r-strips of (Cg , T, t) is at least t. (This 
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is because (Cg , T, t) has a branching, say at time ti with Itil ~ t and there must be 
a sequence of apex-r-strips whose lengths add up to at least t.) Using the remark 
at the end of Definition 2.3.14, we see that 

-lA I ~ J T ( 1 - 1] T) 
{) I L- Simplex(Cg.T) dt I17rAI o.cCg ,tIlL(l£",l£A) :s; CI9 exp -A-2- 2" . 

CgEConfg(A,At} \Simplex(cg • .,.) 

(2.322) 
Similarly we can estimate the second (2.317) and the fourth (2.319) summand: 

cgEConfg(A.AI)' 
cgreache& the top 

( 
1-1] ) :s; C20 exp - -2- AT . 

JIAII ~ ( dt 117r o.coo II L- J Simplex(cg.oo) Al Cg,t L(l£",l£AI ) 

CgEConfg(Zd,At} \Simplex(cg • .,.) • 

( 
1-1] T) :s; C21 exp --2- A 2" . 

(2.323) 

(2.324) 

For estimating the third summand (2.318) we use a similar idea as for the proof 
of Proposition 2.3.5. For Cg E Confg(Zd, AI) and t E Simplex(Cg , t) the difference 
between the operators 7rAI o.cc;,t and 7rAI o.c~g,t is only due to h-strips going to the 
top or long h-strips in Al as we can see from representation (2.243) for .cc;,t (and 
.c2g,t and also from Remark 2.3.5.1. ) So they differ only in the constants c(Cg , 00, t) 
and c(Cg , T, t). More precisely, an h-strip in Cg that goes to the top and therefore 
corresponds to an h-strip in (Cg , T, t), say from (q, ti ) to (q, -T), and so gives rise to 
a factor 1 - exp( -A(T - Itil)) (note that Itil < t) whilst the corresponding h-strip 
in (Cg , 00, t) ends at time -00 and gives rise to a factor 1. Similarly a long h-strip 
of Cg in Al gives rise to factors 1 - exp( -AT) and 1, respectively. In both cases the 
difference between the scalar factors (for each h-strip to the top) is bounded by 

(2.325) 

The number of h-strips to the top is bounded by L:~1 3dnp,kkd and the number of 
longh-strips at sites in Al by lAd - K (where np,k and K are the garameters of the 
labelled tree of Cg .) . . 
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So we estimate 

I11l"Al 0 C~,tIlL(1l",1lAl) (2.326) 

< cS IT (1 + cS)3
d
n

p,kk
d
(1 + cS)IAd-K (C3 f e)lnpl exp (-cg f kdnp,k) C~hC~" 

k=l k=l 

X IT exp( -(1 -1])'\ length(R)) c(Cg , T, t) I14>A(Cg ) IIA(Cg). 
R 

The factors (1 + cS)3
d
np,kk

d 
are compensated for by exp( -,cgkdnp,k) 'in the usual way'. 

If f is sufficiently small and cg large we can estimate 

JIA11 L 
Cg EConfg(A,Al)' 

cgdoes not reach the top, 
Inp(Cgll~l 

< _l,xT 
_C22 e 4 • 

From (2.321), (2.323), (2.327), (2.324), and (2.322) we conclude (2.310) with C17 = 
I ~!},\ and CI6 sufficiently large. 
For any 4> E 11.", and any A E :F we have 

cgEConfg(zd,Atl, 
cgdoes not reach the top 

Cg EConfg (Zd,A1), 

cgdoes not reach the top 

(2.328) 

The sum in (2.328) is a priori over all Cg E Confg(Zd, Ad but, as we have seen 
before, if Cg reaches the top the corresponding operator 1l"A1 0 CC: is zero. If Cg does 
not reach the top there are only h-strips going to the top (-00) and 1l" Al 0 Cc is a 

9 
projection onto span(hZd). 

We set 1/A def 1l"Al 0 CChZd and this defines 1/ = (1/AhEF' Note that the transfer 
operator Cs preserves gthe Lebesgue-integral and so 1/0 = 1, i.e. 1/ corresponds to a 
probability measure. 

o 

2.4 Decay of Correlations 

In the following theorem which is completely analogous to Theorem 1.7.1 in [12], we 
state the mixing properties for the invariant probability measure 1/* in terms of the 
weighted norms. 
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Theorem 2.4.1 For sufficiently small il, 19, € and big C2 there is a K, E (0,1) and 
positive constants C22, C23, C24 and C25 such that for all finite disjoint AI, A2 c Zd 
and 1/J E llA2 the following holds: 

11 
v v 11 < C22ilIAiUA21K,dist(Ai,A2), VAiUA2 - Ai A2 AiUA2 

1171" Ai (1/Jv) - v( 1/J )VAi IIAl < C23il-IAiUA21 111/JII A2K,dist(Al,A2), 

117I"Ai 0 .cI(1/Jv) - V(1/J)VAi IIAl < ~4il-IA2119-IAd 111/JIIA2K,dist(Al,A2) 

x exp ( -C25T) 

for every T > O. 

Proof For a gum configuration Cg we define in analogy to (1.109) in [12] 

00 

b(Cg) def L k n.a,k(Cg). 

k=l 

(2.329) 

(2.330) 
(2.331) 

(2.332) 

In the following we split gum configurations Cg E Conf(Zd, Al U A2) with b(Cg ) :s; 
!dist(AI, A2) into Cg = C: U C; with C: E Conf(Zd, Ad, c; E Conf(Zd, A2) and 
A(C;) n A(C;) = 0. 
We write, using (2.311) and the notation of (2.173): 

cgEConfg(zd,Ai UA2)' 
b(Cg »,dist(Ai ,A2) 

In estimating the norm of the second summand in (2.333) we can take out from the 
estimate for 117I"Ai 0 .c~hZdll a factor 

exp (-e ~ dist(AI, A2)) = K,dist(Ai,A2) (2.333) 

like in (2.312) such that we get 

11 
CgEConfg(zd,Ai UA2), 

b(Cg » ,dist(Ai,A2) 

We write the first summand in (2.333) as 
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(2.334) 



(7rAl 0 C~lhzd)(7rA2 0 C~2hzd) . 
9 9 

Cg=C~uc~EConfg(Zd,Al UA2), 
b(Cg)~ !dist(Al ,A2) 

Cg=ChuC~ECOnfg(zd,Al UA2), 

(7rAl 0 C~lhzd)(7rA2 0 C~2hzd) 
9 9 

b(Cg » !diBt(Al ,A2) 

and estimate 

11 
Cg=c~uc~EConfg(zd,Al UA2), 

b(Cg»!diBt(Al,A2) 

(2.335) 

(2.336) 
From (2.334), (2.335) and (2.336) we conclude (2.329). The proof of (2.330), using 
(2.329), is the same as in [12]. 
To prove (2.331) we set 4> = 'l/Jv - v{'I/J)v. So 

(2.337) 

and in particular 

Cs4> = o. (2.338) 

We estimate (2.337), analogously to (1.129) in [12], using the finer estimate 

I14>A(C) IIA(C) (2.339) 
~ C23'19-IA2111'I/JIIA2 'I9-IAr(C)I-Ek'=l (3k)d n,B,1o x;dist(Al,A2)-Ek:l kn,B,1o 

that we get from (2.330). For each Cg we get a 'good' factor x;dist(Al,A2) that we 
can take out of the sum (over gum configurations), and a 'bad' factor x;-Ek'=lkn,B,Io. 

The latter is compensated for in the usual way by the factor exp( -cg E:'=1 kdn/3,k), 
provided that cg is sufficiently large. 
Using (2.338) and (2.339), we get with the same argument as for the proof of (2.310): 

JIAllll7rAl 0 C~4>11 ~ c2s'l9-IA2111'I/J11 x;dist(Al,A2) exp( -C25T ) 

and (2.331) follows. 

(2.340) 

o 

We can state the mixing properties of v· wrt spatio-temporal shifts in terms of 
correlation functions for observables 'l/Jl, 'l/J2 E CO(M) like in Theorem 1.2.2 of [12]. 
The proof of the following theorem, using Theorem 2.4.1, is analogous to the one of 
Theorem 1.2.2 in [12]. For the definition of the spatial shift r and its size m(r) (or 
number of its single steps) we refer to the definition before Theorem 1.2.2 in [12]. 

115 



Theorem 2.4.2 For sufficiently small '19, f and large cg there is a K, E (0,1) such 

that for all nonempty AI, A2 E :F the following holds with the constant C(AI, A2, K,) def 

K,- max{lIp-qll:PEA1,qE A2}) and some positive constants C29, C30: 

(2.341) 

IL dv' KI(,p, OT),p, - (L dv',p, OT) (L dv',p,)I (2.342) 

~ C(Al' A2, K,)cIAd+IA2111'l/1dlooll'l/l2I1A2 K,m(T) exp( -cT). 

s. If g, f E C(M) then 

o 
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