
 

warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

http://wrap.warwick.ac.uk/88571  

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/88571
mailto:wrap@warwick.ac.uk


M
A

E
G
NS

I
T A T

MOLEM

UNIVERSITAS  WARWICENSIS

Stochastic modelling of transcriptional regulation

with applications to circadian genes

by

Silvia Calderazzo

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Department of Statistics, University of Warwick

September 2016



Contents

Acknowledgments v

Declarations vi

List of Abbreviations vii

Abstract ix

Outline x

I Modelling stochastic transcriptional regulation 1

Chapter 1 Modelling transcriptional regulation by two transcription

factors 2

1.1 Reaction networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Regulation by two transcription factors: the microscopic level . . . . 5

1.2.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 The mesoscopic level . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 The quasi-steady state assumption . . . . . . . . . . . . . . . 15

1.3.3 Exact and approximate transition densities . . . . . . . . . . 21

1.4 The macroscopic level . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.1 Deterministic model and parallels . . . . . . . . . . . . . . . . 26

1.5 State-space representation . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5.1 Model for two observed transcription factors as regulators . . 29

Chapter 2 Inference 30

2.1 Bayesian inference in state-space models . . . . . . . . . . . . . . . . 31

2.2 Discrete-discrete filtering . . . . . . . . . . . . . . . . . . . . . . . . . 33

i



2.2.1 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2 Extended Kalman filter . . . . . . . . . . . . . . . . . . . . . 34

2.3 Continuous-discrete filtering . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Kalman-Bucy filter . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 Extended Kalman-Bucy filter . . . . . . . . . . . . . . . . . . 38

2.4 Destructive sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Inference for two observed transcription factors as regulators . . . . 41

2.5.1 Rescaling of the parameters . . . . . . . . . . . . . . . . . . . 43

2.5.2 Estimation results . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

II Modelling transcriptional regulation in Arabidopsis thaliana 49

Chapter 3 Biological background and available data 50

3.1 Transcriptional regulation . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Nanostring experiment . . . . . . . . . . . . . . . . . . . . . . 54

3.3.2 Induction experiment . . . . . . . . . . . . . . . . . . . . . . 54

3.3.3 Motifs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.4 Prior information about the dissociation coe�cients . . . . . 60

3.4 Simulations and modeling for the Arabidopsis

Thaliana data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Case 1: model for known LHY as only regulator . . . . . . . 61

3.4.2 Case 2: model for known LHY and one unknown TF as regu-

lators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.3 Case 3: model for one unknown TF as only regulator . . . . . 69

Chapter 4 Inference and results for Arabidopsis Thaliana 72

4.1 Inference validation on simulated data . . . . . . . . . . . . . . . . . 72

4.1.1 Case 1: inference for known LHY as only regulator . . . . . . 73

4.1.2 Case 2: inference for known LHY and one unknown TF as

regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.3 Case 3: inference for one unknown TF as only regulator . . . 89

4.2 Data analysis for Arabidopsis thaliana . . . . . . . . . . . . . . . . . 95

4.2.1 Preliminary analysis of the Nanostring mRNA data . . . . . 96

4.2.2 Inference for the Nanostring mRNA data . . . . . . . . . . . 99

ii



4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

III Modelling transcriptional regulation of the mammalian clock

in the SCN 112

Chapter 5 Modelling and methods for mice SCN circadian dynamics113

5.1 The mammalian clock . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Motivation, available data and background . . . . . . . . . . . . . . 116

5.2.1 Mice SCN available data . . . . . . . . . . . . . . . . . . . . . 117

5.2.2 Mathematical modelling of mammalian clock gene dynamics:

some background . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Proposed model: derivation . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Simulation and mesoscopic approximation for systems with distributed

delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4.1 Stochastic simulation . . . . . . . . . . . . . . . . . . . . . . . 130

5.4.2 Di↵usion approximation for systems with distributed delays . 131

5.5 The extended Kalman-Bucy filter for systems with distributed delays 134

5.5.1 EKBF - delayed species . . . . . . . . . . . . . . . . . . . . . 135

5.5.2 LNA derivation - delayed species . . . . . . . . . . . . . . . . 142

5.5.3 EKBF - delayed reactions . . . . . . . . . . . . . . . . . . . . 145

5.6 Application of the EKBF for delayed species to Cry1 model . . . . . 147

Chapter 6 Inference for spatio-temporal Cry1-luc data from the SCN152

6.1 Inference validation on the simulated data . . . . . . . . . . . . . . . 152

6.1.1 Parameter likelihood for the simulated data . . . . . . . . . . 153

6.1.2 Inference for the simulated data . . . . . . . . . . . . . . . . 153

6.2 Cry1-luc data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2.1 Exploratory analysis of the Cry1-luc data . . . . . . . . . . . 157

6.2.2 Inference for single experiments . . . . . . . . . . . . . . . . . 158

6.2.3 Diagnostics of Cry1-luc model fit . . . . . . . . . . . . . . . . 165

6.3 Hierarchical Bayesian meta-analysis . . . . . . . . . . . . . . . . . . 167

6.4 Towards a spatial model? . . . . . . . . . . . . . . . . . . . . . . . . 171

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Conclusions 178

Appendix 182

iii



Appendix A Modelling stochastic transcriptional regulation: addi-

tional review material and further details 183

A.1 Exact transition density for monomolecular reactions systems . . . . 183

A.2 Derivation of the LNA . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.3 First derivatives of the transcription function . . . . . . . . . . . . . 185

Appendix B Arabidopsis thaliana modelling: additional information

and modelling tools 186

B.1 Prior information on the dissociation coe�cients: additional details . 186

B.2 Switch tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.3 Fourier series representation . . . . . . . . . . . . . . . . . . . . . . . 187

Appendix C Arabidopsis Thaliana simulation study: additional plots189

Appendix D Arabidopsis Thaliana data analysis: additional plots 193

Bibliography 195

iv



Acknowledgments

I first wish to thank my supervisor Prof. Bärbel Finkenstädt for advice on the
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Abstract

Circadian rhythms, i.e. rhythms exhibiting a cyclic behaviour with a period
of approximately 24 hours, are present in the metabolism of most living organisms.
The transcriptional processes, i.e. the processes associated with mRNA synthesis,
critically contribute to their origination, and are responsible for most of the mech-
anisms which regulate gene expression levels in cells. Inhibition or activation of a
putative transcriptionally regulated ‘child’ gene can be achieved via binding of pro-
teins called transcription factors (TFs) to the gene promoter, a region of the DNA
containing protein-specific binding sites.

In this work, we investigate modelling and inference approaches for di↵er-
ent scenarios of circadian transcriptional regulation. We focus on a system which
comprises two transcription factors and a regulated child gene. We first perform
parameter inference in the context of state-space models on simulated data from
a mechanistic stochastic model describing this scenario. Additionally, we investi-
gate the e↵ect of data aggregation across di↵erent cells, and derive the smoothing
equations for a destructive sampling scenario.

In the second part of this work, we consider a situation in which an impor-
tant regulator of a child gene has not been observed. We apply our model to mRNA
expression levels of a subset of circadian genes of the Arabidopsis Thaliana model
plant. Inference is in this case aimed at estimating both the model parameters and
the unobserved transcription factor profile. We compare a posteriori the inferred
transcription factor profiles with available time-series data for one important circa-
dian regulator in the Arabidopsis Thaliana, namely late elongated hypocotyl (LHY),
and identify similarities for a several genes known to belong to the central clock.

Finally, we focus on a scenario of transcriptional regulation which includes
an auto-regulatory negative feedback loop. This modelling framework is motivated
by the availability of spatio-temporal imaging data of genes belonging to the mam-
malian central clock in mice suprachiasmatic nucleus (SCN), and in particular here
we focus on Cry1. We introduce a distributed delay to account for nuclear export,
translation, protein complex formation, and nuclear import, of the molecular species
involved. To perform inference, we develop a novel filtering algorithm that can be
applied to any system with distributed delays. We finally apply the methodology
to Cry-luc spatio-temporal data, and find that parameter estimates are spatially
distributed, with a marked di↵erence between central and peripheral SCN regions.

ix



Outline

Since gene expression profiles have become available with the recent advancement of

sequencing and imaging technologies, one of the main challenges that biologists and

biostatisticians have had to face is to understand the unobserved complex network

of interactions that causes the observed patterns of expression.

It is currently believed that genes are mainly regulated during transcription

(Latchman, 2007, Chapter 4), by proteins resulting from transcription and trans-

lation of specific genes. We will refer to the regulated genes as ‘child’ genes while

the regulatory proteins are called transcription factors (TFs). While experiments

now allow determining whether a particular TF binds the promoter of a potentially

regulated gene, understanding the actual activity of the TF is still an open issue,

that is of crucial importance to understanding the behaviour of the full network.

This work focuses in particular on circadian dynamics, i.e. daily oscillatory

patterns of expression arising in genes belonging to, or being regulated by, cellular

circadian clocks. The circadian clock is a robust and self-sustained mechanism com-

mon to most living organisms, which has the function to optimise the metabolism

in accordance with daily light and temperature changes (McClung, 2006; Harmer,

2009).

This thesis is divided into three parts. In the first part, comprising Chapters

1 and 2, we investigate modelling and inference for a general framework of stochas-

tic transcriptional regulation of a child gene by two TFs. We recognise that real

interactions may involve several genes and TFs. However, even the simplest setting,

where only two TFs and one child gene are present, already implies several possible

scenarios of transcriptional dynamics, which we will investigate.

In Chapter 1 we introduce the modelling approach, where we start from a de-

scription of the reaction network at a stochastic single-cell level, and then gradually

move to approximate modelling approaches, available when di↵erent time-scales can

be assumed for the network reactions, or a large number of molecules is involved.

In this first part, we also investigate the assumptions required for data aggregation
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across di↵erent cells, a situation often encountered in real data scenarios. We con-

clude the first chapter by defining our model in the broader context of state-space

models.

In Chapter 2 we address the issue of parameter estimation, and in particular

we introduce the concepts of filtering and smoothing in state-space models, with a

special focus on Kalman filtering methodologies. We review current approaches for

the computation of the likelihood when a new unit from the same process is observed

at each observation time-point, in a sampling methodology known as ‘destructive

sampling’. Such a sampling process is not uncommon in experiments, and also

characterises the available Arabidopsis Thaliana data, the analysis of which is the

focus of the second part of this work. Estimation results on simulated data are

presented, and in particular we show that in a low measurement error and high

frequency sampling scenario, it is possible to infer parameters describing the increase

in transcriptional activity due to e↵ect of the TF, as well as parameters related to

the binding of the TFs to the promoter and their binding cooperativity.

In the second part, which includes Chapters 3 and 4, we focus on modelling

transcriptional regulation of a subset of genes of the Arabidopsis Thaliana model

plant, whose mRNA levels are available from a Nanostring experiment from the

Carré lab. at Warwick.

In Chapter 3 we present the biological concepts related to gene regulation,

its relevance to a particular class of genes (i.e. the core genes of the circadian clock

in plants), and the data available from the Nanostring experiment. Moreover, we

describe a set of additional experiments and results, which provide a deeper insight

into the activity and binding properties of an important known regulator in the

Arabidopsis Thaliana, namely late elongated hypocotyl (LHY). Finally, we propose

three models of transcriptional regulation for the available data.

In Chapter 4 we first deal with the validation of inference on simulated data

for the three modelling approaches introduced in Chapter 3, and then perform the

real data analysis on the genes with rhythmic mRNA profiles in the Nanostring

experiment. We apply a model which assumes one unobserved transcription factor

as regulator of the child genes. We finally compare the inferred transcription factors

of each child gene to the LHY protein time-series, to assess the degree of similarity,

and we cluster the inferred unobserved child gene mRNA profiles, to identify a

possible relationship between cluster of expression and selected characteristics of

the genes related to LHY activity. We find that the inferred unobserved TF profile

has a strong correlation with LHY protein time-series for a number genes known

to belong to the Arabidopsis Thaliana central clock, namely ELF3, PRR9, CAB1,

xi



CCA1, TOC1, ELF4, and LUX. We also observe a possible correlation between

cluster of expression and presence of binding sites in the promoter regions of the

analysed genes.

In the third and last part of the thesis, comprising Chapters 5 and 6, we

extend our approach to be applied to genes belonging to the central circadian clock

in mammals, in particular in cells located in the suprachiasmatic nucleus (SCN) of

mice. Regulatory dynamics include in this case a negative feedback loop, modelled

by means of a distributed delay.

In Chapter 5, we provide a brief overview of the biological knowledge, and

current modelling approaches, of the mammalian circadian clock in the SCN. We

then introduce the proposed model for a sub-set of central clock genes, and propose a

novel methodology which allows to perform filtering in stochastic dynamical systems

comprising distributed delays.

In Chapter 6, we approach inference for both simulated data and Cry1-

luc spatio-temporal observations across the SCN. We merge the inferential results

from three independent experimental replicates, by means of a hierarchical Bayesian

meta-analytic model, and, finally, investigate patterns of spatial variation of the

parameters across the SCN. We observe, among other results, a decreasing mean

trend in both intrinsic noise and standard deviation of the distributed delay as

we move from central towards more peripheral locations of the SCN. The spatial

distribution of the parameters related to intrinsic noise and to the variability of the

delay distribution, which may have a role in the underlying signalling dynamics,

highlights the relevance of stochastic modelling of transcriptional dynamics in this

scenario, and motivates the adoption of a distributed delay.

Finally, in the conclusions, we summarise our main findings, discuss possible

limitations and outline directions for future developments of our work.

xii



Part I

Modelling stochastic

transcriptional regulation

1



Chapter 1

Modelling transcriptional

regulation by two transcription

factors

Stochasticity is believed to be a relevant characteristic of gene expression (Elowitz

et al., 2002). Di↵erences in the expression levels of a single gene can be both cell-

specific, i.e. due to the so-called extrinsic noise, and due to the random interactions

of particles, i.e. due to what is known as intrinsic noise (Elowitz et al., 2002).

Measurement error is a further relevant source of noise.

Depending on the level of detail required, di↵erent modelling and simulation

techniques can be employed in order to reproduce the system under study, and

the relevant source of noise. The possible size of resolution at which the system is

studied can be broadly divided into three classes: the microscopic, mesoscopic and

macroscopic level (Lachowicz, 2011).

Data at a microscopic level usually involve very few molecules, approximately

less than 10, and therefore exhibit a high level of intrinsic stochasticity. In this

context an exact stochastic description of the system is usually required. Since

the present state of the system conveys all the necessary information to describe

probabilistically its future evolution, the microscopic dynamics can be rigorously

modelled with a Markov jump process (Anderson and Kurtz, 2011). Despite the

fact that its transition probabilities are usually intractable, it is possible perform

exact simulation with the stochastic simulation algorithm (SSA) (Gillespie, 1977;

Doob, 1945).

The mesoscopic level involves a higher number of molecules, such that intrin-

sic stochasticity still plays a role in the system, but a discrete model of number of

2



molecules and reactions is no longer required. Essentially, we move from a Markov

process in continuous time - discrete state-space, to a continuous time - continu-

ous state-space one. In this context, two widely applied approximate simulation

and modelling approaches are the di↵usion approximation, or chemical Langevin

equation, (CLE) (Gillespie, 2000; Golightly and Wilkinson, 2005; Wilkinson, 2012,

Chapter 8) and the linear noise approximation (LNA) (Kurtz, 1972; Van Kampen,

1992, Chapter 10; Komorowski et al., 2009; Stathopoulos and Girolami, 2013; Fearn-

head et al., 2014; Anderson and Kurtz, 2011; Ferm et al., 2008). Moreover, when

a subset of reactions is taking place at a fast timescale with respect to the overall

dynamics, other approximations are possible, for example the quasi-steady state

assumption (QSSA) (Rao and Arkin, 2003). The QSSA assumes that a subset of

species has reached its deterministic equilibrium, and only models the stochasticity

arising from the reactions happening at a low rate, or involving very few molecules.

Finally, at the macroscopic level intrinsic noise is assumed to be negligible.

In fact, as the number of molecules and the volume of the container increase, it is

proven (Kurtz, 1972; Anderson and Kurtz, 2011) that the system reaches its deter-

ministic equilibrium. The residual stochasticity is mostly due to measurement error,

and ordinary di↵erential equations (ODEs) can be assumed to be an appropriate

modelling and simulation approach.

It has to be noted that the available analytical modelling approaches assume,

at any level, a well stirred and thermally equilibrated environment. This is not the

case when data are aggregated from di↵erent cells, as each cell represents a di↵erent

‘container’. We study this scenario and write the approximate aggregate hazards,

stating the condition under which aggregation may be a sensible approximation.

Finally, we check the accuracy of the approximated aggregate hazards for our set of

reactions.

Here we focus on a scenario of transcriptional regulation comprising two

transcription factors and one corresponding transcriptionally regulated ‘child’ gene,

and first develop the model and the simulation at a microscopic level, where each

reaction is modelled separately. We then move to a mesoscopic level, and, finally,

consider the deterministic limit of the model linking the result to existing macro-

scopic models, i.e. the Hill function and the thermodynamic approach. We conclude

this chapter by providing the state-space representation of the proposed model for

the child gene mRNA at a mesoscopic scale, assuming that the two transcription

factors inputs are fully observed. Extensions to scenarios comprising one unknown

transcription factor or a negative feedback loop, are provided in Chapters 3 and 5,

respectively.

3



1.1 Reaction networks

It is useful to first introduce the notation and the concepts underlying a reaction

network, as we extensively refer to it in the following sections. Define a system with

p chemical species, whose molecule numbers at time t define the vector of random

variables X(t) = (X
1

(t), ..., Xp(t))T . A realisation of X(t) is denoted with the lower

case letter x(t). The species participate in a set of r reactions, R
1

, ..., Rr. Define

the stoichiometry matrix S as a p ⇥ r matrix with elements si,k, each given by the

di↵erence between the number of molecules of the i-th species produced, and the

number of molecules of the i-th species consumed by the k-th reaction (Wilkinson,

2012, Chapter 6).

As noted in Gillespie (1992), the knowledge of the number of molecules of

each species at a specific time t, is in itself not su�cient to determine the future evo-

lution of the system in a deterministic way, due to the fact that the positions and the

momenta of the single particles remain unknown. However, Gillespie (1992) shows

that, under the assumption of a thermally equilibrated and well stirred environment,

it is possible to rigorously derive the transition probabilities of the system. This set

of p di↵erential equations takes the name of chemical master equation (CME).

In order to write the general form of the CME, it is useful to define the hazard

of the k-th reaction, hk(X, ck). Conditional on the system being in state x at time

t, hk(x, ck)dt gives the probability of the k-th reaction occurring in the infinitesimal

time-interval [t, t + dt) (Wilkinson, 2012, Chapter 6). The parameter ck is referred

to as the rate constant of the k-th reaction, and it is given by the probability

that a random selection of molecules involved in the k-th reaction actually collides

and reacts (Gillespie, 1992). To obtain the hazard hk(X, ck), ck must therefore

be multiplied by all the possible combinations of available molecules for the k-th

reaction. Formally, we have (Wilkinson, 2012, Chapter 6)

hk(X, ck) = ck

pY

i=1

✓
Xi

pk,i

◆
, (1.1)

where pk,i denotes the number of molecules of the i-th species consumed by the k-th

reaction.

Anderson and Kurtz (2011) then define the state of the process X(t) as

X(t) = X(0) + SY

✓Z t

0

h(X(s), c)ds

◆
, (1.2)

where Y is a vector of independent inhomogeneous Poisson processes counting the

4



occurrence of the r reactions, and h(X(s), c) = (h
1

(X(s), c
1

), ..., hr(X(s), cr))T . The

Markov property is satisfied because the probabilities of the next transition - i.e.

the reactions hazards - only depend on the present state of the system, and not

on the past trajectories. The process X(t) is therefore a Markov jump process in

continuous time and discrete state-space, and its Kolmogorov’s forward equation

has the following form (Anderson and Kurtz, 2011; Wilkinson, 2012, Chapter 6)

d

dt
p(x, t|x

0

, t
0

) =
rX

k=1

[hk(x � s·,k, ck)p(x � s·,k, t|x0

, t
0

) � hk(x, ck)p(x, t|x
0

, t
0

)] ,

where s·,k is the k-th column of the stoichiometry matrix S, and p(x, t|x
0

, t
0

) =

P [X(t) = x(t)|X(0) = x(0)].

This is indeed the CME of Gillespie (1992) (see Wilkinson, 2012, Chapter

6). Note that the CME can be solved explicitly only in a restricted number of cases,

reviewed in McQuarrie (1967).

1.2 Regulation by two transcription factors: the micro-

scopic level

Consider now a system with two transcription factors (TFs), called A and B, each

with their own binding site. Their protein levels are here denoted PA and PB.

In order to start transcription, the binding of the basal transcriptional complex,

composed of other TFs and the RNA polymerase (RNAP), is also required: for

simplicity, we denote the full complex by RNAPc and assume a molecular number

constant in time. We refer to Section 3.1 for a more detailed biological introduction

of the transcriptional process. A graphical representation of the system is given in

Figure 1.1.

We extend the approach presented for a single TF setting in Tkačik and

Walczak (2011), and assume four possible states for the promoter: (0), when empty,

(A), when only A is bound, (B), when only B is bound, or (A,B), when both A and

B are bound. It is crucial to note that these states are mutually exclusive. Each

state of the promoter is treated as a chemical species, which has molecule number

equal to 1, when the state is visited, or 0 otherwise.

We define with k
+i the rate at which Pi binds the promoter, while k�i denotes

the rate of unbinding. Di↵erent rates can be specified for i = A, B.

It is also possible that one TF is more or less likely to bind or unbind, if

the other TF has already bound the promoter. This is denoted by cooperativity
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1, and is obtained by multiplying the individual binding and unbinding rates of A

and B by the cooperativity coe�cients k
+c and k�c, respectively. We assume the

cooperativity coe�cients to be equal for the two TFs.

We also assume that, once the promoter is in an active configuration, the

mRNA of the child gene, Mg, is produced at a rate Rstate. Again, this rate can

be di↵erentiated for each state. An inactive configuration has a transcription rate

equal to 0, following an approach analogous to the one presented in Ribeiro et al.

(2006). Independently of the state of the promoter, the mRNA of the child gene is

degraded or translated at a rate µMg .

Finally, the set of reactions also incorporate transcription and translation

of the two TFs. Time-dependent transcription rates ⌫A(t) and ⌫B(t) are assumed

for their mRNA, denoted respectively by MA and MB. The mRNA of the two

transcription factors is then either degraded or translated into the proteins PA and

PB.

A summary of all the reactions and of their hazards is presented in Table 1.1.

The rates in the table account for the most general setting: di↵erent transcription

rates, depending on the state of the promoter, di↵erent binding and unbinding rates

for the two TFs, and cooperativity.

1.2.1 Simulation

The stochastic simulation algorithm (SSA) (Gillespie, 1977; Doob, 1945) can be

used in order to simulate exactly from the system defined by the reactions in Table

1.1. The availability of simulated data from a known set of reactions and rates

is particularly important when it comes to compare the original model with its

approximations, and to perform parameter inference. In the former, we can in fact

compare the distribution of the simulated data under the approximate models, and

under the original one. In the latter, we can check the accuracy of our estimation

algorithm by applying it to the simulated data, and then compare the estimated

values of the parameters with the true ones.

Let htot(X, c) =
Pr

k=1

hk(X, ck) be the cumulative hazard. The SSA has then

been summarised in Wilkinson (2012, Chapter 6), and here reported in Algorithm

1.

The SSA can be slightly modified in order to record the species counts at fixed

time-intervals of length dt (Wilkinson, 2012, Chapter 6), and this is the approach

1Cooperativity may be a slightly misleading term, since two TFs can either attract or repulse
each other. However, it denotes here any form of interaction in the binding and unbinding to the
promoter.
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TF A 
binding site

TF B 
binding site

RNAPc

child 
mRNA

child 
mRNA

TF A TF B

Promoter

Rstate

k+B(k+c)k�B(k�c)

k�A(k�c) k+A(k+c)

µMg

;

Figure 1.1: System: two TFs, A and B, can bind the promoter at their binding
sites. Binding happens at a rate k

+i (k
+ik+c if the other TF is already bound to

the promoter), unbinding at a rate k�i (k�ik�c if the other TF is already bound to
the promoter) for Pi, i = A, B. Depending on the regulatory logic, transcription
can take place when one or both the binding sites are occupied, or empty. The
RNAPc has to bind the promoter in order to start transcription. Mg represents the
child gene mRNA, which is produced at a rate Rstate, depending on the state of the
binding sites (occupied or empty). Mg is then degraded at a rate µMg .

Algorithm 1 Stochastic simulation algorithm (SSA)

1: Set t = 0, x = (x
1

(0), ..., xp(0)) and c = (c
1

, ..., cr);
2: Compute hk(x, ck) for all k, and htot(x, c);
3: Sample the time ⌧ to the next reaction from an exponential random variable

with mean 1/htot(x);
4: Sample the type k of reaction from a discrete random variable with support

I = 1, ..., r, and probabilities equal to hk(x, ck)/htot(x, c);
5: Set t = t + ⌧ and x = x + s·,k;
6: If the current time is less than the maximum simulation time, return to 2.

here followed, taking dt = 0.1 h. Moreover, here we assume destructive sampling in

the experimental design, as motivated by our first application of the proposed model
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Reaction Rate Hazard

1
RNAPc + Pro

R
0

R
0

XRNAPcXPro
! RNAPc + Pro + Mg

2
RNAPc + ProPA RA RAXRNAPcXProPA
! RNAPc + ProPA + Mg

3
RNAPc + ProPB RB RBXRNAPcXProPB
! RNAPc + ProPB + Mg

4
RNAPc + ProPAPB + Mg RA,B RA,BXRNAPcXProPAPB
! RNAPc + ProPAPB + Mg

5 Pro + PA ! ProPA k
+A k

+AXProXPA

6 ProPA ! Pro + PA k�A k�AXProPA

7 Pro + PB ! ProPB k
+B k

+BXProXPB

8 ProPB ! Pro + PB k�B k�BXProPB

9 ProPA + PB ! ProPAPB k
+Bk

+c k
+Bk

+cXProPA
XPB

10 ProPB + PA ! ProPAPB k
+Ak

+c k
+Ak

+cXProPB
XPA

11 ProPAPB ! ProPA + PB k�Bk�c k�Bk�cXProPAPB

12 ProPAPB ! ProPB + PA k�Ak�c k�Ak�cXProPAPB

13 Mg ! ; µMg µMgXMg

14 ; ! MA ⌫A(t) vA(t)
15 MA ! ; µM µMXMA

16 MA ! MA + PA ↵M ↵MXMA

17 PA ! ; µP µPXPA

18 ; ! MB ⌫B(t) vB(t)
19 MB ! ; µM µMXMB

20 MB ! MB + PB ↵M ↵MXMB

21 PB ! ; µP µPXPB

Table 1.1: Reactions for the system under study, rates and hazards. RNAPc is the
basal transcriptional complex, Pro is the promoter, MA and PA are the mRNA and
protein of TF A, MB and PB are the mRNA and protein of TF B. ProPA, ProPB

and ProPAPB are the complexes formed by TF A, B and both A and B, when
bound to the promoter; Mg denotes the mRNA of the child gene. X is the symbol
indicating the molecules number. Finally, transcription rates vA(t) and vB(t) for
the two TFs are time-dependent, and we assume for simplicity the same translation
and degradation rates for the two TFs. Reactions are separated according to their
role: the first four are related to the transcription of the child gene, reactions 5 to
12 represent the binding and unbinding of the TFs to the promoter, reaction 13 is
the mRNA degradation of the child gene, and, finally reactions 14 to 21 account for
the TFs transcription and translation.

to the Arabidopsis Thaliana available data. A scenario which does not comprise de-

structive sampling is assumed in our second data application, presented in Chapters

5 and 6. An appropriate simulation technique in the destructive sampling scenario
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involves simulation of independent paths for each data-point, i.e. starting each time

from t = 0 (Stathopoulos and Girolami, 2013). Note, also, that the transcription

rates of the two TFs are time-dependent, changing at some assumed switch time-

points, thus generating the circadian cyclicity. The hazard function in Algorithm 1

is therefore time-dependent, and has more appropriate notation hk(x, t, ck). At each

time-step dt, we check if any switch-time has been reached, and update the hazards

accordingly. However, as noted in Wilkinson (2012, Chapter 8), this approach is

only approximately correct, as the time to the next reaction is computed before the

possible hazard change, and may therefore overlap two transcriptional regimes. An

exact solution is provided again in Wilkinson (2012, Chapter 8). On the other hand,

in our case, the transcriptional rates of each TF are piece-wise constant, and change

only five times during the whole simulation time; moreover, the waiting times to

the next reaction event are generally relatively short: in one sample simulation of

the full system for a single cell, the average waiting time is equal to 7.1 ⇥ 10�3 s

and the maximum equal to 9.6 ⇥ 10�2 s for simulation scenario A of Figure 1.2,

and 6.4 ⇥ 10�3 s and 6.1 ⇥ 10�2 s, respectively, for simulation scenario B. Therefore

we believe that the e↵ect of the adopted approximate simulation approach on the

simulated paths is minimal.

TF A transcriptional rates and switch time-points are set according to the

parameter estimates obtained by running the Switch Tool of Section B.2 in Appendix

(in an earlier version working with a log transformation of the time-series and with

a time-constant variance) on available mRNA levels of a particular TF, namely late

elongated hypocotyl (LHY). LHY has a pivotal role in the analysis of Chapters 3 and

4, and we refer to these later chapters for further details. TF B is slightly delayed

with respect to TF A, and incorporates a shoulder in each peak, i.e. an intermediate

transcriptional rate increase between the minimum and maximum rate, a feature

often present in real data. Translation and degradation rates of TF B are set equal

to that of A. In particular, degradation for TF A and B mRNA is set to 0.5 h�1,

translation to 1 h�1, and degradation for TF A and B protein is set to 0.34 h�1.

In our formulation we assume that both the TFs and the child gene mRNA

exhibit circadian rhythmicity. This is motivated by available data from both plants

and mice, whose analysis is the focus of Chapters 3 to 6. However, the model

here presented is applicable to any system where the transcription of a child gene

is regulated by two transcription factors, i.e. when changes in the mRNA levels

of the child gene can be associated to changes in the levels of the TFs, following

a functional form which arises from the set of reactions of Table 1.1, and that is

explicitly stated in Section 1.3.2.
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With respect to the binding and unbinding rates, here we assume the same

binding rate, k
+A = k

+B = k
+

= 2 molecules�1h�1. Previous work on the di↵usion

limit states that k
+i has an upper limit, that experiments in bacteria have observed

to be often reached, and that does only depend on the linear dimension of the

binding site (Tkačik and Walczac, 2011; Bialek and Setayeshgar, 2005). We are

then assuming approximately the same linear dimension for the binding sites of

the two TFs; it has to be noted, however, that in an inferential framework it is

usually possible to accurately estimate only the dissociation coe�cients, i.e. the

ratios between k�i and k
+i. The assumption of an equal binding rate does therefore

not a↵ect the inferential results. The unbinding rates are set to 60 h�1 for TF A and

40 h�1 for TF B. The choice of higher unbinding than binding rates is motivated in

Forger and Peskin (2005), and references therein. The ratio between the unbinding

and binding rates of each TF provides dissociation coe�cients close to the mean

expression levels of the TFs themselves, which, as we investigate in more detail in

Section 1.3.2, means that both TFs are significantly influencing the dynamics of the

child gene.

Rates for the transcription of the child gene mRNA, and the cooperativity

between the two TFs, are di↵erentiated depending on the regulatory logic imple-

mented. Results and rates of the simulations are shown in Figure 1.2.

The figures show the simulated time-series for the mRNA and protein of

TF A and B, the mRNA of the child gene, and the transcriptional profile, i.e. the

number of molecules produced in each time step. Simulations have been carried out

on a single cell level, and values summed up over 100 cells.

We can see that the behaviour of the child gene mRNA varies according to

the TFs time-series and the values fixed for the transcription rates.

In the scenario illustrated in Figure 1.2 (a), for example, TF A represses

transcription on its own, while TF B activates it; moreover, when TF A and B are

contemporarily bound to the promoter, the resulting transcriptional rate is equal to

R
0

, i.e. the rate observed when the promoter is empty. We can see in fact that the

child gene mRNA level tends to be high when TF B is at its maximum, while low

levels can be observed between hours 40 and 50, when TF B is low, and TF A is

increasing.

In a second scenario, illustrated in Figure 1.2 (b), we have instead that both

TFs are repressors, and even stronger repression is achieved in interaction. We can

indeed see that high levels of the child gene mRNA are reached when the two TFs

are low, and therefore their repressive e↵ect is released; on the other hand, when the

TFs levels are high, transcription is strongly inhibited, resulting in minimal levels
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(a) R0 = 1molecules/h, RA = 5⇥10�2 molecules/h, RB = 4.5 molecules/h,
RA,B = 1molecules/h, k+c = 0.8, k�c = 1.2.

(b) R0 = 6molecules/h, RA = 3.5 molecules/h, RB = 2.5 molecules/h,
RA,B = 5 ⇥ 10�2 molecules/h, k+c = 1.2, k�c = 0.8.

Figure 1.2: Simulated data from the SSA algorithm for the reactions in Table 1.1.
Common parameters: ⌫A(t) = [9.6, 0.29, 5.6, 0.72, 4.2] (in molecules per hour) with
switch times (in hours) SwtA = [27, 40, 50, 61], ⌫B(t) = [0.7, 5.7, 9.7, 0.3, 3.0, 5.6, 0.7]
(in molecules per hour) and switch times (in hours) SwtB = [21, 28, 45, 52, 56],
µM = 0.5 h�1, ↵M = 1 h�1, µP = 0.34 h�1, µMg = 1.2 h�1, k

+

= 2 molecules�1h�1,
k�A = 60h�1, k�B = 40h�1. XRNAPc = 10molecules. Aggregated over 100 cells.
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of the child gene mRNA.

Clearly, other logical forms of regulation by two TFs can be implemented.

The key role is played by the binding, unbinding and transcription rates. As noted

earlier, the promoter can only be in one of the four possible configurations at any

time. An active configuration is characterised by a transcription rate of the child

gene greater than 0. However, if the promoter has in the empty state the same

transcription rate as the one reached when one TF is bound, we can assume that

the TF is independently neither an activator, nor a repressor. Moreover, if the

transcription rate of the child gene does not change when both TFs are bound, with

respect to the case when only one of them is bound, then we can conclude that there

is no interaction e↵ect on transcription and RA = RB = RA,B. Alternatively, TF

A, or B, is dominating the dynamics if RA,B = RA, or RA,B = RB, respectively. We

provide a more formal explanation of this point in Section 1.3.2.

Binding and unbinding rates also play a role. In fact, for given levels of the

TFs, their role is to define the transitions between the four promoter states. We

refer again to Section 1.3.2 for a more detailed explanation of this point.

It is finally worth remarking that binding and unbinding rates will only

influence the probability of the promoter being in one of the four states, but di↵erent

transcription rates have to be specified in order to implement an actual regulatory

logic: in the trivial case of equal transcription rates for all states, the production of

the child gene mRNA would just be constant, irrespectively of the levels of A and

B, or their binding and unbinding rates.

1.3 The mesoscopic level

The specification of the model at a microscopic scale, and for a single cell, represents

a useful description of the exact dynamics underlying the system under study, and

a powerful tool to perform exact simulation. However, in real data settings, the

information may be collected at an aggregate level, and its resolution may not

be su�cient to obtain sensible estimates of all the reaction rates involved. Some

reactions may indeed happen at a fast rate, if compared to the time resolution of the

data. When the number of molecules involved or the rate for a subset of reactions

is high, approximate approaches are available.

1.3.1 Aggregation

In order to deal with a model for aggregate data, as required by the Arabidopsis

Thaliana data, we first need to know the corresponding reaction rates. As the
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number of cells increases, the number of molecules of the reactants, and the volume,

increase as well. Suppose that there are n cells in the system, and assume the total

volume of all cells multiplied by the Avogadro number to be n⌦. The Avogadro

number is equal to 6.02 ⇥ 1023, and represents the number of molecules per unit

mole. Let Xsum,i be the sum of the number of molecules of the i-th species over all

the n cells. It is useful to rescale the hazards with the volume of the container. In

particular, following Anderson and Kurtz (2011) Equation 1.1 becomes

hn⌦
k (Xsum, ck) = ck

Q
i pk,i!

(n⌦)|pk�1|

Y

i

✓
Xsum,i

pk,i

◆
(1.3)

where |pk| =
P

i pk,i.

We can move one step further and define the hazards in terms of concentra-

tions, obtaining the mass action kinetics form h̃k. Let Zi = Xsum,i/n⌦. For the

reactions of interest in our system, we have

• Zero-th order reactions (; ! Product): hn⌦
k (Xsum, ck) = n⌦h̃k(Z, ck) = n⌦ck;

• First order reactions (X ! Product): hn⌦
k (Xsum, ck) = n⌦h̃k(Z, ck) = n⌦ckZ;

• Second order reactions (X
1

+X
2

! Product): hn⌦
k (Xsum, ck) = n⌦h̃k(Z, ck) =

n⌦ckZ1

Z
2

;

It is important to note that we have here applied a significant simplification,

in that we have assumed the n cells pulled together belong to the same system, in

a well stirred and thermally equilibrated environment. This is not true, as the cells

represent di↵erent ‘containers’. However, if we assume independence between the

cells, we can exploit the fact that the sum of independent Poisson processes is a new

Poisson process, having as mean the sum of the means of the original independent

processes. We can then, indeed, obtain the cumulative hazards by just summing up

the hazards of the single cells. This leads to the cumulative hazard of Equation 1.3

for zero-th and first order reactions, and is consistent with Oates and Mukherjee

(2012).

However, that this is not the case for second order reactions, as it is generally

not true that the sum of the hazards equals the hazard of the sum (Oates and

Mukherjee, 2012). This seems a quite restrictive condition for performing inference

on aggregated data, as a model derived from a system-size expansion of the reaction

network may not lead in this case to meaningful inferences for the rates involved.

On the other hand, there are conditions under which the system-size expan-

sion can still be ‘safely’ performed for aggregated data. We show that this is the
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case if at least one of the reactants involved in a second order reaction has reached

its deterministic equilibrium in each cell. Formally, assume for species i in cell j

Xj,i = ⌦Zj,i ⇡ ⌦zi

so that

Xsum,i =
X

j

Xj,i =
X

j

⌦Zj,i ⇡ n⌦zi,

where zi denotes the deterministic equilibrium of species i. Since we assume that in

each cell we have the same stochastic process, it must be zj,i = zi, for all j = 1, ..., n.

Consider now the case of a second order reaction, and assume X
1

to be the species

reaching the equilibrium. We have

X

j

h⌦

k (Xj,·, ck) =
X

j

1

⌦
ckXj,1Xj,2 =

X

j

ckZj,1Xj,1 ⇡ ckz1Xsum,2

=
1

n⌦
ckn⌦z

1

Xsum,2 ⇡

1

n⌦
ckXsum,1Xsum,2 = hn⌦

k (Xsum, ck),

Intuitively, under the assumption that Xj,1 is at equilibrium in each cell, the second

order reaction can be approximately considered a first order one. This allows to

perform the summation over the di↵erent cells.

For the transcriptional regulation framework that we are considering, this

assumption is fulfilled if the TFs expression levels are approximately the same in

the di↵erent cells. We check the accuracy of this approximation through simulation

for the two assumed simulation scenarios of Figures 1.2 (a) and (b). In each cell,

the peak levels of TF A and B are of about 50 molecules, while their average levels

are of about 15-20 molecules. Figure 1.3 shows a comparison between aggregated

trajectories simulated from the original model, and trajectories simulated with ag-

gregate hazards. We can see a slight di↵erence in the accuracy of approximation

between the two simulation scenarios. In particular, the mean and variance of the

simulated trajectories overlap more precisely in scenario A than in scenario B. It

is possible that the higher cooperativity coe�cient makes second order reactions of

binding and unbinding more likely in scenario B, and therefore they have a stronger

influence on the dynamics of the child gene mRNA. However, if we simulate the

latter scenario by increasing the mRNA and protein TFs molecules numbers, as

well as their dissociation coe�cient, by a factor of 15, and we maintain the same

regulatory logics, the mean and the variability intervals of the child gene mRNA

under the original model and the aggregate hazards model, are overlapping more

precisely, as we can observe in Figure 1.4
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Figure 1.3: Mean and ±2 standard deviation (SD) variability intervals for 50 simula-
tions from the original model (blue), the aggregate hazards model (red). Simulation
scenario of Figure 1.2 (a) (left) and (b) (right).

1.3.2 The quasi-steady state assumption

A further approximation of the Markov jump process defined by the set of reac-

tions of Table 1.1, can be applied given that binding and unbinding reactions are

believed to happen at a fast timescale, if compared to the production and degra-

dation of the child gene mRNA. This assumption is coherent with previous work

on the mammalian circadian clock (we refer again to Forger and Peskin, 2005, and

references therein). In this scenario, it is then reasonable to apply the quasi-steady

state assumption (QSSA) (Rao and Arkin, 2003).

In our case, the QSSA involves the promoter occupancies, and assumes that

the switches between the bound and the unbound states are fast enough if compared

to the child gene mRNA production and degradation, that the promoter can be

treated as being at equilibrium (Tkačik and Walczak, 2011). In order to derive

and solve the deterministic ODEs for the promoter occupancy, we follow again the

derivation and notation of Anderson and Kurtz (2011). We refer from now on to

the aggregate system, thus simply writing Xsum,i(t) as Xi(t).
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Figure 1.4: Mean and ±2 SD variability intervals for 50 simulations from the original
model (blue), the aggregate hazards model (red). Simulation scenario of Figure 1.2
(b) with low molecules counts for the TFs (left) and high molecules counts for the
TFs (right).

In order to obtain the deterministic ODE form, the authors apply the so-

called classical scaling and rewrite Equation 1.2 in terms of concentrations,

Z(t) = Z(0) +
1

n⌦
SY

✓Z t

0

hn⌦(X(s), c)ds

◆
,

from which they obtain

Z(t) ⇡ Z(0) +
1

n⌦
SY

✓
n⌦

Z t

0

h̃(Z(s), c)ds

◆

= Z(0) +
1

n⌦
SỸ

✓
n⌦

Z t

0

h̃(Z(s), c)ds

◆
+

Z t

0

Sh̃(Z(s), c)ds, (1.4)

where Ỹ (u) = Y (u)�u, i.e. the centred process, which is crucial for the last part of

the proof. In fact, from the law of the large numbers for the Poisson process (Ander-

son and Kurtz, 2011), as n ! 1, Ỹ (nu)/n ! 0. In the limit, the process therefore

becomes deterministic and has continuous ODE form (Anderson and Kurtz, 2011;
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Kurtz, 1972)
dz(t)

dt
= Sh̃(z(t), c).

The last equation is also known as the macroscopic rate equation (MRE).

Moving back to our system, according to the reactions in Table 1.1, we can

write the system of ODEs for the binding site occupancies,

dz
0

(t)

dt
= k�BzB(t) + k�AzA(t) � (k̃

+AZPA
(t) + k̃

+BZPB
(t))z

0

(t)

dzA(t)

dt
= k̃

+AZPA
(t)z

0

(t) + k�Bk�czAB(t) � (k̃
+Bk

+cZPB
(t) + k�A)zA(t)

dzB(t)

dt
= k̃

+BZPB
(t)z

0

(t) + k�Ak�czAB(t) � (k̃
+Ak

+cZPA
(t) + k�B)zB(t)

dzA,B(t)

dt
= k̃A+

k
+cZPA

(t)zB(t) + k̃B+

k
+cZPB

(t)zA(t) � k�c(k�A + k�B)zA,B(t),

where we have z
0

= xPro/n⌦, zB = xProPB
/n⌦, zA = xProPA

/n⌦ and zA,B =

xProPAPB
/n⌦. Note also that we have applied the conversion from stochastic to

deterministic rates, i.e. k̃
+A = n⌦k

+A and k̃
+B = n⌦k

+B. Assume now, for

simplicity, ⌦ = 1. The zi(t)s can be interpreted as the proportion of binding sites in

state i in the n cells at time t (this is consistent with Tkačik and Walczak, 2011, for

the single TF scenario). Let K̃A = k�A/k̃
+A, K̃B = k�B/k̃

+B and Kc = k�c/k
+c.

By equating the first four ODEs to 0 and imposing the constraint z
0

+zA+zB+zA,B =

1, an explicit solution can be derived, which has the form

z
0

(t) =
1

1 +
ZPA

(t)

˜KA
+

ZPB
(t)

˜KB
+

ZPA
(t)ZPB

(t)

˜KA
˜KBKc

zA(t) =

ZPA
(t)

˜KA

1 +
ZPA

(t)

˜KA
+

ZPB
(t)

˜KB
+

ZPA
(t)ZPB

(t)

KA
˜KBKc

zB(t) =

ZPB
(t)

˜KB

1 +
ZPA

(t)

˜KA
+

ZPB
(t)

˜KB
+

ZPA
(t)ZPB

(t)

˜KA
˜KBKc

zA,B(t) =

ZPA
(t)ZPB

(t)

˜KA
˜KBKc

1 +
ZPA

(t)

˜KA
+

ZPB
(t)

˜KB
+

ZPA
(t)ZPB

(t)

˜KA
˜KBKc

.

where the denominators are all equal and given by the sum of the four possible

numerators.

By plugging-in the promoter equilibrium solution in the child gene mRNA

equation, we obtain the QSSA. In particular, start from the stochastic model for
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XMg ,

XMg(t) = XMg(0) + Y
1

✓Z t

0

1

n⌦
R

0

XRNAPc(s)X0

(s)ds

◆

+Y
2

✓Z t

0

1

n⌦
RAXRNAPc(s)XA(s)ds

◆

+Y
3

✓Z t

0

1

n⌦
RBXRNAPc(s)XB(s)ds

◆

+Y
4

✓Z t

0

1

n⌦
RA,BXRNAPc(s)XA,B(s)ds

◆
� Y

13

✓Z t

0

µMgXMg(s)ds

◆
,

where each Poisson process Y refers to a reaction, whose number is given in Table

1.1. We can exploit independence between the Poisson processes describing the

transcriptional reactions and write

XMg(t) = XMg(0) +

+Ytr

✓Z t

0

⇥
R0

0

Z
0

(s) + R0
AZA(s) + R0

BZB(s) + R0
A,BZA,B(s)

⇤
ds

◆

�Y
13

✓Z t

0

µMgXMg(s)ds

◆

⇡ XMg(0) +

+Ytr

✓Z t

0

⇥
R0

0

z
0

(s) + R0
AzA(s) + R0

BzB(s) + R0
A,BzA,B(s)

⇤
ds

◆

�Y
13

✓Z t

0

µMgXMg(s)ds

◆
,

where Ytr is the Poisson process accounting for the overall transcriptional reaction,

and we assumed XRNAPc to be approximately constant over time, so that we can

drop the dependence on t, and consider it just a multiplying constant for the rates

of the di↵erent states (Wilkinson, 2012, Chapter 6), therefore R0
i = XRNAPcRi. It

is important to note that, with respect to a fully deterministic approach, we have

retained a stochastic model formulation for the production and degradation of the

child gene mRNA.

It is now interesting to focus on the transcription function. We then have

⌫(t) = ⌫(ZPA
(t), ZPB

(t)) = (R0
0

z
0

+ R0
AzA + R0

BzB + R0
A,BzA,B)

=
R0

0

+ R0
A

ZPA
(t)

˜KA
+ R0

B

ZPB
(t)

˜KB
+ R0

AB

ZPA
(t)ZPB

(t)

˜KA
˜KBKc

1 +
ZPA

(t)

˜KA
+

ZPB
(t)

˜KB
+

ZPA
(t)ZPB

(t)

˜KA
˜KBKc

.
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The overall transcription function is a weighted sum of the transcription rates of

each state. The weights are given by the probability of the promoter to be in each of

the states, as a function of the TFs concentrations. Note that it is straightforward

to substitute concentrations with molecules numbers, and therefore go back to the

stochastic rates, i.e.

⌫(t) =
R0

0

+ R0
A

XPA
(t)

KA
+ R0

B

XPB
(t)

KB
+ R0

AB

XPA
(t)XPB

(t)

KAKBKc

1 +
XPA

(t)

KA
+

XPB
(t)

KB
+

XPA
(t)XPB

(t)

KAKBKc

, (1.5)

where KA = k�A/k
+A and KB = k�B/k

+B.

We provide in Appendix A.3 the first partial derivatives with respect to

XPA
(t) and XPB

(t), which may help in understanding how repression and activa-

tion may be defined in terms of the transcription and binding rates. A positive

first derivative means in fact an increase in the transcriptional activity as the cor-

responding TF increases, thus identifying an activator, while a negative derivative

characterises a repressor. The case in which Kc = 1 is the most interpretable one.

We can see that the first derivatives with respect to XPA
(t) and XPB

(t) are positive

respectively for

R0
A � R0

0

> (R0
B � R0

A,B)(XPB
(t)/KB), (1.6)

and

R0
B � R0

0

> (R0
A � R0

A,B)(XPA
(t)/KA). (1.7)

To better understand this relationship, we can use limit arguments. Fo-

cussing e.g. on TF A, as TF B tends zero, TF A is an activator if the transcriptional

rate of the state in which only A is bound, is higher than R
0

, i.e. the rate of the

empty promoter. On the other hand, as TF B divided by its dissociation coe�cient

tends to 1, the relevant di↵erence becomes the one on the right-hand side of Equa-

tions 1.6 and 1.7: if the transcriptional rate when only B is bound is lower than the

rate when both A and B are bound, the derivative tends to 1, while it tends to

�1, if the di↵erence is positive. Finally, if R0
B = R0

A,B, the sign of the derivative is

only defined by the sign of R0
B � R0

0

.

With respect to the binding and unbinding rates, we noted in Section 1.2.1

that they influence the probability of each promoter state. This point is better

understood by resorting again to limit arguments. Indeed, as e.g. k�A/k
+A ! 0,

the probability of TF A being bound to the promoter goes to 1. In the limit, the
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transcription function of Equation 1.5 reduces to

⌫(t) =
R0

A + R0
A,B

XPB
(t)

KBKc

1 +
XPB

(t)

KBKc

, (1.8)

therefore states (0) and (B) have null probability. Conversely, as k�A/k
+A ! 1,

the probability of TF A being bound to the promoter goes to 0, and Equation 1.5

approaches

⌫(t) =
R0

0

+ R0
B

XPB
(t)

KB

1 +
XPB

(t)

KB

, (1.9)

i.e., the two states with null probability are (A) and (A,B). An analogous argument

applies to TF B. Note that the two limits are conceptually di↵erent, but induce the

same model parametrisation. Essentially, TF A has no dynamical influence on the

system.

Finally, if we assume cooperativity in the binding or unbinding, i.e. k
+c >

(<)1 or k�c < (>)1, it is more (less) likely for the promoter to be in state (A,B).

In the limit, as k
+c ! 0 we have that the transcriptional rate is constant and equal

to R0
A,B. When k

+c ! 1, instead, a competitive binding scenario can be assumed:

the probability of having both the TFs bound to the promoter goes to zero.

The transcription function in Equation 1.5 has indeed a form that, assuming

Kc = 1, is available in the literature (see Nachman et al., 2004). Our main con-

tribution is in explicitly deriving its form from a single-cell stochastic model, also

introducing cooperativity in the binding. This has allowed to explicitly state all the

approximations employed, and to rigorously derive the child gene mRNA intrinsic

noise under the assumption of a fast TFs binding and unbinding to the promoter.

It is now of interest to see how the QSSA behaves with respect to the original

model and the one with the aggregate hazards. Figures 1.5 and 1.6 show a compar-

ison between the original system, the aggregate hazards one, and the one under the

QSSA, for the two simulation scenarios. In particular, we plot mean and variability

bandwidths for 50 simulations under each scenario. We can see that, indeed, the

QSSA seems a tenable approximation, not leading to any evident mismatch with

respect to the aggregate hazards one, while the main source of mismatch can be

identified in the aggregate hazards assumption for the simulation scenario of Figure

1.2 (b), as pointed out in the previous section.

It is important to stress that the accuracy of approximation depends on the

assumption of fast binding and unbinding reactions; a scenario where lower rates
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are assumed for these reactions is studied in Chapters 3 and 4.

Figure 1.5: Mean and ±2 SD variability intervals for 50 SSA simulations from the
the QSSA model (green), the original model (blue), and the aggregated hazards one
(red). Simulation scenario of Figure 1.2 (a).

1.3.3 Exact and approximate transition densities

The model obtained from the QSSA is still a Markov jump process in continuous time

- discrete state-space, and therefore its chemical master equation/ Kolmogorov’s

forward equation can be written explicitly. By assuming that the TFs are known, it

actually belongs to the few cases in which it can also be solved explicitly, giving as

a solution a convolution of a Poisson and a Binomial random variable. The result

is indeed more general, and concerns all systems that undergo only monomolecular

reactions, with arbitrary initial conditions, and time-varying rates. It is presented

in Jahnke and Huisinga (2007), along with an application to an immigration and

death process, which straightforwardly applies to our case, and we report here. The
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Figure 1.6: Mean and ±2 SD variability intervals for 50 SSA simulations from the
the QSSA model (green), the original model (blue), and the aggregated hazards one
(red). Simulation scenario of Figure 1.2 (b).

chemical master equation for the child gene mRNA is given by

d

dt
p(xMg , t) = ⌫(t)p(xMg � 1, t) � ⌫(t)p(xMg , t) + µMgp(xMg + 1, t) � µMgp(xMg , t),

(1.10)

where, for ease of notation, the dependence on the initial condition (xMg ,0, t0) has

been dropped.

Let A(t) = �µMg , b(t) = ⌫(t), and solve the system of ODEs of Theorem 1

in Appendix A.1,

d⇡(t)

dt
= �µMg⇡(t)

d�(t)

dt
= �µMg�(t) + ⌫(t),

from initial condition ⇡(0) = 1 and �(0) = 0. The solution of Equation 1.10 is then
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(Jahnke and Huisinga, 2007)

p(xMg , t) =

min(xMg (0),xMg )X

q=0

✓
xMg(0)

q

◆
⇡q(t)(1 � ⇡(t))(xMg (0)�q)�

(xMg�q(t))

(xMg � q)!
e��(t).

It is also of interest to study the mean and variance of the process. In particular

we have that, given independence between the Poisson and the Binomial random

variable of the convolution (Jahnke and Huisinga, 2007),

E[XMg(t)|xMg(0)] = xMg(0)⇡(t)(1 � ⇡(t)) + �(t)

V [XMg(t)|xMg(0)] = xMg(0)⇡(t) + �(t).

Assume for simplicity ⌫(t) = ⌫, i.e. the transcription rate is constant over time.

In our scenario, we can indeed assume the transcription function to be piece-wise

constant, for a small enough dt. At the end of the time-interval, we can adopt the

current states as the initial conditions of the next interval. We then have

⇡(t) = e��Mg t

�(t) =
⌫

µMg

(1 � e�µMg t),

therefore (Jahnke and Huisinga, 2007)

E[XMg(t)|xMg(0)] = xMg(0)e�µMg t +
⌫

µMg

(1 � e�µMg t) (1.11)

V [XMg(t)|xMg(0)] = xMg(0)e�µMg t(1 � e�µMg t) +
⌫

µMg

(1 � e�µMg t). (1.12)

Although the exact result is in itself interesting, it turns out that it would

require computationally time-demanding procedures for inference about the param-

eters. We hence consider a further approximation, which is appropriate for relatively

high molecules numbers which we would expect for aggregate counts.

If, for an infinitesimal time dt, it can be assumed that the hazards remain

approximately constant, so that

X(t + dt) = X(t) + SY

✓Z t+dt

t
hn⌦(X(s), c)ds

◆

⇡ X(t) + SY (hn⌦(X(t), c)dt),

and the number of occurrences of each reaction is much greater than one, then a

multivariate normal random variable can approximate the vector of independent
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Poisson random variables Y (Stathopoulos and Girolami, 2013). The chemical

Langevin equation (CLE), or di↵usion approximation, for the process has then

the stochastic di↵erential equation (SDE) form (Stathopoulos and Girolami, 2013;

Wilkinson, 2012, Chapter 8; Anderson and Kurtz, 2011)

dX(t) = Shn⌦(X(t), c)dt + S diag
q

{hn⌦(X(t), c)}dB(t),

where dB(t) is an r-dimensional Wiener process. Note that we can equivalently

write

dX(t) = Shn⌦(X(t), c)dt + diag
q

{Shn⌦(X(t), c)ST
}dB(t),

where dB(t) is a p-dimensional Wiener process.

In our model, it reads

dXMg(t) =
�
⌫(t) � µMgXMg(t)

�
dt +

q
⌫(t) + µMgXMg(t)dB(t). (1.13)

The CLE provides a continuous time - continuous state-space approximation

of the process. It turns out that in this simple case the CLE leads also to a transition

density with closed form, and is therefore tractable. The see this, assume again

⌫(t) = ⌫, and define the change of variable (Wilkinson, 2012, Chapter 8)

Y (t) = XMg(t) +
⌫

µMg

.

Using Ito’s Lemma for the change of variable, we obtain

dY (t) = µMg

✓
2⌫

µMg

� Y (t)

◆
dt +

p

µMg

p
Y (t)dB(t).

This process is indeed the Cox-Ingersoll-Ross process, and has a non-central �2

transition density (Wilkinson, 2012, Chapter 5). It also possible to obtain its mean

and variance, in particular we have

E[Y (t)|y(0)] = y(0)e�µMg t +
2⌫

µMg

(1 � e�µMg t)

V [Y (t)|y(0)] = y(0)e�µMg t(1 � e�µMg t) +
⌫

µMg

(1 � e�µMg t)2.

Transforming back to XMg(t), we obtain the same moments of Equations 1.11 and

1.12. Therefore, the original Binomial and Poisson convolution is approximated by

the CLE with a non-central �2, which, as expected, matches the correct mean and

variance.
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The main drawback of the CLE approximation is that the transition density

is still non-normal, and therefore not easily tractable for inferential purposes.

A normal transition density can be obtained with the linear noise ap-

proximation (LNA) (Komorowski et al., 2009; Stathopoulos and Girolami, 2013;

Fearnhead et al., 2014; Anderson and Kurtz, 2011). The LNA approximates in fact

the exact unknown stochastic process X(t) with a Gaussian stochastic process. This

is accomplished by applying the normal approximation to the Poisson process, and

by replacing the hazard function with its first order Taylor expansion about the

deterministic solution, thus e↵ectively eliminating nonlinearities. Recall that ⌦ is

the volume of the container times the Avogadro number. It can be shown that,

assuming X(0) ⇠ N (⌦z(0),⌦P (0)), XLNA(t) satisfies

XLNA(t) ⇠ N (⌦z(t),⌦P (t)),

where z(t) and P (t) are the solutions of

dz(t)

dt
= Sh̃(z(t), c)

dP (t)

dt
= SJ

˜h(z(t))P (t) + P (t)TJ
˜h(z(t))TST + S diag h̃(z(t), c)ST ,

and J denotes the Jacobian. More details about the full derivation are provided in

Appendix A.2.

By applying the LNA to our model for the child gene mRNA, we obtain the

approximation XMg(t) ⇡ N (n⌦zMg(t), n⌦PMg(t)), where zMg(t) and PMg(t) are the

solutions of

dzMg(t)

dt
= �µMgzMg(t) + ⌫(t)

dPMg(t)

dt
= �2µMgPMg(t) + ⌫(t) + µMgzMg(t).

Assume again, for simplicity that ⌫(t) = ⌫. By solving the mean ODE, and plugging

the result into the variance ODE, we obtain the mean and variance at time t, which

are again the same as the exact and the CLE solution. This shows that in the

case of a system involving only zero-th and first order reactions, the LNA matches

exactly the mean and variance of the transition density. However the latter is

still approximated by normal random variable, which may be inaccurate for the

characteristics related to the higher moments, e.g. symmetry and kurtosis. When

reactions of second and higher order are present in the system, the LNA provides

just an approximation also of the mean and variance, as they depend on the higher
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moments. A more formal derivation of this statement is provided in Section 2.3.2

(see also Grima, 2012; Golightly & Gillespie, 2016).

1.4 The macroscopic level

For completeness, we illustrate the deterministic parallel of our model for the child

gene mRNA, and how it can be related to the Hill function and the thermody-

namic approach. We start from the more general case, i.e. the one allowing for

cooperativity in the binding, and then move to the independent binding scenario.

1.4.1 Deterministic model and parallels

It is clear from the previous section, that the deterministic ODE limit for the child

gene mRNA is given by

dzMg(t)

dt
= ⌫̃(zPA

(t), zPB
(t)) � µMgzMg(t)

=
1

n⌦

�
R0

0

z
0

(t) + R0
AzA(t) + R0

BzB(t) + R0
A,BzA,B(t)

�
� µMgzMg(t).

We now show that ⌫̃(zPA
(t), zPB

(t)) can be obtained via the thermodynamic

approach. The thermodynamic approach deals directly with the steady state, by

deriving the probability of each state according to the ratio between the energetic

configuration of each state, and the partition sum, i.e. the sum of the energetic

configurations of all the possible states. Again, we follow the setup and part of the

notation presented in Tkačik and Walczac (2011), and generalise it to the two TFs

scenario.

Denote as Ei the energy favouring the binding of TF i, i = A, B to its

corresponding binding site. Denote by ⇠i the cost of removing one molecule of TF

i from the solution, where ⇠i(t) = kBT log zPi(t), kB is the Boltzmann constant and

T the temperature in Kelvin. Also, assume the energy of the empty promoter to be

equal to 0, and that ⌘ is the amount of additional energy favouring the binding of

both TFs at the same time. The partition sum would have the form

Z = e0 + e��c(EA�⇠A(t)) + e��c(EB�⇠B(t)) + e��c(EA+EB+⌘�⇠A(t)�⇠B(t)).

Define �c = 1/kBT . The probabilities of the di↵erent states are

z
0

(t) =
1

1 + e��cEAzPA
(t) + e��cEBzPB

(t) + e��cEAe��cEBe��c⌘zPA
(t)zPB

(t)
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zA(t) =
e��cEAzPA

(t)

1 + e��cEAzPA
(t) + e��cEBzPB

(t) + e��cEAe��cEBe��c⌘zPA
(t)zPB

(t)

zB(t) =
e��cEBzPB

(t)

1 + e��cEAzPA
(t) + e��cEBzPB

(t) + e��cEAe��cEBe��c⌘zPA
(t)zPB

(t)

zA,B(t) =
e��cEAe��cEBe��c⌘zPA

(t)zPB
(t)

1 + e��cEAzPA
(t) + e��cEBzPB

(t) + e��cEAe��cEBe��c⌘zPA
(t)zPB

(t)

where we can obtain the same result as the deterministic approach by noting that

e�cEA = K̃A, e�cEB = K̃B and e�c⌘ = Kc.

Finally, in order to have a direct comparison with the Hill function (Goutelle

et al. 2008; Alon, 2007, Appendix A), we need to assume that the two TFs bind

independently, i.e. Kc = 1. The Hill function is usually employed in order to

describe input-output relationships in biochemical reactions (Goutelle et al. 2008;

Alon, 2007, Appendix A). It is bounded between 0 and 1, and for one activating TF

it has the general form

fH(zP (t)) =
zP (t)n

zP (t)n + Kn
,

where n is called Hill coe�cient and is related to the number of binding sites: n = 1

for one binding site, and it increases as a function of both the number of binding

sites and the cooperativity between molecules of the same TF (Goutelle et al. 2008).

K is a coe�cient representing the threshold, i.e. the concentration of input required

in order to increase the output by 50%.

The value obtained for a specific concentration z can be interpreted as the

probability of the promoter being occupied, given a certain concentration of the TF

(this is consistent with the approach presented in Bialek and Setayeshgar, 2005).

The probability of the promoter not being occupied, given a concentration z of the

TF, is then just 1 � fH(z(t); K, n), and has the form

1 � fH(zP (t)) =
Kn

zP (t)n + Kn
.

Assume now n = 1 (since there is only one binding site for each TF), and

assume that the binding of each TF is regulated by a di↵erent Hill function. It is

possible to derive the equilibrium probabilities for each state of the promoter by

multiplying the corresponding Hill functions (we are assuming no cooperativity in

the binding)

z
0

(t) =
K̃AK̃B

(zPA
(t) + K̃A)(zPB

(t) + K̃B)
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zA(t) =
zPA

(t)K̃B

(zPA
(t) + K̃A)(zPB

(t) + K̃B)

zB(t) =
K̃AzPB

(zPA
(t) + K̃A)(zPB

(t) + K̃B)

zA,B(t) =
zPA

(t)zPB
(t)

(zPA
(t) + K̃A)(zPB

(t) + K̃B)

where, again, we obtain the same form of the ODE approach only by rearranging

the terms. An analogous result is presented in Nachman et al. (2004).

1.5 State-space representation

In order to finalise our model for mRNA, we have to take into account the presence

of measurement error, which also incorporates factors not explicitly modelled.

The Markovian structure of the process describing the evolution of the child

gene mRNA levels, and the presence of measurement error, straightforwardly leads

to a state-space representation of the model.

A discrete-time state-space model is characterised in the following way. De-

fine as x
0:T = {x

0

, ..., xT } the unobserved states of a state-space model with observed

states y
0:T = {y

0

, ..., yT }. The sets x
0:T and y

0:T e↵ectively represent time-series,

with xt 2 IRp, and yt 2 IRq, t = 0, ..., T .

The hidden stochastic process X
0:T is assumed to be Markovian. The ob-

served process Y
0:T arises as a linear or nonlinear transformation of the hidden

process X
0:T , corrupted with measurement error noise. The observed states are in-

dependent between each other, conditionally on the hidden states, i.e. we have for

all yt, ⇡(yt|x0:t, y0:t�1

) = ⇡(yt|xt) (see e.g. Petris et al., 2009, Chapter 2).

We note here that if the experimental design implies destructive sampling,

the state-space structure induced is, in some sense, degenerate: we would indeed

have T +1 independent replications of the unobserved process X, each ending at time

t, and having only one corresponding observation yt, t = 0, ..., T . This characteristic

has to be taken into account in the inferential process. We discuss this point more

extensively in Section 2.4.

Note also that both the unobserved and observed state dynamics may assume

a continuous-time form.
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1.5.1 Model for two observed transcription factors as regulators

We can now write our model in a state-space form. We assume additive normal

noise for the time series describing the dynamic evolution of the mRNA of the child

gene. We also introduce a scaling factor, denoted by , which accounts for any

multiplicative transformation of the child mRNA data (level unobserved).

The state space representation of the model with known TFs inputs, xPA
(t)

and xPB
(t) is

YMg ,t = XMg ,t + ✏t, ✏t ⇠ N (0,�2✏ ) (1.14)

dXMg(t) =
�
⌫ (xPA

(t), xPB
(t)) � µMgXMg(t)

�
dt

+
q
⌫ (xPA

(t), xPB
(t)) + µMgXMg(t)dB(t).

The rates of the reactions, as well as the measurement error variance �2✏ , the scaling

factor , and the initial conditions for the mean and variance of the underlying

stochastic process XMg(t) represent a set of parameters, which are unknown in the

real data scenario, and we wish to estimate. The state-space formulation provides

also a statistical framework to perform inference. This is the main focus of Chapter

2.
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Chapter 2

Inference

Parameter estimation is carried out in the context of a nonlinear state-space model.

Unobserved dynamics are modelled continuously, while generally only a discrete set

of points is observed. Finally, experimental design has to be taken into consideration.

In particular, if destructive sampling is assumed, observations come from di↵erent

sets of cells, and they are therefore independent, conditionally on the parameters of

the model (Stathopoulos and Girolami, 2013).

In a Bayesian context, all the information required for the inference of pa-

rameters is contained in their posterior distribution. From Bayes’ theorem, the

posterior distribution is proportional to the product of the prior distribution, rep-

resenting prior information or beliefs about the parameters, and a likelihood term,

which defines the conditional distribution of the data given the parameters. A

Markov chain Monte Carlo (MCMC) algorithm can be designed in order to obtain

samples from the posterior distribution when, as it is often the case, it is analytically

intractable.

In the context of stochastic chemical networks, assuming that all the times

and types of reactions happening in the system during the time-interval of interest

are known, a complete data likelihood is theoretically well defined (see e.g. Wilkin-

son, 2012, Chapter 10). However, given the timescales of most reactions, and the

available technologies, this represents a rather unlikely scenario. Moreover, the avail-

able observations generally consist of molecule counts, measured at discrete times

and corrupted with a more or less relevant amount of measurement error. As out-

lined in Chapter 1, their evolution over time is described by a Markov jump process,

whose transition densities are nevertheless often intractable. The approximations

presented in Chapter 1 provide the framework for the definition of an approximate

observed data likelihood, which, while not targeting the exact distribution of the
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data, may still be useful for inference.

We first introduce a general framework for posterior inference in the context

of state-space models. We then describe the general methodology known as Kalman

filter, available in the context of both discrete and continuous, linear state-space

models to perform filtering, and obtain an estimate of the likelihood. We then

present one available extension of the filter for nonlinear scenarios, namely the ex-

tended Kalman filter. Finally, we provide an application of the latter methodology

to our simulation scenario and present inferential simulation results.

2.1 Bayesian inference in state-space models

We now introduce the distributions of interest for inference in state-space mod-

els. We here follow Doucet and Johansen (2009) and Wilkinson (2012, Chapter 9).

Denote with  the set of all the parameters of a state-space model, defined as in

Section 1.5. A representation of a general state-space model dependence structure

is provided in Figure 2.1.

Figure 2.1: General schematic representation of the dependence structure of a state-
space model, as defined in Section 1.5. Unobserved process states are indicated by X,
observed by Y . Parameters and are in black, arrows indicate dependence, induced
by either a linear or nonlinear transformation. Note that  = {⇥,�✏}.

Using Bayes’ Theorem, we can write the general posterior distribution for

the parameters and the hidden states as

⇡( , x
0:T |y

0:T ) =
⇡(y

0:T |x
0:T , )⇡(x

0:T | )⇡( )

⇡(y
0:T )

.

State-space models are particularly useful in contexts where information is provided

sequentially in time. All the distributions of interest can indeed be rewritten in a
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sequential form, thus allowing to update the quantities of interest as new observa-

tions become available. Thanks to the properties of state-space models outlined in

Section 1.5, we can indeed rewrite the posterior distribution for the parameters and

the hidden states as

⇡( , x
0:T |y

0:T ) / ⇡( )⇡(y
0

|x
0

, )⇡(x
0

| )
TY

t=1

⇡(yt|xt, )⇡(xt|xt�1

, ).

The marginal posterior distribution of the parameters can be obtained by integrating

out the hidden states, i.e.

⇡( |y
0:T ) /

Z

X0:T

⇡( )⇡(y
0:T |x

0:T , )⇡(x
0:T | )dx

0:T

= ⇡( )⇡(y
0:T | ). (2.1)

The marginal likelihood ⇡(y
0:T | ) can as well be rewritten in a sequential form

⇡(y
0:T | ) = ⇡(y

0

| )
TY

t=1

⇡(yt|y0:t�1

, ),

where

⇡(y
0

| ) =

Z

X0

⇡(y
0

|x
0

, )⇡(x
0

| )dx
0

,

and

⇡(yt|y0:t�1

, ) =

Z

Xt�1:t

⇡(yt|xt, )⇡(xt|xt�1

, )⇡(xt�1

|y
0:t�1

, )dxt�1:t.

If the focus of inference lies in both the parameters and the unobserved states, it is

of interest to obtain the smoothing density of the model, for reasons which will be

explained in more detail later in this chapter.

The smoothing density is defined as

⇡(x
0:T |y

0:T , ) = ⇡(xT |y
0:T , )

T�1Y

t=0

⇡(xt|xt+1

, y
0:T , ),

where

⇡(xt|xt+1

, y
0:T , ) = ⇡(xt|xt+1

, y
0:t, ) =

⇡(xt+1

|xt, )⇡(xt|y0:t, )

⇡(xt+1

|y
0:t, )

, (2.2)

where the equivalences follow again from Bayes’ Theorem and the properties of

state-space models.
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2.2 Discrete-discrete filtering

The posterior distribution is usually analytically intractable, and the likelihood itself

is available in a closed form only for a restricted class of state-space models, namely

normal and linear state-space models. The Kalman filter recursions (Kalman, 1960)

provide an algorithm to sequentially compute the likelihood in this scenario. When

non-linearity/non-normality arises, other approaches can be employed. We here

focus on the extended Kalman filter (EKF) (see. e.g Kulikov and Kulikova, 2014;

Särkkä, 2013; Singer, 2002, and references therein). The main underlying idea is

to perform a linearisation of the system by means of a first order Taylor expansion

of the nonlinear functions involved. We first focus on the most basic scenario, i.e.

we consider that both the unobserved and the observed states have discrete-time

dynamics. We also assume, for ease of notation, that the parameters of the model

 are set to a known value. In practice, parameters are usually unknown quantities

to be estimated. This can be done in the framework of MCMC algorithms discussed

later in this chapter.

2.2.1 Kalman filter

The Kalman filter recursions (Kalman, 1960) can be applied in order to obtain the

likelihood in the case of discrete, linear and normal state-space models. Specifically,

consider a model of the type

Yt = FXt + ✏t ✏t ⇠ N (0,⌃✏)

Xt = GXt�1

+ �t �t ⇠ N (0,⌃�),

where F is a q ⇥ p matrix, G is a p⇥ p matrix. Let ⇡(x
0

|y
0

) to be an arbitrary prior

distribution with known mean and covariance, i.e. E[X
0

|y
0

] = µ
0

, and V [X
0

|y
0

] =

M
0

. Then, for t = 1, ..., T , the following steps are recursively computed

• Prediction step to obtain ⇡(xt|y0:t�1

).

• Measurement step to obtain ⇡(yt|y0:t�1

).

• Filtering step to obtain ⇡(xt|y0:t).

These steps are common to all filtering algorithms. However, if we assume ⇡(x
0

|y
0

)

to be normal, linearity and normality of the noise imply that all the distributions

involved are exactly normal. Thus, they are fully characterised by their mean and

variance. Following Petris et al. (2009, Chapter 2), we now write their expressions.
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• ⇡(xt|y0:t�1

) = N (⇢t, Pt), where

⇢t = E[Xt|y0:t�1

] = E[GXt�1

+ �t|y0:t�1

] = GE[Xt�1

|y
0:t�1

] = Gµt�1

,

Pt = V [Xt|y0:t�1

] = V [GXt�1

+ �t|y0:t�1

] = GV [Xt�1

|y
0:t�1

]GT + ⌃�

= GMt�1

GT + ⌃�.

• ⇡(yt|y0:t�1

) = N (↵t, At), where

↵t = E[Yt|y0:t�1

] = E[FXt + ✏t|y0:t�1

] = FE[Xt|y0:t�1

] = F⇢t,

At = V [Yt|y0:t�1

] = V [FXt + ✏t|y0:t�1

] = FV [Xt|y0:t�1

]F T + ⌃✏

= FPtF
T + ⌃✏.

• Finally ⇡(xt|y0:t) = N (µt, Mt), where

µt = E[Xt|y0:t] = ⇢t + PtF
TA�1

t (yt � ↵t),

Mt = V [Xt|y0:t] = Pt � PtF
TA�1

t FPt.

The ratio PtF T /At is often denoted with Kt, and is called the Kalman gain. The

last set of moments is derived by applying Bayes’ Theorem to ⇡(xt|y0:t). We have

in fact

⇡(xt|y0:t) =
⇡(yt|xt)⇡(xt|y0:t�1

)

⇡(yt|y0:t�1

)
,

where ⇡(yt|xt) ⇠ N (Fxt,⌃✏), and the other densities involved have the form ob-

tained in the prediction and measurement step.

2.2.2 Extended Kalman filter

When the functions involved are nonlinear, the resulting transition densities are not

normal, and the Kalman filter recursions cannot be directly applied. The EKF deals

with this problem by approximating the nonlinear functions with their first order

Taylor expansion, e↵ectively turning the problem back into a linear problem, where

we can rely on the Kalman filter recursions. We deal with a system of the type

Yt = FXt + ✏t ✏t ⇠ N (0,⌃✏) (2.3)

Xt = g(Xt�1

) + d(Xt�1

)�t �t ⇠ N (0, I),
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where g and d are arbitrary nonlinear functions. There are more general formu-

lations for a nonlinear/non-normal model, e.g. nonlinearity may arise also in the

measurement equation, but for clarity we here concentrate on Model 2.3, as di-

rectly linked to our model of mRNA transcription and degradation. We here follow

Terejanu (2003) for the derivation.

Suppose that at time t = 0 we have an optimal estimate of the mean and

covariance of ⇡(x
0

|y
0

), i.e. µ
0

= E[X
0

|y
0

] and M
0

= V [X
0

|y
0

]. Our aim is to

approximate E[X
1

|y
0

] and V [X
1

|y
0

]. The EKF does so by Taylor expanding g

about the optimal estimate µ
0

, i.e.

g(X
0

) ⇡ g(µ
0

) + Jg(µ0

)(X
0

� µ
0

) +
1

2
(X

0

� µ
0

)Hg(µ0

)(X
0

� µ
0

)T , (2.4)

where Jg denotes the Jacobian matrix, and Hg the Hessian matrix. Moreover, define

D(X
0

) = d(X
0

)d(X
0

)T , and Taylor expand

D(X
0

) ⇡ D(µ
0

) + JD(µ
0

)(X
0

� µ
0

) +
1

2
(X

0

� µ
0

)HD(µ
0

)(X
0

� µ
0

)T . (2.5)

Truncating the Taylor expansion to the first order, and plugging it into the moments

equations, we obtain the approximate mean and covariance of ⇡(x
1

|y
0

),

⇢
1

= E[X
1

|y
0

] = E[g(X
0

) + d(X
0

)�t|y0]

⇡ E[g(µ
0

) + Jg(µ0

)(X
0

� µ
0

)|y
0

]

= g(µ
0

) + Jg(µ0

)E[(X
0

� µ
0

)|y
0

]

= g(µ
0

),

P
1

= V [X
1

|y
0

] = V [g(X
0

) + d(X
0

)�t|y0]

= V [g(X
0

)|y
0

] + V [d(X
0

)�t|y0] + Cov[g(X
0

), d(X
0

)�t|y0]

+ Cov[d(X
0

)�t, g(X
0

)|y
0

]

= V [g(X
0

)|y
0

] + E[D(X
0

)|y
0

]

⇡ V [g(µ
0

) + Jg(µ0

)(X
0

� µ
0

)|y
1

] + E[D(µ
0

) + JD(µ
0

)(X
0

� µ
0

)|y
0

]

= Jg(µ0

)V [(X
0

� µ
0

)|y
0

]Jg(µ0

)T + D(µ
0

) + JD(µ
0

)E[(X
0

� µ
0

)|y
0

]

= Jg(µ0

)M
0

Jg(µ0

)T + D(µ
0

).

The filter then predicts the next observation. In our specific case, given linearity

and additivity of the normal noise, this does not di↵er from the ordinary Kalman
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filter of the previous section. In particular

↵
1

= E[Y
1

|y
0

] = E[FX
1

+ ✏
1

|y
0

] = FE[X
1

|y
0

] ⇡ F⇢
1

,

A
1

= V [Y
1

|y
0

] = V [FX
1

+ ✏
1

|y
0

] = FV [X
1

|y
0

]F T + ⌃✏ ⇡ FP
1

F T + ⌃✏.

The filtering step is again analogous to that of the ordinary Kalman filter, i.e.

µ
1

= E[X
1

|y
1

] ⇡ ⇢
1

+ P
1

F TA�1

1

(y
1

� ↵
1

),

M
1

= V [X
1

|y
1

] ⇡ P
1

� P
1

F TA�1

1

FP
1

.

The recursions are then repeated for t = 2, ..., T .

It should be noted that the Taylor expansion has been truncated at the first

order. Including second order terms leads to the second order extended Kalman

filter or second order nonlinear filter (SNF) (Singer, 2002; Jazwinski, 2007, Chapter

9).

2.3 Continuous-discrete filtering

When the dynamics of the hidden states are continuous in time, but the observations

are collected at discrete time-intervals, the discrete filters are no longer appropri-

ate. The Kalman-Bucy filter (Kalman and Bucy, 1961) has been developed for

continuous-discrete linear normal models. We here present the extended Kalman-

Bucy filter (see e.g. Singer, 2006 and 2002; Särkkä, 2007) for the nonlinear/non-

normal scenario.

2.3.1 Kalman-Bucy filter

Assume a system of the form

Yt = FXt + ✏t ✏t ⇠ N (0,⌃✏)

dX(t) = GX(t)dt +
p
⌃ddB(t), (2.6)

where dB(t) is, as usual, a p-dimensional Wiener process. There are indeed di↵erent

derivations of the Kalman-Bucy filter, we here follow one of the approaches adopted

in Särkkä (2007) and Singer (2002 and 2006). Start by writing the Euler-Maruyama

approximation over a time-interval �t of Equation 2.6, i.e.

Xt+�t = Xt + GXt�t +
p
⌃d�Bt + o(�t),
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where �Bt ⇠ N (0, �t).

We first perform the prediction step over the time-step �t, and then move

to the continuous limit. Let ⇢(t) = E[X(t)|y
0

] and P (t) = V [X(t)|y
0

]. For ease of

notation, we now consider ⇢(t) and P (t) as the estimates of the mean and variance

conditional on all the available observations up to time t. The prediction over �t

leads to

⇢t+�t = E[Xt+�t |y0] = E[Xt|y0] + GE[Xt|y0]�t + o(�t)

= ⇢t + G⇢t�t + o(�t),

and

Pt+�t = V [Xt+�t |y0] = V [Xt + GXt�t|y0] + ⌃d�t + o(�t)

= V [Xt|y0] + �2t GV [Xt|y0]G
T

+ Cov[Xt, GXt�t|y0] + Cov[GXt�t, Xt|y0]

+⌃d�t + o(�t)

= Pt + �2t GPtG
T + �tP

T
t GT + �tGPt

+⌃d�t + o(�t). (2.7)

Therefore

⇢t+�t � ⇢t = G⇢t�t + o(�t),

Pt+�t � Pt = �2t GPtG
T + �tP

T
t GT + �tGPt + ⌃d�t + o(�t).

By dividing both sides of the mean and variance equation by �t and taking the limit

as �t ! 0, we obtain the moment equations

d⇢(t) = G⇢(t)dt, (2.8)

dP (t) = GP (t)dt + P (t)TGTdt + ⌃ddt. (2.9)

There are here two important considerations. First, Equations 2.8 and 2.9 can be

solved as ordinary di↵erential equations until the next observation time-point, only

because we are in the framework of a linear and normal model.

Second, note that as mentioned in Singer (2006), an Euler approximation of

Equation 2.9 has a lower precision than Equation 2.7. This is due to the fact that

drawing the limit eliminates the terms of order O(�2t ).

The measurement and filtering steps are then the same as in the ordinary

37



Kalman filter, and new optimal estimates ⇢(1) and P (1) are obtained. Finally,

again, these steps are iterated for t = 2, ..., T .

2.3.2 Extended Kalman-Bucy filter

We now follow analogous steps to derive the extended Kalman-Bucy filter (EKBF)

(Kulikov and Kulikova, 2014; Singer, 2002). In particular, consider a model of the

form

Yt = FXt + ✏t ✏t ⇠ N (0,⌃✏)

dX(t) = g(X(t))dt + d(X(t))dB(t). (2.10)

Again, write the Euler-Maruyama approximation over a time-interval �t of Equation

2.10, i.e.

Xt+�t = Xt + g(Xt)�t + d(Xt)�Bt + o(�t).

Assume ⇢t = E[Xt|y0] and Pt = V [Xt|y0]. With steps analogous to the linear case,

write the prediction over �t as

⇢t+�t = E[Xt+�t |y0] = ⇢t + E[g(Xt)|y0]�t + o(�t), (2.11)

and

Pt+�t = V [Xt+�t |y0] = V [Xt + g(Xt)�t|y0] + E[D(Xt)|y0]�t + o(�t)

= V [Xt|y0] + �2t V [g(Xt)|y0] + Cov[Xt, g(Xt)�t|y0]

+ Cov[g(Xt)�t, Xt|y0] + E[D(Xt)|y0]�t + o(�t)

= Pt + �2t V [g(Xt)|y0] + �t Cov[Xt, g(Xt)�t|y0]

+ Cov[g(Xt), Xt|y0]�t + E[D(Xt)|y0]�t + o(�t). (2.12)

Following the same steps of the Kalman-Bucy filter, we have

d⇢(t) = E[g(X(t))|y
0

]dt,

dP (t) = Cov[X(t), g(X(t))|y
0

]dt + Cov[g(X(t)), X(t)|y
0

]dt + E[D(X(t))|y
0

]dt.

However, these are no longer ODEs, as they include the mean and covariance of a

nonlinear transformation of X (Singer, 2002). In analogy with the discrete EKF,

the extended Kalman-Bucy filter performs a Taylor expansion of g and D about ⇢
0

.

By plugging the expansions 2.4 and 2.5, truncated at the first order, into Equations
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2.11 and 2.12, we obtain

⇢t+�t � ⇢t ⇡ g(⇢t)�t

Pt+�t � Pt ⇡ �2t Jg(⇢t)PtJg(⇢t)
T + Jg(⇢t)Pt�t + P T

t Jg(⇢t)
T �t

+D(⇢t)�t.

As �t ! 0 we obtain the approximate mean and variance equations

d⇢(t) ⇡ g(⇢(t))dt,

dP (t) ⇡ Jg(⇢(t))P (t)dt + P (t)TJg(⇢(t))
Tdt + D(⇢(t))dt.

Note that these are the same ODEs provided by the linear noise approximation (see

Section 1.3.3). We highlight here again the point that moment estimates are exact

only if the functions g and D are linear with respect to X(t). When this is not the

case, terms of order greater than one are neglected in the Taylor expansion, and

consequently in the estimate of the mean and variance. This also means, in turn,

that no higher moments of ⇡(x(t)|y
0

) than the first are included in the estimate of

the mean, and no higher moments than the second are included in the estimate of

the variance (see e.g. Singer, 2002, and Jazwinski, 2007, Chapter 9).

Once again, we refer to the ordinary Kalman filter for the measurement and

filtering steps, and the procedure is iterated over t = 2, ..., T .

2.4 Destructive sampling

The filtering methodologies introduced in the previous sections provide an estimate

of the likelihood when measurements are assumed to come from the same process,

i.e. they are independent conditional on the parameters and on the hidden states.

When destructive sampling is employed, the measurements come instead from inde-

pendent and identically distributed copies of the process at each time point. They

are therefore independent conditional only on the parameters, and the likelihood

reduces to (Stathopoulos and Girolami, 2013)

⇡(y
0:T | ) =

TY

t=0

⇡(yt| ),

where

⇡(yt| ) =

Z

X0:t

⇡(yt|xt, )⇡(x
0:t| )dx

0:t
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=

Z

X0:t

⇡(yt|xt, )⇡(x
0

| )
tY

i=1

⇡(xt|xt�1

, )dx
0:t. (2.13)

In practice, this means that we only need to perform a ‘long’ prediction step up to

each observation time-point, and a single measurement step to obtain the likelihood

of that specific point.

A pictorial representation of the state-space structure induced by this sam-

pling technique is provided in Figure 2.2.

…

… …
…

…

Y0 YTY1

⇥

⇥ ⇥ ⇥

X1,0

X2,0

Xn,0

X2,1

Xn,1 Xn,T

⌃✏⌃✏ ⌃✏

Figure 2.2: General schematic representation of the dependence structure induced
by the destructive sampling. Unobserved states are indicated by X, observed by Y .
Arrows indicate dependence, induced by either a linear or nonlinear transformation.
Parameters involved in each transformation are superimposed to the corresponding
arrows. Each unobserved state row refers to one sample, for a total of n samples.
Note that n = T + 1.

The EKF can still be applied in order to approximate the predictive densities

in the case of a non-linear/non-normal state-space model, and this allows to obtain

a closed form for the integral in Equation 2.13. This approach is equivalent to

Stathopoulos and Girolami (2013).

Note also that we need to know, or to include in the estimation algorithm,
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the mean and variance of ⇡(x
0

| ).

It is also worth deriving the form of the smoothing density in the case of

independent observations. Equation 2.2 becomes, simply

⇡(xt|xt+1

, y
0:T , ) = ⇡(xt|yt, ),

where the equivalence follows from the independence of the hidden state at time t

and any past observed and unobserved state of the system. In principle, since a

new process generates the observed values at each time point, if the parameters are

known, the past provides no information about the present unobserved state. The

smoothing process then essentially reduces to filtering.

2.5 Inference for two observed transcription factors as

regulators

We start by considering the scenario in which we are interested in inference about

the parameters of the model, and we therefore target the posterior distribution of

Equation 2.1. This distribution is analytically intractable, so inference relies on the

posterior samples obtained with an appropriate Markov chain Monte Carlo (MCMC)

algorithm. The key element of the MCMC algorithm is the acceptance rate, which

ensures that the accepted samples, after a suitable burn-in period, come from the

distribution of interest.

The algorithm is initialised with a set of parameter values  , and proposes

a new set of values  ⇤ from an arbitrary distribution m. In a Metropolis-Hastings

scheme with random walk proposals, we have that the proposal density has the form

m( ⇤
| ), and the proposed values are accepted with probability (Wilkinson, 2012,

Chapter 9)

min

⇢
1,
⇡( ⇤)⇡(y

0:T | ⇤)m( | ⇤)

⇡( )⇡(y
0:T | )m( ⇤

| )

�
, (2.14)

where we can drop the ratio m( | ⇤)/m( ⇤
| ) when m is a symmetric density.

Note that targeting both the unobserved states and the parameter results in a

proposal of the type ( ⇤, x⇤
0:T ) from an arbitrary distribution s, and an acceptance

rate of the form

min

⇢
1,
⇡( ⇤)⇡(y

0:T | ⇤)⇡(x⇤
0:T |y

0:T , ⇤)s( , x
0:T )

⇡( )⇡(y
0:T | )⇡(x

0:T |y
0:T , )s( ⇤, x⇤

0:T )

�
,

Writing s( ⇤, x⇤
0:T ) = c(x⇤

0:T | ⇤)m( ⇤), and choosing c(x⇤
0:T | ⇤) = ⇡(x⇤

0:T |y
0:T , ⇤),

simplifies the above expression into the acceptance rate for the marginal posterior
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of the parameters of Equation 2.14. This means that a sample from the distribution

of the hidden states, given the data and the parameters, can be simply obtained by

drawing from the smoothing density ⇡(x⇤
0:T |y

0:T , ⇤) once a new set of parameters

 ⇤ has been accepted. For storage and computational time parsimony, we therefore

decide to first design an appropriate MCMC algorithm for parameter estimation,

and then draw posterior samples of the unobserved states given a thinned set of

posterior parameter samples.

In order to obtain the evaluation of the likelihood at  ⇤, ⇡(y
0:T | ⇤), we

run the EKBF filter for the destructive sampling scenario. Moreover, since the

Euler-Maruyama approximation of the hidden state SDE leads to discrete moment

equations that are more precise than an Euler approximation of the corresponding

moments ODEs (Singer, 2006), while not requiring to resort to more advanced ODE

solvers, we rewrite our Model 1.15 in terms of its Euler-Maruyama approximation.

Formally,

YMg ,t = XMg ,t + ✏t, ✏t ⇠ N (0,�2✏ ) (2.15)

XMg ,t = XMg ,t��t

+
�
⌫ (xPA,t��t , xPB ,t��t) � µMgXMg ,t��t

�
�t

+
q
⌫ (xPA,t��t , xPB ,t��t) + µMgXMg ,t��t�Bt.

Note that �t needs generally to be chosen much smaller than the sampling

interval, in order to obtain a reasonable approximation of the underlying SDE.

Setting �t = 0.1 h seems to give reasonably accurate results in our case.

A final note is required on the two known inputs, xPA
and xPB

. In our

simulations, the two TFs have been subjected to destructive sampling, like the

child gene mRNA. However, in a scenario when both are observed, the given time-

series are treated as an external input, and therefore assumed to be the same for

all unobserved processes. This, in practice, has not a major influence in our case,

given that we already need to assume that the TFs are close to their deterministic

equilibrium in each cell (and therefore also in their aggregated values). On the

other hand, it is worth keeping this in mind if the model were to be applied to

non-aggregated samples, possibly more stochastic, but still undergoing destructive

sampling.
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2.5.1 Rescaling of the parameters

The estimation algorithm is first run on the set of simulated data in Figures 1.2 (a)

and 1.2 (b), in order to test its performance. The aggregated counts are divided by

their mean. Finally, to allow for the presence of measurement error, independent

draws from a N (0,�2✏ ) are added to the aggregated counts at each observation

time point. Rescaling of the TFs with respect to their mean levels a↵ects only

the estimate of their dissociation coe�cients, while rescaling of the child mRNA

a↵ects the transcriptional rates. Recall in fact from Equation 1.5 that the mRNA

transcription function is given by

⌫(xPA,t, xPB ,t) =

 
R0

0

+ R0
A

xPA,t

KA
+ R0

B
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KB
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,

and assume that we divide the time series of the TFs by their means. We obtain

⌫
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K0
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!
,

from which is clear that K 0
A = KA/xPA

and K 0
B = KB/xPB

.

With respect to the child gene mRNA, we assume instead the rescaling to

be incorporated in the factor , and then move  from the observation equation to

the unobserved states, i.e. Equation 2.15 becomes

YMg ,t = X̃Mg ,t + ✏t, ✏t ⇠ N (0,�2✏ )

X̃Mg ,t = X̃Mg ,t��t

+
⇣
⌫̃ (xPA

, t � �t, xPB ,t��t , ) � µ̃MgX̃Mg ,t��t

⌘
�t

+
q
⌫̃ (xPA,t��t , xPB ,t��t) + µ̃MgX̃Mg ,t��t�Bt

where X̃Mg ,t = XMg ,t, and therefore

XMg ,t = XMg ,t��t

+
�
⌫ (xPA,t��t , xPB ,t��t) � µMgXMg ,t��t

�
�t

+
p


q
⌫ (xPA,t��t , xPB ,t��t) + µMgXMg ,t��t�Bt.

This implies R̃
0

= R0
0

, R̃A = R0
A, R̃B = R0

B, R̃A,B = R0
A,B and µ̃Mg = µMg .

Note that the latter rescaling induces a parametrisation which is independent of

the observed mean level of the data, and has a clear interpretation, as it refers to
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a system having on average one molecule (if  = 1/X̄Mg). The stochastic kinetic

parameters, relative to the actual molecules numbers, can be inferred by dividing

the estimated rates by the estimated parameter . With respect to the TFs, the

ability to infer stochastic dissociation coe�cients depends on the input data: if data

are provided in terms of molecule numbers, we can analogously transform back the

estimated values, multiplying them by the mean levels of each TF.

2.5.2 Estimation results

We present here the MCMC results for the case in which the two TFs are observed.

We assume that the TFs are known, but corrupted with measurement error, which

is therefore added to their SSA simulated time-series. To handle the presence of

measurement error in the TFs time-series, we perform smoothing via the smoothing

splines function implemented in MATLAB, adopting the default smoothing band-

width. We then perform inference via a Metropolis-within-Gibbs algorithm with

single-parameter proposals and updates. Every 100 iterations, we adapt the vari-

ance of the normal distribution for the proposals in order to reach an acceptance

rate of about 0.44 (Roberts and Rosenthal, 2009), regarded as optimal under some

regularity conditions (Roberts and Rosenthal, 2001).

As in Roberts and Rosenthal (2009), we also implement a version of the algo-

rithm which automatically identifies the parametrisation exploring more e�ciently

the support of the posterior distribution: every 103 iterations, we compute the mean

square distance between consecutive accepted values for the current parametrisation,

either with or without taking the logarithm of the parameters, and we compare it

with the same quantity for the last time the algorithm has visited the alternative

parametrisation. The parametrisation of the next 103 iterations will be the one

providing the highest mean square distance. Roberts and Rosenthal (2009) also

suggest to force a switch after the same parametrisation has been used for a prede-

fined number of times, in order to avoid the possibility that the algorithm e↵ectively

gets stuck in one parametrisation. We set this value to 104 iterations.

Priors for all the parameters involved are set to be Exp(100), with the excep-

tion of the degradation rate, for which we assume an informative prior Ga(49.8, 0.02):

the mean is assumed equal to the true simulation value, and the variance is in the

range of those available for the Arabidopsis thaliana available data, as estimated by

the switch tool described in Section B.2 in Appendix. The MCMC algorithm is run

for 2 ⇥ 106 iterations.

Our simulation study suggests that the identification of all the parameters

involved in Model 2.15 is only achievable in the presence of low measurement error,
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i.e. signal to noise ratio equal to 100, and assuming very frequent observations, i.e.

�t = 0.1 h. The cooperativity parameter Kc has in particular shown very strong

correlation with almost all the parameters involved in the transcription function,

and significant trade-o↵ with the two dissociation coe�cients K 0
A and K 0

B. We also

observe trade-o↵ between 2�2✏ and . Additional simulation results exclude a sig-

nificant impact of approximate handling of the TFs inputs, as well as of aggregation.

We believe that the challenging shape of the posterior density induced by correla-

tion is the reason why the estimation procedure provides highest posterior density

intervals (HPDIs, code from Vehtari, 2001) which not always contain the true pa-

rameters values, in a set of 10 independent replications of the simulated data and the

estimation algorithm. The correlation matrixes for the parameters of the simulation

scenarios A and B of Figure 1.2 are shown Tables 2.1 and 2.2, respectively, and we

can observe pairwise correlations assuming values higher than 0.8 in several cases.

Correlation is also reflected in the plots of Figures 2.3 and 2.4, for scenario A and B

of Figure 1.2, respectively. At the 99 % level, the most challenging parameters are

indeed KB and Kc for scenario A, which are within the HPDIs in 6 out of 10 cases,

and µMg for scenario B, which is again within the intervals in 6 out of 10 cases.

However, even when parameters do not belong to the HPDIs, their estimated values

still generally capture the biological characteristics of the model - i.e. the relative

changes in transcriptional rate, and the direction in the type of cooperativity. It is

finally worth mentioning that in scenario B of Figure 1.2, despite the estimate of

Kc belonging to the HPDI intervals in all cases at level 99%, the same intervals also

include 1, i.e. the case of no cooperativity, in 6 out of 10 cases.

2.6 Discussion

To summarise the findings of our simulation study, we report the preliminary results

on the transcriptional regulatory scenario with known TFs, which are observed but

corrupted by measurement error. In particular, quite restrictive conditions seem

to be necessary to perform inference on all of the parameters of the transcription

function. The cooperativity parameter Kc is particularly problematic, and in our

study can only be inferred in the presence of very frequently sampled observations,

�t = 0.1 h, and low signal to noise ratio, i.e. equal to 100. In our two simulation

scenarios, the HPDIs (at level 99 % ) do not always contain the true parameters

values, possibly due to the challenging shape of the posterior density induced by

strong correlations between the parameters themselves. However, the regulatory

logics (induction/repression and the relative strengths) as well as the ‘direction’ of
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R0
0

RA

R0

RB

R0

RA,B

R0
Kc K 0

A K 0
B µMg

�2
✏ E[XMg (0)] V [XMg (0)] 

R0
0 1.00 -0.48 -0.69 0.38 -0.30 0.21 0.46 0.75 -0.02 -0.40 0.11 -0.01

RA/R0 -0.48 1.00 0.39 -0.33 0.74 -0.90 -0.66 -0.01 -0.03 0.20 -0.02 0.04
RB/R0 -0.69 0.39 1.00 0.03 -0.10 -0.05 0.04 -0.42 0.02 0.35 -0.06 0.01

RA,B/R0 0.38 -0.33 0.03 1.00 -0.63 0.21 0.60 0.06 0.02 -0.10 0.03 -0.02
Kc -0.30 0.74 -0.10 -0.63 1.00 -0.80 -0.81 0.08 -0.03 0.09 -0.01 0.03
K 0

A 0.21 -0.90 -0.05 0.21 -0.80 1.00 0.72 -0.19 0.04 -0.09 -0.00 -0.04
K 0

B 0.46 -0.66 0.04 0.60 -0.81 0.72 1.00 -0.04 0.03 -0.15 0.03 -0.03
µMg

0.75 -0.01 -0.42 0.06 0.08 -0.19 -0.04 1.00 -0.04 -0.27 0.11 0.01
�2

✏ -0.02 -0.03 0.02 0.02 -0.03 0.04 0.03 -0.04 1.00 -0.01 0.16 -0.87
E[XMg (0)] -0.40 0.20 0.35 -0.10 0.09 -0.09 -0.15 -0.27 -0.01 1.00 -0.00 0.02
V [XMg (0)] 0.11 -0.02 -0.06 0.03 -0.01 -0.00 0.03 0.11 0.16 -0.00 1.00 -0.18

 -0.01 0.04 0.01 -0.02 0.03 -0.04 -0.03 0.01 -0.87 0.02 -0.18 1.00

Table 2.1: Correlation matrix of a thinned MCMC sample from the posterior distri-
bution of the parameters for Model 2.15, as applied to one sample dataset simulated
according to scenario A of Figure 1.2. Cells containing correlations higher than 0.8
in absolute value are highlighted in grey.

R0
0

RA

R0

RB

R0

RA,B

R0
Kc K 0

A K 0
B µMg

2�2
✏ E[XMg (0)] V [XMg (0)] 

R0
0 1.00 -0.08 -0.45 -0.35 0.41 -0.29 -0.20 0.92 0.06 -0.23 0.03 -0.06

RA/R0 -0.08 1.00 0.80 -0.05 0.07 -0.43 -0.14 -0.02 -0.02 0.14 -0.02 0.01
RB/R0 -0.45 0.80 1.00 -0.19 0.22 -0.50 -0.42 -0.52 -0.04 0.11 -0.02 0.02

RA,B/R0 -0.35 -0.05 -0.19 1.00 -0.89 0.75 0.80 -0.08 0.01 0.20 -0.02 0.01
Kc 0.41 0.07 0.22 -0.89 1.00 -0.88 -0.90 0.06 0.01 -0.27 0.02 -0.04
K 0

A -0.29 -0.43 -0.50 0.75 -0.88 1.00 0.80 0.01 -0.01 0.18 -0.00 0.04
K 0

B -0.20 -0.14 -0.42 0.80 -0.90 0.80 1.00 0.15 -0.01 0.26 -0.02 0.04
µMg

0.92 -0.02 -0.52 -0.08 0.06 0.01 0.15 1.00 0.05 -0.09 0.02 -0.04
2�2

✏ 0.06 -0.02 -0.04 0.01 0.01 -0.01 -0.01 0.05 1.00 -0.01 0.28 -0.82
E[XMg (0)] -0.23 0.14 0.11 0.20 -0.27 0.18 0.26 -0.09 -0.01 1.00 -0.04 0.02
V [XMg (0)] 0.03 -0.02 -0.02 -0.02 0.02 -0.00 -0.02 0.02 0.28 -0.04 1.00 -0.34

 -0.06 0.01 0.02 0.01 -0.04 0.04 0.04 -0.04 -0.82 0.02 -0.34 1.00

Table 2.2: Correlation matrix of a thinned MCMC sample from the posterior distri-
bution of the parameters for Model 2.15, as applied to one sample dataset simulated
according to scenario B of Figure 1.2. Cells containing correlations higher than 0.8
in absolute value are highlighted in grey.

Kc (attraction/repulsion in the binding), are properly identified.

We here also point out that estimation performs poorly when the dissocia-

tion coe�cients of the TFs are low, most likely due to saturation: the transcription

function appears flat for points in the domain which are far away from the value of

the dissociation coe�cient, if the region of the function support close to the disso-

ciation coe�cient is rarely or never visited. Hence, the dynamic e↵ect of the TFs

becomes less well defined, and can be partially incorporated in the basal transcrip-
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Figure 2.3: Kernel density estimate of the posterior density of the parameters. Model
2.15, as applied to data simulated according to scenario A of Figure 1.2. MCMC
samples for 10 independent replications. The red vertical line is at the true value,
and the prior density is also superimposed in red.

tional rate, leading to poor identifiability and therefore poor inferences. This also

means, in other terms, that it is important for identifiability purposes that all the

four configurations of the promoter are visited, i.e. empty, only TF A, only TF B,
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Figure 2.4: Kernel density estimate of the posterior density of the parameters. Model
2.15, as applied to data simulated according to scenario B of Figure 1.2. MCMC
samples for 10 independent replications. The red vertical line is at the true value,
and the prior density is also superimposed in red.

and both TF A and B bound.

48



Part II

Modelling transcriptional

regulation in Arabidopsis

thaliana
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Chapter 3

Biological background and

available data

In this chapter we present the biological framework of our work. In particular we

concentrate on the concepts of transcriptional gene regulation and circadian rhyth-

micity, with a special focus on the Arabidopsis thaliana model plant, whose analysis

is the aim of Chapter 4. We also introduce the Arabidopsis thaliana data, along-

side a brief overview of the experimental techniques employed for their collection,

and propose three additional models of transcriptional regulation motivated by the

available data.

3.1 Transcriptional regulation

Gene regulation is the process responsible for cell di↵erentiation in both eukaryotic

and prokaryotic organisms. As stated by the central dogma of molecular biology

of Crick (1958 and 1970), DNA is transcribed into RNA, and then translated into

proteins, in a sequential flow of information for which only few exceptions have been

observed. Since the same DNA is generally shared by all the cells of a given organism,

observed di↵erences in relative abundances of RNAs and proteins across di↵erent

cell types, must be induced by a regulatory process acting at the transcriptional and

post-transcriptional level (Latchman, 2005, Chapter 2).

Indeed, in Eukaryotes, mechanisms of both transcriptional and post - tran-

scriptional regulation have been identified, although the former is believed to play

the most important role (Latchman, 2005, Chapter 4).

Disruption of transcriptional regulation has been associated with a variety of

diseases, such as cancer, diabetes, autoimmune and neurological diseases (Latchman,
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2005, Chapter 9; for a review, see also e.g. Lee and Young, 2013), thus stressing its

importance and motivating its study.

Transcriptional regulation is a complex process believed to be influenced

by two main interacting players, the chromatin structure and the activity of TFs

proteins (see e.g. Voss and Hager, 2014; Collingwood et al., 1999). The e↵ect of

TFs on transcription has been partially addressed in the modelling of Chapter 1.

The chromatin structure denotes the complex formed by the DNA and some

nuclear proteins, called histones. A tight chromatin structure strongly impairs bind-

ing of the transcription factors to short and long distance regulatory elements, as

well as the binding of the basal transcriptional complex, a structure which includes

the RNA Polymerase (RNAP) enzyme and additional transcription factors, and is

required to initiate transcription of the DNA into RNA (Latchman, 2005, Chapter

6).

The basal transcriptional complex is necessary in order to start transcrip-

tion, but its presence is usually associated with low (baseline) transcription rates

(Farnham, 2009). Binding of the TFs to the regulatory sequences seems therefore

necessary to achieve high transcriptional rates, and can take place through complex

spatio-temporal regulatory patterns (Farnham, 2009; Spitz and Furlong, 2012).

Short distance regulatory sequences bound by the TFs are located in a region,

denoted promoter, close to the DNA sequence which has to be transcribed into

RNA. TFs can also bind long distance regulatory elements, denoted enhancers,

insulators, and silencers (Latchman, 2005, Chapter 7). Long range interactions

have been experimentally mapped, e.g. in Sanyal et al. (2012), while the role of

enhancer sequences is reviewed in Spitz and Furlong (2012). The distance of a TF

binding site from the promoter region is suspected to be linked to the activity of

the TF itself, as a closer binding site might imply a direct interaction with the

basal transcriptional complex (Farnham, 2009). At the same time, a long-distance

binding site suggests the existence of an interaction with other proteins, which could

mediate the e↵ect of the TF on the basal transcriptional complex or on the chromatin

structure (Farnham, 2009). Characterisation of binding sites associated with known

transcription factors is indeed an active area of research, and the main focus of Chip

experiments (for a review, see Park, 2009).

A TF can either act as an activator, i.e. increase the transcription rate, or

as a repressor, i.e. lower or stop transcription of a child gene (Latchman, 2005,

Chapter 8). TFs can operate independently, although experiments have shown evi-

dence of TFs binding in clusters and giving rise to complex networks of interactions

(Farnham, 2009), as for example for the Drosophila melanogaster (Mann and Carrol,
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2002). Studies have suggested that this behaviour also applies to plants (Chattopad-

hyay et al., 1998; Menkens et al., 1995; Michael and McClung, 2002). A TF which

only influences transcription in combination with another TF is called a co-factor,

and may be a co-activator or a co-repressor (Latchman, 2005, Chapter 8). Finally,

binding of a TF may not have an e↵ect on transcription, and in this case the binding

is called ‘non-functional’ (see e.g. Spitz and Furlong, 2012).

Activation of transcription can be achieved by direct or mediated interaction

of the TF with the basal transcriptional complex, and by opening the chromatin

structure (Latchman, 2005, Chapter 8; see also Voss and Hager, 2014, for a review

of interactions between TFs and chromatin structure).

Conversely, repression by a TF may be achieved by direct interaction with

the basal transcriptional complex, by inhibiting the activity of activators, or by

inducing a tighter chromatin structure (Latchmann, 2005, Chapter 8).

Together with the characterisation of binding sites peculiar to specific TFs,

other questions are of relevance in order to enhance our understanding of transcrip-

tional regulatory mechanisms. In this part of our work, we focus on the e↵ect of

a particular TF belonging to the Arabidopsis Thaliana plant, called late elongated

hypocotyl (LHY). LHY belongs to the class of rhythmic genes cycling with a period

of 24 hours. This type of rhythmicity is called circadian and is briefly introduced in

Section 3.2.

Here we focus on experimental data aimed at elucidating the following as-

pects of LHY regulation

• the putative LHY target binding sequences, as provided by a Chip-seq exper-

iment (Carré lab.);

• the e↵ect of an increase of LHY on the transcriptional dynamics of its target

genes, assessed with an induction experiment (Carré lab., see Adams et al.,

2015). In this experiment, LHY protein is artificially increased, and expression

levels of the regulated genes are recorded at di↵erent time points after the

induction;

• the model-based inference of parameters related to transcriptional regulation,

as well as the reconstruction of a putative unobserved TF, for genes which

have promoters known to be bound by LHY. The unobserved TF may be

either a co-factor of LHY, if LHY is consistently bound to the promoter, or a

di↵erent TF, if LHY binding is non-functional. Finally, if LHY is a functional

regulator, the inspection of the correlation between the reconstructed TF and

LHY time-series may indicate if LHY can be assumed to be a major regulator
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for the gene under study. This is the main purpose of our analysis in Chapter

4.

3.2 Circadian rhythms

Most organisms have developed a self-sustained mechanism to optimise and syn-

chronise their biological functions in accordance with the daily transitions from

light to dark, and from higher to lower temperatures. This mechanism is called

the circadian clock (McClung, 2006; Harmer, 2009). A circadian oscillator, aris-

ing from a few genes linked by regulatory feedback loops, is located in each cell,

and is believed to regulate mechanisms of transcriptional regulation of a wide range

of downstream genes. Being generated by intracellular autonomous mechanisms,

circadian rhythms persist in experimental settings with constant light and tempera-

ture, although they can be reset by a change in the environmental conditions, most

notably light (McClung, 2006; Harmer, 2009). Post-transcriptional regulation, ex-

tracellular signalling, and mechanisms of synchronisation between di↵erent cells are

indeed believed to play an additional important role for circadian rhythms. The

latter aspects have been investigated for plants in e.g. Takahashi et al. (2015).

Among plants, a special focus has been historically applied to the study of

the circadian behaviour of the model plant Arabidopsis thaliana. Between 5% and

40% of its genes have been shown in di↵erent studies to have a circadian rhythmic

expression (Covington et al., 2008), as observed in the oscillatory behaviour of their

mRNA levels, persisting under constant light and temperature.

The structure of the Arabidopsis thaliana central clock has been widely in-

vestigated during the recent decade, and is the focus of much ongoing research

(Huang et al., 2012; Locke et al., 2006; Alabad́ı et al., 2001; Salome and McClung,

2004; Harmer, 2009; Adams et al., 2015). Adams et al. (2015), proposes a model

comprising two main loops. In a first loop LHY/CCA1 represses itself, as well as

TOC1, PRR9, PRR7 and PRR5, which in turn repress LHY/CCA1. In a second

loop, TOC1 represses the Evening Complex (formed by LUX and ELF3 and ELF4)

and the Evening Complex in turn represses itself, TOC1, PRR9 and PRR7.

The phases of genes exhibiting circadian behaviour in the Arabidopsis thaliana,

seem to cover the whole circadian cycle (Harmer et al., 2000; Michael et al., 2008),

and are likely to be directly linked with the function of the genes themselves in

the metabolism of the plant (Harmer et al., 2000; Dodd et al., 2005). According

to Michael and McClung (2002), the phase of expression is directly related to the

presence of specific binding sites in the gene promoter, which are bound by TFs
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belonging to the central clock, and peaking at approximately the same time of the

day, when activating, or in anti-phase, when repressing.

For the reasons outlined above, TFs belonging to the central clock, and their

downstream genes, are of particular interest. The repressive role of TOC1 has been

recently investigated (Huang et al., 2012); the aim of this work is to investigate the

activity of LHY.

3.3 Data

3.3.1 Nanostring experiment

In the Nanostring experiment (Carré lab. at Warwick) the levels of mRNA of 100

Arabidopsis thaliana genes are sampled every two hours, for a total of 24 data-

points. In addition, the level of LHY protein is recorded at the same time-points.

The cells are kept under constant light for the whole duration of the experiment.

The 100 genes consist of five control genes plus 95 genes which have promoters

known to be bound by LHY, according to an additional Chip-seq experiment (see

Section 3.3.3). Genes are chosen in order to form di↵erent groups, and in particular

they are selected according to the strength of LHY binding, the phase of expression

(divided into four categories), the presence of motifs and combinations of motifs (see

Section 3.3.3).

The available time series mRNA measurements are aggregated over many

cells in a probe. It is also worth noting that all time series measurements are

recorded in relative numbers of molecules. The counts of mRNA for each species are

in fact collected, and then divided by the levels of one specific transcript (UBC12),

expressed approximately constantly during the experiment. We plot on the right

panel of Figure 3.1 a summary of the normalised available mRNA time-series, where

we can observe a wide range of phases and profiles. The left panel of Figure 3.1

gives observed LHY protein levels.

3.3.2 Induction experiment

In the Induction experiment, again performed by the Carré lab., LHY protein is

induced with alcohol under constant light conditions every 4 hours, at 6 di↵erent

times of the circadian day. Specifically, LHY is induced at time 0, 4, 8, 12, 16,

20 (hours) and levels of mRNA expression of the Nanostring genes, from both an

induced and a control sample, are recorded 2 hours after the induction. The exper-

iment is replicated once, meaning that two independent observations for both the
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Figure 3.1: mRNA expression levels of selected Arabidopsis thaliana genes, rescaled
by their mean level (left), LHY protein levels, in ng, taken at the corresponding time-
points (right). One observation is missing at hour 42 for LHY protein. Nanostring
data-set, Carré lab.

induced and the control data, are available.

Visual inspection of the distribution of the di↵erences between the two repli-

cates, on both the original and the logarithmic scale, allows to assess marginal

normality. Results are shown in Figure 3.2. Note that we only plot absolute values

as data are provided in the form of mean and standard deviation; having two repli-

cates, it is possible to recompute the original values, but not their order. We notice

that the values on the logarithmic scale seem to fulfil the normality assumption

more closely than values on the original scale, in terms of kurtosis. The same visual

inspection of normality on the logarithmic scale is carried out separately for each

experiment, and shown in Figure 3.3. We can see that no evident di↵erences arise

between di↵erent experiments, making it sensible to assume that normality holds in

all cases.

We then aim at comparing the di↵erence between the mean expression levels

of the induced and the control sample, at each time-point and for each gene, and

we adopt the logarithmic transformation of the observed data to fulfil the normal-

ity requirement. If, for a given gene and for at least one time-point, a negative

di↵erence is found to be significant, then the gene is classified as repressed; if at

least one di↵erence is significantly positive, the gene is classified as induced. We be-
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Figure 3.2: Induction experiment data-set, absolute standardised di↵erences be-
tween two independent replicates of the same experiment (pooled across all the
experiments), for the logarithmic (left) and original (right) scale values, normal
distribution superimposed to the histograms. Carré lab.

lieve, moreover, that further information is provided by the number of data-points

at which the gene is significantly repressed or induced: an e↵ect of LHY at only

one data-point seems to suggest the presence of additional TFs, i.e. LHY may need

another protein to become abundant (or scarce) to become functional. On the other

hand, a gene which is repressed by LHY at most data-points, i.e. throughout time,

seems to suggest that mainly LHY is responsible for the child gene regulation. We

therefore define two additional categories, namely ‘consistently repressed’ and ‘con-

sistently activated’, if for at least five out of six time-points the gene is significantly

repressed or activated, respectively. This choice allows the possibility that the gene

has already a low/high transcriptional rate at one time-point, which cannot be fur-

ther repressed/activated. Finally, if more than one significant di↵erence among the

six time-points is observed, but there is no agreement with respect to the sign, then

neither induction nor repression is inferred.

The homoschedasticity assumption is checked by means of a Bartlett’s test

(Bartlett, 1937). Whenever the null hypothesis of homoschedasticity is rejected, the

degrees of freedom of the t-test distribution are estimated as in Satterthwaite (1946)

and Welch (1947).
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Figure 3.3: Induction experiment data-set, absolute standardised di↵erences be-
tween two independent replicates of the same experiment, by experiment. Loga-
rithmic scale values, normal distribution superimposed to the histograms. Carré
lab.

The null hypothesis that LHY has no e↵ect on transcription, against the

alternative hypothesis that it either activates or represses transcription, is tested at

six time-points, meaning that we are in the framework of multiple testing. Adopting

the Bonferroni correction, the p-value for significance is then set to ↵/6, where ↵ is

the level of the test.

The Bonferroni correction is aimed at controlling the so called family-wise

error rate (FWER), i.e. the probability of rejecting at least once, in a set of n

comparisons, a true hypothesis (Goeman and Solari, 2014). Goeman and Solari
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(2014), however, show that the Bonferroni correction is conservative, i.e. the FWER

is strictly smaller than ↵, unless all n hypotheses are true and there is no intersection

between the events ‘the p-value of experiment i is lower than ↵/n ’ for i = 1, ..., n.

Table 3.1 shows a summary of the results of the induction experiment analysis

for the Nanostring genes. Given the conservativeness of the Bonferroni correction,

we present the results for di↵erent significance levels ↵. We can observe, at all signif-

icance levels, that slightly more than the 50% of the Nanostring genes are classified

as ‘repressed’ by LHY; between the 0% and the 16%, depending on the significance

level, are classified as ‘consistently repressed’, and between the 3% and 4 % as either

‘induced’ or ‘significantly induced’. Overall, LHY seems therefore to influence the

expression levels of approximately two-thirds of the available Nanostring genes.

Significance Consistently
Repressed None Induced

Consistently
NA Total

level repressed induced

0.3 (0.05) 16 57 22 1 3 1 100
0.2 (0.03) 14 53 28 2 2 1 100
0.1 (0.02) 4 60 31 4 0 1 100
0.05 (0.01) 0 51 45 3 0 1 100

Table 3.1: Classification of the Nanostring experiment Arabidopsis Thaliana genes
according to the induction experiment analysis, for di↵erent significance levels. Sig-
nificance levels in brackets correspond to ↵/6, i.e. the significance level adjusted
according to the Bonferroni correction. One gene, UBC21, is used for normalisa-
tion, and it is therefore not available (NA) for the analysis. Induction experiment
data-set, Carré lab.

3.3.3 Motifs

Chip-seq experiments are aimed at identifying sequences of the DNA, called motifs,

that are more likely to be bound by a specific TF (for a review, see Park, 2009).

Di↵erent sequences of the DNA are identified according to the presence and order of

four biological compounds called nucleobases: adenosine (A), cytosine (C), guanine

(G) and thymine (T). A significant DNA enrichment is statistically assessed with

respect to a control. Sequences of the enriched regions are then analysed by means

of motif finding algorithms, as e.g. multiple EM for motif elicitation (MEME)

(Bailey et al., 2006). The motifs are finally assigned to each gene, according to their

proximity to the promoter regions.

The Chip-seq experiment and analysis carried out by the Carré lab. on LHY

protein identifies the following motifs:
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• EE (Evening element) ((AAA)ATATCT): depending on the number of As at

the beginning of the sequence, the motif is denoted as the 1A, 2A, 3A or

4A Evening Element (EE-1A, EE-2A, EE-3A or EE-4A, respectively). As-

sociation between the presence of the EE in the promoter of circadian genes

and evening phases of mRNA expression has been observed (Harmer et al.,

2000; Michael and McClung, 2002; Harmer and Kay, 2005; Covington et al.,

2008). Moreover, experiments performed on synthetic promoters containing

a luciferase reporter construct, have shown that the presence of EE motifs is

su�cient to induce evening phases in the observed light intensities; on the con-

trary, light intensities show decreased rhythmicity when same EE motifs are

mutated (Harmer and Kay, 2005). Mutation of the EE has also been observed

to be linked to overall higher or lower levels of light intensity, depending on

the the EEs neighbouring nucleotides sequences (Harmer and Kay, 2005);

• CBS (Circadian clock associated-1 binding site) (AAAAATCT): in the same

work, Harmer and Kay (2005) challenge the earlier hypothesis that the pres-

ence of the CBS motif in the promoter of given gene, causes dawn phases of

expression. Indeed, mutation of EE elements in a synthetic promoter driving

evening-phased light intensities, into CBS motifs, does not significantly a↵ect

the observed phases;

• ABRE (Abscisic acid regulated element) (C/ACACGTGG/T): this motif, also

known as G-Box, is bound by basic leucine zipper proteins (bZIP), and is

believed to convey the e↵ect of environmental signals on gene transcription

(Menkens et al., 1995). Menkens et al. (1995) also formulate the hypothesis

that the e↵ect of the presence of the G-Box in the promoter region of a gene

on its transcriptional activity, is mainly determined by the presence of addi-

tional motifs in the same promoter region, due to interactions between the

corresponding TFs;

• HEX (Hexamer) (CCACGTCA or TGACGTGG): this motif is bound by two

classes of leucine zipper proteins, TGA1 and GBF1, related, among the other

functions, to response to light stimuli (Schindler et al., 1992).

The Chip-seq experiment provides a set of motifs that are likely to be bound

by LHY. Nevertheless, Chip-seq results have their limitations, which Farnham (2009)

summarises as follows:

• the assignment of a motif to the closest gene is not always accurate, as long-

distance regulatory interactions may be taking place;
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• the binding of a TF to a specific motif does not imply regulation, e.g. other

factors may be required;

• when the e↵ect of a TF on transcription is assessed by knocking-out the TF

itself, i.e. by reducing its level, it is possible that no di↵erences are observed in

the transcription of the child gene, either because similar TFs are performing

the same role, thus replacing the missing TF, or low levels of the knocked-out

TF are still present and functional.

Relating the last point to the induction experiment performed on the Ara-

bidopsis thaliana genes, the same reasoning can be true in the opposite scenario, i.e.

if the levels of a specific TF are artificially increased: if at a given time-point the

level of LHY is high in both the control and induced sample, for example because

LHY is close to its peak, an additional increase in the induced sample may not

have a significant influence on the child gene mRNA levels. This can be due to, for

example, a low dissociation coe�cient (see Section 1.3.2, for detailed quantitative

explanation of this point).

Finally, Farnham (2009) also points out that a TF does not always influence

transcription by binding its motifs: due to interactions with other proteins it can

either bind similar motifs, or regulate transcription by interacting with other TFs,

without binding to the DNA.

3.3.4 Prior information about the dissociation coe�cients

Some information about the strength of LHY binding and unbinding to the EE

and the CBS motifs is available. The data, calculations and interpretations of this

section and Section B.1 in Appendix are based on personal communication with

I. Carré. The available experimental information is summarised in Table 3.2, and

seem to suggest that the overall binding strength for the EE motif increases with

increasing number of As, although the unbinding is not particularly a↵ected by the

motif sequence. This is consistent with the notion that binding rates depend on the

binding site, and in particular are proportional to its linear dimension (Tkačik and

Walczac, 2011; Bialek and Setayeshgar, 2005).

The last column of Table 3.2 also provides a summary of the ratio between

the dissociation coe�cient associated with each binding site, and the average con-

centration of LHY. Recall that the dissociation coe�cient is the ratio between the

unbinding and binding rate. We can see that CBS, EE-1A and EE-2A dissociation

coe�cients tend to be close to LHY average levels, while the presence of EE-3A
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Motif Sequence
Binding Unbinding Dissociation

Dissociation

¯LHY(M�1s�1) (s�1) (M)

EE - 4A AAAATATCT 6.6 ⇥ 105 1.7 ⇥ 10�3 2.6 ⇥ 10�9 0.2
EE - 3A AAATATCT 4.2 ⇥ 105 2 ⇥ 10�3 4.8 ⇥ 10�9 0.37
EE - 2A AATATCT 1.3 ⇥ 105 1.6 ⇥ 10�3 1.2 ⇥ 10�8 0.95
EE - 1A ATATCT 1.2 ⇥ 105 2.1 ⇥ 10�3 1.7 ⇥ 10�8 1.35

CBS AAAAATCT 7.5 ⇥ 104 1.2 ⇥ 10�3 1.6 ⇥ 10�8 1.24

EE-4A and EE-3A 4.8 ⇥ 106 8.6 ⇥ 10�4 1.8 ⇥ 10�10 1.0 ⇥ 10�2

Table 3.2: Binding and unbinding rates for LHY protein, for selected motifs. Rates
are provided in units of Moles (M) and seconds (s). I. Carré personal communication.

and EE-4A seems to correspond to a higher degree of ‘stickiness’, as their the corre-

sponding dissociation coe�cients are up to five times lower than the LHY average

concentration. Finally, when both the EE-3A and EE-4A are present, an even

stronger attraction is observed, leading to a ratio of 10�2. Further details on the

computation of LHY average concentration are provided in Section B.1 in Appendix.

3.4 Simulations and modeling for the Arabidopsis

Thaliana data

In this section we present simulated data for three possible regulatory scenarios, and

in particular we assume that a putative child gene can be regulated by: only LHY,

LHY and an unobserved TF, and, finally, only an unobserved TF.

We assume binding and unbinding rates, as well as LHY protein molecules

numbers, in the range of those provided in Section 3.3.4. Moreover, we once again re-

produce destructive sampling by simulating independent and identically distributed

copies of the process for each data-point.

We resort to the di↵usion approximation as a simulation technique, assuming

promoter equilibrium and aggregate hazards over 100 cells (see Section 1.3.2); an

exact simulation of the full system is in fact computationally highly time-demanding.

We refer to Section 4.1.2 for a comparison of the inferential results under the two

simulation methodologies.

3.4.1 Case 1: model for known LHY as only regulator

In this simulation scenario we assume that only LHY is regulating the child gene.

Although this is probably an oversimplification of the system if we consider the

real data scenario, we can still postulate that LHY is the main regulator, and is
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therefore able to provide the observed circadian rhythmicity to at least a subset of

the Nanostring genes. This model seems therefore a sensible starting point for our

analysis.

We assume two possible scenarios of regulation, namely one in which LHY

is a repressor, and one in which it is an activator.

Following the same steps of Section 1.3.2, the transcription function com-

prising only LHY as a regulator is

⌫ (xPLHY ,t) =
R0

0

+ R0
LHY

xPLHY ,t

KLHY

1 +
xPLHY ,t

KLHY

,

and the state-space formulation of the model, in analogy with the Model 2.15, is

YMg ,t = XMg ,t + ✏t, ✏t ⇠ N (0,�2✏ ) (3.1)

XMg ,t = XMg ,t��t +
�
⌫ (xPLHY ,t��t) � µMgXMg ,t��t

�
�t

+
q
⌫ (xPLHY ,t��t) + µMgXMg ,t��t�Bt.

Note that, in our simulations, xPLHY
is not provided as a known input. In order

to obtain simulated data for LHY protein, we adopt the di↵usion approximation of

the system defined by reactions 14-17 in Table 1.1, which refer to transcription and

translation of TF A. Substituting A with LHY, we have

XPLHY ,t = XPLHY ,t��t + (↵MXMLHY ,t��t � µPXPLHY ,t��t) �t (3.2)

+
p
↵MXMLHY ,t��t + µPXPLHY ,t��t�Bt

XMLHY ,t = XMLHY ,t��t + (⌫LHY,i � µMXMLHY ,t��t) �t

+
p
⌫LHY,i + µMXMLHY ,t��t�Bt,

where ⌫LHY,i, i = 0, ..., w, denotes the transcription rate between switch time si

and si+1

, as detailed in Section B.2 in Appendix. Observed values of LHY protein

are then obtained by dividing the simulated values xPLHY
by their mean level, and

adding measurement error. The signal to noise ratio is set equal to x̄Mg/�✏ =

x̄PLHY
/�✏ = 10.

Figure 3.4 shows two sample simulations of the system. We can see, as

expected, that when LHY acts as an activator, in scenario A, roughly contemporary

phases are observed for LHY and the child gene, while the repressive role of scenario

B is characterised by anti-phase expression profiles.
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Figure 3.4: Simulated data from Model 3.1 - 3.2. Observation level, i.e. �t = 2h
and levels are mean-centred and corrupted with measurement error. Signal to noise
ratio (x̄Mg/�✏ = x̄PLHY

/�✏ = 10). Scenario A (left) R0
0

= 5 ⇥ 103 molecules/h,
R0

LHY = 6 ⇥ 104 molecules/h; scenario B (right) R0
0

= 5 ⇥ 104 molecules/h, R0
LHY =

2.5 ⇥ 103 molecules/h. Common parameters: KLHY = 2 ⇥ 106 molecules. LHY
protein is obtained from Model 3.2, assuming parameters ⌫LHY (t) = [2.88⇥104, 8.7⇥

102, 1.68 ⇥ 104, 2.16 ⇥ 103, 1.26 ⇥ 104] (in molecules per hour) with switch times
SwtA = [27, 40, 50, 61] (in hours), µM = 0.5 h�1, ↵M = 40 h�1, µP = 0.34 h�1,
µMMg

= 1.2 h�1. Aggregate hazards for 100 cells.

3.4.2 Case 2: model for known LHY and one unknown TF as reg-

ulators

Here we provide a simulation scenario which comprises both LHY and an unob-

served TF B, and where both transcription factors are dynamically influencing the

transcription of the child gene. We maintain the same regulatory logics assumed

in Section 1.2.1, but adapt the dissociation coe�cients and system size to those

provided in Section 3.3.4, which have become available only at a later stage of the

project.

The transcription function ⌫(·) has the form of Equation 1.5, where TF A is

replaced by LHY, i.e.

⌫(xPLHY ,t, xPB ,t) =
R0

0

+ R0
LHY

xPLHY ,t

KLHY
+ R0

B

xPB,t

KB
+ R0

LHY,B

xPLHY ,txPB,t

KLHY KBKc

1 +
xPLHY ,t

KLHY
+

xPB,t

KB
+

xPLHY ,txPB,t

KLHY KBKc

. (3.3)
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The full simulation model is given by

YMg ,t = XMg ,t + ✏t, ✏t ⇠ N (0,�2✏ ) (3.4)

XMg ,t = XMg ,t��t + �t
�
⌫ (XPLHY ,t��t , XPB ,t��t)) � µMgXMg ,t

�

+
q
⌫ (XPLHY ,t��t), XPB ,t��t) + µMgXMg ,t��t)�Bt

XPLHY ,t = XPLHY ,t��t + (↵MXMLHY ,t��t � µPXPLHY ,t��t) �t

+
p
↵MXMLHY ,t��t + µPXPLHY ,t��t�Bt

XMLHY ,t = XMLHY ,t��t + (⌫LHY,i � µMXMLHY ,t��t) �t

+
p
⌫LHY,i + µMXMLHY ,t��t�Bt

XPB ,t = XPB ,t��t + (↵MXMB ,t��t � µPXPB ,t��t) �t

+
p
↵MXMB ,t��t + µPXPB ,t��t�Bt

XMB ,t = XMB ,t��t + (⌫B,i � µMXMB ,t��t) �t

+
p
⌫B,i + µMXMB ,t��t�Bt,

which is the di↵usion approximation of the model based on the set of reactions in

Table 1.1, assuming the QSSA for the promoter states.

For completeness, we provide again in Figure 3.5 simulations from the two

regulatory scenarios assumed in Section 1.2.1, but under the new dissociation co-

e�cient values and system size. We can see that both the TFs are a↵ecting the

dynamics of the child gene, as it is evident e.g. by the temporal distribution of the

phases. We refer to Section 1.2.1 for a more detailed comment of the regulatory

logics induced by the chosen parameters.

As TF B is not observed in the real data scenario, our aim is now to propose

an approximate model, which is able to infer the expression profile of TF B, while

being parsimonious in the number of parameters.

Unobserved TF approximate model

In the context of circadian genes, TFs must be circadian in order to influence the

dynamics. A quite general model for a periodic time series is provided by the Fourier

series.

We provide in Section B.3 in Appendix details about the Fourier series ex-

act representation of a sequence of real numbers of arbitrary length. In practice,

however, a ‘perfect’ reconstruction of the unobserved TF time-series at each of the

n = 24 mRNA data-points, would require n/2 = 12 parameters. This seems too

demanding, given the available information, and possibly unnecessary, given the
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Figure 3.5: Simulated data from Model 3.4. Observation level, i.e. �t = 2 h and levels of
the child mRNA and LHY are mean-centred and corrupted with measurement error. Signal
to noise ratio (x̄Mg/�✏ = x̄PLHY

/�✏ = 10). Scenario A (left) R0
0 = 5 ⇥ 104 molecules/h,

R0
LHY = 2.5 ⇥ 103 molecules/h, R0

B = 2 ⇥ 105 molecules/h,R0
LHY,B = 5 ⇥ 104 molecules/h,

Kc = 1.5; scenario B (right) R0
0 = 6 ⇥ 104 molecules/h, R0

LHY = 3.5 ⇥ 104 molecules/h,
R0

B = 2.5104 molecules/h, R0
LHY,B = 5⇥ 102 molecules/h, Kc = 0.66. Common parameters:

KLHY = 2⇥106 molecules, KB = 2⇥106 molecules. LHY and TF B are simulated assuming
parameters ⌫LHY (t) = [2.88 ⇥ 104, 8.7 ⇥ 102, 1.68 ⇥ 104, 2.16 ⇥ 103, 1.26 ⇥ 104] (in molecules
per hour) with switch times SwtA = [27, 40, 50, 61] (in hours), ⌫B(t) = [2.1 ⇥ 103, 1.71 ⇥

104, 2.91 ⇥ 104, 9 ⇥ 102, 9 ⇥ 103, 1.68 ⇥ 104, 2.1 ⇥ 103] (in molecules per hour) with switch
times SwtB = [21, 28, 45, 52, 56] (in hours), respectively. µM = 0.5 h�1, ↵M = 40 h�1,
µP = 0.34 h�1, µMMg

= 1.2 h�1. Aggregate hazards for 100 cells.

purposes of our analysis. In analogy with harmonic regression (Prado and West,

2010, Chapter 3), we then restrict our model to fewer harmonics. We aim for a

model which describes the main interesting features of the unobserved TF, while

being parsimonious in the number of parameters.

A crucial choice concerns therefore the number of harmonics. We are mainly

interested in the phase of the unobserved TF, and in the relative amplitudes of the

cycles. By considering a total observation time of two-cycles, which corresponds to

the Nanostring data scenario, this can be achieved by retaining only the first two

harmonics. The first harmonic has a period of 48 hours, and models the di↵erence

in amplitude between the two cycles, while the second harmonic has a period of 24

hours, and is responsible for circadian rhythmicity. The fit is further improved by

introducing additional harmonics, and in particular we have found that including
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the fourth harmonic can improve mean model fit for the available LHY protein time-

series. We hence choose a Fourier model with three harmonics, namely 1, 2, and

4. A more general model may be attained by introducing the period length of the

harmonics as an additional parameter, to be estimated. However, due to the small

sample size, we do not consider this extension here.

Furthermore, higher flexibility can be achieved by moving from a determin-

istic model, to a stochastic one, by introducing variability in the coe�cients. The

Fourier coe�cients can indeed be considered as additional unobserved states in our

model for the child mRNA, accounting for the unobserved TF time-evolution and

having their own state-space representation. Focusing on the model with three

harmonics for the unobserved TF, we have the following state-space representation

(Prado and West, 2010, Chapter 4)

XP,t = a
0

+ AXhar,t (3.5)

Xhar,t = BXhar,t��t

where a
0

is the mean level of XP , Xhar is a 6 ⇥ 1 vector accounting for the time

evolution of the harmonics, A = [1, 0, 1, 0, 1, 0] and B=blockdiag(H
1

,H
2

,H
4

), with

Hj =

"
cos(↵j) sin(↵j)

� sin(↵j) cos(↵j)

#
.

The parameter ↵ is given by 2⇡/n and corresponds to the frequency of the first

harmonic. The observation equation for XP,t does not include measurement error,

as this is just a building block of the full model including the child gene mRNA. The

destructive sampling induced dependence structure implies that no update of the

mean and variance of the unobserved states is performed as new observations become

available. Moreover, we do not assume any additive noise term in the evolution of

the states Xhar, as, we do not assume that the Fourier coe�cients may be changing

over time.

We check the suitability of the assumed Fourier model by fitting Model 3.5

to the values simulated according to the mechanistic Model 3.4. Parameters are

estimated by means of an MCMC algorithm, assuming N (0, 202) priors for the vari-

ance of the Fourier coe�cients initial conditions, on the logarithmic scale. As for

the the mean of the initial conditions, we bound the parameter space so that any

combination of Fourier coe�cients giving rise to any negative predicted mean-point,

is rejected; hence, we e↵ectively induce a uniform multivariate prior, whose bound-

aries are hard to define analytically ‘a priori’ . This choice is motivated as follows.
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Our ultimate goal is to incorporate the unobserved TF into the full model compris-

ing the child gene mRNA. In the full model, the unobserved TF mean prediction

therefore serves as an input for the child mRNA mean and variance predictions; a

negative proposed value may induce a negative transcription function, and therefore

a negative variance for the child gene mRNA, for some parameters combinations.

A negative variance is statistically meaningless, and causes computational issues.

A negative mean for the levels of the TF and the child mRNA is, moreover, not

biologically meaningful. We note, however, that the assumed constraint does not

completely rule out negative values for the unobserved TF profile, due to the vari-

ance. This seems however a minor drawback, common also to more refined mod-

elling approaches, as e.g. the di↵usion approximation of the immigration and death

process itself (Wilkinson, 2012, Chapter 5).

The predictive fit of simulated TF B is shown in Figure 3.6. Table 3.3 pro-

vides median estimates and HPDIs. For details on the computation of the likelihood,

we refer to Chapter 2.

Figure 3.6: One-step ahead predictive density (mean and 95% HPDIs) for Model 3.5,
as applied to one sample simulation of TF B according to Model 3.4, which defines
a fully mechanistic model. True simulated TF B is superimposed in red. Simulation
parameters are set to ⌫B(t) = [2.1⇥103, 17.1⇥103, 29.1⇥103, 9⇥102, 9⇥103, 16.8⇥

103, 2.1 ⇥ 103] (in molecules per hour) with switch times SwtB = [21, 28, 45, 52, 56]
(in hours). µM = 0.5 h�1, ↵M = 40h�1, µP = 0.34 h�1, µMMg

= 1.2 h�1.

We note from the estimated parameters and fit that the model seems to

capture the dynamics of the unobserved TF, to a reasonable degree. A median
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Parameter Median 95% HPDI

V [Xhar,1(0)] -15.78 [-44.34, -3.63]
V [Xhar,2(0)] -9.93 [-40.07, -1.83]
V [Xhar,3(0)] -2.79 [-24.23, -0.84]
V [Xhar,4(0)] -14.28 [-37.88, -3.00]
V [Xhar,5(0)] -8.86 [-30.61, -1.23]
V [Xhar,6(0)] -13.65 [-39.39, -3.22]
E[Xhar,1(0)] 0.21 [7.42 ⇥ 10�2, 0.31]
E[Xhar,2(0)] -0.76 [-0.88, -0.65]
E[Xhar,3(0)] 4.59 ⇥ 10�2 [�4.62 ⇥ 10�2, 0.15]
E[Xhar,4(0)] 0.30 [0.20, 0.46]
E[Xhar,5(0)] 1.82 ⇥ 10�3 [-0.10, 9.34 ⇥ 10�2]
E[Xhar,6(0)] 4.62 ⇥ 10�2 [�6.06 ⇥ 10�2, 0.16]

Table 3.3: Medians and 95% HPDIs for the parameters of Model 3.5, as applied
to one sample simulation of TF B according to Model 3.4, which defines a fully
mechanistic model. Simulation parameters are set to ⌫B(t) = [2.1 ⇥ 103, 1.71 ⇥

104, 2.91 ⇥ 104, 9 ⇥ 102, 9 ⇥ 103, 1.68 ⇥ 104, 2.1 ⇥ 103] (in molecules per hour) with
switch times SwtB = [21, 28, 45, 52, 56] (in hours). µM = 0.5 h�1, ↵M = 40 h�1,
µP = 0.34 h�1, µMMg

= 1.2 h�1.

underestimation of the first peak is observed in Figure 3.6, although compensated

by variability. Moreover, we observe in Table 3.3 that the second harmonic has

the largest estimate for the mean of the initial condition (median equal to -0.76),

confirming the predominance of circadian periodicity.

As a final remark, the Fourier series model with one harmonic is equivalent,

i.e. has the same prediction function, to an autoregressive model of order 2, AR(2),

where the first autoregressive coe�cient has been set to �1, and the second is

given by 2 cos(↵), ↵ being the frequency of the chosen harmonic. Moreover, in

analogy with the Fourier representation, an increasing number of harmonics would

correspond to additional autoregressive terms (see Prado and West, 2010, Chapter

4).

The final model including the child mRNA and the unobserved TF B has

then the usual state-space representation

YMg ,t = XMg ,t + ✏t, ✏t ⇠ N (0,�2✏ ) (3.6)

XMg ,t = XMg ,t��t + �t
�
⌫ (xPLHY ,t��t , a0 + AXhar,t��t) � µMgXMg ,t��t

�

+
q
⌫ (xPLHY ,t��t , a0 + AXhar,t��t) + µMgXMg ,t��t)�Bt

Xhar,t = BXhar,t��t ,
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Note that, although the Fourier representation is linear and normal, and

therefore has a normal transition density for any arbitrarily large time-interval,

we still need to obtain an input value for the unobserved TF at a fairly short

time-interval, the same adopted for the Euler-Maruyama approximation of the child

mRNA SDE.

3.4.3 Case 3: model for one unknown TF as only regulator

Finally, we propose a simulation scenario which assumes that both LHY and TF

B are binding the promoter of the child gene, but there is no dynamical influence

of LHY on transcription. We obtain simulated data for this scenario by adopting

Model 3.4, and letting the dissociation coe�cient of LHY be very small, with respect

to its mean level and to the dissociation coe�cient of TF B. This e↵ectively induces

the limiting transcription function of Equation 1.8, which we recall has the form

⌫(xPB ,t) =
R0

LHY + R0
LHY,B

xPB,t

KBKc

1 +
XPB,t

KBKc

.

The assumed dissociation coe�cient of LHY is in this scenario well below the range

provided in Section 3.3.4. However, the values provided may not be very reliable,

due to the lack of experimental replicates, and they do not consider the case of

multiple binding sites: if cooperativity in the binding between molecules of the

same TF is low, and in particular if repulsion is in place, the resulting model would

be equal to a model for one binding site, but with a lower dissociation coe�cient.

To see this, replace TF B with LHY in Equation 3.3, and let Kc ! 1. It has to

be noted, however, that attractive cooperativity between molecules of the same TF

is generally assumed, which leads to a Hill-type transcription function (see Section

1.4.1). In the case of strong cooperativity, therefore, the dissociation coe�cient

would be una↵ected.

This scenario serves also as a general example for the case in which LHY

has no dynamical e↵ect on the child gene, either because the dissociation coe�cient

is low with respect to LHY mean level, or because LHY binding is non-functional,

in which case we would obtain the limiting transcription function of Equation 1.9,

which we recall is given by

⌫(xPB ,t) =
R0

0

+ R0
B

XPB,t

KB

1 +
XPB,t

KB

.

Note that the functions of Equations 1.8 and 1.9 only di↵er in the interpretation
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of the parameters. A situation in which LHY has no dynamical e↵ect on the child

gene is also suggested by the induction experiment result for a subset of the available

genes (see Section 3.3.2).

Finally, a model assuming only one unobserved TF is generally applicable in

situations in which the main regulating TF is not available or known. After fitting

the model to the available data, reconstructed profiles can be compared with a set

of available candidates. We indeed provide a study of the correlation between the

inferred TF B and LHY in the Nanostring data-set in Section 4.2.2.

Figure 3.7: Simulated data from Model 3.7. Observation level, i.e. �t = 2 h and levels of
the child mRNA and LHY are mean-centred and corrupted with measurement error. Signal
to noise ratio (x̄Mg/�✏ = x̄LHY /�✏ = 10). Scenario A (left) R0

0 = 5 ⇥ 104 molecules/h,
R0

LHY = 2.5 ⇥ 103 molecules/h, R0
B = 2 ⇥ 105 molecules/h, R0

LHY,B = 5 ⇥ 104 molecules/h;
scenario B (right) R0

0 = 6 ⇥ 104 molecules/h, R0
LHY = 3.5 ⇥ 104 molecules/h, R0

B =
2.5 ⇥ 104 molecules/h, R0

LHY,B = 5 ⇥ 102 molecules/h. Common parameters: KLHY =
6⇥102 molecules, KB = 2⇥106 molecules. LHY and TF B proteins are obtained from model
3.2 assuming parameters ⌫LHY (t) = [2.88 ⇥ 104, 8.7 ⇥ 102, 1.68 ⇥ 104, 2.16 ⇥ 103, 1.26 ⇥ 104]
(in molecules per hour) with switch times SwtA = [27, 40, 50, 61] (in hours), ⌫B(t) =
[2.1 ⇥ 103, 1.71 ⇥ 104, 2.91 ⇥ 104, 9 ⇥ 102, 9 ⇥ 103, 1.68 ⇥ 104, 2.1 ⇥ 103] (in molecules per
hour) with switch times SwtB = [21, 28, 45, 52, 56] (in hours), respectively. µM = 0.5 h�1,
↵M = 40h�1, µP = 0.34 h�1, µMMg

= 1.2 h�1. Aggregate hazards for 100 cells.

Figure 3.7 shows two sample simulations from the scenario described: one in

which TF B is an activator showing, as in the case with only LHY, a concordance

in phase with the child gene mRNA, and a case in which TF B is a repressor,

showing the typical anti-phase behaviour. Note that the extremely low dissociation
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coe�cient assumed for LHY makes it uninfluential for the child gene dynamics. We

return to this point in Section 4.1.3, and show that the dynamics of the child gene

are indeed well fitted by the reduced model which assumes only TF B as a regulator,

namely

YMg ,t = XMg ,t + ✏t, ✏t ⇠ N (0,�2✏ ) (3.7)

XMg ,t = XMg ,t��t + �t
�
⌫ (a

0

+ AXhar,t��t) � µMgXMg ,t��t

�

+
q
⌫ (a

0

+ AXhar,t��t) + µMgXMg ,t��t�Bt

Xhar,t = BXhar,t��t ,

where we again adopt for TF B the approximate Fourier modelling introduced in

the previous section.

71



Chapter 4

Inference and results for

Arabidopsis Thaliana

In this chapter we present the inferential results for both the parameters generat-

ing the artificial data introduced in Section 3.4, and the Arabidopsis thaliana real

data introduced in Section 3.3.1. Inference is carried out in a Bayesian framework,

following the methodology introduced in Chapter 2.

4.1 Inference validation on simulated data

In this section we focus on the three models of transcriptional regulation of Section

3.4, and infer the parameters that produced the synthetic data. When the assumed

model requires estimation of the unobserved TF, we compare the profile inferred as-

suming the Fourier representation of Section 3.4.2, with the path for the unobserved

TF simulated according to the ‘true’ mechanistic model.

The most interesting finding of our simulation study is the presence of two

main modes in the posterior density of the parameters, when the model comprises

the unobserved TF. In one mode, the unobserved TF acts as a repressor, while in

the other mode it acts as an activator. The two modes, which seem to be approxi-

mately equally likely, correspond to inferred profiles of the TF that are in anti-phase.

Further details about this aspect are provided in Section 4.1.2.

For all the three modelling scenarios of Section 3.4, we assume availability

of prior information on the degradation rate of the child mRNA. In the real data

application, this information is provided by fitting the switch model discussed in

Section B.2 in Appendix to mRNA time-series of the Nanostring experiment genes,

collected in an additional microarray experiment (Carré lab.).
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Finally, recall that in our simulations both the child gene mRNA and LHY

protein are divided by their mean value, corrupted with simulated measurement

error, and thinned by recording values at �t = 2 h, in order to mimic the real data

scenario. We refer to Section 2.5.1 for the e↵ect of mean-centering on parameter

estimates. The measurement error standard deviation is set so that the signal to

noise ratio is equal to 10. The signal to noise ratio estimated in the real data tends

to vary widely from gene to gene, but the simulation value of 10 lies within the

observed range.

4.1.1 Case 1: inference for known LHY as only regulator

In this first scenario, we perform inference on the parameters of Model 3.1, i.e. as-

suming that there is one active TF only, which is observed and in our case behaves

as LHY. The model is applied to simulated data, whose parameters values are as-

sumed as in Figure 3.4. Recall that Figure 3.4 comprises two simulation scenarios,

corresponding to two regulatory roles of LHY, namely one in which it is an activator

and one in which it is repressor of the child gene mRNA transcription. Our aim is

to infer the transcription function parameters, the mean and variance of the initial

condition of the child mRNA, and the noise and scale parameters �2✏ and .

We assume biologically sensible ranges for the parameters involved, and in

particular we set a N (0, 102) prior for log(R0
0

), log(K 0
LHY ) and log(E[XMg(0)]), a

half-normal distribution, obtained by folding a N (0, 102) about zero, for

log(RLHY /R
0

), a N (0, 202) for log(V [XMg(0)]) and log(2�2✏ ), and, finally, a

N (0, 502) for log(), to allow for very large molecules counts.

Note that we sample all the parameters in the logarithmic space except for

the degradation rate, for which a gamma prior can be formulated on the basis of the

results from fitting the switch model (see Section B.2 in Appendix) to additional

microarray mRNA expression profiles. This parametrisation allows to set an easily

interpretable prior on the parameter log(RLHY /R
0

), as a negative support implies

repression, while a positive one activation. Moreover, if no prior information is

available, a prior centred at zero would be conservative with respect to the null

hypothesis of no regulatory e↵ect. We here set a half-normal prior, whose support,

negative or positive, is provided by the induction experiment result (see Section

3.3.2). The logarithmic parametrisation seems also to generally help exploration of

the posterior density.

We adopt an adaptive MCMC algorithm, where we propose jointly the

parameters belonging to the transcription function log(R0
0

), log(RLHY /R
0

) and

log(K 0
LHY ), by adapting the covariance function of the proposal density accord-
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ing to the empirical covariance function of the chain accepted values (see Roberts

and Rosenthal, 2009). For the remaining parameters, i.e. µMg , log(E[XMg(0)]),

log(V [XMg(0)]), log(2�2✏ ) and log(), we adopt a single-parameter adaptive scheme,

where the proposal variance of each component update is adapted in order to reach

an acceptance rate of 0.44 (Roberts and Rosenthal, 2009).

The algorithm is run for a total of 3.4⇥105 iterations, and values are thinned

by retaining one sample every 100 iterations, after discarding a burn-in of 5 ⇥ 104

iterations. Initial conditions for all the parameters chains are randomly drawn from

the prior densities, and convergence is monitored by visual inspection of the trace-

plots. Figure 4.1 shows a sample set of trace-plots, after thinning and discard of the

burn-in. The mixing of the chains tend to vary between parameters and simulation

runs, but we notice that the parameters belonging to the transcription function tend

to generally show a slower mixing.

Figure 4.1: Trace-plots of the MCMC algorithm targeting the posterior densities of
the parameters. Model 3.1, as applied to data simulated according to the scenarios
of Figure 3.4, Scenario A. The red horizontal line is at the true value, and values
are thinned by retaining one sample every 100 iterations, after discarding a burn-in
of 5 ⇥ 104 iterations. Smoothed LHY input.

We first apply our estimation algorithm by assuming the LHY input to be

fully observed, i.e. with no measurement error and sampled at frequency �t = 0.1 h.

We provide in Figure 4.2 the median and 95% HPDIs for the smoothing density of

the child mRNA, showing that the true simulated path is generally included in the

95 % HPDIs. A minor exception is represented by the first time-point, included in

8 cases out of 10. This is possibly due to the very high variability of the posterior
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density of the variance of the initial condition, as can be seen in Figures 4.3 (a) and

(b), where we provide the posterior densities of all parameters. Figures 4.3 (a) and

(b) also show that the model is able to reliably estimate all the parameters involved,

as the true values are not included in the 95 % HPDIs in a maximum of one out of

10 cases.

Figure 4.2: Unobserved child mRNA inference (smoothing): posterior median
(black) and 95 % HPDIs (lower: blue; upper:cyan). True simulated child mRNA
superimposed (red). MCMC samples for 10 independent simulations from Model
3.1, as applied to simulated data according to the scenario A (left) and B (right) of
Figure 3.4. LHY input known.

In the real data scenario, however, observations of both the child gene mRNA

and LHY protein are only available every two hours, and corrupted with measure-

ment error. In order to partially eliminate the impact of measurement error, and

to obtain inputs at a grid fine enough so that the Euler-Maruyama approximation

for the unobserved child mRNA state holds, we perform smoothing of the cor-

rupted LHY time-series via the smoothing splines function implemented in MAT-

LAB, adopting the default smoothing bandwidth.

Figures 4.4 (a) and (b) provide the posterior densities of the parameters when

adopting a smoothed LHY input. We notice that scenario A remains substantially

unchanged, while scenario B seems to incorporate a lower bias in the dissociation

coe�cient estimate when LHY input is adopted in its smoothed form, rather than

when it is fully known; we also notice, particularly in scenario B, a correlation

between the parameters log(RLHY /R
0

) and log(K 0
LHY ). It is possible that the

rougher LHY input mitigates the correlation between the two parameters, making
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(a) Scenario A

(b) Scenario B

Figure 4.3: Kernel density estimates of the marginal posterior densities of the pa-
rameters. Model 3.1, as applied to data simulated according to the scenarios of
Figure 3.4. MCMC samples for 10 independent replications for each scenario. The
red vertical line is at the true value, and the prior density is also superimposed in
red. LHY input known.

it easier to obtain samples from the peak region of the posterior density.
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(a) Scenario A

(b) Scenario B

Figure 4.4: Kernel density estimates of the marginal posterior densities of the pa-
rameters. Model 3.1, as applied to data simulated according to the scenarios of
Figure 3.4. MCMC samples for 10 independent replications for each scenario. The
red vertical line is at the true value, and the prior density is also superimposed in
red. Smoothed LHY input.

4.1.2 Case 2: inference for known LHY and one unknown TF as

regulators

In this section we consider the more complex regulatory scenario which comprises

both LHY and TF B as regulators of the child gene. We validate inference for Model77



3.6, by applying it to 10 i.i.d. simulations generated according to the scenarios of

Figure 3.5. Again, recall that we focus on two regulatory sub-scenarios, namely A

and B, as shown in Figure 3.5.

When the unobserved TF B is introduced into the model, interest lies in

both the transcription function, initial condition, scale and noise parameters, and

in the reconstruction of the unobserved TF B. Moreover, the regulatory logics are

identified by two further ratios, compared to the case comprising only one observed

TF, namely (RB/R
0

), and (RLHY,B/RB). Finally, the transcription function addi-

tionally includes the dissociation coe�cient K 0
B, and the cooperativity parameter

Kc. This is clearly a very ambitious inferential framework for the data available.

Our study suggests, however, that inference is feasible if priors on the sign

of log(RLHY /R
0

) and log(RLHY,B/RB), as well as of log(K 0
LHY ) are available, and

Kc is set to a predefined value. For our simulation parameters, setting Kc = 1, i.e.

the case of independent binding, seems to not influence the posterior estimates of

the remaining parameters.

The desired priors may be available from experimental results of the type

introduced in Chapter 3. In particular, the dissociation coe�cient of LHY for se-

lected binding sites is provided in Section 3.3.4, while the induction experiment

can inform on the underlying regulatory logics. We expect in fact that, if TF B is

dynamically contributing to the transcriptional dynamics of the child gene, and an

increase of LHY protein always leads to, for example, a decrease of transcriptional

activity of the child gene, then the interaction e↵ect should be repressive. The un-

derlying reasoning is the following. Recall that we obtain a negative derivative of

the transcription function in Equation 1.5 with respect to LHY, assuming Kc = 1,

when

R0
LHY � R0

0

< (R0
B � R0

LHY,B)(XB(t)/KB).

with TF B being circadian. As XB(t) ! 0, the derivative is negative if R0
LHY �R0

0

<

0, which translates into log(RLHY /R
0

) < 0; on the other hand, when levels of TF B

are high we have that as XB(t) ! 1, the derivative is negative if R0
B � R0

LHY,B >

0, which translates into log(RLHY,B/RB) < 0. Clearly, these are only limiting

relationships, but we can postulate that a highly significant repression observed at

all, or almost all, time points, well motivates prior assumptions concerning the sign

of these parameters.

Despite the theoretical possibility of obtaining the priors of interest, there

are no cases among the Nanostring rhythmic genes in which only one EE or CBS

binding site is present in the promoter region of a given gene (thus providing a prior

for the dissociation coe�cient of LHY), and the same gene is consistently repressed
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or activated by LHY at level ↵ = 0.1 - the cases we classify as ‘-2’ and ‘2’ in Section

3.3.2, respectively. We therefore study this scenario exclusively at a simulation level.

We maintain the same priors of Section 4.1.1, for the common parameters,

with the exception of log(K 0
LHY ), for which we set a normal prior with mean at

the true simulation value and standard deviation equal to log(2)/2, following expert

judgement. For the mean of the initial condition of the Fourier coe�cients, as

outlined in Section 3.4.2, we drop any proposed value which leads to a negative

mean prediction of the unobserved TF, and assume a uniform prior on the allowed

domain. We assume half-normal priors, obtained by folding a N (0, 102) distribution

about 0, for log(RLHY /R
0

) and log(RLHY,B/RB), for the same reasons mentioned

above. We assume a N (0, 202) prior for log(RB/R
0

), based on the consideration that

slightly less weight is given to more extreme values than in the half-normal case, if

we were assuming the same standard deviation. Finally, we assume a N (0, 102) for

log(K 0
B). Recall also that Kc is set to 1.

The MCMC algorithm is run for 4 ⇥ 104 pilot iterations and 1.6 ⇥ 105 ad-

ditional iterations, of which we discard 104 iterations as burn-in. The posterior

samples are thinned by recording one sample every 100 iterations, and initial con-

ditions are randomly drawn from the prior distributions. Convergence is monitored

via visual inspection of the trace plots.

We note at this point that the unobserved TF mean level is not identifiable,

as the value is absorbed by the dissociation coe�cient K 0
B. We therefore aim at

inferring the relative amplitude of the two cycles, as well as their phase. Recall that

we retain for this purpose the harmonics 1, 2 and 4, with harmonic 1 having period

length equal to the total observational time.

A comment about parameter rescaling is also required. As we note in Section

2.5.1, it is possible to infer the stochastic basal transcription rate by dividing the

estimated value by the estimated parameter . When the TFs are known in units

of molecule numbers, the stochastic dissociation coe�cients can be inferred by mul-

tiplying the estimated dissociation coe�cients by the mean levels of the TFs. For

the unobserved TF considered here, this is unfortunately not possible, as we are not

adopting a mechanistic model for its dynamics. Although by introducing variability

in the Fourier representation, we can still disentangle mean and variance of the un-

observed TF, the variance introduced by our approach is likely to account for model

mismatch, rather than for intrinsic noise, and therefore an accurate estimation of

molecule counts is not possible.

Moreover, it turns out that due to the cyclical nature of the oscillations, the

model is also not able to significantly discriminate whether the unobserved TF is
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a repressor, or an activator peaking 12 hours later. We now discuss this issue, and

propose a first solution.

We find that the adaptive MCMC scheme developed for the observed TF

scenario is unable to properly explore the bimodal posterior distribution, as once it

gets ‘stuck’ into one of the two modes, it gradually adapts the proposal distributions

according to the local mode, making it less and less likely to escape and explore the

other mode. A non-adaptive scheme, on the other hand, is highly ine�cient, as the

chain proposes a very large number of samples in low density areas.

One popular approach which deals with multimodal posterior densities is

represented by the so-called tempering (see e.g. Neal, 1996; Marinari and Parisi,

1992). The main idea underlying the di↵erent tempering techniques is to gradually

‘flatten’ the target distribution, so that the algorithm can more easily move be-

tween high density areas. However, tempering algorithms can be computationally

demanding, and hard to tune. Moreover, in our scenario a biological understanding

of the source of bimodality is available, in that each mode is linked to a regulatory

mechanism of circadian oscillatory genes. One mode represents the e↵ect of an ac-

tivator on transcription, where we observe that the levels of the child gene increase

approximately at the same time at which the TF is increasing. Alternatively, the

child gene dynamics can be induced by a TF which is in perfect anti-phase to this,

and hence is found to act as a repressor, whose levels are decreasing approximately

at the same time at which the child mRNA is increasing.

Although both the biological understanding of the system and our simulation

study strongly support the hypothesis of this duality, it is non-trivial to derive the

exact analytic relationship between the parameters of the two modes, starting from

the assumed transcription function. It is indeed possible that the two modes are not

exactly equally likely, and therefore no closed-form relationship is available, but the

second mode has still a non-negligible probability, and we therefore wish to sample

from both.

We first study this issue in an ‘exploratory’ approach, which takes advantage

of a pilot run on a flattened posterior distribution target to locate the two modes. A

second solution, based on the biological understanding of the source of bimodality,

and adopted in the subsequent real data analysis, is provided in Section 4.1.3.

We have observed that, if the variance of the initial condition of the un-

observed TF Fourier coe�cients is high, the overall posterior density tends to be

flatter, making it easier to locate the two modes. The idea of this first approach is

therefore to specify a number of pilot iterations, in which we set informative pri-

ors on the logarithm of the variance of the initial condition of the unobserved TF
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Fourier coe�cients, namely a N (0, 1); at the end of the pilot run, the locations of

the two modes can be identified by means of a clustering algorithm on the chain

samples of the mean of the initial condition of the Fourier coe�cients, which is

aimed at identifying two anti-phase profiles, namely one for an activator and one for

a repressor. We then set N (0, 202) priors on the logarithm of the variances of the

initial conditions of the Fourier coe�cients, and start two parallel chains from the

MCMC sample of the pilot run which provides the maximum value of the likelihood

in each cluster.

This approach is then combined with a locally adaptive scheme as in Roberts

and Rosenthal (2009), to deal with the fact that, although infrequently, jumps be-

tween the two modes, within the same chain, can still be observed after the split. At

each iteration we compute the sum of the squared distance of the accepted mean of

the initial condition of the Fourier coe�cients, from the cluster centroids estimated

at the end of the pilot run, and assign the sample to the closest mode. Separately for

each mode, and for the two parallel chains, the variances and covariances of the pro-

posal densities are then adapted according to the previously accepted samples. This

scheme allows to sample more e�ciently within either of the two modes, particularly

if they have di↵erent shapes. In the pilot run we adopt a mixture of independence

sampler, adaptive single-component and block updates, to help exploration of the

posterior density. In the second part of the algorithm run, we sample individually

the degradation, measurement error variance, scale and initial condition parameters.

Three blocks of parameters are then defined by: the transcription function param-

eters, the mean of the initial condition of the Fourier coe�cients, and the variance

of the initial condition of the Fourier coe�cient.

To illustrate visually the presence of the two modes, we show the MCMC

output of the estimation process performed on one simulation replicate of scenario

A of Figure 3.5, by assuming Model 3.4. We plot in Figure 4.5 (a) pairwise scatter

plots of E[Xhar,2(0)], which appears to be the Fourier parameter with the greatest

weight, and the parameters of the transcription function, in the pilot run. Figure 4.5

(b), shows the same plots for the samples obtained in one of the final parallel chains.

We can see that the pilot run tends to explore more widely the posterior density,

while bimodality becomes more evident as the variance of the initial condition of

the Fourier coe�cients decreases. Finally, we observe in Figure 4.6 that in the first

parallel chain, after a few iterations in the alternative mode, the chain jumps to

the true mode, sampling the values of Fourier coe�cients initial conditions from

approximately the same region as the second parallel chain.

Now, we present the full MCMC simulation results for all the 10 simulation
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(a) Pilot run

(b) First parallel chain (chain in which the jump is observed)

Figure 4.5: Scatter plots of the MCMC samples of the Fourier coe�cient E[Xhar,2(0)]
and the parameters of the transcription function. Model 3.6, as applied to data
simulated according to scenario A of Figure 3.5. Plot code from Henson (2005).

replicates. Figure 4.7 shows the posterior densities for the transcription function,

noise, scale and degradation parameters, for the true and alternative mode induced

by the model when applied to data simulated according to scenario A of Figure 3.5,

82



Figure 4.6: Parallel MCMC chains trace-plots of the mean of the initial condition
of the Fourier coe�cients, top panels. Unobserved TF B inference (smoothing):
posterior median (magenta) and 95% HPDI (shaded blue), bottom panels. True
simulation mode (left) and alternative mode (right). Model 3.6, as applied to data
simulated according to scenario A of Figure 3.5.

while the same plots for simulation scenario B of Figure 3.5 are provided in Figure

4.8. Note, however, that the algorithm does not always locate the two modes, so, in

scenario A, the true mode is visited in all the 10 simulations, while the alternative

mode in 7 out of 10 cases. As for simulation scenario B, the true mode is visited in

9 out of 10 simulations, while samples from the alternative mode are available from

all the 10 simulations. We can observe that each of the two modes corresponds, as

expected, to a di↵erent role of the unobserved TF B on its own, namely a repressor

or an activator. In simulation scenario A, we are generally able to reliably estimate

the parameters, we only report some bias for log(RLHY /R
0

) and log(RB/R
0

), which

tend to be sightly underestimated, having 95 % HPDIs which do not include the

true value in 4 out of 10 cases. As for simulation scenario B, we only report some

di�culty for log(RB/R
0

), whose 95 % HPDIs so not contain the true value in 3 out
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of 9 cases.

(a) Mode 1 (True)

(b) Mode 2 (Alternative)

Figure 4.7: Kernel density estimates of the marginal posterior densities of the tran-
scription function, noise, scale and degradation parameters. Model 3.6, as applied
to data simulated according to scenario A of Figure 3.5. MCMC samples for 10
independent replications. The red vertical line is at the true value, and the prior
density is also superimposed in red.
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(a) Mode 1 (True)

(b) Mode 2 (Alternative)

Figure 4.8: Kernel density estimates of the marginal posterior densities of the tran-
scription function, noise, scale and degradation parameters. Model 3.6, as applied
to data simulated according to scenario B of Figure 3.5. MCMC samples for 10
independent replications. The red vertical line is at the true value, and the prior
density is also superimposed in red.
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We provide in Figures 4.9 (a) and (b) the posterior smoothing densities for

the unobserved TF B and the child mRNA profiles of simulation scenario A and

B, respectively. Focussing first on simulation scenario A, we observe that the true

simulated profile of the unobserved mRNA is generally included in the 95 % HPDIs

of the smoothing density: considering all time-points, it is always included in at

least 7 out of 10 cases, and for most time-points in 9 or 10 out of 10 cases. As for

the unobserved TF B smoothing, the most notable mean mismatch is observed in

its first peak, and, in particular, the mean of the first cycle seems to be estimated

with a delay of about 1-2 hours. In most cases however, the true simulated time-

series is still included in the 95 % HPDI, although we note that this is not the

case for the third and fourth time-point in half of the cases. The same delay is

observed in simulation scenario B, leading to one time-point in the first cycle to be

always excluded from the 95 % HPDIs. A, possibly related, low empirical coverage

for simulation scenario B is also observed in the unobserved mRNA, at the time-

points corresponding to the first peak of the unobserved TF. We note, however,

that the most biassed parameter in simulation scenario B is log(RB/R
0

): we can

postulate that the correlation in the posterior density plays a role here. A second

relevant source of mismatch is highly likely to be in the approximate handling of

the unobserved TF.

A comparison of the log-likelihood values of the two modes (not shown), in

both scenario A and B, has revealed that simulation scenario A seems to slightly

favour the alternative mode, while simulation scenario B slightly favours the true

one. This result suggests that the likelihood tends to prefer the scenario in which

the unobserved TF acts as an activator, again possibly due to the approximate

modelling of the unobserved TF B, and the posterior density correlation structure.

Therefore, in order to assess whether an increase in the number of data-

points would provide a significant advantage in terms of discrimination between the

two modes, we run the MCMC algorithm for two simulation replicates in scenario

A and two simulation replicates in scenario B, assuming �t = 1h. The increasingly

peaky likelihood, induced by the higher number of observations, makes the approach

adopted so far to locate the two modes more challenging. To make sure that both

modes are visited, we run two parallel chains from the beginning of the algorithm,

one assuming a HN(102) prior with negative support, and the second a HN(102)

prior with positive support for log(RB/RA,B). More details about this approach are

provided in Section 4.1.3.

We can see in Figure 4.10 that the two modes are approximately equally

likely, suggesting that an increased number of observations is not leading to a
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(a) Scenario A

(b) Scenario B

Figure 4.9: Unobserved TF B inference (smoothing), left panels: posterior median
(magenta) and 95 % HPDIs (lower: blue; upper:cyan). True simulated child unob-
served TF B (red). Unobserved child mRNA inference (smoothing), right panels:
posterior median (black) and 95 % HPDIs (lower: blue; upper:cyan). True simulated
child mRNA (red). True mode (top panels in each subfigure), and alternative mode
(bottom panels in each subfigure). MCMC samples for 10 independent simulations
from Model 3.6, with parameters as in Figure 3.5.

87



stronger discrimination between the two modes.

Figure 4.10: Log-likelihood samples for four independent MCMC runs on Model
3.6, as applied to data simulated according to the scenarios of Figure 3.5. �t =
1 h. Comparison between mode 1 (True) and 2 (Alternative) for each simulation
replicate. Plot code from Greene (2014a and 2014b).

We also observe, however, that the coverage for the unobserved TF B tends

to worsen. There is a reduced variability in the unobserved TF smoothing density,

as expected with a higher number of observations, and the chains tend to sample

the mean of the initial condition of the Fourier coe�cients in a sub-region of the

�t = 2h case; this sub-region can include the ‘true’ parameters values, however, the

reduced variance contributes in inducing a lower coverage. Figure C.1 in Appendix

shows the comparison for the inferred smoothing profiles of TF B, assuming�t = 2h

and �t = 1h. Our interpretation is that the likelihood is increasingly concentrated,

and therefore the algorithm tends to struggle in moving within the high density area

of the posterior, which has now possibly additional sub-peaks. In this scenario, the

assumed form of the unobserved TF - i.e. the Fourier series - starts to become ‘too

rough’, and model mismatch can have a more significant influence. Our suggestion

is therefore to resort to alternative, possibly mechanistic, modelling techniques if

more data-points are available.

As a final check, we fit our model to one SSA simulation of the full system,
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for each simulation scenario. Recall that we have so far resorted to the di↵usion

approximation, which further assumes the aggregate hazards and the QSSA, given

the significant speed-up in simulations. Figure 4.11 shows a comparison of one SSA

simulation for scenario A and B, and 50 di↵usion approximation simulations. We

note a generally higher variability in the SSA simulation than in the di↵usion ap-

proximation ones. We therefore run the estimation algorithm in order to assess

whether the observed di↵erence has any significant impact on inference. Both the

parameters estimates, and the unobserved TF profile, do not seem to significantly

di↵er with respect to the case where the di↵usion approximation simulations are

employed. It seems that inference under the two simulation methodologies mostly

di↵er in the variance of the unobserved TF, having wider HPDIs. The comparison

of the unobserved TF smoothing densities and the parameters posterior densities

are shown in Figures C.2, and C.3 (a) and (b) in Appendix, respectively. The high

molecules counts of the TFs imply tenability of the assumption required for aggre-

gation of the hazards, and the high molecules counts of the child mRNA justifies the

di↵usion approximation of the underlying birth and death process. Any observed

mismatch is then likely to be due to the QSSA.

4.1.3 Case 3: inference for one unknown TF as only regulator

We finally validate the inferential process for Model 3.7, as applied to data simu-

lated as in Figure 3.7. In this scenario, only the unobserved TF B is assumed to

dynamically influence transcription of the child gene.

Here we tackle the bimodality issue by performing inference for the two modes

independently. In particular, we run two parallel chains, one adopting a HN(102)

prior with support [0, 1), and the second chain adopting a HN(102) prior with

support (�1, 0], for log(RB/R
0

). The two chains cover the full parameter support,

and we are also guaranteed that both modes are visited. The prior densities and

the MCMC scheme are specified as in the case which assumes both LHY and the

unobserved TF B as regulators (see Section 4.1.2).

The algorithm is run for 2.5⇥105 iterations, we discard a burn-in of 105 iter-

ations, and thin the posterior samples by recording one sample every 200 iterations.

Again, initial conditions for all the parameters are randomly drawn from the prior

densities, and convergence is monitored via visual inspection of the trace plots.

Figures 4.12 (a) and (b) show the parameter posterior densities, as estimated

on 10 i.i.d. replications of simulated data from scenario A of Figure 3.7, and for the

true and alternative mode, respectively. Figures 4.13 (a) and (b) show analogous

plots for scenario B of Figure 3.7. Focusing first on simulation scenario A, the
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Figure 4.11: Comparison of one SSA simulation from the full set of reactions of Table 1.1
(red), and 50 di↵usion approximation simulations according to Model 3.4, mean (blue) ±2
SD (shaded blue). Parameters for the SSA are set equal to: R0 = 50molecules/h, RLHY =
2.5 molecules/h, RB = 2 ⇥ 102 molecules/h,RLHY,B = 50molecules/h, k+c = 0.8, k�c = 1.2
(scenario A, left); R0 = 60 molecules/h, RLHY = 35 molecules/h, RB = 2.5 molecules/h,
RLHY,B = 0.5 molecules/h, k+c = 1.2, k�c = 1.2 (scenario B, right). Common parame-
ters: k+LHY = k+B = 3 ⇥ 10�4 molecules, k�LHY = k�B = 6 molecules. LHY and TF B
are simulated assuming parameters ⌫LHY (t) = [2.88 ⇥ 102, 8.7, 1.68 ⇥ 102, 21.6, 1.26 ⇥ 102]
(in molecules per hour) with switch times SwtA = [27, 40, 50, 61] (in hours), ⌫B(t) =
[21, 1.71 ⇥ 102, 2.91 ⇥ 102, 9, 90, 1.68 ⇥ 102, 21] (in molecules per hour) with switch times
SwtB = [21, 28, 45, 52, 56] (in hours), respectively. µM = 0.5 h�1, ↵M = 40h�1, µP =
0.34 h�1, µMMg

= 1.2 h�1 and XRNAPc = 10 molecules. Values are summed over 100 cells.
Parameters for the di↵usion approximation simulations are set as in Figure 3.5.

true parameters values are generally included in the 95% HPDIs, although we find

poor mixing of the chain for log(E[XMg(0)]). Considering simulation scenario B,

estimation seems to be more challenging, and in particular the rescaled dissociation

coe�cient parameter log(K 0
BKc) falls inside the HPDIs in 4 cases out of 10 at level

95%, and 6 cases out of 10 at level 99%. We also note that the true value of the log

ratio log(RLHY,B, RB) is included in the HPDIs in 8 out of 10 cases at level 95%.

We believe that this result is due to the posterior correlation structure, and indeed

we notice in Figure 4.14 (b) that the first peak of the unobserved TF B smoothing

density median tends to be underestimated, leading to two simulation data-points

not included in any HPDI.
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Comparing this situation with scenario A, we can see in Figure 4.14 (a) that

the first peak is better estimated, but the second cycle seems to be preceded by the

median fit by about 1-2 hours. This mismatch is however generally compensated

by the variability, and we observe that in scenario A the smoothing density of the

unobserved TF does not include the true value at worst in 6 out of 10 cases, at

four time-points. In one replicate we have also obtained very wide HPDIs for the

unobserved TF (not shown for plotting purposes).

The remaining plots of Figures 4.14 (a) and (b), show that, as expected, the

two modes provides anti-phase smoothing profiles for the unobserved TF, as well

as that scenario B tends to perform better than scenario A in terms of inclusion of

the unobserved mRNA true simulation profile in the 95 % HPDIs of the smoothing

density. We again attribute this mismatch to the approximate handling of the

unobserved TF.

Despite the fact that the 95 % HPDIs do not always provide the expected

empirical coverage, the model o↵ers the possibility to infer, at least approximately,

the phase and relative amplitudes of the two cycles of the unobserved TF, which is

our main objective.
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(a) Mode 1 (True)

(b) Mode 2 (Alternative)

Figure 4.12: Kernel density estimates of the marginal posterior densities of the
model parameters posterior densities, excluding the mean and variance of the initial
condition of the Fourier coe�cients. Model 3.7, as applied to data simulated accord-
ing to scenario A of Figure 3.7. MCMC samples for 10 independent replications.
The red vertical line is at the true value, and the prior density is also superimposed
in red.
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(a) Mode 1 (True)

(b) Mode 2 (Alternative)

Figure 4.13: Kernel density estimates of the marginal posterior densities of the
model parameters, excluding the mean and variance of the initial condition of the
Fourier coe�cients. Model 3.7, as applied to data simulated according to scenario
B of Figure 3.7. MCMC samples for 10 independent replications. The red vertical
line is at the true value, and the prior density is also superimposed in red.

.
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(a) Scenario A

(b) Scenario B

Figure 4.14: Unobserved TF B inference (smoothing), left panels: posterior median
(magenta) and 95 % HPDIs (lower: blue; upper:cyan). True simulated child unob-
served TF B superimposed (red). Unobserved child mRNA inference (smoothing),
right panels: posterior median (black) and 95 % HPDIs (lower: blue; upper:cyan).
True simulated child mRNA superimposed (red). True mode (top panels in each
subfigure), and alternative mode (bottom panels in each subfigure). MCMC sam-
ples for 10 independent simulations from Model 3.7, as applied to the simulation
scenarios of Figure 3.7, with the exception of the unobserved TF smoothing profile
for the true mode in scenario A: one posterior profile has extremely wide HPDIs,
and is thus excluded for plotting purposes.
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4.2 Data analysis for Arabidopsis thaliana

In this section we provide the data analysis of the Arabidopsis thaliana genes mRNA,

as measured by the Nanostring experiment introduced in Section 3.3.1.

We first select a subset of the 100 Nanostring genes by requiring rhythmicity

in their expression, as it seems reasonable to assume that non-circadian dynamics

cannot be influenced by circadian ones, in a causal framework. We start our analysis

with preliminary statistics related to the classification of the Nanostring rhythmic

genes according to the presence of binding sites in their promoter region, and the

relationship between binding sites groups and the induction experiment results of

Section 3.3.2, as well as amplitude and phase.

We then inspect the parameter estimates obtained by fitting the model which

assumes only one unobserved TF to the Nanostring rhythmic genes, and check

normality and periodicity of the residuals. Finally, we investigate the correlation

between the inferred unobserved TF profiles and LHY observed protein, as well as

synchrony among unobserved mRNA profiles.

It is worth noting that a first attempt was made at fitting the model com-

prising only the observed LHY as a regulator, introduced in Section 3.4.1. However,

this approach seems not able to satisfactorily fit the available data. Multiple ex-

planations can be put forward. It is possible that LHY binding is non-functional,

at least for a subset of the Nanostring genes, as the induction experiment result

points out. It is also possible that LHY binding is functional, but it requires the

presence of additional TFs to influence transcription of the child genes. The model

with only one unobserved TF provides an advancement in this direction, represent-

ing a more flexible model, which allows to compare a posteriori the reconstructed

TF profile with the available LHY time-series: a correlated result may point in the

direction of LHY being nevertheless an important regulator for the child gene, while

a completely uncorrelated TF points in the direction of a non-functional binding of

LHY.

A further advancement may be represented by the model introduced in Sec-

tion 3.4.2, which assumes both LHY and an unobserved TF as functional regulators.

As anticipated, however, inference would require in this case availability of prior in-

formation concerning the dissociation coe�cient of LHY, and its consistent induction

e↵ect, as outlined and validated with the simulation study of Section 4.1.2. Unfor-

tunately there are no rhythmic genes in the Nanostring data-set having exactly one

binding site, among those bound by LHY listed in 3.3.3, as well as a consistent

induction by LHY at level ↵ = 0.1.
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4.2.1 Preliminary analysis of the Nanostring mRNA data

We first select 91 Nanostring genes, by excluding the five control genes, and by

retaining among the remaining 95, the ones for which a prior concerning degradation

rate is available by fitting the switch tool of Section B.2 in Appendix on additional

mRNA time-series data for the same genes from a microarray experiment.

A first classification of the Nanostring genes is performed by assessing their

circadian rhythmicity. This characteristic can be statistically evaluated by means

of spectral analysis. From Section B.3 in Appendix, each element of the observed

time series Y
1

, ..., Yn of the child mRNA can be written as

Yi = a
0

+
hX

q=1

Hq(i),

with

Hq(i) = aq cos(↵qi) + bq sin(↵qi), , (4.1)

where h is in our case equal to n/2 = 12, and ↵ = 2⇡/24. If we consider only the

first 11 harmonics, we have

aq =
2

n

nX

i=1

Yi cos(↵qi),

bq =
2

n

nX

i=1

Yi sin(↵qi) 1  q < n/2.

We refer to Section B.3 in Appendix for details about the remaining quantities in-

volved in Equation 4.1. Each harmonic Hq is responsible for a particular periodicity

in the data. A useful tool for a statistical analysis of the underlying periodicities is

the periodogram (Prado and West, 2010, Chapter 3), namely

I(!q) =
n

2

�
a2q + b2q

�
,

where !q denotes the frequency of harmonic Hq in the time-units of the observed

data. The periodogram provides an estimate of the relative importance of each

frequency, or equivalently harmonic, for the overall signal Y
1:n. However, in this

form, it is di�cult to draw any inferential conclusion about the estimated values of

the periodogram at each frequency !q, and in particular to test the hypothesis that

the series Y
1:n can be generated by a white noise process, against the hypothesis

that a significant periodicity is present. A more useful quantity in this direction is
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the normalised periodogram of Scargle (1982), which has the form

I(!q) =
1

2

2

4

0

@ aqq
4

n2

Pn
i=1

cos(↵qi)2

1

A
2

+

0

@ bqq
4

n2

Pn
i=1

sin(↵qi)2

1

A
2

3

5 .

The rationale is the following (see Horne and Baliunas, 1986). Assume, under the

null hypothesis, that Y
1

, ..., Yn are i.i.d N (0, 1), i.e. the signal is standard normal

white noise. Therefore

aq ⇠ N

 
0,

4

n2

nX

i=1

cos(↵qi)2
!

bq ⇠ N

 
0,

4

n2

nX

i=1

sin(↵qi)2
!

.

It follows that the value assumed at each frequency by the normalised periodogram

is a �2

2

/2, or, equivalently, a Ga(1, 1), or an Exp(1). Note that extreme observed

estimates of the normalised periodogram can either indicate that the signal has a

periodic component, or that it deviates from normality.

Since our goal is to assess circadian periodicity, and we observe the data

for a total of two circadian cycles, our main interest is in the second harmonic. We

therefore consider a gene to be rhythmic when the estimated value of the normalised

periodogram, evaluated at the frequency !
2

= 1/24 cycles/h, is higher than 2.99,

which is the 95% quantile of a standard exponential. This procedure selects 70 genes

out of the 91 tested.

A further relevant characteristic is the presence of binding sites and binding

sites combinations in the promoters, as well as the genes response to an increase in

LHY. A summary of the Nanostring rhythmic genes, with respect to their binding

sites group and induction experiment result is provided in Table 4.1. We can see

that the EE and ABRE binding sites are the most represented among the Nanos-

tring rhythmic genes, as well as the category of genes repressed by LHY. To test

a possible association between the presence of binding sites and induction by LHY

we perform Fisher’s exact test (Fisher, 1922; Agresti, 1992), leading to a p-value

equal to 0.62. There seems therefore to be no association between the two variables,

which can suggest either that LHY acts through di↵erent binding site combinations,

or alternative mechanisms, for example binding of additional transcription factors

to di↵erent motifs, is required.

Another important preliminary analysis, since we are dealing with circadian

genes, concerns their amplitude and phase. The distribution of the phases and

97



Binding sites
Induction

Total
-2 -1 0 1

None 2 8 6 1 17
CBS only 0 0 1 0 1
ABRE only 0 5 2 1 8
EE only 0 15 5 0 20
CBS + ABRE 0 1 0 0 1
CBS + HEX 0 1 0 0 1
CBS + EE 0 1 1 0 2
HEX + ABRE 0 2 0 0 2
ABRE + EE 0 8 1 0 9
HEX + EE 0 4 1 0 5
CBS + ABRE + HEX 0 0 1 0 1
CBS + ABRE + EE 0 0 1 0 1
ABRE + HEX + EE 0 1 0 0 1
CBS + ABRE + HEX + EE 0 1 0 0 1

Total 2 47 19 2 70

Table 4.1: Rhythmic Nanostring genes by presence of binding sites in the promoter
region and induction experiment result. A binding site is defined as present if there
is at least one binding site of the corresponding type in the promoter. Induction is
assessed at significance level ↵ = 0.1 (-2 indicates consistent repression, -1 repres-
sion, 0 no e↵ect, 1 activation, no rhythmic genes belong to the case of consistent
activation, 2; see Section 3.3.2 for a more detailed explanation of the categories).
Fisher’s exact test for association has p-value 0.62. Nanostring data-set, Carré lab.

amplitudes of expression of the Nanostring rhythmic genes, categorised according

to their binding sites group, is provided in Figures 4.15 and 4.16, respectively. The

phase is computed by locating the peak time of the second harmonic, between hours

24 and 46 of the observed time-series (recall that the experiment starts at time 20).

The amplitude is computed on the mean-centred time-series.

We can see that the distribution of the phases spans across the whole of the

24 hour interval, with a predominance of evening phases. This is consistent with

the result of the induction experiment that identifies LHY, which is peaking in the

morning, as a repressor of transcription for a significant portion of the Nanostring

genes. Regarding the amplitude, it seems that the presence of the EE and HEX

binding sites favours a higher amplitude, while the group with none of the known

binding sites has generally lower amplitude levels. We finally remark that each

binding site can be present in multiple copies in the same gene promoter. However,

an increase in the number of binding sites categories is in this case not advisable,

given the small number of available genes.
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Figure 4.15: Box plots of phases of expression of the Nanostring rhythmic genes,
by binding sites group. A binding site is defined as present if there is at least one
binding site of the corresponding type in the promoter. Phase corresponding to
the peak of the 24 hour period harmonic. Groups have di↵erent sizes, and some
comprise only one or two observations, hence a single observed value is plotted as a
horizontal line. Crosses correspond to outliers. Nanostring data-set, Carré lab.

4.2.2 Inference for the Nanostring mRNA data

Parameter inference

Model 3.7, which we recall comprises only one unobserved TF as transcriptional

regulator of the child gene, is fitted to the Nanostring rhythmic genes data. Recall

that a bimodal posterior parameter distribution is induced by this model, due to

the presence of the unobserved TF; each mode corresponds to a di↵erent role of the

unobserved TF on transcription of the child gene, namely that of an activator and

that of a repressor.

Figure 4.17 provides median and HPDI estimates for the transcription func-

tion parameters log(R0
0

), log(RB/R
0

) and log(K 0
B). Estimates of log(R0

0

) have a

median of the medians estimate equal to -0.81 in mode 1, and -5.4 in mode 2, with

a standard deviation about these estimates of about two points on the logarithmic

scale in both cases. A higher between-genes variability is observed for log(RB/R
0

),

which assumes in some cases relatively extreme negative and positive values, close to
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Figure 4.16: Box plots of amplitudes of the Nanostring rhythmic genes, by binding
sites group. A binding site is defined as present if there is at least one binding site of
the corresponding type in the promoter. Amplitude of the 24 hour period harmonic.
Groups have di↵erent sizes, and some comprise only one or two observations, hence
a single observed value is plotted as a horizontal line. Crosses correspond to outliers.
Nanostring data-set, Carré lab.

the prior tails. In mode 2, for example, the median estimates of log(RB/R
0

) reaches

a maximum of 5 ⇥ 105, on the original scale. This seems a rather large increase in

the transcriptional rate, and we believe that this parameter may indeed be absorb-

ing the e↵ect of model misspecification, for example due to the presence of multiple

binding sites for TF B, or cooperativity with LHY. A sensitivity analysis for prior

specification can be appropriate, although it has not been performed at present.

The parameter log(K 0
B), finally, exhibits similar median estimates across the genes,

particularly in mode 2, although with variable widths for the corresponding HPDIs.

In Figure 4.17 we observe median and HPDI estimates for µMg , log(2�2)

and log(). The posterior densities of µMg have median of the medians estimates

equal to 0.25 in mode 1, and 0.24 in mode 2; we also note that consistently low

values are estimated for , the median of the medians estimate being in this case

equal to approximately -33 in both modes, which indicate the presence of high

molecule counts. A low estimate was indeed expected, due to the presence of sample

aggregation over several cells. Finally, the median of the medians of log(2�2)
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posterior densities is equal to -4.8 in mode 1, and -8.4 in mode 2, although it exhibits

a relatively high standard deviation in both modes, equal to about five points on

the logarithmic scale.

Figure 4.17: Posterior densities for the transcription function parameter of Model
3.7, as applied to the Nanostring rhythmic genes: median (star) and 95 % HPDIs
(bars), by gene. Nanostring data-set, Carré lab.
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Figure 4.18: Posterior densities for the degradation, scale and noise parameter of
Model 3.7, as applied to the Nanostring rhythmic genes: median (star) and 95 %
HPDIs (bars), by gene. Nanostring data-set, Carré lab.

Diagnostics

In this section we perform a comprehensive study of model fit for the Nanostring

rhythmic genes. A sample of standardised residuals is obtained for each thinned

MCMC sample, and the Shapiro-Wilk test statistics, as well as the normalised pe-
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riodogram, are then computed. An empirical distribution for each test statistic, for

all the analysed genes, and for both modes, is thus available.

The Shapiro-Wilk test is aimed at assessing normality and has critical value

at level 1 � ↵ = 95%, for a sample of 24 data-points, equal to 0.916 (Shaphiro and

Wilk, 1965). The Shapiro-Wilk test is here computed with the swtest function in

MATLAB (Saida, 2007), which performs either the Shapiro-Wilk or the Shapiro-

Francia test based on the sample kurtosis. In particular, medians and HPDIs of the

Shapiro-Wilk test statistics distributions, for all the genes and for the two modes,

are shown in the top panels of Figure 4.19. We can observe that the assumption of

normality is generally adequate, being most of the mass of the posterior distributions

above the threshold level.

The normalised periodogram introduced in Section 4.2.1 enables the inves-

tigation of residual periodicities. The central panels of Figure 4.19 show the medi-

ans and HPDIs of the normalised periodogram estimate densities for the frequency

1/24 cycles/h, corresponding to the circadian periodicity. We notice that, for some

genes, the 24 hour periodicity is explained to a reasonable degree, as a significant

mass of the test distributions below the 95 % threshold level of 2.99 demonstrates.

For other genes, the result is more ambiguous: while the threshold level belongs to

an area of non-negligible density, we can see that most of the density mass is above

the threshold level itself. This suggests that, although part of the density of the 24

hour periodogram estimate falls in a region where no residual circadian rhythmicity

is present, for most of its mass this is not the case, and in such cases we would be

skeptical about the goodness of fit.

As a general comment relative to the 24 hour periodicity fit, we have generally

noticed that our model encounters di�culties when the two cycles are substantially

di↵erent, and in particular in the presence of sharp peaks and abrupt changes, which

cannot be explained by measurement error only.

Finally, the bottom panels Figure 4.19 show the median and HPDI of the

normalised periodogram estimate densities for the frequency 1/12 cycles/h, which

can also be of interest for circadian genes. In this case, we see that there is no evi-

dence against the hypothesis that no 12 hour periodicity is present in the residuals,

for all the analysed genes.

Correlation with LHY

An important analysis for the purposes of our study concerns the possible relation-

ship between the reconstructed TF and the observed LHY protein, as one of the

aims of our analysis is to put forward the hypothesis that the unobserved TF is
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Figure 4.19: Diagnostics plots for model fit: Shapiro-Wilk test (top), normalised
periodogram estimate for the 24 hour period (centre), normalised periodogram es-
timate for the 12 hour period (bottom), computed on the standardised residuals for
Model 3.7, as applied to the Nanostring rhythmic genes. Median (star) and 95 %
HPDIs (bars), red line superimposed at the 95 % significance value, under the null
hypothesis that samples are i.i.d. from a N (0, 1). Nanostring data-set rhythmic
genes, Carré lab.

‘close’ to LHY itself. We assess this relationship by computing, for each gene, a

sample of correlation coe�cients between the inferred unobserved TF profiles, and
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the LHY protein time-series.

To ensure the accuracy of our analysis, we retain only the genes for which

a satisfactory fit of the circadian rhythmicity is achieved by the model. A good

fit is assumed under two conditions: first, there is a reliable identification of the

unobserved TF, i.e. if the variability associated with the inferred smoothing den-

sity is such that a constant time series has negligible probability (less than 5%);

second, the median normalised periodogram estimate for the 24 hour period of the

standardised residuals is below 2. The latter seems a reasonable threshold, which

additionally allows to control for mRNA model fit. It is also a more restrictive

criterion than assessing whether the standardised residuals of the median model fit

have a normalised periodogram estimate for the 24 hour period which falls below the

95% threshold 2.99, but less restrictive than assuming a fulfilment of the standard

exponential distribution fit for the full density of 24 hour periodogram estimates

of the residuals. Any statistical approach employed to assess the latter, e.g. the

Kolmogorov-Smirnov test, is doomed to result significant against the null hypothesis

in the majority of cases, due to the high, and potentially infinite, sample size pro-

vided by the number of MCMC samples. We believe, on the other hand, that even if

the 24 hour rhythmicity is still present in a minor proportion of the residuals, if this

proportion is small and the model has achieved the identification of an unobserved

TF, it is sensible to assume that the model is providing useful information about

the unobserved regulator and the transcriptional dynamics.

A posterior sample from the density of the unobserved states, given the obser-

vations and the parameters, is provided by a draw from the smoothing distribution

introduced in Section 2.4. The mean and variance of the normal smoothing distri-

bution is computed for a thinned set of MCMC samples, and then for each thinned

MCMC sample, a posterior sample for the unobserved TF and mRNA profiles is

drawn.

We then apply the following procedure: we start by building N matrices,

one for each analysed gene, containing in each row a sampled posterior smoothing

time-series of the unobserved TF. We then compute the correlation between the

LHY observed, smoothed, profile, and the samples in each of the N matrices. This

procedure provides a sample of correlation values between the LHY profile and the

unobserved inferred TF of each gene, the number of samples being equal to the

number of MCMC iterations retained.

When we achieve a reliable identification of the unobserved TF in both

modes, we have a bimodal distribution for the pairwise correlations, i.e. between

LHY and the unobserved TF, if the correlation is significantly di↵erent from zero.
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A sensible approach for plotting the results is, for example, by means of violin plots

(Dorn, 2009): the width of the plot is approximately proportional to the density

at the specified point of the y axis, obtained as a kernel smoothing estimate of the

data histogram. We adopt the Fisher transformation of the correlation coe�cient

�, which is given by log[(1 + �)/(1 � �)]/2 (see e.g. Pace and Salvan, 1997, Chap-

ter 8), in order to avoid boundary e↵ects. The Fisher transformation has also the

advantage of improving normality, when computing the correlation on i.i.d. pairs

from a bivariate normal distribution. The transformation has been shown to reduce

skewness and stabilise the variance (see Pace and Salvan, 1997, Chapter 8, and ref-

erences therein). The gain is however less significant when observations come from

time-series data, as investigated in Thompson and Fransson (2016).

Figures 4.20 show such violin plots of the distribution of the correlation

between the reconstructed TF and LHY for the genes with the highest correlation,

in absolute value. Plots for the remaining genes are provided in Figure D.1 in

Appendix. We have sorted the genes so that on the left-hand side of the plot we

have the genes with the highest median correlation, in absolute value. We recognise

in the high-correlation group genes which are known to belong to the central clock of

the Arabidopsis Thaliana, and to be repressed by LHY (Adams et al., 2015), namely

ELF3, PRR9, CAB1, CCA1, TOC1, ELF4, and LUX. The observed correlation

is however not always close to 1, pointing in the direction of possible additional

regulators.

It is worth remarking that the correlation coe�cient is aimed at assessing

a linear relationship. We may be losing something in terms of sensitivity of our

analysis if a non-linear relationship is present (see Quian Quiroga, 2009); on the

other hand, the presence of bimodality in the unobserved TFs profiles motivates

this choice, as a first simple and easily interpretable exploratory approach.

mRNA clustering

A further interesting point is the correlation between unobserved mRNAs. Given the

assumed model, it is sensible to expect that a correlation between the unobserved

TFs of two di↵erent genes, reflects a correlation between the unobserved mRNAs of

the same genes. It is therefore of interest to analyse the posterior smoothing profiles

of the child mRNAs by identifying homogenous clusters of expression. These clusters

can then be compared according to the presence of binding sites and the result of

the induction experiment.

We form Nc matrices, each containing one posterior mRNA profile for each

gene. Note that either some mRNA samples are used more than once, or a sub-
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Figure 4.20: Violin plots for the correlation of the posterior unobserved TFs profiles
and smoothed observed LHY. Fisher transformation of the correlation coe�cient.
Genes between positions 1 and 20, in order of median posterior correlation, in ab-
solute value. Note that for a limited number of genes only one mode satisfies the
model fit requirements. Rhythmic Nanostring genes, with satisfactory explained
circadian rhythmicity, Carré lab. Plot code from Dorn (2009).

sample of them is employed, if the chains have a di↵erent number of iterations re-

quired for convergence for di↵erent genes. We adopt the second approach, and apply

the k-means clustering algorithm (MacQueen, 1967) to each of the Nc matrixes, as

implemented in MATLAB. Recall that the algorithm is aimed at identifying, for

a given number of clusters, an optimal partition of the units, according to one or

more variables of interest, time-points in our case. By optimal, it is meant that

it minimises the sum of ‘within cluster’ deviance, i.e. the sum, over all clusters,

variables and observations, of the squared di↵erences between the observations and

their assigned cluster centre (Fabbris, 1997, Chapter 8).

A crucial choice concerns therefore the number of clusters k. We run the

clustering algorithm for each of the Nc matrixes and for an increasing number of

clusters, i.e. from 1 to 33 (the total number of genes is 34), by setting the number

of replicates to 100. Replication is required in order to ensure that the best clas-
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sification is achieved, and therefore the total ‘within cluster’ sum of deviances is

monotonically decreasing as the number of clusters increases. An appropriate test

statistics to assess whether an additional cluster provides a significant drop of total

within cluster deviance is provided in Beale (1969), cited in Everitt et al. (2011)

and Fabbris (1997, Chapter 8). Figure D.2 (a) in Appendix shows the progressive

decrease in the ‘within cluster’ deviance, as we increase the number of clusters. We

observe a slight elbow in the plot of the deviances at 5, indicating that additional

increases in the number of clusters are likely to mostly explain variability due to

noise. Moreover, Figure D.2 (b) in Appendix shows the value assumed by Beale’s

F statistics for an increasing number of clusters, and for all Nc samples, along with

the significance threshold at level 1 � ↵ = 95%. A clear peak in Beale’s F statistics

is observed at 4, indicating that the increase from four to five clusters has the most

beneficial e↵ect in terms of reducing the ‘within cluster’ deviance. We therefore opt

for five clusters.

The k-means algorithm, applied to the Nc matrices with number of clusters

set to 5, identifies a total of 38 di↵erent partitions. Each partition occurs with a

particular frequency among the Nc samples, and thus a measure of their probability

is easily obtained. The three most probable partitions have frequencies equal to

approximately 0.21, 0.17 and 0.15, hence representing about the 53% of the total

samples. Note that running the clustering algorithm on the median mRNA posterior

profiles does not identify the most probable partition in our case.

Now we focus on the most probable partition. We provide in Figure 4.21

the cluster centres, which translate into five mean profiles. We can see that the five

clusters basically identify four phase groups, having peaks approximately equally

spaced across the circadian day, and an additional cluster which shows a bimodal

peak in both cycles.

We observe in Tables 4.2 and 4.3 the distribution of the genes according to

the five clusters identified by the clustering procedure, and binding site group and

induction experiment result, respectively. Table 4.2 has a p-value for the Fisher’s

exact test for association equal to 0.17, pointing in the direction of an association

between cluster group and presence of binding sites. Due to the low sample size, we

have also performed the same test assuming four clusters; each cluster represents

in this case approximately a phase-group, as the less important cluster among the

initial five, is cluster 5, whose centre has the doubly peaked profile in Figure 4.21.

We obtain in this case a p-value equal to 2.4 ⇥ 10�2. The results overall suggest

that the presence of binding sites in the promoter of a gene has an influence on the

observed expression profile - note that causality is not implied by the test, but an
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Figure 4.21: Centres of the clusters identified by the k-means algorithm, as applied to
the samples posterior profiles of the child mRNA. Most probable partition. Rhyth-
mic Nanostring genes, with satisfactory explained circadian rhythmicity. Nanostring
data-set, Carré lab.

implication of the type of variables involved.

On the other hand, Table 4.3 has a p-value equal to 0.55 for the association

between cluster group and induction by LHY, pointing in the direction of a not

significant e↵ect. The p-value if four clusters are assumed is equal to 0.37, thus still

indicating no association. One possibility is that LHY is an important regulator,

but it is not su�cient to explain the observed profiles. This result, as well as the

comparison of the unobserved TFs profiles with LHY, suggests a more complex form

of regulation.

4.3 Discussion

In this fourth Chapter, we have studied three modelling approaches of transcrip-

tional regulation, validated through a simulation study. We have applied the model

which assumes only one observed regulator, in this case LHY, to the Nanostring

rhythmic data, although we note that it is generally not able to fit the available

data. The model comprising one unobserved TF is more flexible, and allows to infer
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Binding sites
Cluster

Total
1 2 3 4 5

None 3 1 1 0 0 5
CBS only 0 1 0 0 0 1
ABRE only 0 2 0 1 0 3
EE only 2 0 2 5 2 11
CBS + ABRE 1 0 0 0 0 1
CBS + EE 0 0 1 0 0 1
ABRE + HEX 1 1 0 0 0 2
ABRE + EE 2 0 0 1 0 3
HEX + EE 0 0 1 2 1 4
CBS + ABRE + EE 1 0 0 0 0 1
ABRE + HEX + EE 0 0 1 0 0 1
CBS + ABRE + HEX + EE 0 0 1 0 0 1

Total 10 5 7 9 3 34

Table 4.2: Rhythmic Nanostring genes, with satisfactory explained circadian rhyth-
micity, by presence of binding sites in the promoter region and cluster group. A
binding site is present if there is at least one binding site of the corresponding
type in the promoter. Centres of the five cluster groups are shown in Figure 4.21.
Fisher’s exact test for association has p-value 0.17. Nanostring data-set, Carré lab.
at Warwick.

Induction
Cluster

Total
1 2 3 4 5

-2 0 0 1 0 0 1
-1 6 3 4 8 2 23
0 4 1 2 1 1 9
1 0 1 0 0 0 1

Total 10 5 7 9 3 34

Table 4.3: Rhythmic Nanostring genes, with satisfactory explained circadian rhyth-
micity, by induction experiment result and cluster group. Induction is assessed at
significance level ↵ = 0.1 (-2 indicates consistent repression, -1 repression, 0 no
e↵ect, 1 activation). Centres of the five cluster groups are shown in Figure 4.21.
Fisher’s exact test for association has p-value 0.55. Nanostring data-set, Carré lab.
at Warwick.

a distribution of profiles for the unobserved TF, which is then compared with LHY,

to assess whether LHY itself can still play a major role in the regulation of the

available genes. A third model, which comprises both LHY and an unobserved TF

requires unfortunately prior information which is only partially available, and can

therefore not be applied to the Nanostring data.
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A preliminary analysis of the Nanostring rhythmic genes and available prior

experimental information reveals no significant association between the presence of

binding site combinations, and induction by LHY. On the other hand, a possible

relationship between presence of binding sites and amplitude and phase is suggested

by the corresponding box plots.

The application of the chosen model to the Nanostring data provides a mecha-

nistic description of the transcriptional process associated to the given genes; it gives

a posterior density for the unobserved mRNA and TF profiles of each gene. The

availability of a distribution of profiles, rather than a single point-estimate, results

in a significant advantage, as it allows to compute a distribution for any desired

synchrony index, exemplified in our case by the computation of the correlation co-

e�cient between the unobserved TF and LHY. Moreover, it has allowed to identify

the most probable clustering of the unobserved mRNA of the available genes.

We have observed a high correlation between the unobserved TF and LHY

profile for several genes, among which we recognise known components of the Ara-

bidopsis Thaliana central clock, namely ELF3, PRR9, CAB1, CCA1, TOC1, ELF4,

and LUX. Clustering of the unobserved mRNA profiles reveals a possible association

between cluster group and presence of binding sites, p-value equal to 0.17, which

decreases to 2.4⇥10�2 when four phase-groups are assumed, supporting the hypoth-

esis that binding sites play an important role in defining the expression profile of a

putative child mRNA. On the other hand, the relationship between cluster group

and induction by LHY is not significant, p-value equal to 0.55. The data analysis

results seem to indicate that, although LHY is known to probably be an important

regulator for the child genes, it is not enough to explain the observed dynamics, and

its e↵ect is not strongly linked to the presence of binding sites. It is therefore highly

likely that additional factors and mechanisms are playing a role.

With respect to the modelling approach, several extensions and new direc-

tions may be proposed, in particular, the Fourier model for the unobserved TF may

be too simple. The approximation of an unknown TF may be improved by estimat-

ing the period as an additional parameter, or, in a more biologically-interpretable

model, by modelling both the TF mRNA and protein levels with, for example, a

transcriptional switch model for its mRNA, and the subsequent translation of the

TF mRNA into protein. On the other hand, these extensions would require an

increase in the complexity of the model, which already comprises 20 parameters

for the 24 observations available for each gene. Our simulation study suggests that

more refined models can, and indeed should, be considered if more data-points are

available.
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Part III

Modelling transcriptional

regulation of the mammalian

clock in the SCN
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Chapter 5

Modelling and methods for mice

SCN circadian dynamics

5.1 The mammalian clock

Circadian rhythms - i.e. rhythms that have the characteristics described in Chapter

3 - are observed also in mammals. A self sustained, highly synchronised and light-

entrained clock is located in a region of the brain called suprachiasmatic nucleus

(SCN) (see e.g. Dibner et al., 2010; Colwell, 2011; Dibner and Schibler, 2015;

Hastings et al., 2008). The SCN also coordinates several peripheral clocks, observed

in the major organs and responsible for the production of tissue-specific proteins

(see e.g. Hastings et al., 2014; Dibner et al., 2010).

Robust oscillations are achieved thanks to two main interlocked transcrip-

tional and translational feedback loops (TTFL) (see e.g. Hastings et al., 2008;

Dibner and Schibler, 2015). In the first loop, the genes Per and Cry are activated

through the binding of the CLOCK/BMAL protein complex to their promoters

during the circadian morning, and then are auto-repressed by their own protein

products in the evening. In the second loop, ROR and REV-ERB proteins regulate

transcription of Bmal, whose protein represses in turn Ror and Rev-Erb mRNA

(see e.g. Fuhr et al., 2015; Hastings et al., 2008; Dibner and Schibler, 2015). A

comprehensive picture of the TTFL, as well as a detailed mathematical modelling

with a set of 20 ODEs is provided in Relógio et al. (2011). Due to the availability

of experimental data concerning Per and Cry genes, here we focus on the former

loop. A pictorial representation containing approximate timescales of activation

and auto-repression is presented in Hastings et al. (2008), and here schematically

reproduced in Figure 5.1.
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Figure 5.1: Schematic representation of the Per/Cry circadian cycle. The level
of Per/Cry transcription is approximately reflected by the grey scale of the
Per/Cry symbol, i.e. a darker colour corresponds to a higher transcriptional level.
CLOCK/BMAL protein is bound to the enhancer box motifs (E-Box, CACGTG)
present in the Per and Cry promoters, activating their transcription. PER/CRY
protein complexes, resulting from translation of Per and Cry mRNA, peak in the
circadian evening, and inhibit in turn transcriptional activation of CLOCK/BMAL.
Adapted from Hastings et al. (2008).

However, experimental evidence suggests that induction of Per and Cry

genes is due partly to the TTFL mechanisms, and partly to cytosolic signalling fac-

tors, including Calcium (Hastings et al., 2008; Colwell, 2011). It is currently believed

that Calcium plays an important role in the mechanisms which allow di↵erent cells in

the SCN to ‘communicate’ and synchronise their circadian oscillations with respect

to environmental signals such as light (Brancaccio et al., 2013; DeWoskin et al., 2015;

Hastings et al., 2014). The current picture links, in a causal fashion, light stimuli

coming from the retina to an increase in electrical firing in the SCN, leading to

an increase in Calcium levels and induction of so-called Calcium/cAMP-responsive

elements (CREs), and, eventually, induction of Per and Cry genes (Brancaccio et

al., 2013; Dibner and Schibler, 2015). Additionally, a key element of overall syn-

chronisation is thought to be represented by the vasoactive intestinal peptide (VIP)

(Maywood et al., 2006; Colwell, 2010; DeWoskin et al., 2015). VIP is only produced

by neurons belonging to the ventral (core) region of the SCN, but the e↵ects of its

release act on the whole SCN by its binding to VPAC2 G-coupled receptors, present
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in all SCN cells (An et al., 2012). These receptors activate in turn the so-called

Gq signalling, which again leads to an increase in Calcium levels (Brancaccio et al.,

2013; Hastings et al., 2014).

In Brancaccio et al. (2013), timing and relevance of these events for circadian

rhythmicity are experimentally tested. Reprogramming of circadian rhythms of

Calcium, CRE and Per/Cry genes in the SCN, as a consequence of Gq signalling

induction in neurons expressing VIP (but not in a VIP null host SCN), is also

reported (Brancaccio et al., 2013). Moreover, the hypothesis that the temporal

pattern of Per and Cry genes phases may be explained by the di↵erent sequences

of binding sites present in their promoter regions, is put forward (Brancaccio et al.,

2013). In particular, Per1 and Per2 both carry enhancer box motifs (E-Boxes) and

a CRE, but in the former their responsiveness is higher (Brancaccio et al., 2013;

Travnickova-Bendova et al., 2002). On the other hand, Cry1 carries only E-Boxes.

In Brancaccio et al. (2013) the peak of Calcium is observed at circadian time 7

(CT07), while Per1-luc, PER2:LUC and Cry1-luc (where the symbols ‘-’ and ‘:’

denote a fusion construct of the two genes or proteins, and luc is the Luciferase

gene) phases are observed approximately 2.6, 4.8 and 5.5 hours later. Impairment

of Calcium has also been observed to generate arhythmic expression of Per1-luc and

PER2:LUC (Colwell, 2011). The CRE element is therefore believed to convey the

e↵ect of Calcium on transcription of the Per genes, through binding of the protein

CREB (DeWoskin et al., 2014). In the CRE-lacking Cry1 case, instead, the later

peak of expression may be only indirectly related to Calcium, being a consequence

of PER/CRY protein repression of CLOCK/BMAL (Brancaccio et al., 2013). A

schematic summary of the available literature concerning the promoter regions of

Per1, Cry1 and CRE is provided in Table 5.1.

Gene
Number of CREs Number of E-Boxes
(TGACGTCA) (CACGTG)

CRE (synthetic promoter) 2 0
Per1 1 (HR) 3 (HR)
Cry1 0 E-Box and E’-Box (CACGTT)

Table 5.1: Binding sites of the promoter regions of CRE, Per1, and Cry1, and
responsiveness: high (HR) and low (LR). For the CRE synthetic promoter, refer to
Brancaccio et al. (2013). Characterisation of Per1 promoter region is provided in
Travnickova-Bendova et al., 2002, while Cry1 is studied in Fustin et al., 2009.

With respect to the overall synchronization of the SCN, it is important to

note that phases of circadian expression of core clock genes such as Per2, Cry1

and Bmal1 follow a waveform trajectory starting from the dorsal (external) area
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of the SCN and spreading towards the ventral (core) area (Yamaguchi et al., 2003;

Maywood et al., 2013; Myung et al., 2015; Evans at al., 2013). Cytosolic signalling,

the aforementioned Calcium and VIP, as well as the �-aminobutyric acid (GABA),

are believed to play a crucial role in extracellular communication, but the exact

mechanisms represent an active area of research (Hastings et al., 2014; Hastings et

al., 2008; DeWoskin et al., 2014).

At the organism level, finally, metabolic and endocrine signals propagate

from the SCN to other regions of the brain and to peripheral clocks, thus allowing

a coherent and e�cient temporal organisation of the overall metabolism (see e.g.

Dibner et al., 2010).

5.2 Motivation, available data and background

As described in the brief biological introduction of the previous section, a relatively

detailed picture of the single-cell circadian clock in mammals is now available, but

the overall synchronisation and coordination between di↵erent cells still represents

an open area of research. Recent work has focused on mathematical modelling

of cellular clocks coupling, e.g. Gonze et al. (2005), Ananthasubramaniam et al.

(2014), DeWoskin et al. (2015). The proposed approaches are based on deterministic

dynamics, and do not perform parameter estimation. The modelling of DeWoskin

et al. (2015) is however based on a previous work by Kim and Forger (2010),

where parameters are estimated by sequentially minimising, via simulated annealing,

two cost functions: the first cost function is a function of the squared di↵erence

between measured expression levels of the genes involved, and trajectories simulated

according to the proposed model; the second cost function additionally incorporates

the square of the ratio between the simulated and the experimentally measured

period of phenotypes of mutations, minus one. The model of Kim and Forger (2010)

is again based on deterministic dynamics, and confidence or credible intervals for

the parameters are not provided.

We build a stochastic model which can take advantage of the observed spatio-

temporal luminescence levels of Calcium, as well as Per1, Cry1 and CRE reporters,

to describe the transcriptional dynamics of Per1, Cry1 and CRE and to link in

a causal relationship the e↵ect of Calcium on Per1 and CRE transcription. We

also propose a methodology which can be readily applied to perform parameter

inference in a Bayesian framework (although it is in principle not restricted to a

Bayesian approach), where relevant prior information can be incorporated.

Due to time constraints we perform inference only for the parameters related
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to Cry1, as a first simple and motivating example. Prior information relative to the

dissociation coe�cient associated with the E-Box elements obtained from fitting the

model to Cry1, can be incorporated at a later stage in the Per1 model (we assume

it to be a reasonable proxy for the dissociation coe�cient of the PER/CRY complex

binding to the E-Box motif), along with an analogous prior which could be ideally

obtained from the CRE data. The availability of prior information concerning the

dissociation coe�cient of Cry1 to the E-Box and of Calcium to CRE, would help

parameter identifiability in the Per1 model; the analysis, once completed, has the

potential to provide insight in the auto-regulatory process of Per and Cry genes,

their responsiveness to Calcium, and the mechanisms by which synchronisation is

achieved across the SCN.

5.2.1 Mice SCN available data

The available data, from the Hastings lab. at MRC Cambridge, comprise time series

of Calcium and Per1-luc, Cry1-luc and CRE-luc in a spatial fashion across the SCN.

Observations consist of light intensities recorded every 0.5 hour, for 4-5 days (length

may vary across experimental replicates) on SCN slices. We provide a representation

of the available data, together with di↵erent levels of spatial aggregation for Cry1-luc

in Figure 5.2. Per1-luc and Calcium data are shown in Figure 5.3. Two additional

experimental replicates of Cry1-luc data are available (not shown).

In the case of Calcium, signals are obtained by inserting a fluorescent protein,

GcAMP3, containing a sequence responsive to Calcium, via viral transduction, i.e.

by injecting a virus (Brancaccio et al., 2013; Tian et al., 2009). When Calcium

binds its target sequence, light is emitted by the protein. The fluorescence observed

is therefore proportional to real time Calcium levels.

Per1-luc, Cry1-luc and CRE-luc signals are obtained via a transcriptional

luciferase reporter construct. This means that the gene encoding Luc is inserted

near the promoter region of Per1, Cry1 and CRE, and can be assumed to be

activated at the same time as the respective genes. Luc mRNA is then translated

into protein. Finally, LUC protein reacts with a luciferin substrate, an enzyme

which causes luminescence, thus emitting a light intensity which is then integrated

and recorded by a special camera every 0.5 hour (further details are provided in the

supplementary material of Brancaccio et al., 2013).

Light intensities are recorded per pixel, whose size is consistently smaller

than that of an average cell. The number of pixels vary across experiments and

experimental replicates, but is on the order of approximately 7 � 8 ⇥ 104 pixels per

experiment. From personal communication with M. Hastings’ group, a cell should
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indeed be covering a square of roughly 8 ⇥ 8 pixels. It is in theory possible for a

pixel to be at the intersection of two or more cells, and we therefore need to assume

that the condition for aggregation introduced in Chapter 2 holds. We return to this

point in Section 5.3. If we accept the aggregation assumption for neighbouring cells,

we can choose a suitable aggregation level for the data. Ideally, we want to avoid

dealing with very low counts, as the normal approximations crucial to most of the

available inferential methods may not hold. On the other hand, we also wish to

observe possible spatial variations of the regulatory dynamics across the SCN, as

well as avoid aggregation of significantly di↵erent cells. A good compromise seems

to focus on 2 ⇥ 2 pixel boxes, based on confidential data regarding the number of

PER2 protein molecules per cell observed in fibroblasts; we also take into account

that the number of mRNA molecules for a given gene is generally believed to be

much smaller than the number of protein molecules (Suter et al., 2011).

Two main possible issues can be observed in the data. One is the e↵ect of

saturation, which means that signals having intensity higher than a set threshold

level, are all measured as equal to the threshold level itself: the saturation e↵ect

is most likely present when ‘flat’ peaks are observed. This feature may cause sig-

nificant problems during the inferential process, and thus may require further ad

hoc modelling. However, we notice that saturation in Cry1-luc levels is mostly

restricted to the first cycle, which does not have a crucial importance in terms of

parameter inference, as we model it only approximately to serve as a delayed input

for the exact model of the following cycle (see Section 5.6 for further details).

A second feature is represented by an upwards trend in Calcium levels, and a

decreasing trend particularly in the amplitudes of Cry1-luc. Both trends are due to

experimental procedures (M. Hastings personal communication). In particular, the

trend of Cry1-luc is generated by consumption of the luciferin substrate over time.

As these features of the data are known to be due to the experimental process, we

consider it sensible to de-trend the data.

Here we deal with the trend in Cry1-luc, as its model is the focus of our in-

ference in Chapter 6. We divide the observations by a time-varying proportionality

factor, as measured in Maywood et al. (2013). In particular, a mean decrease of

approximately 30% over 4 days is shown. For simplicity, we here assume a linear

decay. The adopted solution is of course relatively rough, given also the wide vari-

ability in the rate of decay across di↵erent locations, but it seems to perform on

average su�ciently well, as it can be observed in Figure 5.4.
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Figure 5.2: For columns from left to right: image of the mouse SCN at observation
time 1 for Cry1-luc, and 12 arbitrary locations (red). Time-series for Cry1-luc for
the 12 arbitrary locations in white. Results for 1 pixel at the 12 locations (top),
averaged over 2 ⇥ 2 pixels at the 12 locations (center), and averaged over the whole
SCN (bottom). Data from Hastings lab. at MRC, Cambridge. Code partially
provided by K. Hey.

5.2.2 Mathematical modelling of mammalian clock gene dynamics:

some background

In this section we provide a brief overview of some existing mathematical modelling

of the mammalian clock. We refer in particular to the work of Relógio et al. (2011),

Korenčič et al. (2012), Gonze et al. (2005) and Ananthasubramaniam et al. (2014).

Existing modeling approaches are mainly restricted to the deterministic case.

A good starting point is the work of Relógio et al. (2011), where a set of 20

ODEs describes the dynamical evolution of the two main feedback loops, namely

the Per/Cry, and the Ror/Rev-Erb loop. We focus on the main loop, comprising

only Per and Cry. The ODE for Per mRNA in the Relógio et al. model is given

119



Figure 5.3: For columns from left to right: image of the mouse SCN at observation
time 1 (green luminescence represents Calcium, magenta Per1-luc) and 12 arbitary
locations (red), time-series for Calcium, for Per1-luc, and Calcium and Per1-luc,
for the 12 arbitrary locations in white. Results for 1 pixel at the 12 locations (top
row), averaged over 2⇥ 2 pixels at the 12 locations (central row), and averaged over
the whole SCN (mean and ±2 SD intervals, bottom row). Data from Hastings lab.
at MRC, Cambridge. Code partially provided by K. Hey.

by

dPer(t)

dt
= V

1max

1 + a
⇣
CB(t)
kt1

⌘b

1 +
⇣
CB(t)
kt1

⌘b
+
⇣
CB(t)
kt1

⌘a
b
⇣
PC(t)
Ki1

⌘c � dPerPer(t),

where CB and PC represent the CLOCK/BMAL and the PER/CRY protein com-

plexes, respectively (see Figure 5.1), and we have followed the original paper notation

for the remaining parameters, namely: V
1max is defined as the transcriptional rate

of Per, a as the transcription fold activation, b and c as the Hill coe�cients, dPer as

Per degradation rate, and kt1 and ki1 as Per activation and inhibition rate, respec-

tively. The equation assumes the transcription of Per as induced by CLOCK/BMAL
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Figure 5.4: Observed Cry-luc (blue) and de-trended Cry-luc (green), for 12 pixel
boxes, at the same locations across the SCN as Figure 5.3. Data from Hastings lab.
at MRC, Cambridge.

protein complex, and repressed by PER/CRY protein complex. The parameters a,

b, Kt1 and Ki1 tune the e↵ect of the regulatory proteins, in the sense described in

Chapter 1. The Relógio et al. model additionally contains a detailed description

of the PER/CRY complex formation, comprising eight ODEs, accounting for nu-

clear export, translation, complex assembly and nuclear import. Further parts of

their model concerns complex formation of CLOCK/BMAL, as well as a part of the

Ror/Rev-Erb loop. Parameters in the model are set according to literature sources,

when available, or in order to match phases and amplitudes observed in data.

The full Relógio et al. model is too complex to be applicable in our inferential

framework. Further simplifications are required, and a step forward in this direction

is provided in Korenčič et al. (2012). The authors focus on Per2, and apply two

approximations. First, CLOCK/BMAL is assumed to be constant, and therefore its

e↵ect is incorporated in the basal transcriptional rate (R
0

in our usual notation);

secondly, PER2 protein is represented as a delayed Per2. In this way, the Per2
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mRNA equation can indeed represent the entire auto-repressive feedback loop. The

equation becomes, with minor rearrangements, (Korenčič et al., 2012)

dPer2(t)

dt
=

�
c
ck

�
2

1 + 2Per2(⌧Per2)

ck +
⇣
Per2(⌧Per2)

ck

⌘
2

� dPer2Per2(t),

where Per2(⌧Per2) represents the Per2 input, delayed by time ⌧Per2, and, in the

authors’ notation, ck can be interpreted as the dissociation coe�cient for Per2, and

(c/ck)2 is equivalent to R
0

, in our usual notation. Moreover, note that the exponent

c of Relógio et al. (2011), is now substituted by 2, i.e. the number of E-Box like

elements in the promoter region of Per2.

Another important aspect investigated by Korenčič et al (2012) is the range of

delay values ⌧Per2 that gives rise to oscillations. Under the assumed set of parameter

values, the delay must be greater than 5.3 hours in order to generate cyclic behaviour

in the mRNA levels of Per2. Lee at al. (2001), cited in Korenčič et al (2012), report

an experimental value of about eight hours for this delay.

The models introduced so far focus mainly on describing the molecular clock

at a single-cell level. There is increasing interest in uncovering the mechanisms of

synchrony and coupling of the individual cell clocks in the SCN. A step in this di-

rection is provided by the model of Gonze et al. (2005). In their model, the delayed

mRNA is replaced by two additional ODEs, accounting for protein translation, and

nuclear export/import, respectively. We do not provide further details about this

model, as the way of implementing network connectivity is reproduced in Anantha-

subramaniam et al. (2014), which we briefly review next, and which is closer to our

proposed model.

The model of Ananthasubramaniam et al. (2014) aims at modelling syn-

chrony and entrainment of the clock as a consequence of VIP signalling. In this

sense, activation of a putative Per gene, is achieved through both auto-repression,

and VIP induction. The proposed mathematical formulation comprises both an

‘AND’ and an ‘OR’ gate, which we now describe.

In the ‘OR’ gate, activation is achieved if Per is low or VIP is high, their e↵ect

being additive on the overall transcription rate; the corresponding ODE formulation

for Per mRNA expression is

dPeri(t)

dt
=

1

(c + Peri(⌧
1

))2
+ RT (Peri(⌧

3

))

P
j ai,jPerj(⌧

2

)

KD +
P

j ai,jPerj(⌧
2

)
� dPerPeri(t),

(5.1)

for i = 1, ..., N , where, in the authors’ notation, Peri represents the amount of
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Per in cell i, ⌧
1

, ⌧
2

and ⌧
3

are delays employed in order to build proxies for PER

protein, VPAC2R and VIP, respectively, dPer represents the degradation rate of

Per, RT (·) is a function accounting for VPAC2R expression (in the form of ‘a

weighted sum of a constant and circadian expression with a constant mean’, tuned

by an additional parameter which moves the function more towards a circadian or a

constant expression), and c and KD are the dissociation coe�cients of Per and total

incident VIP, respectively. Finally, ai,j is the element of the matrix A containing

the contribution of ‘VIP released from neuron j which binds at neuron i’ (where it

is also assumed that the sum over i, for a fixed j, is equal to 1). In this way, the

second additive term of Equation 5.1 incorporates the e↵ect of the available VIP -

after reacting with VPAC2R - on Per transcription.

The ‘AND’ gate is formulated as

dPeri(t)

dt
=

1

(c + Peri(⌧
1

))2

"
1 + RT (Peri(⌧

3

))

P
j ai,jPerj(⌧

2

)

KD +
P

j ai,jPerj(⌧
2

)

#
� dPeri(t),

for i = 1, ..., N .

However, we claim that a pure ‘AND’ logic is achieved through a slightly

di↵erent formulation, i.e.

dPeri(t)

dt
=

1

(c + Peri(⌧
1

))2

"
RT (Peri(⌧

3

))

P
j ai,jPerj(⌧

2

)

KD +
P

j ai,jPerj(⌧
2

)

#
� dPeri(t),

(5.2)

where high levels of transcription are achieved only if PER protein is low, and

VIP/VPAC2R is high.

It is indeed possible to reformulate Equations 5.1 and 5.2 in a more familiar

form, and in our usual notation from Chapter 1. Focusing on a single cell, assuming

VPAC2R levels to be constant over time, and VIP to be observed, we obtain from

rearrangement of the ‘OR’ gate of Equation 5.1

dPer(t)

dt
=

1

c2
+
�

1

c2
+ RT

�
V IP
KD

+ RT
V IP
KD

⇣
Per(⌧1)

c

⌘
2

+ 2RT
V IP
KD

Per(⌧1)
c

1 + V IP
KD

+ V IP
KD

⇣
Per(⌧1)

c

⌘
2

+ 2Per(⌧1)
c + 2Per(⌧1)

c
V IP
KD

� µPer(t).

As for the ‘AND’ gate, we have that Equation 5.2 can be written as

dPer(t)

dt
=

�
1

c2
RT

�
V IP
KD

1 + V IP
KD

+ V IP
KD

⇣
Per(⌧1)

c

⌘
2

+ 2Per(⌧1)
c + 2Per(⌧1)

c
V IP
KD

� µPer(t).
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The two models can be ultimately unified, resulting in the form presented in Chapter

1, namely

dPer(t)

dt
=

R
0

+ RV IP
V IP
KD

+ RPer,V IP
V IP
KD

⇣
Per(⌧1)

c

⌘
2

+ 2RPer,V IP
V IP
KD

Per(⌧1)
c

1 + V IP
KD

+ V IP
KD

⇣
Per(⌧1)

c

⌘
2

+ 2Per(⌧1)
c + 2Per(⌧1)

c
V IP
KD

�µPer(t). (5.3)

Note that the ‘AND’ gate is obtained when R
0

and RPer,V IP are set equal to 0.

We have hence shown that a general transcription function of the form introduced

in Chapter 1, can summarise the two regulatory logics considered by the model of

Ananthasubramaniam et al., which also accounts for network connectivity between

neurons by means of VIP signalling. We propose in the following section a model

for Per1 which incorporates most of the reviewed literature, and takes advantage

of measured Calcium levels to account for extra-cellular signalling.

5.3 Proposed model: derivation

We start from the transcription function introduced in Chapter 1, and take ad-

vantage of the current biological knowledge of the process. The main modelling

assumptions are the following:

1. We assume as in Korenčič et al. (2012) and Ananthasubramaniam et al.

(2014), that Per1 and Cry1 are repressing their own transcription after a

random delay ⌧p. The delay accounts for nuclear export, protein synthesis

and nuclear import. This is clearly a simplified view of the system. On the

other hand, it can still provide a good indication about the spatial variation of

the kinetic parameters involved, and therefore of the underlying mechanistic

dynamics.

2. Auto-repression is implemented by setting the transcription rate for the pro-

moter bound only by the delayed Per1 or Cry1 mRNA equal to zero. This is

consistent with all the literature here considered.

3. Activation by CLOCK/BMAL is assumed to be constant, and incorporated in

the basal transcriptional rate R
0

. This is again a simplification, as CLOCK/

BMAL is likely to have circadian dynamics as well. On the other hand, there

is evidence that it is bound to the promoter throughout the whole circadian

cycle (Lee et al., 2001); circadian dynamics should be therefore mostly induced
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by rhythmic variation of PER/CRY. This assumption is consistent with the

work of Korenčič et al. (2012) and Ananthasubramaniam et al. (2014).

4. We assume Calcium to be an activator (RCa++ > R
0

), acting with a random

delay ⌧c.

5. Activation by delayed Calcium can be either obtained independently of delayed

Per drop (‘OR’ gate), or we can observe an interaction e↵ect (‘AND’ gate).

To motivate assumption 1, we refer to what is known in the literature as the

‘linear chain trick’ (Smith, 2011).

Assume that the full system, accounting for transcription, nuclear export,

translation, complex formation and nuclear import, can be described by the following

set of ODEs, also known as the ‘Goodwin oscillator’ (Goodwin, 1965),

dMg(t)

dt
= ⌫(Pp(t)) � µMgMg(t) (5.4)

dP
1

(t)

dt
= a[Mg(t) � P

1

(t)]

...
dPp(t)

dt
= a[Pp�1

(t) � Pp(t)],

where ⌫(·) is the assumed transcription function, which has in our case a Hill form.

It is shown in Smith (2011) that the system in Equation 5.4 with initial condition

Mg(0) = �(0)

Pj(0) =

Z 1

0

�(�s)Kj,a(s)ds, j = 1, ..., p

where � : (�1, 0] ! IR is bounded and continuous, is equivalent to

dMg(t)

dt
= ⌫

✓Z 1

0

Mg(t � s)Kp,a(s)ds

◆
� µMgMg(t), (5.5)

with initial condition Mg(✓) = �(✓), for ✓  0, and

Kp,a(s) =
aps(p�1)e�as

(p � 1)!
, (5.6)

is the probability density function of a Ga(p, a), evaluated at s. We partially follow

El Cheikh et al. (2012) for the proof.
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The solution for P
1

(t) is given by

P
1

(t) = ae�atP
1

(0) +

Z t

�1
aea(t�u)Mg(u)du.

As t ! 1, the contribution of the initial condition tends to 0, and the remaining

integral can be seen as a convolution between Mg and a Ga(1, a).

Consider then an arbitrary Pj , for j 2 {2, ..., p}, and suppose that Pj�1

(t) is the

convolution between Mg and a Ga(j � 1, a). The solution for Pj(t) is equivalently

given by

Pj(t) = ae�atPj(0) +

Z t

�1
aea(t�u)Pj�1

(u)du,

where again, neglecting the initial condition, we obtain the convolution between

Pj�1

and a Ga(1, a). By induction, the additive property of the convolution, and

the fact that the convolution of p independent Ga(1, a) is a Ga(p, a), we can then

conclude that, as t ! 1 ,

Pp(t) = (Mg ⇤ Kp,a)(t),

where K is defined as in Equation 5.6. By plugging the result into the mRNA

equation, we obtain indeed Equation 5.5.

Note that the mean of a Ga(p, a) is given by p/a, while its variance is given

by p/a2. This provides a good insight into the properties of the distributed delay:

both the mean and variance of the delay increase with an increasing number of

intermediate states p. However, as a increases, the dynamics of the intermediate

states become faster, and the variance decreases at a faster speed than the mean.

Two main assumptions are required for the previous result: first, all the

translation and degradation rates of the intermediate states are assumed to be equal,

and second, it is based on deterministic dynamics. If the degradation rates are

assumed to be di↵erent, we do not recover the closed gamma form for the distribution

of the delay. Indeed, we have a convolution of gamma densities having di↵erent rate

parameters. However, it is proposed in Stewart et al. (2007) that a single gamma

density can reasonably approximate the more complex distribution arising from the

convolution of multiple gammas with di↵erent rates, by matching the exact mean

and variance of the sum. The resulting approximation of e.g. the 0.95 percentile,

is between 0.94 and 0.96, when the shape parameter is not below 0.1 and the rate

parameters do not di↵er by more than a factor of 10 (Stewart et al., 2007). The

result also improves as the number of densities involved increases.

As for the deterministic form, we can postulate that most of the stochastic-
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ity is indeed generated by the mRNA state, given that cellular protein levels are

generally much higher than mRNA counts (see e.g. Suter, 2011).

The stochastic model for the mRNA is straightforwardly derived by assuming

an immigration and death process, whose macroscopic rate equation is given by

Equation 5.5. Our reaction network then reduces to the following two reactions,

R
1

: ;

⌫(
R t
�1 Mg(s)K(t�s)ds)

! Mg (5.7)

R
2

: Mg

µMg
! ;.

As for the transcription function ⌫, assumptions 2-5 imply the following form

for Per1

⌫
�
Per1(⌧p), Ca++(⌧c)

�
=

R
0

+ RCa++

⇣
Ca++

(⌧c)
Kcre

⌘nc

1 +
⇣
Per1(⌧p)

Kpc

⌘np

+
⇣
Ca++

(⌧c)
Kcre

⌘nc

+
⇣
Ca++

(⌧c)
Kcre

⌘nc
⇣
Per1(⌧p)

Kpc

⌘np

+
+RPer1,Ca++

⇣
Ca++

(⌧c)
Kcre

⌘nc
⇣
Per1(⌧p)

Kpc

⌘np

1 +
⇣
Per1(⌧p)

Kpc

⌘np

+
⇣
Ca++

(⌧c)
Kcre

⌘nc

+
⇣
Ca++

(⌧c)
Kcre

⌘nc
⇣
Per1(⌧p)

Kpc

⌘np
, (5.8)

where nc and np are the Hill coe�cients of Calcium (Ca++) and Per, respectively,

Kpc and Kcre the dissociation coe�cients of PER/CRY binding to the E-Box motifs

and of Calcium ‘binding’ to the CRE motifs, respectively, and

Per1(⌧p) =

Z t

�1
Per1(s)KPer1(t � s)ds

Ca++(⌧c) =

Z t

�1
Ca++(s)KCa++(t � s)ds.

The delay distribution for Calcium can be motivated by introducing an additional

intermediate state to the system of the form

dCREB(t)

dt
= a[Ca++(t) � CREB(t)],

and by deriving, analogously, its solution

CREB(t) = ae�atCREB(0) +

Z t

�1
aea(t�u)Ca++(u)du.

We then have a convolution between Calcium and a Ga(1, a).
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Note that the proposed Per1 transcription function is equivalent to Equation

5.3, when substituting VIP with Calcium, and assuming strong cooperativity in the

binding between Per1 and ‘Calcium’ (or, more precisely, the proteins they are a

proxy for) molecules (see Chapter 1 for a more extensive explanation). However,

although np and nc are analytically shown to represent the number of binding sites

under the assumption of strong cooperativity, we have to take into account that not

all the binding sites have been observed to have the same responsiveness, and the

degree of cooperativity between molecules of the same protein is indeed not known.

Moreover, Calcium is only a proxy for the levels of an unobserved transcription

factor, and PER is believed to bind to CRY protein to form the repressor complex.

Our formulation is therefore just an approximation of a more complex real process,

and additional flexibility is retained by allowing np and nc to assume positive real

values, representing, more broadly, the responsiveness of the promoter to the proxies

Calcium and Per1. This justifies simulation parameter values which do not match

the values provided in Table 5.1, but seem to approximately reproduce the behaviour

of the observed data. Note also that a high ‘Hill’ coe�cient is generally required to

reproduce cyclicity in models based on a three-states Goodwin oscillator, although

it decreases with an increasing number of intermediate states (Kim et al., 2014).

Although developed in order to model Per1 dynamics, the function in Equa-

tion 5.8 can be easily adapted to the Cry1 and CRE scenario. In particular the

transcription functions are

⌫(Ca++(⌧c)) =
R

0

+ RCa++

⇣
Ca++

(⌧c)
Kcre

⌘nc

1 +
⇣
Ca++

(⌧c)
Kcre

⌘nc
,

for CRE, where only CRE binding sites are present, and, analogously, for Cry1

⌫(Cry1(⌧cr)) =
R

0

1 +
⇣
Cry1(⌧cr)

Kpc

⌘ncr
,

where no CREs, but a number of E-Boxes have been identified, as outlined in Section

5.1. In analogy with delayed Per1 and Calcium, we also define

Cry1(⌧cr) =

Z t

�1
Cry1(s)KCry1(t � s)ds.

In contrast to the modelling approach provided in Chapter 1, we do not

consider here the possible e↵ects of cooperativity between Calcium and Per1 in

the binding; the reason for this is that the proposed model contains already several
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approximations of the real process, most notably that Calcium and Per1 mRNA

are actually not directly binding the promoter. The available information, and the

subsequent modelling, seems therefore not the most appropriate to investigate this

aspect.

Finally, we can now analyse further the aggregation assumption mentioned

in Section 5.2.1. We note in Chapter 1 that it is possible to aggregate di↵erent

containers - cells in our case - containing reactions up to the second order, only if at

least one of the reactants participating in a second order reaction can be assumed

to be at approximately the same level in all containers. In the current scenario, the

second order reactions would be the binding of ‘Calcium’ and PER/CRY proteins to

the promoter (see Chapter 1 for analytical derivation of the transcription function

from a full set of reactions describing binding and unbinding of the TFs to the

promoter). We can assume Calcium to be at a similar level in cells close to each

other: it is also present in the extra-cellular environment, hence cells are most likely

not to be closed containers in its respect. As for PER/CRY proteins, this is not

necessarily true. However, we focus our analysis on 2 ⇥ 2 pixel boxes, and a cell is

believed to cover approximately squares of size 8 ⇥ 8 pixels. It is in theory possible

for a square to be at the intersection of two or more cells. However, given the

relatively large number of mRNA and protein molecules per cell involved, and the

overall weak e↵ect of aggregation observed in Chapter 1 (recall that we notice an

e↵ect of aggregation for an average molecule count of 15-20 proteins per cell, in

one simulation scenario, and it does not seem to significantly a↵ect inference), we

believe that this is not likely to have a major impact on inference.

5.4 Simulation and mesoscopic approximation for sys-

tems with distributed delays

The main theoretical and technical complication of the new model in comparison

to the model presented in Chapter 1 results from the introduction of the delay.

This additional complexity acts at all levels, from the stochastic simulation, to the

di↵usion approximation and its subsequent linearisation, as well as the filtering

process. We briefly introduce the methods available from the literature for this

scenario, as well as those that we specifically develop. Here we focus on Cry1, as a

first step in the direction of a full analysis which comprises also CRE, and, finally,

Per1. The methods proposed can however be extended in a straightforward way to

any reaction network comprising distributed delays.
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5.4.1 Stochastic simulation

We simulate the simple auto-repressive feedback loop generated by Cry1. Recall

from the set of reactions in Equation 5.7, that our model comprises two reactions:

transcription and degradation of Cry1 mRNA. The hazard for the transcriptional

reaction in Equation 5.7 is computed by evaluating the integral accounting for the

delay up to a maximum delay time, and then, each selected reaction is assumed to

take place immediately. Cry1 promoter is assumed to be at equilibrium, and the

delay introduced accounts for Cry1 nuclear export, translation into protein, and

nuclear import. We additionally assume that the reporter protein is a reasonable

approximation of the underlying Cry1 mRNA.

The stochastic simulation algorithm (SSA) introduced in Chapter 1 can be

used to simulate the approximate dynamics. We assume maximum delay time,

⌧m = 30 h, and an arbitrary initial condition for the time span of the maximum

delay. In particular, the initial condition is given by the first 30 hours of data

observations, properly rescaled, from one location of Figure 5.2. Values of simulated

Cry1 are then stored at fixed time-intervals of duration 0.01 h, and, to mimic the

real data, are summed over 0.5 hour, divided by their mean level, and corrupted with

measurement error. Figure 5.5 shows the simulated time-series for 10 independent

replications of the simulation algorithm, for two levels of signal to noise ratio, i.e.

20 and 100, approximately reproducing the levels observed in real data. Parameters

are set in order to reproduce observed dynamics and are within the range of those

estimated in the inferential process described in Chapter 6.

One clarification is now required with respect to the simulation methodology.

There are di↵erent extensions of the SSA/Gillespie algorithm for scenarios which

assume random delays of the reactions (see e.g. Galla, 2009). In some situations, it

is in fact sensible to assume that the actual product of a reaction is not available for a

time-interval of non-negligible length, which can be modelled with a delay (Anderson

and Kurtz, 2011, for example, motivate the introduction of a fixed delay). However,

in our case, the mRNA is assumed to be immediately available after transcription

and the gamma delay distribution arises from the integration of the intermediate

translation and translocation processes that the produced mRNA undergoes, as

outlined in the previous section. Hence we assume, in some sense, a ‘delayed mRNA’

e↵ect rather than a ‘delayed transcription’.
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Figure 5.5: SSA simulations for the Set of reactions 5.7. Simulations of unobserved
Cry1 mRNA (top), and observed Cry1 mRNA, rescaled by its mean level, integrated
over 0.5 hour and corrupted with measurement error (bottom). Two levels of signal
to noise ratio, i.e. 100 (bottom left) and 20 (bottom right). Each plot contains
10 independent replications, with parameters R

0

= 90molecules/h, Kpc = 1.5 ⇥

102 molecules, µMg = 0.25 h�1, E[⌧cr] = 9 h, SD[⌧cr] =
p

15 h. The initial condition
is given by the first 30 hours of the Cry1-luc time series, rescaled, from one location
of Figure 5.2.

5.4.2 Di↵usion approximation for systems with distributed delays

Here we introduce the di↵usion approximation for our system, and more gener-

ally for models comprising delayed species. We also report the result of Brett and

Galla (2013), for models comprising delayed reactions. Depending on case-specific

modelling assumptions, one or the other approximation arises as a mesoscopic scale

model for the underlying stochastic dynamics of the child mRNA.

Di↵usion approximation - delayed species

Following the notation of Chapter 1, define a reaction network with p species and

r reactions, with p ⇥ r stoichiometry matrix S, and vector of hazards h(X) =

[h
1

(X), . . . , hr(X)]T , where we drop the dependence on ⌦ and c for ease of notation.
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Divide the reactions in two groups: the set of z reactions not involving delayed

species, with stoichiometry Snd and hazard vector hnd, and the set of w reactions

comprising the random delays, with stoichiometry Sd and hazard vector hd. The

matrices Snd and Sd are simply sub-matrices of S, i.e. we have S = [Sd, Snd]. With

respect to the hazards, hnd(X(t)) = [hw+1

(X(t)), . . . , hw+z(X(t))], while

hd

✓Z t

�1
X(s) · K(t � s) ds

◆
=

2

6664

h
1

⇣R t
�1 X(s) · K(t � s)ds

⌘

...

hw

⇣R t
�1 X(s) · K(t � s)

⌘

3

7775
,

The di↵usion approximation for reaction networks comprising distributed

delays which arise by elimination of intermediate species, is indeed straightforward.

The delays are in fact not introducing additional stochasticity in the hazards, and

the hazards themselves are ‘deterministically’ defined, given the knowledge of the

state of the system up until the time of maximum delay. A more formal explanation

of this statement is provided, along with a proof of the linear noise approximation

for this scenario, in Section 5.5.2. The di↵usion approximation arising from the

reduced reaction network is, therefore

dX(t) =


Sndhnd(X(t)) + Sdhd

✓Z t

�1
X(s) · K(t � s)

◆�
dt (5.9)

+

s

Snd diag[hnd(X(t))]ST
nd + Sd diag


hd

✓Z t

�1
X(s) · K(t � s)ds

◆�
ST

d dB(t),

where dB(t) is a p-dimensional Wiener process, and K(·) is the vector of the

density functions associated with the delay of each species, and we have K(·) = 0 if

s � t.

Equation 5.9 provides a continuous approximation for the dynamics of the

unobserved molecule counts of Cry1. However, we have to take into account that

• Observations are light intensities assumed to be proportional to the number

of molecules: this is modelled by introducing a scaling factor .

• Signals are integrated over 0.5 hour.

Note that we do not take into account the fact that we observe LUC reporter

proteins. This is possibly the major simplification of our model. We assume that

dynamics of Luc mRNA are similar to those of Cry1, which, given the fact that they

share the promoter region, means assuming a similar degradation. Moreover, the
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measurement equation is also assuming the observed LUC protein levels, possibly

rescaled, to be a reasonable proxy for its mRNA levels. In practice, we expect the

factor  to lie between Cry1 mRNA and LUC protein levels, partially compensating

for model mismatch.

We then write as in Chapter 1, a state-space form of the model at this stage

of approximation, where we slightly rearrange Equation 5.9 to introduce a general

methodology for the extended Kalman-Bucy filter with distributed delays,

Yt = 

Z t

t��t

X(s) ds + ✏t, ✏t ⇠ N (0,�2✏ ) (5.10)

dX(t) =

✓
g(X(t)) + f

✓Z t

t�⌧m

X(s) · K(t � s) ds

◆◆
dt

+

"s

l(X(t)) + q

✓Z t

t�⌧m

X(s) · K(t � s) ds

◆#
dB(t),

where �t represents the time-interval of signal integration and

g(X(t)) = Sndhnd(X(t))

l(X(t)) = Snd diag[hnd(X(t))]ST
nd

f

✓Z t

t�⌧m

X(s) · K(t � s) ds

◆
= Sdhd

✓Z t

t�⌧m

X(s) · K(t � s) ds

◆

q

✓Z t

t�⌧m

X(s) · K(t � s) ds

◆
= Sd diag


hd

✓Z t

t�⌧m

X(s) · K(t � s) ds

◆�
ST
d

hd

✓Z t

t�⌧m

X(s) · K(t � s) ds

◆
= ⌫

✓Z t

t�⌧m

X(s) · K(t � s) ds

◆
.

Note also that we have introduced the maximum delay time ⌧m in the integral of

the delayed reactions, to account for truncation.

Di↵usion approximation - delayed reactions

Brett and Galla (2013) provide a di↵usion approximation for systems incorporating

delayed reactions. Here we report only the main result, in the sub case where a

reaction can only have a delayed or an immediate e↵ect, along with an intuitive

explanation, and refer to the paper for extensions and technical details.

Assume that a reaction can have either a delayed or an immediate e↵ect,

and so divide once again the reactions in two groups: the set of z non-delayed

reactions, with stoichiometry Snd and hazard vector hnd(X(t)), and the set of w

delayed reactions, with stoichiometry Sd and hazard vector hd(X(s)). The matrices
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Snd and Sd, and the vector hnd(X(t)), are defined as above, while

hd(X(s)) =
h
h
1

(X(s))K
1

(t � s) . . . hw(X(s))Kw(t � s)
iT

,

where K
1

(·), ..., Kw(·) are the density functions associated with each delay, and we

have K(·) = 0 if s � t. In this sub-case, the di↵usion approximation, according to

Brett and Galla (2013), is

dX(t) =


Sndhnd(X(t)) +

Z t

�1
Sdhd(X(s))ds

�
dt (5.11)

+

s

Snd diag[hnd(X(t))]ST
nd +

Z t

�1
Sd diag[hd(X(s))]ST

d ds dB(t),

where dB(t) is a p-dimensional Wiener process.

The proof of Brett and Galla (2013) follows from time-discretisation of the

underlying Markov process, and the definition of the generating function associated

with the distribution of the number of reactions firing at time t, assumed to be

Poisson. By drawing the continuous limit, it is shown to provide normal dynamics

for the number of molecules X(t). Intuitively, this formulation poses the delay as

a characteristic of the reactions, rather than of the species involved. Therefore, the

contribution of the k-th delayed reaction to the continuous approximation of the

number of molecules X at time t, can be seen as a weighted average of all the past

possible paths, i.e. the corresponding hazards evaluated at all the past times, and

weighted according to the assumed distribution of the delay.

This formulation leads also to a straightforward linearisation of the system,

as presented, once again, in Brett and Galla (2013). We return to this point in

Section 5.5.

5.5 The extended Kalman-Bucy filter for systems with

distributed delays

In this section we develop the extended Kalman-Bucy filter for systems with dis-

tributed delays for both the di↵usion of Equation 5.11 and the di↵usion of Equation

5.9. Linearisation of Equation 5.11 is provided by Brett and Galla (2013), while we

propose a di↵erent linearisation approach for Equation 5.9. Recall from Chapter

2, that linearisation is particularly useful in an inferential framework, as it allows

to obtain normal transition densities for dynamics of the unobserved states, and

therefore a closed form for the likelihood. The likelihood can be then employed to
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perform inference about the unknown kinetic parameters, in both a Bayesian and a

frequentist framework.

One drawback of linearisation is that it results, for our system, in mean

and variance mismatch with respect to the CLE. For predictions far away in time,

this mismatch can have in both cases an impact on the quality of predictions, and

therefore, indirectly, on the likelihood and parameter estimation. To improve the

quality of predictions, the system linearisation can be ‘restarted’ at every iteration,

setting the initial point of the deterministic process and the noise at their optimal

values - here, we mean optimal in the filtering sense, i.e. they are conditional on

the available past observations. The non-restarted linearisation, also known as non-

restarted LNA (see Chapters 1 and 2 for further details), for the CLE in Equation

5.11 is provided by Brett and Galla (2013). A restarted LNA for non-delayed systems

is provided in Fearnhead et al. (2014), and leads to predictive densities analogous

to those of the extended Kalman-Bucy filter.

Delays have been successfully incorporated in the extended Kalman filter in

the literature, although not in a distributed form or for a large number of iterations

in the past, according to Gopalakrishnan et al. (2011), which provides a review of

the topic.

Here we provide a restarted version of the LNA of Brett and Galla (2013),

which we denote extended Kalman-Bucy filter or restarted LNA for systems com-

prising delayed reactions. For the di↵usion of Equation 5.9, we also provide a novel

linearisation approach, leading to the extended Kalman-Bucy filter or restarted

LNA for systems comprising delayed species. In addition, our formulation includes

an approximate, but explicit, modelling of signal integration in the measurement

process.

5.5.1 EKBF - delayed species

Following the same steps of Chapter 2 for the EKBF, we start from a time-discretised

state-space model based on Model 5.10 of the type

Yt = F TXt + ✏t (5.12)

Xt = Xt��t + �tg(Xt��t) + �tf

0

@
t��tX

s=t��t�⌧m

Xs · Kt�s

1

A

+
p
�td

0

@Xt��t ,
t��tX

s=t��t�⌧m

Xs · Kt�s)

1

AZt

Zt ⇠ MV N(0, I),
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where g(·), f(·) and d(·) are general nonlinear functions, F is a p ⇥ q matrix (where

q is the dimension of Y and p the dimension of X), Kt�s = [K
1,t�s, ..., Kp,t�s]T is a

vector of weights, one for each X, evaluated at time s, and ⌧m the maximum delay

time. Note that we start from a model not comprising signal integration, for ease

of notation and clarity. However, we address this generalisation of the model at the

end of this section.

Suppose that an optimal estimate for the initial condition is available, i.e.

⇡(x
0:⌧m |y

0:⌧m) distributed as a MVN(⇢
0:⌧m , Px0:⌧m

). In practice, this initial condition

is generally not available and requires further ad hoc modelling. We present the

model specification for the initial condition for our system in Section 5.6.

Now suppose that we wish to obtain an estimate of ⇢⌧m+�t = E[X⌧m+�t |y0:⌧m ],

P⌧m+�t = Var[X⌧m+�t |y0:⌧m ] and P⌧m,⌧m+�t = Cov[X⌧m , X⌧m+�t |y0:⌧m ].

Write

E [X⌧m+�t |y0:⌧m ] = E [X⌧m |y
0:⌧m ] + �t E [g(X⌧m)|y

0:⌧m ]

+�t E

"
f

 
X

s

Xs · Kt�s

!
|y

0:⌧m

#
, (5.13)

and Taylor-expand the nonlinear function g(·) about ⇢⌧m , and f(·) about
P

s ⇢s ·

Kt�s, s 2 [0, ⌧m], up to the first order

g(X⌧m) ⇡ g(⇢⌧m) + Jg(⇢⌧m)(X⌧m � ⇢⌧m)

f

 
X

s

Xs · Kt�s

!
⇡ f

 
X

s

⇢s · Kt�s

!

+Jf

 
X

s

⇢s · Kt�s

!

 
X

s

Xs · Kt�s �

X

s

⇢s · Kt�s

!

= f

 
X

s

⇢s · Kt�s

!

+Jf

 
X

s

⇢s · Kt�s

!
X

s

(Xs � ⇢s) · Kt�s.

To obtain ⇢⌧m+�t , plug the results into the expectation of Equation 5.13, i.e.

E[X⌧m+�t |y0:⌧m ] ⇡ E[X⌧m |y
0:⌧m ] + �tg(⇢⌧m)

+�tJg(⇢⌧m) E[X⌧m � ⇢⌧m |y
0:⌧m ]
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+�tf

 
X

s

⇢s · Kt�s

!

+�tJf

 
X

s

⇢s · Kt�s

!
X

s

E [(Xs � ⇢s) · Kt�s|y0:⌧m ]

= ⇢⌧m + �tg(⇢⌧m) + �tf

 
X

s

⇢s · Kt�s

!
. (5.14)

The variance P⌧m+�t follows from

Var[X⌧m+�t |y0:⌧m ] = Var[X⌧m |y
0:⌧m ] + �2t Var[g(X⌧m)|y

0:⌧m ]

+�2t Var

"
f

 
X

s

Xs · Kt�s

!
|y

0:⌧m

#

+�t Cov [x⌧m , g(X⌧m)|y
0:⌧m ] + �t Cov [g(X⌧m), X⌧m |y

0:⌧m ]

+�t Cov

"
X⌧m , f

 
X

s

Xs · Kt�s

!
|y

0:⌧m

#

+�t Cov

"
f

 
X

s

Xs · Kt�s

!
, X⌧m |y

0:⌧m

#

+�2t Cov

"
g(X⌧m), f

 
X

s

Xs · Kt�s

!
|y

0:⌧m

#

+�2t Cov

"
f

 
X

s

Xs · Kt�s

!
, g(X⌧m)|y

0:⌧m

#

+�t E

2

4d

 
X⌧m ,

X

s

Xs · Kt�s

!
d

 
X⌧m ,

X

s

Xs · Kt�s

!T

|y
0:⌧m

3

5 .

Dropping the terms of order �2t , and plugging in the Taylor expansion we obtain

Var[X⌧m+�t
|y0:⌧m

] ⇡ Var[X⌧m
|y0:⌧m

]

+�t Cov [Jg(⇢⌧m)(X⌧m � ⇢⌧m), X⌧m |y0:⌧m ]

+�t Cov [X⌧m
, Jg(⇢⌧m

)(X⌧m
� ⇢⌧m

)|y0:⌧m
]

+�t Cov

"
X⌧m

, Jf

 
X

s

⇢s · Kt�s

!
X

s

(Xs � ⇢s) · Kt�s|y0:⌧m

#

+�t Cov

"
Jf

 
X

s

⇢s · Kt�s

!
X

s

(Xs � ⇢s) · Kt�s, X⌧m |y0:⌧m

#

+�t E

"
D

 
X⌧m

,
X

s

Xs · Kt�s

!
|y0:⌧m

#
,
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where D (X⌧m ,
P

s Xs · Kt�s) = d (X⌧m ,
P

s Xs · Kt�s) d (X⌧m ,
P

s Xs · Kt�s)
T , in

analogy with the notation introduced in Chapter 2. In particular, assume

D (X⌧m ,
P

s Xs · Kt�s) to be of the type

D

 
X⌧m ,

X

s

Xs · Kt�s

!
= l(X⌧m) + q

 
X

s

Xs · Kt�s

!
,

where l(·) and q(·) are again general nonlinear functions, accounting for the e↵ect

of non-delayed and delayed species, respectively. Taylor expand l(·) and q(·) about

⇢⌧m and
P

s ⇢s · Kt�s, respectively, to obtain

E

"
D

 
X⌧m ,

X

s

Xs · Kt�s

!
|y

0:⌧m

#
= D

 
⇢⌧m ,

X

s

⇢s · Kt�s

!
.

Hence we can approximate the variance by

Var[X⌧m+�t |y0:⌧m ] ⇡ P⌧m + �t
⇥
Jg(⇢⌧m)P⌧m + P T

⌧mJg(⇢⌧m)T
⇤

+�t

"
Jf

 
X

s

⇢s · Kt�s

! 
X

s

Ps,⌧m · Kt�s

!#

+�t

2

4
 
X

s

P⌧m,s · Kt�s

!
Jf

 
X

s

⇢s · Kt�s

!T
3

5

+�tD

 
⇢⌧m ,

X

s

⇢s · Kt�s

!
. (5.15)

Finally, the covariance is given by

Cov[X⌧m+�t , X⌧m |y
0:⌧m ] = Cov

"
X⌧m + �tg(X⌧m) + �tf

 
X

s

Xs · Kt�s

!

+
p
�td(X⌧m , Xs)Zt, X⌧m |y

0:⌧

i

= Cov[X⌧m , X⌧m |y
0:⌧m ] + �t Cov[g(X⌧m), X⌧m |y

0:⌧ ]

+�t Cov

"
f

 
X

s

Xs · Kt�s

!
, X⌧m |y

0:⌧m

#

= P⌧m + �tJg(⇢⌧m)P⌧m

+�tJf

 
X

s

⇢s · Kt�s

!
X

s

Ps,⌧m · Kt�s. (5.16)
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Moreover, with analogous steps, for i 2 [1, ⌧m/�t],

Cov[X⌧m+�t , X⌧m�i�t |y0:⌧m ] = P⌧m,⌧m�i�t + �tJg(⇢⌧m)P⌧m,⌧m�i�t

+�tJf

 
X

s

⇢s · Kt�s

!
·

X

s

Ps,⌧m�i�t · Kt�s. (5.17)

Since the system has been linearised, all the distributions involved are normal, and

therefore in particular we have that ⇡(x⌧m:⌧m+�t |y0:⌧m) is N (⇢⌧m:⌧m+�t , P⌧m:⌧m+�t),

where the mean and covariance matrix are given by Equations 5.14 to 5.17.

More generally, suppose we want to obtain the likelihood

L(y| ) = ⇡(y
0:T | ),

where we start by considering  as a given set of parameters. The likelihood can

be factorised as

⇡(y
0:T | ) = ⇡(y⌧m+mM�t+�t:T |y

0:⌧m+mM�t , )

· · ·⇡(y⌧m+�t:⌧m+m�t |y0:⌧m , )⇡(y
0:⌧m | ),

where m is the number of observations that we wish to predict before performing

an update of the unobserved states mean and variance and M is the total number

of blocks of observations, minus the block for the initial condition. Note that we

use �t, and not �t, for the time step of the observations y. The two quantities need

not be the same, and generally they are not: the time step of the available data is

indeed often too large to obtain a good approximation of the underlying unobserved

continuous process, i.e. �t >> �t

It is straightforward to obtain the density ⇡(y⌧m+�t:⌧m+m�t |y0:⌧m , ), once

⇡(x⌧m+�t:⌧m+m�t |y0:⌧m , ) is available. By linearisation, the latter follows a mul-

tivariate normal distribution, whose mean and variance can be obtained by iterat-

ing the steps in Equations 5.14 to 5.17, up to time ⌧m + m�t. In particular, let

⇢t = E[Xt|y0:⌧m ], Pt = Var[Xt|y0:⌧m ] and Pt,s = Cov[Xt, Xs|y0:⌧m ]. We then have

E[Xt+�t |y0:⌧m ] ⇡ ⇢t + �tg(⇢t) + �tf

 
X

s

⇢s · Kt�s

!
(5.18)

Var[Xt+�t |y0:⌧m ] ⇡ Pt + �t
⇥
Jg(⇢t)Pt + P T

t Jg(⇢t)
T
⇤
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+�t

"
Jf

 
X

s

⇢s · Kt�s

! 
X

s

Ps,t · Kt�s

!#

+�t

2

4
 
X

s

Pt,s · Kt�s

!
Jf

 
X

s

⇢s · Kt�s

!T
3

5

+�tD

 
⇢t,
X

s

⇢s · Kt�s

!
(5.19)

Cov[Xt+�t , Xt|y0:⌧m ] ⇡ Pt + �tJg(⇢t)Pt

+�tJf

 
X

s

⇢s · Kt�s

!
X

s

Ps,t · Kt�s. (5.20)

For an arbitrary lag, given i > j, the covariance is

Cov[Xi, Xj |y0:⌧m ] = Pi��t,j + �tJg(⇢i��t)Pi��t,j

+�tJf

 
X

s

⇢s · Kt�s

! 
X

s

Ps,j · Kt�s

!
. (5.21)

We can also draw the continuous limit for the dynamics of the unobserved states.

We have, as in Chapter 2,

⇢t+�t � ⇢t
�t

⇡ g(⇢t) + f

 
X

s

⇢s · Kt�s

!

Pt+�t � Pt

�t
⇡

⇥
Jg(⇢t)Pt + P T

t Jg(⇢t)
T
⇤

+

"
Jf

 
X

s

⇢s · Kt�s

! 
X

s

Ps,t · Kt�s

!#

+

2

4
 
X

s

Pt,s · Kt�s

!
Jf

 
X

s

⇢s · Kt�s

!T
3

5

+D

 
⇢t,
X

s

⇢s · Kt�s

!
.

As �t ! 0,

d⇢(t)

dt
⇡ g(⇢(t)) + f

✓Z t

t�⌧m

⇢(s) · K(t � s)ds

◆
(5.22)

dP (t)

dt
⇡

⇥
Jg(⇢(t))P (t) + P (t)TJg(⇢(t))

T
⇤
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+


Jf

✓Z t

t�⌧m

⇢(s) · K(t � s)ds

◆✓Z t

t�⌧m

P (s, t) · K(t � s)ds

◆�

+

"✓Z t

t�⌧m

P (t, s) · K(t � s)ds

◆
Jf

✓Z t

t�⌧m

⇢(s) · K(t � s)ds

◆T
#

+D

✓
⇢(t),

Z t

t�⌧m

⇢(s) · K(t � s)ds

◆
. (5.23)

We provide an equivalent derivation of the latter two equations in Section 5.5.2.

Returning to our problem, we then use the fact that

Y⌧m+�t:⌧m+m�t = F TX⌧m+�t:⌧m+m�t + ✏⌧m+�t:⌧m+m�t ,

✏⌧m+�t:⌧m+m�t ⇠ N (0,�2✏ I),

It follows that ⇡(y⌧m+�t:⌧m+m�t |y0:⌧m) follows a multivariate normal distribution

with mean F T⇢⌧m+�t:⌧m+m�t , and variance/covariance matrix F T (P⌧m+�t:⌧m+m�t+

�2✏ I)F .

We now wish to update the unobserved states, to obtain an optimal estimate

of the mean and variance of ⇡(xm�t:⌧m+m�t |y0:⌧m+m�t). From the previous steps,

the joint mean and variance of ⇡(xm�t:⌧m+m�t , y⌧m+�t:⌧m+m�t |y0:⌧m) is

� =

 
�Xm�t:⌧m+m�t

�Y⌧m+�t:⌧m+m�t

!
= [⇢m�t:⌧m+m�t , F

T⇢⌧m+�t:⌧m+m�t ]
T ,

and

⇤ =

 
⇤Xm�t:⌧m+m�t

⇤Xm�t:⌧m+m�t ,Y⌧m+�t:⌧m+m�t

⇤Y⌧m+�t:⌧m+m�t ,Xm�t:⌧m+m�t
⇤Y⌧m+�t:⌧m+m�t

!

=

 
Pm�t:⌧m+m�t Pm�t:⌧m+m�t,⌧m+�t:⌧m+m�tF

F TP⌧m+�t:⌧m+m�t,m�t:⌧m+m�t F T
�
P⌧m+�t:⌧m+m�t + �2✏ I

�
F

!
.

By conditioning on y⌧m+�t:⌧m+m�t , we obtain ⇡(xm�t:⌧m+m�t |y0:⌧m+m�t) as a MVN

(⇢⇤m�t:⌧m+m�t
, P ⇤

m�t:⌧m+m�t
), where

⇢⇤m�t:⌧m+m�t
= ⇢m�t:⌧m+m�t + K(Y⌧m+�t:⌧m+m�t � �Y⌧m+�t:⌧m+m�t

)

P ⇤
m�t:⌧m+m�t

= Pm�t:⌧m+m�t � K⇤Y⌧m+�t:⌧m+m�t ,X⌧m+�t:⌧m+m�t

K = ⇤Xm�t:⌧m+m�t ,Y⌧m+�t:⌧m+m�t
⇤�1

Y⌧m+�t:⌧m+m�t
. (5.24)

This procedure provides optimal estimates of the mean and variance conditional

on all the observations from time 0 to ⌧m + m�t. The values of ⇢m�t:⌧m+m�t
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and Pm�t:⌧m+m�t are then set equal to their optimal estimates ⇢⇤m�t:⌧m+m�t
and

P ⇤
m�t:⌧m+m�t

, and the same steps are repeated until the last time-point, T.

Note that integration of the observed signal can be straightforwardly per-

formed by substituting F T with eF , a block diagonal matrix, with diagonal elements

F T , and considering in the observation equation X⌧m+�t:⌧m+m�t .

It is important to stress the main di↵erence introduced by the presence of

the delay in the filtering process. Irrespectively of the choice of m, i.e. irrespectively

of the number of observations we wish to predict before updating our estimates of

the mean and variance, every time we perform filtering we need to update all the

estimates in the past, until the time of maximum delay from the current time-point.

We can see this process as, indeed, a ‘partial smoothing’: at the end of the algorithm,

the conditioning on the future observations is limited to the maximum delay time

⌧m. On the other hand, the advantage is that a partially smoothed estimate of

the unobserved states is obtained ‘for free’, together with the predictions and the

likelihood. This can be enough for practical purposes, as it is generally unlikely that

observations which are very distant in time, have a significant impact on present

and future states.

Clearly, the additional complexity introduced by the delay, comes at higher

computational cost. When the dimension of X and, more crucially, the number of

unobserved states included in the maximum delay time is high, the algorithm can

be significantly slower than in non-delayed cases. The cost comes mainly from the

evaluation of the covariances, at every iteration and for all the time-points back

until the maximum delay. We provide exact running times for the system under

study in Section 5.6.

5.5.2 LNA derivation - delayed species

We now follow the same steps outlined in Appendix A.2 for the derivation of the

LNA of non-delayed systems, as provided by Anderson and Kurtz (2011), and de-

rive the LNA for systems comprising delayed species. We hence show that normal

transition densities analogous to those obtained for the EKBF for distributed de-

lays of the species, can also directly arise from linearisation of the reduced Markov

process which assumes integration of the delayed species in the hazards. In other

words, normal and linear transition densities can be derived without first resorting

to the di↵usion approximation (this is again analogous to the non-delayed case, see

Anderson and Kurtz, 2011).

Formally, recall that Z(t) = X(t)/⌦, where X(t) is the vector of molecules

counts of the stochastic system, z(t) = x(t)/⌦, where x(t) is the deterministic limit

142



of the system, and ⌦ is the system size. Let Snd, Sd, hd and hnd be defined as in

Section 5.4.2, recalling that

hd

✓Z t

�1
X(s) · K(t � s) ds

◆
=

2

6664

h
1

⇣R t
�1 X(s) · K(t � s)ds

⌘

...

hw

⇣R t
�1 X(s) · K(t � s)

⌘

3

7775
,

is the vector of hazards for the reactions comprising delayed species. The hazards

definition is the core assumption of the following approximation. Following steps

analogous to Anderson and Kurtz (2011), first define the quantity

P⌦(t) =
p

⌦(Z(t) � z(t)). (5.25)

Note that we have in this case

Z(t) ⇡ Z(0) +
1

⌦
SndY

✓
⌦

Z t

0

h̃nd(Z(s), c)ds

◆

+
1

⌦
SdY

✓
⌦

Z t

0

h̃d

✓Z s

�1
Z(u) · K(t � u)du, c

◆
ds

◆
,

and recall that h̃nd and h̃d are the hazards arising from the law of mass action. We

then have

P⌦(t) ⇡ P⌦(0) +
p

⌦


1

⌦
SndY

✓
⌦

Z t

0

h̃nd (Z(s), c) ds

◆

�

Z t

0
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�

+
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⌦
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0
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✓Z s
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◆
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◆

�

Z t

0

Sdh̃d

✓Z s

�1
z(u) · K(t � u)du, c

◆
ds

�

= P⌦(0) +
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�

Z t

0

p

⌦Sdh̃d

✓Z s

�1
z(u) · K(t � u)du, c

◆
ds.

The normal approximation to the Poisson process (see again Anderson and Kurtz,

2011) gives

1
p

⌦
SdỸ

✓
⌦

Z t

0

h̃d

✓Z s

�1
Z(u) · K(t � u)du, c

◆
ds

◆
⇡

⇡ SdB

✓
diag

Z t

0

h̃d

✓Z s

�1
Z(u) · K(t � u)du, c

◆
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�◆
,

and

1
p

⌦
SndỸ

✓
⌦

Z t

0

h̃nd (Z(s), c) ds

◆
⇡ SndB

✓
diag[

Z t

0

h̃nd (Z(s), c) ds]

◆
,

where B is a Wiener process.

The first order Taylor expansion of hnd (Z(s), c) is performed about z(s), while

hd

⇣R s
�1 Z(u) · K(t � u)du, c

⌘
is expanded about

R s
�1 z(u) · K(t � u)du. We then

have

h̃nd (Z(s), c) ⇡ h̃nd (z(s), c) + J
˜hnd

(z(s)) (Z(s) � z(s))

and

h̃d

✓Z s
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Combining the two results, we obtain

P⌦(t) ⇡ P⌦(0) + SndB
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diag[
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As ⌦ ! 1, we have

P (t) ⇡ P (0) + SndB

✓
diag

Z t

0

h̃nd (z(s), c) ds

�◆

+

Z t

0
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(z(s)) P (s)ds
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SdJ˜hd

✓Z s

�1
z(u) · K(t � u)du
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Finally, it follows from Equation 5.25 that

Z(t) ⇡ ZLNA(t) = z(t) +
P (t)
p

⌦
,

and

X(t) ⇡ XLNA(t) = x(t) +
p

⌦P (t).

In analogy with the LNA for non-delayed systems, linearity implies that X(t)

follows a normal distribution at any arbitrary time t. Moreover, the time-evolution

of its mean and variance are described by Equations 5.22 and 5.23, respectively.

5.5.3 EKBF - delayed reactions

In this section we outline a form of the filter which deals with systems incorporat-

ing delayed reactions. Proof of the di↵usion approximation and its linearisation is

provided in Brett and Galla (2013); here we extend the methodology by adding a

Kalman updating step. We start in this case from a time-discretised state-space

model, where the evolution of the unobserved states is given by the discretisation

of Equation 5.11, i.e.

Yt = F TXt + ✏t

Xt = Xt��t + �tg(Xt��t) + �t

0

@
t��tX

s=t��t�⌧m

Wt�sf(Xs)
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A

+
p
�td

0

@Xt��t ,
t��tX

s=t��t�⌧m

Wt�sf(Xs)

1

AZt

Zt ⇠ MV N(0, I),
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where the quantities involved are defined as in the delayed species case, apart from

the matrix of weights Wt�s, which has dimension p ⇥ w; p is the dimension of X

and w is the total number of delayed reactions (or, more generally delayed nonlinear

transformations of the inputs X). Suppose again that an optimal estimate for the

initial condition is available, i.e. ⇡(x
0:⌧m |y

0:⌧m) follows a MVN(⇢
0:⌧m , Px0:⌧m

).

Taylor expansion of the nonlinear function g(·) can again be performed about

⇢⌧m , while f(·) is expanded about ⇢s, s 2 [0, ⌧m], up to the first order:

g(X⌧m) ⇡ g(⇢⌧m) + Jg(⇢⌧m)(X⌧m � ⇢⌧m)

f(Xs) ⇡ f(⇢s) + Jf (⇢s)(Xs � ⇢s).

Following steps analogous to those of Section 5.5.1., we can obtain the equations for

the evolution of mean and variance of X

E[Xt+�t |y0:⌧m ] ⇡ ⇢t + �tg(⇢t) + �t
X

s

Wt�sf(⇢s).

Var[Xt+�t |y0:⌧m ] ⇡ Pt + �t
⇥
Jg(⇢t)Pt + P T

t Jg(⇢t)
T
⇤

+�t
X

s

⇥
Wt�sJf (⇢s)Ps,t + Pt,sJf (⇢s)

TW T
t�s

⇤

+�tD
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Wt�sf(⇢s)

!

Cov[Xt+�t , Xt|y0:⌧m ] ⇡ Pt + �tJg(⇢t)Pt + �t
X

s

Wt�sJf (⇢s)Ps,t.

For an arbitrary lag, given i > j, the covariance is

Cov[Xi, Xj |y0:⌧m ] = Pi��t,j + �tJg(⇢i��t)Pi��t,j + �t
X

s

Wt�sJf (⇢s)Ps,j .

We can once again draw the continuous limit, and obtain the LNA of Brett and

Galla (2013) for the dynamics of the unobserved states. We indeed have, as �t ! 0,

d⇢(t)

dt
⇡ g(⇢(t)) +

Z t

t�⌧m

W (t � s)f(⇢(s))ds.

dP (t)
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⇤
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.
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The Kalman update, and the computation of the likelihood can then be performed

following exactly the same steps as in Section 5.5.1.

A last note is about the choice of m. Kalman filtering methodologies are

typically aimed at online prediction, i.e. they predict future observations as new

information becomes available. In this context, it is appropriate to correct at every

iteration the estimates of the mean and variance, and restart the system. At the

other extreme, the LNA has had a wider application in the inferential framework,

where all the observations of interest are already available, and therefore in its non-

restarted version, m is more naturally chosen to be equal to the total number of

observations. The disadvantage of this choice, however, has already been outlined,

although several possibilities are available between these two extremes. We follow

in this work the ‘traditional’ filtering framework, and we therefore assume m = 1.

Further investigation of the e↵ect of m on the performance of the methodology can

be of interest, but it is beyond the scope of the present work.

5.6 Application of the EKBF for delayed species to Cry1

model

Although a continuous expression for the time evolution of the mean and variance

of the unobserved states can be easily defined, computations require in practice a

discretisation of the system. We therefore focus, from now on, on a time-discretised

version of the model. Model 5.12, applied for clarity to the Cry1 case, is

Yt = F T

2

66664
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where

⌫
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@
t��tX

s=t��t�⌧m

Xs · Kt�s

1

A =
R

0

1 +
⇣P

s Xs·Kt�s

Kpc

⌘ncr
,

and F is a vector of ones of length (�t/�t); furthermore, we assume �t to be a mul-

tiple of �t. Note that this definition of F implements integration of the measurement

process in a discretised form.

As mentioned in Section 5.5, a first issue is the specification of the initial

condition, i.e. in the mean and variance of ⇡(x
0:⌧m |y

0:⌧m). This a relatively crucial

issue, as a good estimate of the initial condition, represents a ‘reliable’ input for the

first states after ⌧m, and therefore helps in achieving reliable parameter inference.

On the other hand, a bad estimate may result in low quality predictions under the

true parameters values, and therefore lead to biased parameters estimates.

Di↵erent strategies can be adopted to obtain the distribution of the initial

condition. A first, relatively easy, solution is to propose a su�ciently flexible and

general model for the unobserved states receiving the delayed inputs, in our appli-

cation the gene mRNA. Depending on the number of parameters that we are willing

to introduce, more or less sophisticated models can be adopted. We try to keep

the dimensionality of the parameter space to a minimum, and so we assume a step

function for the transcription rate ⌫, thus eliminating the dependence on past Cry1

(see Hey et al., 2015; Jenkins et al. 2013). We assume a single switch point, located

at the peak-time of the observed Cry1-luc. This would add in total only two pa-

rameters: the two transcription rates, before and after the switch. However, there

is one drawback with this approach, namely that it can result in a too restrictive

model for the variance. The transcription and degradation rate in fact fully define

the intrinsic variance, and a ‘rough’ choice for the transcription rate - due to the

fact that we adopt a very restrictive approach on the number of switches, setting

it to one - may underestimate the actual uncertainty about the signal. This leads

to a poor partial smoothing, and therefore poor input estimates. To overcome this

issue, we introduce a third parameter, denoted by �, which multiplies the di↵usion

term of our unobserved state equation. We then have that the time-evolution of the

unobserved Cry1 is given by

Xt = Xt��t + �t
�
I{0:tch}⌫1 + I{tch:⌧m}⌫2 � µMg ,inXt��t

�
(5.27)

+
p
�t� diag

⇣q
I{0:tch}⌫1 + I{tch:⌧m}⌫2 + µMg ,inXt��t

⌘
Zt,

where we adopt the usual notation for the quantities involved, and, in addi-

tion, I is the indicator function, tch is the switch time, and µMg ,in, is the degradation
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rate of the initial condition, additionally introduced in order to avoid a possible

source of bias in the estimation process, due to model mismatch of the initial con-

dition. Once the optimal estimate for the initial condition has been obtained, we

can proceed as in the general case outlined in the previous section. The mean and

covariance of the unobserved state are propagated according to Equations 5.18 to

5.21. At each observed time-point, we update the mean and variance estimates of

the unobserved state according to Equation 5.24.

It is possible to verify the performance of the methodology by setting the

parameters to their true values used in simulations. Figures 5.6 (a) and (b) show

the one step-ahead prediction densities and the partial smoothing of the unobserved

state, as well as the one step-ahed prediction density of the observed state, along

with their true trajectories, for one sample simulation in Figure 5.5, and for the

two simulation scenarios. The time-interval �t is set equal to 0.1 h. We can observe

an overall good coverage, as well as the shrinking of the variability intervals in the

partial smoothing density.

To compare quantitatively the behaviour of the filter for di↵erent values

of �t, we have computed the empirical coverage of both the predictive and the

partial smoothing densities at level 95%. Results are shown in Table 5.2. We

observe, as expected, a general improvement in terms of coverage as �t becomes

closer to its true simulation value of 0.01 h. However, the major improvement is

seen in the partial smoothing density, and in the low measurement error scenario.

Moreover, there is clearly a minor improvement when lowering �t below 0.1 h, in

terms of matching nominal and empirical coverage, for both the predictive and

partial smoothing densities, and for both measurement error scenarios.

One step-ahead prediction Partial smoothing

�✏ = 0.01 �✏ = 0.05 �✏ = 0.01 �✏ = 0.05

�t = 0.5 h 0.97 (1.79 ⇥ 10�2) 0.95 (2.60 ⇥ 10�2) 0.45 (5.18 ⇥ 10�2) 0.88 (4.05 ⇥ 10�2)

�t = 0.25 h 0.98 (1.32 ⇥ 10�2) 0.96 (1.50 ⇥ 10�2) 0.86 (3.23 ⇥ 10�2) 0.94 (2.42 ⇥ 10�2)

�t = 0.1 h 0.97 (1.23 ⇥ 10�2) 0.96 (1.36 ⇥ 10�2) 0.94 (1.39 ⇥ 10�2) 0.95 (1.67 ⇥ 10�2)

�t = 0.05 h 0.96 (1.18 ⇥ 10�2) 0.95 (1.28 ⇥ 10�2) 0.95 (1.10 ⇥ 10�2) 0.95 (1.60 ⇥ 10�2)

�t = 0.01 h 0.96 (1.25 ⇥ 10�2) 0.95 (1.53 ⇥ 10�2) 0.95 (8.83 ⇥ 10�3) 0.95 (1.37 ⇥ 10�2)

Table 5.2: EKBF with distributed delays of the species: empirical coverages at level
95%, for di↵erent unobserved states time-grids, predictive and partial smoothing
density, for two levels of measurement error variance. Mean and standard deviation
(in brackets) of 10 independent runs of the filter for Model 5.26, with unobserved
state initial condition as in Equation 5.27, applied to the simulated data of Figure
5.5.
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Table 5.3 provides average running times of the filter and selected sub-

functions. We observe that running times increase more than linearly as the unob-

served state time-grid is refined, ranging from 4.70 ⇥ 10�2 s for �t = 0.5 h to up to

3.46⇥102 s for �t = 0.01 h. Note also that the computation of the unobserved states

covariance accounts for a significant proportion of the total running time, with an

increasing computational cost as the time-grid is thinned.

Filter (full)
Unobserved states Kalman update

prediction (covariance) (covariance)

�t = 0.5 h 4.70⇥ 10�2 s (1.17⇥ 10�2) 3.99⇥ 10�3 s (3.15⇥ 10�3) 6.49⇥ 10�3 s (4.09⇥ 10�3)

�t = 0.25 h 0.11 s (1.54⇥ 10�2) 3.17⇥ 10�2 s (1.06⇥ 10�2) 1.64⇥ 10�2 s (6.71⇥ 10�3)

�t = 0.1 h 0.35 s (1.27⇥ 10�2) 0.15 s (1.34⇥ 10�2) 7.55⇥ 10�2 s (1.71⇥ 10�2)

�t = 0.05 h 3.64 s (6.17⇥ 10�2) 2.20 s (5.57⇥ 10�2) 0.64 s (2.10⇥ 10�2)

�t = 0.01 h 3.46⇥ 102 s (1.95) 3.08⇥ 102 s (1.73) 17.6 s (0.10)

Table 5.3: EKBF with distributed delays of the species: running times of the full
filter and of selected sub-functions, for di↵erent unobserved states time-grids. Mean
and standard deviation (in brackets) of 10 independent runs of the filter for Model
5.26, with unobserved state initial condition as in Equation 5.27, applied to the
simulated data of Figure 5.5, m = 1 and �✏ = 0.01. Running times are based on
simulations run on a RM One 310 computer, Core i7 3400MHz processor, and 16 GB
of RAM.

We have so far introduced a model and a filtering methodology for the Cry1-

luc data. The ultimate goal of our analysis is to perform inference on the model

parameters. The filtering methodology is crucial for this purpose, as it provides

normal transition densities for the dynamics of the Cry1-luc and hence a tractable

likelihood. Given the significant increase in the computational cost of the filtering

methodology as the time-grid is refined, it is therefore sensible to investigate whether

such a refinement has a significant impact on parameter likelihood. This aspect is

studied in Section 6.1.1, before moving to inference validation on simulated data,

and, finally, the full data analysis of the Cry1-luc observed data.
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(a) �✏ = 0.01

(b) �✏ = 0.05

Figure 5.6: EKBF with distributed delays of the species, mean (blue) and ±2 SD
(shaded blue): one step-ahead prediction of the unobserved state (top left); partial
smoothing (top right); one step-ahead prediction of the observed state (bottom).
True simulated time-series superimposed in green. Model 5.26, with unobserved
state initial condition as in Equation 5.27, applied to the simulated data of Figure
5.5, for two levels of measurement error standard deviation. �t = 0.1 h , m = 1.
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Chapter 6

Inference for spatio-temporal

Cry1-luc data from the SCN

In this chapter we present the results from the parameter estimation process on

both simulated data and Cry1-luc observed data. The latter consist of three exper-

imental replicates, two of these spanning over a time-interval of 144 hours, i.e. six

cycles, while one experiment has been running for 116.5 hours, i.e. approximately

five cycles. We perform the simulation study assuming the shorter duration, as addi-

tional observations are only likely to improve inference. Inference is then performed

on the three data-sets, and results unified by applying a two-stage Bayesian hierar-

chical model (Lunn et al., 2013). Finally, the spatial structure of the hierarchical

parameter estimates is investigated by means of an exploratory spatial analysis.

Inference is performed in a Bayesian framework, the likelihood being provided

by the filtering methodology introduced in Chapter 5.

6.1 Inference validation on the simulated data

The performance of the estimation algorithm for the parameters of Model 5.26,

having an unobserved state initial condition as in Equation 5.27, is studied on the set

of simulated data of Figure 5.5. In particular, we perform the simulation study on 10

i.i.d. replications of two simulation scenarios, the first which assumes measurement

error standard deviation �✏ = 0.01, and the second �✏ = 0.05. We first compare the

e↵ect of the time-grid for the evolution of the unobserved states, �t, by computing

univariate log-likelihoods. We then design and run an MCMC algorithm, to re-

estimate the parameters used for simulation.
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6.1.1 Parameter likelihood for the simulated data

The computational cost of the algorithm represents an important point, which be-

comes crucial when considering the inferential application of the algorithm in an

MCMC framework. We have provided in Section 5.6 the computational cost and

coverage properties of the proposed filtering methodology for di↵erent choices of �t.

Examined time-grids which assume �t lower than 0.1 h seem to be prohibitively ex-

pensive when considering the application of the filter in an MCMC context; in fact,

2⇥105 iterations of the filter when assuming �t = 0.01 h would require approximately

800 days, compared to approximately 8 days of the �t = 0.05 h case, and approxi-

mately 19 hours for �t = 0.1 h. Note also that multiple likelihood evaluations are

required for each MCMC iteration if a Metropolis-within-Gibbs scheme is adopted.

Moreover, the increased computational cost seems to be not well balanced by signif-

icant advantages in terms of coverage of the filter predictive density. We therefore

focus on the time-grids having �t equal to 0.1 h, 0.25 h and 0.5 h. Among the se-

lected time-grids, it is sensible to investigate whether a higher refinement provides

a significant advantage also for inferential purposes, e.g by providing a maximum of

the log-likelihood closer to the true simulation value. We therefore compute univari-

ate log-likelihoods for each parameter, with the remaining parameters set at their

true values. The computation is performed on one simulation replicate from each

simulation scenario, and the results are shown in Figures 6.1 (a) and (b).

We notice a minor e↵ect of the time-grid on most of the parameters involved.

However, the choice of a fine time-grid seems more relevant for the parameters 

and �✏, where we observe a log-likelihood peak closer to the true simulation value

as �t decreases. This result motivates the choice of a delayed acceptance MCMC

algorithm (Christen and Fox, 2005; Golightly et al., 2015), which allows to exploit

the fast likelihood computation provided by the filter for �t = 0.5 h to explore the

parameter space, but finally accepts values according to the likelihood provided by

the filter for �t = 0.1 h. The designed MCMC algorithm and the simulation study

results are presented in the following section.

6.1.2 Inference for the simulated data

We sample all the parameters involved on the logarithmic scale, except the mean

and standard deviation of the distributed delay. As usual, we move  from the

observation equation, to the unobserved state equation; we refer again to Section

2.5.1 for the e↵ect of this change on parameter estimates. Priors are set to be

N (0, 102) for log(R
0

), log(Kpc), log(⌫
1

) and log(⌫
2

), and N (log(1.5), 52) for
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(a) �✏ = 0.01.

(b) �✏ = 0.05.

Figure 6.1: Univariate log-likelihood plots for a sub-set of parameters (initial con-
dition not included) of Model 5.26, with unobserved state initial condition as in
Equation 5.27, with the remaining parameters set at their true simulation values
(initial condition adjusted according to visual inspection). Red lines set at the true
simulation values (for �t = 0.1 h). Model applied to the simulated data of Figure
5.5, for two simulation scenarios assuming �✏ = 0.01 (top) and �✏ = 0.05 (bottom),
m = 1.
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log(n), given their biological interpretation. We employ N (0, 202) for log(V [X
0

]),

log(E[X
0

]), log(�✏) and log(), given the approximate nature of the initial condi-

tion, and to allow for very low measurement error or high molecules numbers. We

adopt a N (log(0.58), 0.252) prior for the degradation rates (initial condition and fol-

lowing cycles) of Cry1-luc, following Yamaguchi et al. (2003). The authors report

the mean half-life in the text, while we have assumed the standard deviation from

visual inspection of their Figure S1. In particular, we adopt a value of 0.25, which

seems to be not over-restrictive. Finally, the prior for the mean of the distributed

delay is set to be U(0, 23) and the prior for the standard deviation U(0, 20). The

latter two priors can be justified by the circadian rhythmicity of the data: it is sen-

sible to assume that the cellular product of the previous cycle is mainly responsible

for the dynamics of the consecutive one. Initial conditions for the parameter chains

are randomly drawn from the prior densities.

The MCMC algorithm adopted has a pilot run of 3⇥103 iterations, in which

a mixture of single-components adaptive proposal variance schemes, and adaptive

block proposal covariance matrix schemes (Roberts and Rosenthal, 2009), are em-

ployed, in order to optimise exploration of the posterior density and computational

e�ciency. The unobserved states time-grid here is set to �t = 0.5 h, to obtain a fast

first exploration of the posterior density.

From iteration 3 ⇥ 103, we define three blocks of parameters, one for the

transcription function parameters plus degradation, one for the initial condition

parameters, and one for scale and measurement error standard deviation, and we

adopt a random walk scheme in which the variance of the proposals is proportional

to the variance of the previously accepted values. Moreover, a delayed acceptance

component is introduced (Christen and Fox, 2005; Golightly et al., 2015; Sherlock

et al., 2016; Sherlock et al., 2015). In a delayed acceptance scheme, samples are

first proposed according to a ‘fast’ likelihood evaluation, which means in our case

adopting �t = 0.5 h; samples are then accepted or rejected according to the usual

acceptance ratio of Equation 2.14. If the proposed samples are accepted, a slower

and more precise evaluation of the likelihood is performed, meaning in our scenario

that �t is set to 0.1 h. The acceptance ratio of the nested step is, then, (Christen

and Fox, 2005; Golightly et al., 2015)

↵DA = min

⇢
1,
⇡
0.1(y0:T | ⇤)

⇡
0.1(y0:T | )

⇡
0.5(y0:T | )

⇡
0.5(y0:T | ⇤)

�
,

where we recall that  ⇤ is the proposed sample of parameters, accepted in the fast

likelihood evaluation step, and  the accepted sample from the previous iteration
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of the MCMC algorithm. Moreover, we denote by ⇡
0.1 the likelihood under the

�t = 0.1 h case, and by ⇡
0.5 the likelihood under the �t = 0.5 h one. The choice of a

delayed acceptance scheme is motivated by the fact that the proposed filter becomes

computationally time-demanding as the chosen �t decreases. Indeed, we have a

computational cost which is approximately 10 times higher under the �t = 0.1 h

case than in the �t = 0.5 h one (see Table 5.3); in the example of Sherlock et al.

(2015) for a random walk Metropolis scheme, an increase in computational speed

by a factor of 10 is su�cient to achieve an increase in e�ciency of the algorithm

by a factor of three with respect to a non-delayed scheme, given an optimal jump

size for the proposals. The gain in e�ciency is also influenced by the curvature and

position of the stage one proposal with respect to the target density. In our case, the

univariate log-likelihoods seem of comparable curvature or slightly flatter for most

of the parameters under �t = 0.5 h, and their maxima are relatively close under the

two time-intervals. Following the results of Sherlock et al. (2015), this suggests

that the ‘cheap’ approximation is already a relatively good approximation, while

being significantly faster, and the delayed acceptance scheme can therefore result in

a significant gain in e�ciency. Optimisation of the scheme according to the jump

size of the proposals may require further investigation, although the proportionality

factors for the covariance matrices of the proposals are chosen in order to improve

the overall performance of the chains, based on visual investigation of the trace-plots

(some variability between di↵erent runs in the quality of the mixing is also present).

After the pilot run, we discard 105 iterations as a burn-in, and thin the

chains by retaining one sample every 100 iterations. Figure 6.2 (a) and (b) show the

posterior densities for the transcription function parameters, log(�✏) and log(), for

the two simulation scenarios. We report bias in the estimation of log(µMg), due to

the fact that the assumed prior is concentrated away from the assumed simulation

value. The simulation value is set in order to approximately reproduce the behaviour

of real data, and thus it allows to investigate the possible e↵ect of the degradation

rate bias on the remaining parameters in the estimation process. We observe, indeed,

that log(R
0

), as well as E[⌧ ] tend to be slightly overestimated, while log(n) show

a downwards bias. A weaker underestimation of  is also observed. The remaining

parameters seem to be not significantly a↵ected.

An additional run of the estimation algorithm, which assumes a degradation

prior density centred close to the true simulation value, allows to confirm that the

observed bias is only due to the mismatch of the degradation rate with respect to its

prior. We adopt in this case a N (log(0.3), 0.352) prior, which allows for relatively

high dispersion and a minor mean mismatch. As we can observe in Figure 6.3 (a)
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and (b), the intervals in this case generally contain the true simulation value of the

parameters, we only report a relatively poorer coverage for log(n) in the simulation

scenario having �✏ = 0.01, where 3 out 10 values fall outside the 95% HPDIs, which

however falls to only one case in the �✏ = 0.05 case.

Mixing of the chains is also generally poorer in the �✏ = 0.01 case, we believe

due to the highly challenging correlation structure and more peaked likelihood.

6.2 Cry1-luc data analysis

In this section we present inferential results for the three available experimental

replicates of Cry1-luc spatio-temporal data in the SCN.

6.2.1 Exploratory analysis of the Cry1-luc data

As we ideally want to investigate spatial variation of the model parameters, a first

sensible step is to investigate spatial variation of the available Cry1-luc time-series

data across the SCN. Relevant aspects of circadian time-series are the amplitude,

period and phase. To compute these quantities, we follow the same procedure out-

lined in 4.2.1 for the Nanostring data, which we recall resorts to spectral analysis.

The exploratory analysis is performed on the de-trended Cry1-luc data for exper-

iment 1, while the slope of a linear regression fitted on the peak light-intensities

versus time has not resulted significant in experiment 2 and 3 (0 is included in the

95 % level HPDIs), hence we perform for these experiments the exploratory analysis

on the raw data.

We first identify the most relevant frequency of the observed data as the

frequency at which the periodogram reaches its maximum. As expected, we find the

periodogram mode at the circadian frequency for almost all the observed locations

in all the three experiments. Deviations are observed for some locations at the very

top, top-left, of the images, which also generally show very noisy behaviour. The

estimated period is thus 23.3 hours for experiment 1, and 24 hours for experiments

2 and 3 in almost all non-extreme locations. We then compute amplitude and

phase of the harmonic corresponding to this leading frequency. Figure 6.4 shows

the spatial variation of the amplitude across the right half of the SCN, for the three

experiments. We can see that in all cases it tends to be higher in the central region,

and decreases as we move towards more peripheral locations.

A second relevant aspect is given by the phase of the observed time-series.

Figure 6.5 shows a comparison, again across the three experimental replicates, for

the leading circadian frequency. Note that the phase time is computed by assuming
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that each experiment starts at t = 0. If we observe the time-distribution of the

phases, we observe that the last experiment has earlier phases and thus seems to

start later than experiment 1 and 2. We also observe an interesting pattern which

seems to be conserved across the three replicates: the peripheral regions show a

phase advance of approximately 1-2 hours with respect to the more central area;

the central area spans approximately from the bottom left part of the section, up

to the centre-bottom right extreme, in a bow-like shape. A spatial arrangement of

Cry1-luc phases in the SCN which sees earlier phases in the upper-left dorsal area,

and later phases as we move towards the lower-right ventral area, is indeed also

observed in Maywood et al. (2013).

Note that we select slightly more than 100 locations for each experiment,

equally spaced across the SCN, and falling within a boundary defined by a threshold

light intensity equal to 0.1; the threshold is applied to light intensities of roughly

the same time of the first circadian cycle in the three experiments, estimated by

comparing the medians of the phases estimated within each experiment. Assuming

experiment 3 as baseline time-reference, we thus take t = 0 h for experiment 3,

t = 5.5 h experiment 1, and t = 4.5 h for experiment 2. The background light

intensity in each figure is Cry1-luc at these selected times. We remark that, in all

the three cases, hour 0 defines the beginning of the experiment, i.e. there is no

relationship with circadian time.

6.2.2 Inference for single experiments

We present the results of the estimation process by plotting the posterior median

estimates of the parameters of interest, along with a measure of their variability, in a

spatial fashion across the SCN. We ideally want to both visualise patterns of spatial

variation, and have an estimate of their reliability. At coordinates corresponding to

the analysed 2⇥2 pixel boxes, we therefore plot a dot with colour scale proportional

to posterior density median of each parameter, and size inversely proportional to

the corresponding coe�cient of quartile variation (see e.g. Bonett, 2006). Note that

proportionalities of both colour and size can be di↵erent for di↵erent parameters,

in order to obtain visually interpretable plots. In analogy with Figures 6.4 and 6.5,

the background is given by Cry1-luc light intensity at comparable times of the first

circadian cycle across the three experiments.

We note in Figure 6.6 high values of n, with respect to the known number of

binding sites, as well as low values of µMg with respect to the prior of Yamaguchi

et al. (2003). These parameters are indeed believed to compensate for model ap-

proximation, as our model represents only a simplified representation of the more
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complex process outlined in Chapter 5. We also observe a low degree of spatial vari-

ation for R
0

, Kpc, if we ignore a proportion of extreme estimates characterised by

a higher dispersion, which we again attribute to model approximation. The remain-

ing parameters seem to exhibit a more evident spatial structure, with similar values

clustering together, as well as exhibiting decreasing or increasing trends as we move

from central to more peripheral locations. In Figure 6.7 we first observe an increase

in the median estimates of �✏ from central to more external locations, suggesting

that peripheral locations are characterised by a lower signal to (measurement) noise

ratio. Central locations tend also to show higher responsiveness of the promoter, as

indicated by a high estimate of n, as well as a higher mean and standard deviation

of the delay, and scale . These estimates point in the direction of a system compris-

ing a higher intrinsic noise in the central area of the SCN, with longer and noisier

delays in the feedback cycles. This result is particularly interesting if considering

that the core area of the SCN, which covers approximately the lower half of the

SCN, is the recipient of light impulses coming from the retina; we may put forward

the hypothesis that intrinsic noise contributes to the higher responsiveness of the

upper core SCN to external inputs, although we note that such a result would also

imply di↵erent mechanisms to be taking place between lower and upper core SCN

regions. The link between intrinsic noise and responsiveness to external signals,

is supported by mathematical studies on the e↵ect of noise on oscillatory systems,

and in particular Steuer et al. (2003) show that, for a given amplitude of the in-

put, noisy systems may exhibit higher amplitudes in the outputs than deterministic

ones. Moreover, studies have found that intrinsic noise has a key role in generating

circadian oscillations as a consequence of extra-cellular signalling, when individual

cell clocks are disrupted by mutation of BMAL1 (Ko et al., 2010).

Finally, comparison among the three experiments show similarities in pa-

rameter estimates. In order to obtain a clearer and more robust picture of the

inferred spatial dynamics, a natural step is to perform a meta-analytic study, which

we formulate via a Bayesian hierarchical model. This is presented in Section 6.3.
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(a) �✏ = 0.01.

(b) �✏ = 0.05.

Figure 6.2: Kernel densities estimates of the model parameters posterior densities,
excluding the parameters of the initial condition. Model 5.26, with unobserved state
initial condition as in Equation 5.27, applied to the simulated data of Figure 5.5,
for the two simulation scenarios assuming �✏ = 0.01 (top) and �✏ = 0.05 (bottom),
m = 1. MCMC samples for 10 independent replications. The red vertical line is
at the true value, and the prior density is also superimposed in red. Prior for the
degradation rate from Yamaguchi et al. (2003).

160



(a) �✏ = 0.01.

(b) �✏ = 0.05.

Figure 6.3: Kernel densities estimates of the model parameters posterior densities,
excluding the parameters of the initial condition. Model 5.26, with unobserved state
initial condition as in Equation 5.27, applied to the simulated data of Figure 5.5,
for the two simulation scenarios assuming �✏ = 0.01 (top) and �✏ = 0.05 (bottom),
m = 1. MCMC samples for 10 independent replications. The red vertical line is
at the true value, and the prior density is also superimposed in red. Prior for the
degradation rate centred close to the true simulation value.
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Figure 6.4: Amplitude of the harmonic corresponding to the leading frequency of
the observed Cry1-luc light intensities, for selected locations in the right half of
the SCN, and averaged over 2 ⇥ 2 pixels blocks. Points at the selected locations.
Experiment 1 (left), 2 (middle) and 3 (right). Data from Hastings lab. at MRC,
Cambridge.

Figure 6.5: Phase of the harmonic corresponding to the leading frequency of the
observed Cry1-luc light intensities, for selected locations in the right half of the SCN,
and averaged over 2 ⇥ 2 pixels blocks. Points at the selected locations. Experiment
1 (left), 2 (middle) and 3 (right). Data from Hastings lab. at MRC, Cambridge.

162



Figure 6.6: Posterior estimates for R
0

, Kpc, n and µMg ; colour scale proportional
to the median, size inversely proportional to the coe�cient of quartile variation.
Samples are transformed in the original scale to compute the interquartile coe�-
cient of variation. The size scale may vary between di↵erent parameters for plotting
purposes, but are equal for the same parameter across the three experiments. The
MCMC estimation algorithm for Model 5.26, with unobserved state initial condition
as in Equation 5.27, is run on Cry1-luc intensities averaged over 2 ⇥ 2 pixel boxes,
at the plotted points locations. The chains of two locations in experiment 3 show
very poor mixing, and their estimates are therefore not included for plotting pur-
poses (very low coe�cient of quartile variation). Data from Hastings lab. at MRC,
Cambridge.
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Figure 6.7: Posterior estimates for E[⌧ ], SD[⌧ ], �✏ and , colour scale proportional
to the median, size inversely proportional to the coe�cient of quartile variation.
Samples are transformed in the original scale to compute the interquartile coe�-
cient of variation. The size scale may vary between di↵erent parameters for plotting
purposes, but are equal for the same parameter across the three experiments. The
MCMC estimation algorithm for Model 5.26, with unobserved state initial condition
as in Equation 5.27, is run on Cry1-luc intensities averaged over 2 ⇥ 2 pixel boxes,
at the plotted points locations. The chains of two locations in experiment 3 show
very poor mixing, and their estimates are therefore not included for plotting pur-
poses (very low coe�cient of quartile variation). Data from Hastings lab. at MRC,
Cambridge.
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6.2.3 Diagnostics of Cry1-luc model fit

Before moving to the meta-analytic study, we perform a check of the model fit

through inspection of the standardised residuals. In particular we investigate resid-

ual periodicity and normality. If a good fit is achieved by the model, then the resid-

uals should be approximately normal and should not exhibit any more circadian,

or other relevant, cyclicity. In analogy with the Arabidopsis Thaliana analysis, we

obtain samples of residuals for a thinned set of parameters samples from the MCMC

algorithm. The procedure is performed for each location and for each experiment.

To account for the delay, we focus on the residuals obtained from fitting the model

to the data after the first 30 hours. The initial condition is in fact only instrumental

into obtaining reasonable starting estimates of the mean and variance of the pro-

cess, and its fit is not of particular interest for our purposes. Finally, in order to

obtain a periodogram estimate at approximately 24 and 12 hour periods, we focus

on residual periodicity only of the last four cycles for experiment 1 and the last five

cycles for experiment 2 and 3. This is required by the discrete temporal nature of

the observations, and consequently of the residuals.

Figure 6.8 shows the median estimates of the Shapiro-Wilk test, as well as the

12 hour and 24 hour normalised periodogram estimates across the SCN, following the

same procedure of Section 4.2.2. Recall that the Shapiro-Wilk test is computed with

the swtest function in MATLAB (Saida, 2007), which performs either the Shapiro-

Wilk or the Shapiro-Francia test based on the sample kurtosis. A simulation study

performed on 5 ⇥ 104 vectors of i.i.d samples drawn from a N (0, 1) and having the

same length of the available residuals, provides a median value for the test, under

the null hypothesis of normality, which is equal to 0.992 for experiment 1, and 0.994

for experiment 2 and 3. We do not notice in Figure 6.8 (top) any evident spatial

pattern, and the normality assumption seems generally adequate.

With respect to the residual periodicity, we notice in Figure 6.8 (bottom)

some residual 24 hour periodicity, in particular in the first two experiments and in

the central region of the SCN. The 12 hour residual periodicity in Figure 6.8 (centre),

on the other hand, seems to be more wide-spread, being consistently present in the

three experiments, and in a wider area than the 24 hour one. The interpretation

is not straightforward, but we can assume that residual periodicity is caused by

processes which are not explicitly included in the model. We may postulate an

influence of the choice of a multiplicative scaling factor  to account for the fact that

we observe light intensities, and not actual molecules numbers or concentrations.

This assumption may be too simplistic, as light emission comes indeed from an

enzymatic reaction, possibly better described by a Hill functional form. It is also
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Figure 6.8: Diagnostics plots for model fit: Shapiro-Wilk test (top), normalised
periodogram estimate for the 12 hour period (centre), and normalised periodogram
estimate for the 24 hour period (bottom), computed on the standardised residuals
for Model 5.26, with unobserved state initial condition as in Equation 5.27. Colour
scale is proportional to the median, size inversely proportional to the coe�cient
of quartile variation. Proportionalities may vary between di↵erent measures for
plotting purposes, but are equal for the same measure across the three experiments.
The MCMC estimation algorithm is run on Cry1-luc intensities averaged over 2⇥ 2
pixel boxes, at the plotted points locations. Data from Hastings lab. at MRC,
Cambridge.
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interesting to note that the 24 hour residual periodicity is concentrated in the more

central locations. Other processes may be taking place, e.g. influence of inter-

cellular signalling on Per transcription, and therefore on PER protein; recall in fact

that the is the PER/CRY complex which e↵ectively represses Cry1 transcription,

while our model only accounts for Cry1 auto-repression.

Although the residual periodicity, especially for the 12 hour period, provides

an indication that a more detailed model may be required, for relatively wide regions

of the SCN most of the density mass of 24 hour period residual rhythmicity is

below the 95% threshold level. The diagnostics seem to suggest overall care in

the interpretation of the parameters, but it also importantly provides a spatial

indication on where additional processes that are not accounted for by our model,

may be taking place.

6.3 Hierarchical Bayesian meta-analysis

The results of the single experiments provide a first useful insight on the transcrip-

tion function parameters values across the SCN, but a unified estimate across the

three experiments may provide a more powerful and interpretable summary of the

results. In a Bayesian framework, this objective translates into assuming the pa-

rameters of each experiment as generated by a common prior distribution, whose

parameters are called hyperparameters. Each hyperparameter is assigned in turn a

prior distribution, called hyperprior.

Following Lunn et al. (2013), we define a hierarchical model in which the

lower layer of the hierarchy is represented by the Cry1-luc time-series for each SCN

location and for each experiment, i.e. the vectors yz,l, where z = 1, 2, 3 defines the

experiment and l = 1, ..., L defines the location. The likelihood is computed via

the EKBF for systems with delayed species introduced in 5.5.1, conditional on the

location and the experiment specific parameters  z,l, whose estimates are shown in

Section 6.2.2.

The vectors of the experiment and the location specific parameters  z,l define

the second layer of the hierarchy. We restrict the hierarchical analysis to the param-

eters of the transcription function, the scale parameter  and the measurement error

standard deviation �✏, as our parameters of interest. Each parameter is assigned a

normal prior distribution, i.e.  z,l,u ⇠ N(↵l,u,�l,u), and we assume N (0, 104) conju-

gate independent hyperpriors on each hypermean ↵l,u, and IGa(0.001, 0.001) conju-

gate independent hyperpriors on each hypervariance �l,u, l = 1, ..., L and u = 1, ..., 8,

where u denotes the individual parameter component. Note that we adopt the log-
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arithmic parametrisation also for the mean and standard deviation of the delay.

Following Lunn et al. (2013), the analysis is divided into two stages; the

first computationally expensive stage is reported in Section 6.2.2 and is aimed at

obtaining samples from the posterior distribution

⇡( z,l|yz,l) / ⇡(yz,l| z,l)⇡( z,l),

which are obtained independently for each experiment z and each location l.

In the second stage, the full target posterior density is given by (Lunn et al.,

2013)

⇡( l, Al, Bl|yl) / ⇡(Al)⇡(Bl)
ZY

z=1

⇡(yz,l| z,l)⇡( z,l|Al, Bl).

Samples for the parameters and the hyperparameters are obtained by sampling

sequentially from the distributions (Lunn et al., 2013)

⇡(Al| l, Bl, yl) / ⇡(Al)
ZY

z=1

⇡( z,l|Al, Bl)

⇡(Bl| l, Al, yl) / ⇡(Bl)
ZY

z=1

⇡( z,l|Al, Bl)

⇡( l|Al, Bl, yl) /

ZY

z=1

⇡(yz,l| z,l)⇡( z,l|Al, Bl). (6.1)

Lunn et al. (2013) propose to employ the first stage samples of  z,l as pro-

posals in a Metropolis-Hastings scheme to sample from each ⇡( z,l|, Al, Bl, yl) in

Equation 6.1. This proposal has the major advantage that computationally expen-

sive evaluations of the likelihood are no longer required. Indeed, the acceptance

ratio for the Metropolis-Hastings step simplifies into

↵HI = min

(
1,
⇡( ⇤

z,l|Al, Bl)

⇡( z,l|Al, Bl)

⇡( z,l)

⇡( ⇤
z,l)

)
, (6.2)

where  ⇤
z,l is the proposed sample, drawn uniformly at random from the stage

one samples. Note that, since we have transformed the samples for the mean and

standard deviation of the delay by applying the logarithm, a density transformation

has to be performed on the prior densities of stage 1 in Equation 6.2.

In order to define clusters of ‘equivalent’ locations from the three experi-

ments, a first di�culty is represented by the fact that images have di↵erent sizes

in each experiment. To make locations in the SCN comparable across the three
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experiments, we first perform a change of coordinates, by setting the origin of the

axes at the centre of mass, i.e. light intensity, of each experiment, at a selected time.

In particular, we employ the times selected in 6.2.1, corresponding to approximately

the end of the first quarter of the first circadian cycle.

We then obtain clusters of locations which satisfy the following criteria:

1. each cluster contains exactly one location from each experiment;

2. each cluster contains locations having the minimum euclidean distance be-

tween each other, among the available locations;

3. if the same location of a given experiment is selected more than once, the

cluster with the overall minimum euclidean distance is retained.

The procedure identifies 93 clusters in total. There is a minimal loss in information,

given by the fact that not all the analysed locations in the first stage of the analysis,

are retained in the second stage. However, the locations lost correspond mostly to

peripheral locations, with low observed circadian rhythmicity, and relatively unin-

formative results in the first stage of the analysis. To avoid this loss, one could

alternatively define a grid on the image having the biggest size, and then form clus-

ters according to the locations belonging to each box. If there is significant ‘between

experiment’ variability, however, the inferred hypermeans and hypervariances may

be influenced mostly by the experiment participating with the highest number of

locations.

Figure 6.9 shows medians and dispersion of the transcription function param-

eters,  and �✏. The background half-SCN image is obtained by superimposition of

the half-SCN background images from the three experiments, and dots are plotted

at the centre of each cluster of locations. Values are obtained by drawing samples

from the parameter hierarchical prior distributions, for a thinned set of MCMC

samples of the corresponding hypermeans and hypervariances. In practice, we draw

samples from the hierarchical distributions of each location, which should summarise

location-specific distributions by properly merging the results from the three exper-

imental replicates. The usual dot size and colour interpretation is adopted. We

notice that a smoother picture of the parameter variation across the SCN is ob-

tained. In particular, the overall picture seems to suggest that while R
0

, Kpc,

 tend to follow the variation of amplitudes shown in Figure 6.4, the remaining

parameter may account for the variation of phases, and in particular we recover the

bow-like shape of Figure 6.5, particularly in the variation of the mean and standard

deviation of the delay.
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Figure 6.9: Hierachical medians of R
0

, Kpc, n, µMg , E[⌧ ], SD[⌧ ],  and �✏. Sam-
ples are transformed in the original scale to compute the interquartile coe�cient of
variation. The colour scale proportional to the median of the transformed parame-
ters samples, the size inversely proportional to their coe�cient of quartile variation.
Dots are plotted at the centre of each cluster of locations from the three experi-
ments. Scales of colour and size may vary between di↵erent parameters for plotting
purposes. Data from Hastings lab. at MRC, Cambridge.

One can also consider a third layer, represented by the overall SCN. This

raises however two issues: first, the choice of an appropriate hierarchy, and second,
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closely linked to the first, the relevance of the results for the aim of our analysis.

The first problem can be seen, in some broad sense, as the ‘egg-or-chicken’ problem,

as one could also argue that the overall SCN represents the lower layer of the hi-

erarchy, while the experiment represents the higher one. On the other hand, recall

that our aim is to investigate the spatial distribution of the parameters across the

SCN; in this sense, a hypermean and hypervariance for each location across the

three experiments, provides a more informative quantity than a hypermean and hy-

pervariance for each experiment across the overall SCN. This consideration brings

us to the second issue, as, once location specific hypermeans and hypervariances are

obtained, we still wish to investigate the degree and type of spatial variation of these

quantities across the SCN. Wikle et al. (1998) advise to resort to ‘proper’ spatial

modelling of space-varying parameters when a strong spatial structure is present.

We therefore investigate the degree of spatial variation and correlation by means

of a preliminary spatial analysis of the location-specific meta-analytic parameters

distributions. This is the focus of Section 6.4.

6.4 Towards a spatial model?

The final aim of the present work is to investigate the hypothesis of spatial variation

of the transcription function parameters across the SCN. To define spatial variation

we refer to the first law of geography, as stated by Tobler (1970): ‘everything is

related to everything else, but near things are more related than distant things’.

We resort for this purpose to an exploratory analysis, in which we first aim at

identifying a possible trend in the mean of the parameters across the SCN, and,

secondly, possible residual spatial correlation in the de-trended data.

Our observations consist of draws from the hierarchical prior distribution

of the parameters of each location, i.e. we draw samples for each parameter u,

u = 1, ..., 8, and each location l, l = 1, ..., L, from a N (au,l, bu,l), where au,l and bu,l

represent a thinned set of MCMC samples from the meta-analysis of Section 6.3.

For each parameter u, we assume that  u = ( 
1,u, ..., L,u) is a spatial

process at locations {1, ..., L}. We drop the dependence on u from now on, for ease of

notation. Most of the available spatial exploratory and modelling approaches assume

some form of stationarity. In particular, a process  defined on a space Q is second-

order stationary if the mean of the process is constant and the correlation between

any two locations depends only on their distance and is invariant to translation, i.e.

8q 2 Q E[ q] = µ and 8q, t, h 2 Q : c(q + h, t + h) = Cov( q+h, t+h) = C(q � t)

(Gaetan and Guoyon, 2010).
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Geostatistical approaches generally assume second-order stationarity, aim at

modelling spatial dependence by fitting a suitable functional form to the correlation

function �(h) = C(h)/C(0), and are defined on a continuous space (Gaetan and

Guoyon, 2010); �(h) is usually dependent on unknown parameters, which are to

be estimated (see e.g. Diggle, Moyeed and Tawn, 1998). On the other hand, if a

discrete set of locations is assumed, alternative approaches include autoregressive

models, e.g. spatial autoregressive (SAR), or, more broadly, Markov random fields

(Gaetan and Guyon, 2010). Weaker stationarity assumptions are more frequently

made in autoregressive and Markov random field models, i.e. only mean stationarity

may be required.

We first focus on exploring the presence of a mean trend, i.e. the condition

for first-order stationarity. We assess the presence of a trend with respect to the

spatial coordinates, by regressing our parameter samples against the parametric

equation of an ellipse, to investigate a trend which moves from the central area of

the SCN towards more peripheral locations, possibly in a specific angular direction.

A regression in which the spatial coordinates act as covariates is known as trend

surface analysis (see e.g. Agterberg, 1984).

We then explore the regression residuals by means of Moran’s I (Moran,

1950) and Geary’s c (Geary, 1954). These two quantities are more related to local

autoregressive models than geostatistical approaches, as they resemble, respectively,

the autocorrelation coe�cient and the Durbin-Watson statistics found in the time-

series literature (Waller and Gotway, 2004). We note that, however, these methods

are only adopted here as an exploratory approach to investigate possible residual

spatial correlation, and do not necessarily imply a modelling choice in favour of an

autoregressive model.

The fitted regression model is the parametric equation of an ellipse, where

we define xl and yl as the x and y coordinates of the pixels locations at which the

hierarchical model is estimated, assuming the origin of the axes to be at the centre

of mass of the SCN. Namely, the model is

 l = ⇣
0

+ ⇣
1

x2

l + ⇣
2

y2l + ⇣
3

xl + ⇣
4

yl + ⇣
5

xlyl + ✏l ✏l ⇠ N (0,�2✏ ), (6.3)

and is fitted to the sample of parameter values. In order to avoid the influence of

extreme values and outliers, we resort to robust regression implemented in the MASS

package in R (Ripley et al., 2013), which down-weights very extreme observations

by so-called Huber weights. Median coe�cient estimates and HPDIs are provided

in Table 6.1.

172



We can see that the parameters log(n), log(SD[⌧ ]), log(µMg), log() and

log(�✏) all show evidence of a spatial trend, according to the assumed model. The

result seems to suggest that the SCN location has a significant influence on these

parameters and, in particular, a significant decreasing spatial trend from central to

peripheral locations is seen for log(n), while an increasing spatial trend in the same

directions is seen for log(�✏), as the significance and sign of both ⇣
1

and ⇣
2

indicates.

Moreover, significance of either ⇣
3

or ⇣
4

indicates a shift in the origin of the spatial

trend with respect to the centre of mass, along the x or the y axis, respectively.

Such shift is observed for log(µMg), and log(�✏) along the x axis, and for log(n) and

log(SD[⌧ ]) along the y axis. Finally, significance of ⇣
2

, and not of ⇣
1

, indicates a

spatial trend which moves from from the origin of the spatial trend towards more

external regions only along the y axis. We observe this behaviour for log(µMg),

log() and log(SD[⌧ ]).

We then apply Moran’s I and Geary’s c on the regression residuals. Let W

be a weight matrix with elements wi,j , i = 1, ..., L and j = 1, ..., L, which define the

hypothesised range and strength of spatial connection between any two locations i

and j. We return on the definition of W later in this section. Moran’s I is defined,

in our notation, as

I =
L

PL
i=1

PL
j=1

wi,j

PL
i=1

PL
j=1

wi,j(✏i � ✏̄)(✏j � ✏̄)
PL

i=1

(✏i � ✏̄)2
,

while Geary’s c has the form

c =
L � 1

2
PL

i=1

PL
j=1

wi,j

PL
i=1

PL
j=1

wi,j [(✏i � ✏̄) � (✏j � ✏̄)]2
PL

i=1

(✏i � ✏̄)2
.

Under the null hypothesis of no spatial association, Moran’s I has expected

value equal to �1/(n � 1), while Geary’s c has expected value equal to 1 (Cli↵ and

Ord, 1973). Departures from these values indicate the presence of positive spatial

association (for m > �1(n � 1) and c < 1), or negative spatial association (for

m < �1(n � 1) and c > 1). Both measures assess the degree of similarity between

close units, although Geary’s c is more influenced by local autocorrelation (Viton,

2010)

We now discuss the choice of the weight matrix W . Each element wi,j of W

represents the strength of spatial connection between locations i and j. According

to Getis (2009), W was originally defined based on a neighbourhood criterion: in

the geographical context, for example, its elements can be assumed equal to 1 when

two units (countries) share a border, and zero otherwise. The diagonal is set to zero
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log(R0) log(Kpc)

⇣0 �0.7[�0.86, �0.51] �0.23[�0.43, �3.49 ⇥ 10�2]
⇣1 �5.44 ⇥ 10�6[�4.37 ⇥ 10�5, 4.03 ⇥ 10�5] 3.33 ⇥ 10�7[�7.53 ⇥ 10�5, 7.99 ⇥ 10�5]
⇣2 7.88 ⇥ 10�7[�1.67 ⇥ 10�5, 1.72 ⇥ 10�5] 5.09 ⇥ 10�6[�3.47 ⇥ 10�5, 3.76 ⇥ 10�5]
⇣3 1.66 ⇥ 10�3[�9.72 ⇥ 10�4, 4.20 ⇥ 10�3] �2.00 ⇥ 10�5[�8.15 ⇥ 10�3, 5.85 ⇥ 10�3]
⇣4 �2.08 ⇥ 10�4[�1.94 ⇥ 10�3, 1.32 ⇥ 10�3] 4.22 ⇥ 10�4[�3.34 ⇥ 10�3, 5.90 ⇥ 10�3]
⇣5 �1.97 ⇥ 10�5[�4.58 ⇥ 10�5, 5.67 ⇥ 10�6] 1.03 ⇥ 10�5[�4.98 ⇥ 10�5, 8.49 ⇥ 10�5]

log(n) log(µMg
)

⇣0 2.08[1.91, 2.26] �1.93[�2.04, �1.79]
⇣1 �8.89 ⇥ 10�5[�1.38 ⇥ 10�4, �3.95 ⇥ 10�5] 2.10 ⇥ 10�5[�3.87 ⇥ 10�6, 4.42 ⇥ 10�5]
⇣2 �4.28 ⇥ 10�5[�5.99 ⇥ 10�5, �2.56 ⇥ 10�5] 1.12 ⇥ 10�5[3.10 ⇥ 10�6, 1.75 ⇥ 10�5]
⇣3 2.88 ⇥ 10�3[�7.71 ⇥ 10�4, 6.50 ⇥ 10�3] 1.25 ⇥ 10�3[6.26 ⇥ 10�5, 2.75 ⇥ 10�3]
⇣4 4.54 ⇥ 10�3[2.58 ⇥ 10�3, 6.48 ⇥ 10�3] 2.62 ⇥ 10�4[�4.10 ⇥ 10�4, 1.08 ⇥ 10�3]
⇣5 �2.94 ⇥ 10�5[�7.08 ⇥ 10�5, 2.15 ⇥ 10�6] �5.18 ⇥ 10�6[�1.92 ⇥ 10�5, 6.89 ⇥ 10�6]

log(E[⌧ ]) log(SD[⌧ ])

⇣0 2.17[2.08, 2.27] 1.48[1.28, 1.67]
⇣1 �3.50 ⇥ 10�6[�2.33 ⇥ 10�5, 1.61 ⇥ 10�5] �4.68 ⇥ 10�5[�1.03 ⇥ 10�4, 1.91 ⇥ 10�5]
⇣2 �6.90 ⇥ 10�7[�6.67 ⇥ 10�6, 6.46 ⇥ 10�6] �2.77 ⇥ 10�5[�4.45 ⇥ 10�5, �1.07 ⇥ 10�5]
⇣3 3.94 ⇥ 10�4[�8.78 ⇥ 10�4, 1.57 ⇥ 10�3] �9.93 ⇥ 10�4[�4.12 ⇥ 10�3, 2.47 ⇥ 10�3]
⇣4 2.78 ⇥ 10�4[�3.95 ⇥ 10�4, 9.65 ⇥ 10�4] 2.90 ⇥ 10�3[9.76 ⇥ 10�4, 4.39 ⇥ 10�3]
⇣5 �2.44 ⇥ 10�6[�1.54 ⇥ 10�5, 9.77 ⇥ 10�6] 3.91 ⇥ 10�6[�3.19 ⇥ 10�5, 4.14 ⇥ 10�5]

log() log(�✏)

⇣0 �4.88[�5.15, �4.59] �3.97[�4.14, �3.80]
⇣1 �3.51 ⇥ 10�5[�1.13 ⇥ 10�4, 2.70 ⇥ 10�5] 3.69 ⇥ 10�5[3.18 ⇥ 10�6, 6.40 ⇥ 10�5]
⇣2 �1.54 ⇥ 10�5[�3.09 ⇥ 10�5, �5.82 ⇥ 10�7] 2.69 ⇥ 10�5[1.90 ⇥ 10�5, 3.64 ⇥ 10�5]
⇣3 2.08 ⇥ 10�4[�2.72 ⇥ 10�3, 4.09 ⇥ 10�3] 2.20 ⇥ 10�3[6.40 ⇥ 10�4, 4.08 ⇥ 10�3]
⇣4 1.24 ⇥ 10�3[�3.67 ⇥ 10�4, 2.83 ⇥ 10�3] �5.93 ⇥ 10�4[�1.48 ⇥ 10�3, 1.69 ⇥ 10�4]
⇣5 1.50 ⇥ 10�5[�1.65 ⇥ 10�5, 4.71 ⇥ 10�5] 8.36 ⇥ 10�7[�1.50 ⇥ 10�5, 1.73 ⇥ 10�5]

Table 6.1: Estimates of the coe�cients of the regression model 6.3, applied to
the samples from the hierarchical prior distribution of the parameters log(R

0

),
log(Kpc), log(n), log(µMg), log(E[⌧ ]), log(SD[⌧ ]), log() and log(�✏). Median es-
timates, with 95 % HPDIs in brackets. Robust regression with Huber weights, rlm
function in the R package MASS. We highlight in grey parameters whose 95 %
HPDIs do not include 0.

by definition. This approach was generalised in Cli↵ and Ord (1960), by providing

the general form of Moran’s I for any choice of the weight matrix W. Here we

assume the weights to be inversely proportional to the euclidean distance between

the pixels locations, for di↵erent maximum distances, after which the weight is set

to zero, partially following Cli↵ and Ord (1960), later reproduced in Bivand (2015).

We perform the calculation of I and c using the spdep R package (Bivand, 2015).

Tables 6.2 and 6.3 provide the median estimates of I and c, together with 95%
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HPDIs, for the transcription function, measurement error standard deviation and

scale parameters. Note that for interpretability purposes we report the standardised

coe�cient (with sign reversed for Geary’s c as in the R function geary.test).

log(R
0

) log(Kpc) log(n)

Dist
1

0.43[�2.20, 3.21] �7.08 ⇥ 10�3[�4.32, 4.47] 0.33[�5.33, 5.37]

Dist
2

0.54[�2.69, 2.84] �0.16[�4.78, 3.93] 7.95 ⇥ 10�2[�4.94, 4.25]

Dist
3

0.39[�2.08, 3.07] �2.12 ⇥ 10�2[�3.95, 4.16] �0.3[�3.82, 3.67]

log(µMg) log(E[⌧ ]) log(SD[⌧ ])

Dist
1

8.29 ⇥ 10�2[�1.97, 1.90] �0.34[�5.20, 4.15] 0.46[�1.62, 2.77]

Dist
2

�0.23[�2.04, 1.91] �0.60[�3.64, 2.99] 0.24[�1.85, 2.54]

Dist
3

�0.37[�1.84, 1.69] �0.79[�3.39, 2.54] �7.07 ⇥ 10�3[�2.01, 1.92]

log() log(�✏)

Dist
1

�0.13[�2.45, 1.82] �0.18[�2.02, 1.42]

Dist
2

�0.36[�2.18, 1.49] �0.38[�1.85, 1.24]

Dist
1

�0.54[�2.11, 1.15] �0.52[�1.69, 1.19]

Table 6.2: Moran’s I statistics (Moran’s I standard deviate) applied to the sam-
ples from the hierarchical prior distribution of the parameters log(R

0

), log(Kpc),
log(n), log(µMg), log(E[⌧ ]), log(SD[⌧ ]), log() and log(�✏), after removal of the
mean trend and for maximum distance Dist

1

= 27 pixels, Dist
2

= 54 pixels and
Dist

3

= 81 pixels. Weights inversely proportional to distance. Median estimates,
with 95 % HPDIs in brackets.

Neither Moran’s I nor Geary’s c provide any evidence against the null hy-

pothesis of no spatial correlation. It has to be noted, however, that the absence of

correlation does not imply independence, as nonlinear e↵ects may be taking place.

The overall results of this preliminary analysis seem therefore to suggest the

presence of a mean trend, with no residual spatial correlation. The mean trend is

observed especially for log(n), log(SD[⌧ ]), log(µMg), log() and log(�), and confirms

the visual impression of a central region with higher responsiveness of the promoter,

higher intrinsic noise and variability in the delays, and lower degradation rate, and

a peripheral region with a larger measurement error standard deviation.

Given the predominant role of the mean trend, the implementation of a

hierarchical spatial model represents a possible extension of this analysis: a third

layer can indeed be defined, e.g. by defining a mean hyper-hyperparameter of the

form fitted by the linear regression, or by exploring alternative and more detailed

models. Such an extension is however beyond the scope of the present work.

175



log(R
0

) log(Kpc) log(n)

Dist
1

0.27[�1.69, 2.15] �7.48 ⇥ 10�2[�3.04, 3.45] 0.25[�2.97, 4.50]

Dist
2

1.20 ⇥ 10�2[�1.86, 2.38] 0.53[�2.62, 3.88] 0.81[�2.71, 4.43]

Dist
3

5.26 ⇥ 10�2[�1.47, 2.00] 0.97[�1.54, 3.56] 1.04[�1.27, 3.35]

log(µMg) log(E[⌧ ]) log(SD[⌧ ])

Dist
1

1.66 ⇥ 10�2[�1.36, 2.42] 0.24[�2.64, 3.71] 0.7[�1.57, 2.92]

Dist
2

�0.25[�2.10, 1.77] 0.66[�2.18, 2.93] 0.75[�1.46, 2.77]

Dist
3

�0.38[�1.87, 1.51] 0.58[�1.29, 2.23] 0.8[�1.30, 2.54]

log() log(�✏)

Dist
1

0.34[�2.05, 1.95] �0.29[�1.83, 1.41]

Dist
2

0.2[�1.92, 2.30] �0.48[�1.94, 1.11]

Dist
3

0.27[�1.65, 2.13] �0.61[�1.91, 0.97]

Table 6.3: Geary’s c statistics (Geary’s c standard deviate, with sign reversed as in
the R function geary.test, so that is has the same direction as Moran’s I) applied
to the samples from the hierarchical prior distribution of the parameters log(R

0

),
log(Kpc), log(n), log(µMg), log(E[⌧ ]), log(SD[⌧ ]), log() and log(�✏), after removal
of the mean trend and for maximum distance Dist

1

= 27 pixels, Dist
2

= 54 pix-
els and Dist

3

= 81 pixels. Weights inversely proportional to distance. Median
estimates, with 95 % HPDIs in brackets.

6.5 Discussion

In the last part of this work, we have applied a negative feedback loop model to Cry1-

luc observed spatio-temporal data in mice SCN. The feedback loop is modelled by

means of a nonlinear stochastic model for the dynamical evolution of Cry1 mRNA,

and comprises a distributed delay. Inference is performed on the parameters of

the model by linearising the nonlinear functions involved, with a methodology that

extends the extended Kalman-Bucy filter to be applicable to systems incorporating

distributed delays.

Parameter inference has been performed at both a single-experiment level,

and by pooling the results of three independent experimental replicates by adopting

a hierarchical Bayesian meta-analytic approach. The results have revealed a sig-

nificant mean spatial trend of the parameter estimates, and in particular suggest

the presence of a central SCN region with higher promoter responsiveness, higher

intrinsic noise, lower degradation rate and a higher variability in the distribution

of the delay. On the other hand, some care is required in the interpretation of the

results, as model fit diagnostics reveal a significant residual correlation at period

12 hour across the SCN, and a 24 hour residual correlation particularly in the cen-
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tral region. Moreover, the degradation estimates tend to assume much lower mean

values than those measured in Yamaguchi et al. (2003). Model approximation is

the most likely source of both the residual correlation and the low estimate of the

degradation rate, and in particular we may be missing additional processes acting

on the PER/CRY protein complex, e.g. inter-cellular signalling, as the 24 hour

residual correlation in the central SCN can suggest. An additional approximation of

the underlying dynamics is performed by assuming the reporter protein light inten-

sities as proxies for Cry1 mRNA. An extension of the model, or alternative models

of transcriptional regulation can be explored, e.g the model of Kim et al. (2014)

does not resort on Hill-type input-output functions, but rather derives the transcrip-

tion function by assuming that repression is achieved through sequestration of the

activator CLOCK/BMAL complex by the PER/CRY complex. The authors also

point out the relevance of this alternative formulation of the transcription function

in order to achieve synchrony of Per periods across cells, as a consequence of extra-

cellular signalling, as well as in order to describe the underlying dynamics possibly

more realistically. The model of Ananthasubramaniam et al. (2014) reviewed in

section 5.2.2, on the other hand, also implements cell synchronisation by means of

extra-cellular VIP, through Hill-type equations. A comparison between our results

and those obtained by assuming a transcription function of the form proposed by

Kim et al. (2014), can definitely be of interest.

To conclude, this study has investigated spatial di↵erences of the transcrip-

tional dynamics of Cry1, as reflected by the inferred model parameter estimates. It

suggests that the central SCN region exhibits of a higher responsiveness of the pro-

moter, a lower degradation rate, as well as a higher intrinsic noise and variability in

the distribution accounting for the feedback loop delay. This result is of particular

interest, as it highlights the importance of intrinsic noise, and therefore of stochastic

modelling of such transcriptional processes, and may have a biological explanation

in observing that the core SCN, which partially overlaps with our ‘central’ locations,

receives the light impulses coming the retina; Steuer et al. (2003) shows, indeed,

that, in an input-output relationship, responsiveness of the output amplitudes to

the input ones, is higher in stochastic than in deterministic systems.
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Conclusions

In this work we have studied di↵erent scenarios of stochastic transcriptional regu-

lation, arising from the binding of transcription factor proteins to the promoter of

a putative regulated child gene. Our work extends previous modelling in this area,

and in particular Tkačik and Walczak (2011), and Nachman et al. (2004), by as-

suming the presence of two transcription factors as regulators of the child gene, and

by developing our modelling approach from an exact stochastic description of the

system, which also incorporates the binding and unbinding reactions of the two TFs

to the promoter, as well as their binding cooperativity. In order to ensure practical

parameter identifiability, we have applied available approximation approaches to the

system under study, and we have checked their accuracy through simulation. Addi-

tionally, we have investigated the e↵ect of data aggregation across di↵erent cells, for

our given set of reactions and parameter values, and outlined the condition required

for achieving meaningful parameter inference in this scenario. In particular, while

zero-th and first order reactions do not pose significant problems in this respect, due

to the linearity of the hazards, if second order reactions are included in the system

care should be taken. In order to be able to ‘safely’ perform inference on the ag-

gregated samples, at least one of the two reactants should be at approximately the

same level in each cell. Such condition is more easily satisfied when, assuming inde-

pendent and identically distributed processes for the time-evolution of the species in

each cell, high molecule numbers can be assumed for one of the two species involved

in a second order reaction. In our application, the transcription factor proteins par-

ticipate in a second order reaction when binding the promoter, and the aggregation

assumption implies assuming similar protein, and consequently mRNA, levels for

each TF, but the same assumption is not required for the promoter state (which we

treat as chemical species). We have found, in our specific application, that inference

on aggregated values may be safely performed when average molecule numbers for

the TFs are as low as 15-20 in each cell, although a minimal mismatch in the mean

and variability of the child mRNA simulated trajectory has been observed in one
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simulation scenario.

We have then outlined an approximate model for transcriptional regulation,

by additionally assuming promoter equilibrium. E↵ectively, the approximation re-

sults in a birth and death process for the child mRNA, which is then formulated as a

state-space model. Traditional filtering methodologies, adopted to estimate the like-

lihood in this modelling framework, generally assume that the same unit is observed

over time. However, biological experiments often imply destructive sampling. This

characteristic has profound consequences on the correlation structure of the sam-

ples, and specifically it implies independence (Stathopoulos and Girolami, 2013).

As a consequence, we have shown that in this framework performing smoothing is

equivalent to performing filtering at each time point, as other observations, close

or distant in time, do not add any information about the underlying process. Note

that smoothing is performed conditionally on the parameters, which are therefore

assumed to be known or set to a fixed value, and which fully determine the mean

and variance evolution of the unobserved states.

By performing inference for this regulatory framework, we have observed

that it is possible to retrieve all the parameters involved in an approximate model

which assumes that the two TFs are observed. The model is fitted to the origi-

nal SSA simulations of the full network. However, minor biases in the parameter

estimates are observed, we believe due to the strong correlation structure between

the parameters themselves. We have also observed that successful inference requires

that both the TFs are dynamically influencing the child gene transcription, as well

as that observations are available at a high frequency, and exhibit a high signal to

noise ratio.

The availability of experimental data concerning circadian genes in both

plant and mammals has motivated variations of our first proposed approach for

transcriptional regulation. For the plant circadian data, we have considered in

particular a scenario which assumes that one important transcription factor for the

putative child gene has not been observed, and we have fitted such a model to

the available rhythmic mRNA expression levels (Carré lab.). The data analysis

so performed has allowed to investigate in more depth the relevance of a known

important circadian regulator in the Arabidopsis Thaliana, namely LHY. We have

observed that, indeed, the inferred unobserved TFs profiles of genes belonging to the

circadian clock, are correlated with the observed time-series of LHY protein itself.

Moreover, by clustering the inferred unobserved mRNA profiles of the child genes,

we have observed a possible association between cluster of expression and presence of

known LHY binding sites in their promoters, but not between cluster of expression
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and LHY transcriptional e↵ect, as measured in an additional induction experiment

(Carré lab.). Our analysis has exploited the capabilities of mechanistic state-space

models for transcriptional regulation, as its application has resulted not only in the

inference of the model parameters, but also in the estimation of a whole distribution

for the unobserved TF and mRNA profiles. Such a distribution of profiles has also

allowed to easily quantify uncertainty about the output of the posterior correlation

and clustering analyses. The main limitation of this first data application is likely

to be in the relatively simple model that we have assumed for the transcriptional

dynamics, and in the approximate handling of the unobserved TF by means of a

truncated Fourier series representation. These choices are motivated by the scarcity

of available observations and prior information for each gene. Nevertheless, we have

gained some biological insight on the regulatory role of LHY, and in particular our

results point in the direction of a complex form of regulation of the child genes,

in which LHY is an important factor, but not su�cient to explain the variety of

observed phases and profiles. The association between the presence of binding sites

and cluster of expression, also suggests that factors binding to the same binding sites

as LHY may represent an important piece of the current picture, and further research

in this direction may be of interest, e.g. by comparing the inferred unobserved TF

profiles with the time-series of additional transcription factor candidates.

Finally, we have investigated a form of transcriptional regulation which arises

from an auto-regulatory feedback loop. Feedback loops can be e↵ectively described

by introducing a delay in the model. However, the presence of the delay has several

implications on the state-space modelling framework that we have considered in the

first two parts of this work; most notably, Markovianity can be assumed only over

a long time-interval, which ‘goes back’ up until the assumed maximum delay time.

When sampling is not destructive, such as in our available mammalian clock data,

the consequence is that filtering requires the update of all the unobserved state

estimates in the past having significant weight in the distribution of the delay (a

fixed delay simply implies a distribution with all its mass concentrated at one time-

point). We have developed a novel filtering methodology for systems which comprise

distributed delays, based on extension of the extended Kalman-Bucy filter. We have

shown that the computational speed of the procedure makes it applicable in the

context of an MCMC algorithm for parameter inference, and checked its empirical

coverage and induced univariate parameter likelihood. Moreover, we have taken

into account the role of temporal aggregation of the samples, and incorporated the

aggregation process in the measurement equation. We have observed that explicit

modelling of aggregation across time has not a strong e↵ect on most of the model
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parameters; however, a more significant influence is seen for the measurement error

and scale parameters, for which the log-likelihood peak gets visibly closer to the

true parameter values as a finer and finer aggregation time-grid is considered. A

thinner time grid implies, however, a higher computational cost, as a higher number

of unobserved states needs to be estimated. We have therefore performed inference

on available Cry1-luc spatio-temporal imaging data recorded in mice SCN (Hastings

lab.), by adopting a delayed-acceptance MCMC algorithm, which takes advantage of

a fast likelihood evaluation by assuming a ‘rough’ time-grid (�t = 0.5 h), to perform

a first selection of the proposed MCMC samples, and finally accepts them according

to a slow a more precise likelihood evaluation under the assumption of a thinner

time-grid for the unobserved states (�t = 0.1 h).

Independent runs of the algorithm on three experimental replicates have

shown similarities in the parameter estimates, which we have then merged with two-

stage a hierarchical meta-analytic Bayesian approach (Lunn et al., 2013). Finally we

have investigated the spatial distribution of the hierarchical parameter samples. The

spatial analysis has revealed a mean trend which moves approximately from the cen-

tral area of the SCN, towards more peripheral locations, for the parameters log(n),

log(SD[⌧ ]), log(µMg), log() and log(�). No residual spatial association has been

observed, as assessed by means of Moran’s I and Geary’s c. The results highlight

the importance of both stochastic modelling, as implied by the spatial distribution

of , and of accounting for a distributed, rather than for a fixed, delay, as indicated

by the significant spatial trend of log(SD[⌧ ]). Moreover, the parameter estimates

may partially reflect known functional di↵erences between the core and dorsal areas

of the SCN; as the core area identifies approximately the lower half of the SCN,

and partially overlaps with out ‘central’ locations, we may thus hypothesise that

upper core regions are characterised by more stochastic form of regulation, having

more distributed delays, and a higher responsiveness of the promoter. However,

model fit also suggests care in the parameter interpretation, as a significant 12 hour

periodicity is observed in the residuals across the whole SCN section, and a 24 hour

periodicity is observed particularly in the central area. Such residual periodicity is

possibly induced by processes not explicitly taken into account by our model, such

as extra-cellular signalling, or the reporter process. Alternative formulations of the

transcription function can also be investigated, such as those proposed in Kim et

al. (2014), and a comparison of the results may provide additional insights on the

underlying process. Moreover, our analysis of Cry1-luc data is only a first step into

a model which should take advantage of additional CRE-luc and, eventually, Per1-

luc and Calcium levels, measured in an analogous spatio-temporal fashion across
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the SCN (Hastings lab.). Due to the fact that Cry is auto-repressed by PER/CRY,

CRE is only activated by the protein CREB, responsive to Calcium itself, and Per1

is both repressed by the PER/CRY complex, and activated by CREB/Calcium,

the analysis of Cry1-luc, CRE-luc and Per1-luc would ideally allow to disentangle

the contribution of PER/CRY, Calcium, and the possible interaction of PER/CRY

and Calcium on transcription, respectively. Such an analysis may contribute to the

current understanding of the role of extra-cellular signalling on gene expression in

the SCN, by explicitly accounting for intrinsic noise. The explicit modelling of in-

trinsic stochasticity can be of particular interest, as it has been shown in di↵erent

studies to play an important role, broadly, in entrainment of signals to an external

input (Steuer et al., 2003), and, specifically, in generating circadian cyclicity as a

consequence of extra-cellular signalling in the SCN (Ko et al., 2010).
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Appendix A

Modelling stochastic

transcriptional regulation:

additional review material and

further details

A.1 Exact transition density for monomolecular reac-

tions systems

A closed form for the transition density of systems involving only zero-th and first

order reactions has been derived in Jahnke and Huisinga (2007).

Following the authors, define with cj,i the reaction rate of conversion of one molecule

of the j-th species into one molecule of the i-th species, and with A(t) the matrix with

elements aj,i(t), where aj,i(t) = cj,i(t) for i 6= j � 1, while ai,i(t) = �

Pp
j=0

cj,i(t).

Finally, define the vector of birth rates b(t) = (c
0,1(t), ..., c0,p(t))T .

Theorem 1 (Jahnke and Huisinga, 2007, §3.3) For a monomolecular

system with initial distribution p(0, ·) = �x0(·), for some x
0

2 INp
, the

probability distribution at time t > 0 is given by

p(t, ·) = Poi(·,�(t)) ⇤ M(·, x
1

(0),⇡(1)(t)) ⇤ ... ⇤ M(·, xp(0),⇡(p)(t)).

The vectors ⇡(i)(t) 2 [0, 1]p and �(t) 2 IRp
are the solutions of the

reaction rate equations

⇡̇(i)(t) = A(t)⇡(i)(t),
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�̇(t) = A(t)�(t) + b(t),

with ⇡(i)(0) = ✏i, �(0) = 0.

The term ✏i is equal to 1 if all the molecules at t = 0 belong to species i.

A.2 Derivation of the LNA

There are di↵erent possible derivations of the LNA (see e.g. Wilkinson, 2012; Ko-

morowski et al., 2009; Stathopoulos and Girolami, 2013; Wallace, 2010; Anderson

and Kurtz, 2011), here we follow Anderson and Kurtz (2011). The authors start by

defining the quantity

Pn⌦(t) =
p

n⌦(Z(t) � z(t)),

which gives

Z(t) = z(t) +
Pn⌦(t)
p

n⌦
.

The aim is to derive an approximation for Pn⌦(t), which, for large n⌦, is normal

for all t.

From 1.4 , it follows that (Anderson and Kurtz, 2011)

Pn⌦(t) ⇡ Pn⌦(0) +
p

n⌦


1

n⌦
SY

✓
n⌦

Z t

0

h̃(Z(s), c)ds

◆
�

Z t

0

Sh̃(z(s), c)ds

�

= Pn⌦(0) +
1

p

n⌦
SỸ

✓
n⌦

Z t

0

h̃(Z(s), c)ds

◆

+

Z t

0

p

n⌦
⇣
Sh̃(Z(s), c) � Sh̃k(z(s), c)

⌘
ds.

The authors then apply two approximations. The first one is the normal approxi-

mation to the Poisson process, i.e.

S
1

p

n⌦
Ỹ

✓
n⌦

Z t

0

h̃(Z(s), c)ds

◆
⇡ SB

✓
diag

Z t

0

h̃(Z(s), c)ds

�◆
,

where B is an r-dimensional Wiener process. The second is the first order Taylor

expansion of h̃(Z(s), c) about the deterministic limit z(t)

h̃(Z(s), c) ⇡ h̃(z(s), c) + J
˜h(z(s))(Z(s) � z(s)),
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which e↵ectively eliminates nonlinearities. The process becomes

Pn⌦(t) ⇡ Pn⌦(0) + SB

✓
diag

Z t

0

h̃(Z(s), c)ds

�◆
+

Z t

0

SJ
˜h(z(s))Pn⌦(s)ds,

and, as n⌦ ! 1, it follows that (Anderson and Kurtz, 2011)

P (t) ⇡ P (0) + SB

✓
diag

Z t

0

h̃(z(s), c)ds

�◆
+

Z t

0

SJ
˜h(z(s))P (s)ds,

which gives the desired result.

A.3 First derivatives of the transcription function

The first partial derivatives of the transcription function of Equation 1.5 have the

form

d⌫(xPA
, xPB

)

dxPA

=

1
KA

(R0
A � R0

0) + 1
KA

1
KB

xPB
(R0

A �

1
Kc

R0
0) + 1

KA

1
K2

B

1
Kc

x2
PB

(R0
A,B � R0

B)
⇣
1 +

xPA

kA
+

xPB

KB
+ 1

Kc

xPA

KA

xPB

KB

⌘2

+
1

KA

1
KB

xPB
( 1

Kc
R0

A,B � R0
B)

⇣
1 +

xPA

kA
+

xPB

KB
+ 1

Kc

xPA

KA

xPB

KB

⌘2 ,

and

d⌫(xPA
, xPB

)

dxPB

=

1
KB

(R0
B � R0

0) + 1
KA

1
KB

xPA
(R0

B �

1
Kc

R0
0) + 1

K2
A

1
KB

1
Kc

x2
PA

(R0
A,B � R0

A)
⇣
1 +

xPA

kA
+

xPB

KB
+ 1

Kc

xPA

KA

xPB

KB

⌘2

+
1

KA

1
KB

xPA
( 1

Kc
R0

A,B � R0
A)

⇣
1 +

xPA

kA
+

xPB

KB
+ 1

Kc

xPA

KA

xPB

KB

⌘2 .

Setting Kc = 1 gives

d⌫(xPA
, xPB

)

dxPA

=
( 1

KA
+ 1

KA

xPB
KB

)((R0
A � R0

0

) + (R0
A,B � R0

B)
xPB
KB

)

(1 +
xPA
kA

+
xPB
KB

+
xPA
KA

xPB
KB

)2
,

and
d⌫(xPA

, xPB
)

dxPB

=
( 1

KB
+ 1

KB

xPA
KA

)((R0
B � R0

0

) + (R0
A,B � R0

A)
xPA
KA

)

(1 +
xPA
kA

+
xPB
KB

+
xPA
KA

xPB
KB

)2
.
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Appendix B

Arabidopsis thaliana modelling:

additional information and

modelling tools

B.1 Prior information on the dissociation coe�cients:

additional details

The average concentration of LHY per cell is computed as follows. The average level

of LHY protein is of about 2.14⇥104 molecules per cell, from additional information

provided by personal communication with I. Carré. According to Wang (2013), the

nuclear area of wild type rosette leaves in the Arabidopsis thaliana is about 70µm3.

Therefore, the nuclear volume results about 4.41 ⇥ 102 µm3. Following Price et al.

(1973), the ratio between the Arabidopsis thaliana nuclear and cellular volume is

0.16, leading to a cellular volume of approximately 2753.54 µm3.

Conversion from molecules to moles, leads to 8.06 ⇥ 10�23 M · µm�3 for the

average LHY protein level. Finally, given that 1 l of solution occupies 1015 µm3,

it follows that average LHY protein concentration per cell is approximately 1.29 ⇥

10�8 M.

As a final remark, one main critical point of the dissociation coe�cients

estimates provided, is that the available values are only based on one experiment,

therefore there is no information about their variability.
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B.2 Switch tool

The switch tool presented in Jenkins et al. (2013) allows estimating the times at

which a gene changes transcription, as well as the transcription rates (in units of

the real data) and degradation rate of its mRNA, given its mRNA time series. An

underlying dynamical model of the form

dM(t)

dt
= ⌫i � µM(t) (B.1)

is assumed, where M(t) denotes the mRNA at time t, µ is the degradation rate,

and ⌫i, i = 0, ..., w denotes the transcription rate for t between time si and si+1

,

called switch time. The residuals between the observed data and the solution of

the di↵erential equation (B.1) are assumed to be normal with mean 0 and level-

dependent standard deviation.

The degradation rate is assumed to be constant, while a switch is denoted

by a change in the transcription rate, which could be classified as either ‘On’, if

the transcription rate is higher after the switch, or ‘O↵’, if the transcription rate

becomes lower.

A reversible jump MCMC is employed to estimate the switch points. The

measurement error variance is estimated with a Gibbs step, the degradation rate

with a Metropolis-Hastings step. The transcription rates are obtained via weighted

least squares, given all the other parameters in the model. Although the latter does

not belong to the traditional framework of Bayesian regression, it has been verified

through simulation to provide no significant mismatch in estimation, while highly

improving the computational speed of the algorithm.

B.3 Fourier series representation

Here we report Theorem 8.3 in West (1999, Chapter 8), which defines the Fourier

series representation of any observed time-series. In particular, the theorem states

that

Theorem 2 (West, 1999, Chapter 8) Any sequence of n real numbers

�
1

, ....�n can be written as

�j = a
0

+
hX

q=1

Hq(j),

where h is the largest integer not exceeding n/2 and the coe�cients a
0

,
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aq, bq, an/2 and bn/2 are given by

a
0

=
1

n

n�1X

j=0

�j , an/2 =
1

n

n�1X

j=0

(�1)j�j , bn/2 = 0

aq =
2

n

n�1X

j=0

�j cos(↵qj), bq =
2

n

n�1X

j=0

�j sin(↵qj) 1  q < n/2.(B.2)

The function

Hq(j) = aq cos(↵qj) + bq sin(↵qj) = Aq cos(↵qj + �q),

is the so-called q-th harmonic, evaluated at j. The coe�cients Aq =
q

a2q + b2q and

�q = arctan(�bq/aq), represent, respectively, its half-amplitude and phase. Finally,

the quantity ↵ = 2⇡/n is the frequency of the first harmonic. Essentially, the original

series is decomposed in h sinusoidal functions, the q-th sinusoidal having frequency

↵q = 2⇡q/n.
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Appendix C

Arabidopsis Thaliana

simulation study: additional

plots
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Figure C.1: Unobserved TF inference (smoothing): posterior median and 95 %
HPDIs. Estimates obtained for �t = 1 h (blue) and �t = 2 h (magenta). True
simulated TF B (from the di↵usion approximation) superimposed in red. Model 3.6,
as applied to di↵usion approximation data simulated according to the parameters of
Figure 3.5. MCMC samples for two replicates of scenario A (top), and two replicates
of scenario B (bottom).
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Figure C.2: Unobserved TF inference (smoothing): posterior median and 95 %
HPDIs. Estimates obtained for di↵usion approximation simulated data (blue) and
SSA simulated data (magenta). True simulated TF B (from the di↵usion approx-
imation) superimposed in red. Model 3.6, as applied to SSA simulated data from
the model in Table 1.1 and parameter values as in the scenarios of Figure 4.11, and
di↵usion approximation data simulated according to the scenarios of Figure 3.5.
MCMC samples for one replicate scenario A (top) and B (bottom).

191



(a) Scenario A

(b) Scenario B

Figure C.3: Comparison of the kernel density estimates of the transcription func-
tion, noise, scale and degradation parameters of Model 3.6: di↵usion approximation
simulated data (blue) and SSA simulated data (magenta); the red line is at the
true value. MCMC samples for one SSA simulation with parameters as in Figure
4.11 and one di↵usion approximation simulation with parameters as in Figure 3.5,
scenario A (top) and B (bottom). The red vertical line is at the true value.
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Appendix D

Arabidopsis Thaliana data

analysis: additional plots

Figure D.1: Violin plots for the correlation of the posterior unobserved TFs profiles
and smoothed observed LHY. Fisher transformation of the correlation coe�cient.
Genes between positions 21 and 34, in order of median posterior correlation, in
absolute value. Note that for a limited number of genes only one mode satisfies the
model fit requirements. Rhythmic Nanostring genes, with satisfactory explained
circadian rhythmicity, Carré lab. Plot code from Dorn (2009).
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(a) ‘Within cluster’ deviances.

(b) Beale’s F statistics. Beale’s F statistics test the hypothesis that an increase from k to k + 1
clusters, k = 1, ...,K, provides a significant decrease in the ’within cluster’ deviance; here we plot k
on the x axis. The red line is the threshold for significance at level ↵ = 5%.

Figure D.2: ‘Within cluster’ deviances and Beale’s F statistics for the cluster par-
titions identified by the k-means algorithm, as applied to the samples posterior
profiles of the child mRNA, and for an increasing number of clusters. Each line cor-
responds to one sample matrix of posterior profiles of the child mRNA, where each
row corresponds to a gene. Rhythmic Nanostring genes, with satisfactory explained
circadian rhythmicity. Carré lab. at Warwick.
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Jenkins, D.J., Finkenstädt, B., & Rand, D. A. (2013). A temporal switch

model for estimating transcriptional activity in gene expression. Bioin-

formatics, 29 (9), 1158-1165.

Kalman, R. E. (1960). A new approach to linear filtering and prediction prob-

lems. Journal of Fluids Engineering, 82 (1), 35-45.

Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and

prediction theory. Journal of Fluids Engineering, 83 (1), 95-108.

Kim, J. K., & Forger, D. B. (2012). A mechanism for robust circadian time-

keeping via stoichiometric balance. Molecular systems biology, 8 (1), 630.

Kim, J. K., Kilpatrick, Z. P., Bennett, M. R., Josić, K. (2014). Molecular
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