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Abstract

We analyze how private learning in a class of games with common stochastic payoffs affects
the form of equilibria, and how properties such as player welfare and the extent of strategic
miscoordination relate across monotone and non-monotone equilibria. Researchers typically
focus on monotone equilibria. We provide conditions under which non-monotone equilibria
also exist, where players attempt to coordinate to obtain the stochastic payoff whenever sig-
nals are in a bounded interval. In bounded interval equilibria (BIE), an endogenous fear of
miscoordination discourages players from coordinating to obtain the stochastic payoff when
their signals suggest coordination is most beneficial. In contrast to monotone equilibria,
expected payoffs from successful coordination in BIE are lower than the ex-ante expected
payoff from ignoring signals and always trying to coordinate to obtain the stochastic pay-
off. We show that BIE only exist when, absent private information, the game would be a
coordination game.

Keywords: Non-monotone Equilibria, Total Positivity, Coordination Games, Information
Aggregation.



1 Introduction

In this paper, we analyze how private learning in a class of coordination games with common

stochastic payoffs affects the nature and structure of equilibria, and how properties such as

player welfare and the extent of strategic miscoordination are related across the monotone

and non-monotone equilibria that may result. We analyze the game in Figure 1, where h,

l and w are known parameters with h > l, but θ is an unknown common stochastic payoff

drawn from a distribution with support R, and players receive noisy private signals about θ.

player A

player B
0 1

0 h, h w, l

1 l, w θ, θ

Figure 1

The game captures some key aspects of strategic interactions in a variety of economic

and political settings. For example, it describes:

• A coup game between officers who must decide whether to mount a coup based on pri-

vate signals about the successful coup payoff θ, where the coup only succeeds if both

officers act. If one officer acts, the coup fails, and the disloyal officer is punished. The

setting captures the possibilities that, when a coup fails, the loyal officer’s payoff can

fall (w < h) if the ruler increases surveillance of the military or reduces its budget to

weaken it; or it can rise (w > h) when a loyal officer who informs the ruler is rewarded,

or the ruler raises the military budget to keep officers happy.1

• A technology adoption game in which firms must decide whether to stick to an existing

platform or to pursue a new network/platform investment (with uncertain value) that

1Shadmehr and Bernhardt (2011) analyze monotone equilibria in a revolution setting in which citizens
receive signals about the uncertain revolution payoffs (θ), and a regime punishes a leader of a failed revolt.
They impose w = h, and use the special properties of the additive normal signal structure to establish the
existence of a threshold µ∗ > 0 such that two symmetric finite-cutoff equilibria exist if µ < µ∗, but no such
equilibrium exists if µ > µ∗. Bueno de Mesquita (2014) also uses a normal-noise signal structure in his study
of the consequences of the “location of uncertainty” and limit dominance (one-sided vs. two-sided), proving
that zero or two finite-cutoff equilibria generically exist. It is not clear which properties drive these findings.
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only pays off if broadly adopted.

• A “relationship game” in which individuals, who know the value of their relationships

with their current partners, receive signals about their payoffs if they break those re-

lationships to form a new one together (action 1), where h > l reflects that breaking

an existing relationship is costly if a potential partner does not reciprocate.

• A tariff war, in which countries choosing between high tariffs and free trade, where the

countries know the payoffs from high tariffs, but receive signals about the uncertain

political economy payoffs of free trade.

In these settings, the noisy signals typically leave players very uncertain about whether

the actual payoffs from “successful” coordination on action 1 exceed the sure payoffs from

coordinating on action 0, and the other player’s equilibrium action will contain material infor-

mation about θ—players face both information aggregation and miscoordination concerns.2

Were θ public information, then when θ ≥ w, equilibrium imposes no restrictions on how

players coordinate: if a player believes the other will take action 1, then she will take action

1 to receive θ; but if she believes that the other will take action 0, the miscoordination cost

µ ≡ h− l > 0 causes her to take action 0, expecting only to receive h. Concerns about strate-

gic miscoordination can induce players to take action 0, no matter how high θ is. However, in

most strategic settings, rather than θ being public information, players instead receive private

noisy signals, leaving substantial uncertainty about its value. In such settings, we ask: what

forms can equilibria take, and how do the properties of these equilibria relate to each other?

Researchers typically focus on equilibria in finite-cutoff strategies in which a player takes

action 0 when her signal about θ is below some critical cutoff, but takes action 1 when the sig-

nal is above. We show that such equilibria exist if and only if µ is sufficiently small.3 We then

provide conditions under which non-monotone equilibria also exist in which each player takes

action 1 if and only if her signal is in a bounded interval. In these bounded interval equilibria

(BIE), an endogenous fear of miscoordination discourages players from coordinating on ac-

tion 1 to obtain θ exactly when their signals suggest that coordination is most beneficial. We

2Chassang and Padró i Miquel (2010) analyze a related setting in which signal noise is vanishingly small,
so that only miscoordination concerns are present, and a unique monotone equilibrium obtains.

3A coordination failure equilibrium in which both players always take action 0 always exists.
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prove that bounded interval equilibria exist only when finite-cutoff equilibria exist, and that

if, following a signal, a player takes action 1 in a bounded interval equilibrium, then she also

does so in the largest finite-cutoff equilibrium. Moreover, bounded interval equilibria only

exist if w < E[θ]—there must be sufficient potential surplus from coordinating on action 1.

Thus, for bounded interval equilibria to exist, absent private information, the game must be a

coordination game with both h > l and E[θ] > w. This means that in our private information

setting, in any bounded interval equilibrium, players face an expected risk of miscoordination

even when taking the “safe” action 0: unconditionally, were the other player to always take

action 1, it must be better to always take action 1 than to always take action 0. We then

highlight the bad welfare properties of bounded interval equilibria, showing that while in any

finite-cutoff equilibrium, a player’s ex-ante expected payoff from successfully coordinating on

action 1 always exceeds E[θ], in any bounded interval equilibria, the opposite must hold.

We first analyze monotone equilibria. Given an affiliation assumption on signal structures

plus some tail restrictions on distributions, we show that equilibria in finite-cutoff strategies

exist if and only if the miscoordination cost µ is not too high. We then investigate the num-

ber of finite-cutoff equilibria that can exist. Previous results based on additive normal noise

signal structures suggest that generically either zero or two finite-cutoff equilibria exist—see

footnote 1. We show that this result does not generalize. For example, with an additive

logistic noise signal structure, a unique finite-cutoff equilibrium obtains when µ is small.

We then ask whether and when more limited coordination can emerge in equilibrium.

We search for equilibria in bounded interval strategies (BIS) in which players take action 1

whenever their signals about the common coordination payoff are high, but not too high, i.e.,

whenever signals are inside a bounded interval (kL, kR). In such bounded interval equilibria

(BIE),4 a self-fulfilling fear of miscoordination causes players not to take action 1 precisely

when their signals suggest that the payoff from coordinating on action 1 is highest.

We first use Karlin’s variation diminishing theorem to show that when the conditional

pdf of signals given θ is totally positive of order three (TP3), then the best response to a

BIS is either a BIS or always to take action 0. We next establish necessary and sufficient

conditions for an arbitrary BIS (kL, kR) to be supported as an equilibrium for some set of

4By a bounded interval equilibrium, we mean an equilibrium in bounded interval strategies. We use BIE
as an abbreviation for both bounded interval equilibrium and bounded interval equilibria.
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primitive payoff parameters, {w, µ}: player indifference at kL and kR means that they must

be more likely to succeed in coordinating on action 1 following signal kL than signal kR,

since the expected payoff from successful coordination is higher given kR.5

We show that if a bounded interval equilibrium (BIE) exists, then so does a finite-cutoff

equilibrium. Moreover, any BIE must be “contained” in the largest monotone equilibrium—

letting k be the cutoff for the monotone equilibrium in which players take action 1 the most,

we establish that k < kL, i.e., players are strictly more likely to take action 1 in the k

equilibrium. Intuitively, the finite-cutoff k equilibrium offers the promise of a better upside

from coordination—the other player may have a really high signal—and miscoordination is

less likely, making it worthwhile to risk trying to coordinate on action 1 following a less

promising signal. We then show that if multiple finite-cutoff equilibria exist, and k̄ is the

cutoff for the smallest one, then kL < k̄: miscoordination is more likely following signal k̄ in

the monotone equilibrium than it is following signal kL in the BIE; but the potentially high

payoff if the other player has an especially high signal makes it worthwhile.6

To illustrate the extent to which the endogenously-generated fear of miscoordination must

necessarily be severe in a BIE, we specialize to the classical additive normal noise signal struc-

ture. Normalizing E[θ] = 0, we show that if (kL, kR) is a BIE, then kL < 0 and |kL| > kR,

implying that k < kL < kR < −k. Thus, on average, in a BIE, a player seeks to coordinate

5Chen and Suen (2015) investigate a game with model uncertainty where individuals update from their
incomes about whether a revolution would lead to an improved distribution of incomes. Equilibria take
a bounded interval form, because wealthy individuals do not want to have their income re-allocated and
hence have dominant strategies not to revolt; and poor individuals are pessimistic about the prospect that
an improved distribution of incomes would result (and revolution is costly). From a technical perspective,
Chen and Suen prove the existence of bounded interval equilibria using Tarski’s fixed point theorem. In
contrast to our setting, in their setting, monotone equilibria do not exist (reflecting that the very poor and
very rich never revolt), the best response to a BIS is always a BIS, the best response to a larger BIS is also
a larger BIS (best responses are monotone with respect to set inclusion order), and one can construct a
natural complete lattice consisting of non-degenerate intervals that the best response correspondence maps
into itself. Therefore, Tarski’s theorem applies. However, in our setting, the best response to a BIS can be
a monotone strategy. Moreover, when BIS is sufficiently large (with lower bound above that for the largest
monotone equilibria), iterating on best responses can generate consecutively larger BISs (each containing
the preceding one, implying a monotone mapping), but one cannot construct a complete lattice because
each interation makes the resulting BIS closer to a monotone strategy, as the upper end of the BIS grows
without bound. This means that one cannot apply Tarski’s theorem, necessitating a completely different
approach to establishing the existence of a BIE.

6Because this game is not supermodular, one cannot invoke the result that the largest and smallest
equilibria are monotone (see Van Zandt and Vives (2007) and their literature review). For a method of con-
structing non-monotone equilibria in dynamic supermodular games, see Balbus, Reffett, and Woźny (2014).
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to receive θ on a very limited set of signals, and the expected fruits of such coordination are

low relative to the potential benefits: conditional on coordinating on action 1 and obtaining

θ, a player’s expected payoff is lower than E[θ] = 0 in any BIE, while it is higher than E[θ]

in any finite-cutoff equilibrium. Moreover, we show that for a BIE to exist, w must be less

than E[θ]—BIE exist only when, absent private information, we have a coordination game.

We conclude with a discussion of non-monotone equilibria, (a) when stochastic payoffs

from coordinating on action 1 are private rather than common values; and (b) in global

games that feature two-sided limit dominance (see e.g., Morris and Shin (2003)).

2 The Model

Two players A and B must choose between actions 0 and 1. Payoffs are depicted in Figure

1; players receive the common stochastic payoff θ if and only if they both take action 1, and

payoffs h, l and w are common knowledge, with h > l. Each player i ∈ {A,B} receives a

private signal si about θ. After receiving signals, players simultaneously take actions.

The signals and θ are jointly distributed according to a strictly positive, continuously

differentiable density f(θ, sA, sB) on R3. Players are symmetrically situated in the sense

that the signals are exchangeable, i.e., f(θ, s, s′) = f(θ, s′, s), for all θ, s, s′. We assume that

sA, sB and θ are strictly affiliated:7 a higher signal si represents good news about sj and θ.

We also impose standard additional structure on the tail properties of f(θ, sA, sB):

Assumption A1 For i, j ∈ {A,B} with i 6= j:

(a) lim
si→−∞

Pr(sj > k|si) = 0 and lim
si→∞

E[θ|sj > k, si] =∞, for all k ∈ R.

(b) lim
k→−∞

E[θ|sj > k, si = k] = −∞ and lim
k→∞

Pr(sj > k|si = k) E[θ|sj > k, si = k] <∞.

Assumption A1 implies that limk→∞ Pr(s
j > k|si = k) = 0 and limsi→−∞E[θ|si] = −∞.

In the Online Appendix, we show that A1 holds with an additive noise signal structure,

si = θ + νi, where θ and νis are independent normal or logistic random variables.

A pure strategy for player i is a function ρi mapping her signal si about θ into an action

7si, sj and θ are strictly affiliated if, for all z, z′ ∈ R3, with z 6= z′, f(min{z, z′})f(max{z, z′}) >
f(z)f(z′), where min and max are defined component-wise (see de Castro (2010) for a review).
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choice. That is, ρi : R→ {0, 1}, where ρi(s
i) = 1 indicates that player i takes action 1, and

ρi(s
i) = 0 indicates that i takes action 0.

2.1 Monotone Equilibria

We first analyze monotone strategies, where a player’s strategy is (weakly) monotone in her

signal. With finite-cutoff strategies, a player j’s strategy is summarized by a critical cutoff kj:

ρj(s
j) = 1 if sj > kj and ρj(s

j) = 0 if sj ≤ kj.

Let ∆(si; kj) be player i’s expected net payoff from taking action 1 rather than 0, given

her signal si and the other player’s cutoff kj. Then,8

∆(si; kj) = Pr(sj > kj|si) (E[θ|sj > kj, si]− w)− Pr(sj ≤ kj|si) µ, (1)

where µ ≡ h− l > 0 is the net miscoordination cost of taking action 1 when the other player

takes action 0. Player i takes action 1 if and only if ∆(si; kj) > 0.9

Because the payoff θ from coordinating on action 1 can be very low, the game is not

supermodular. When player j reduces her cutoff kj (takes action 1 more), player i is less

likely to pay the miscoordination cost, i.e., Pr(sj ≤ kj|si) µ falls, raising i’s incentive to take

action 1, creating a force for strategic complements. However, when player j reduces her

cutoff kj, player i’s expected payoff from successful coordination on action 1, E[θ|sj > kj, si],

also falls, reducing her incentive to take action 1, creating a force for strategic substitutes.

Always taking action 1 is never a best response. To see this, first note that if player j

always takes action 1, then player i takes action 1 if and only if E[θ|si] > w, and A1 implies

limsi→−∞E[θ|si] = −∞ < w. Next, note that if, instead, player j adopts a finite-cutoff

strategy with cutoff kj, then from equation (1),

lim
si→−∞

∆(si; kj) = lim
si→−∞

Pr(sj > kj|si) (E[θ|sj > kj, si]− w)− Pr(sj ≤ kj|si) µ < 0,

since limsi→−∞E[θ|sj > kj, si] < ∞ and limsi→−∞ Pr(s
j ≤ kj|si) = 1 from A1. Thus, i

takes action 0 if her signal is sufficiently low. Further, since h > l, if player j always takes

8Throughout the paper, we assume the existence of the expectations that we use.
9To ease exposition, we assume that in the non-generic event that a player is indifferent between taking

actions 0 and 1, she takes action 0.
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action 0, then so should player i: always taking action 0 is always an equilibrium. Besides

this equilibrium, all other monotone equilibria are in finite-cutoff strategies. Unless stated

otherwise, in what follows, when we write a cutoff strategy, we mean a finite-cutoff strategy.

Lemma 3 in the Appendix establishes that the best response to a finite-cutoff strategy

is a unique finite-cutoff strategy. Thus, a pair of finite cutoffs (ki, kj) is an equilibrium if

and only if ∆(ki; kj) = ∆(kj; ki) = 0. Throughout, we focus on symmetric equilibria where

kj = ki = k. Thus, (k, k) is a (symmetric) cutoff equilibrium if and only if ∆1(k) = 0, where

∆1(k) ≡ ∆(k; k) = Pr(sj > k|si = k) (E[θ|sj > k, si = k]− w + µ)− µ. (2)

We say that a cutoff equilibrium is larger when its cutoff is smaller, so that players are more

likely to take action 1 in that equilibrium. Proposition 1 characterizes cutoff equilibria.

Proposition 1 There exists a threshold µ∗ > 0 on miscoordination costs such that a finite-

cutoff equilibrium exists if µ < µ∗, but not if µ > µ∗.10 Moreover, if ∆1(x) is either single-

peaked or strictly increasing, then at most one other finite-cutoff equilibrium exists.

Proposition 1 reveals that when the miscoordination cost µ is large, the potential gains

from coordinating on action 1 and obtaining θ are swamped by the risk of taking action 1

when the other player takes action 0. One might posit that as µ rises and incentives to take

action 1 fall, equilibrium cutoffs could adjust, preserving finite-cutoff equilibria. However,

because the expected value of coordinating on action 1 is bounded from above (by A1 (b)),

sufficiently high miscoordination costs µ always swamp the possible coordination gains.

The properties of best response curves provide further insights. Let ki(kj) be player i’s

unique best response cutoff to player j’s cutoff kj. Even were j to always take action 1,

player i only takes action 1 when her signal is sufficiently high, i.e., limkj→−∞ k
i(kj) is finite.

Thus, if ki(kj) crosses the 45◦ line, the first crossing must occur from above. Moreover,

raising the punishment cost µ or the predatory payoff w makes a player more hesitant to

take action 1, i.e., ki(kj) shifts upward, ∂k
i(kj ;µ)
∂µ

, ∂ki(kj ;w)
∂w

> 0. Once the miscoordiantion cost

µ exceeds a threshold, ki(kj) > kj for all kj, and hence no finite-cutoff equilibrium exists.

When µ is below that threshold, at least one finite-cutoff equilibrium exists.

10Note that µ∗ will vary with the primitives describing payoffs and signals of the model.
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When ∆1(x) is single-peaked or strictly increasing, there can be at most two finite-cutoff

equilibria. In the Online Appendix, we show that when si = θ+ νi, (1) if θ and νis are inde-

pendent normal random variables, then ∆(x) is single-peaked for all µ > 0 and w; and (2)

if θ, νA, νB ∼ iid e−x

(1+e−x)2
(logistic), then ∆(x) is single-peaked when µ is large enough that

w < 1+µ, but is strictly increasing when w ≥ 1+µ. We also provide alternative general suffi-

cient conditions for ∆1(k) to be single-peaked or increasing: (1) Pr(sj > k|si = k) is decreas-

ing and logconcave in k, and (2) E[θ|sj > k, si = k]−w+µ is logconcave in k when positive.

Let k be the cutoff for the largest finite-cutoff equilibrium, and k̄ be the cutoff for the

smallest finite-cutoff equilibrium when multiple equilibria exist. Because raising µ or w shifts

∆1(k) downward, when ∆1(x) is single-peaked or strictly increasing, increases in µ or w raise

k, but reduce k̄: the largest finite-cutoff equilibrium has “natural” comparative statics, but

the smallest one has the opposite comparative statics, reflecting that it is locally unstable.

Μ=0.1

Μ=1

Μ=2.14»Μ*

Μ=2.5

-10 -5 5 10 15
k

-2

-1

1

D1Hk;ΜL

Figure 2: ∆1(k;µ) as a function of k for different values of miscoordination costs µ.
si = θ + νi, i ∈ {A,B}, where θ and νis are iid logistic e−x

(1+e−x)2
. When µ is small, there is

a unique finite-cutoff equilibrium. Parameters: w = −1.5.

When ∆1(x) is single-peaked or strictly increasing, the right-tail properties of ∆1(k) de-

termines the number of finite-cutoff equilibria. With an additive normal signal structure,

Shadmehr and Bernhardt (2011) show that limk→∞∆1(k) < 0, so either zero or two finite-

cutoff equilibria exist generically. This result does not generalize. For example, as Figure

2 illustrates, with an additive logistic noise signal structure, when µ is small, limk→∞∆1(k)
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can be positive, implying a unique finite-cutoff equilibrium—see the Online Appendix.

2.2 Bounded Interval Equilibria

We next investigate when other types of equilibria can exist. In particular, we determine

when an endogenously-generated fear of miscoordination can give rise to equilibria in which

players sometimes seek to coordinate on action 1, but fail to do so precisely when their

signals suggest that payoffs from successful coordination would be very high. We then relate

the properties of monotone and these non-monotone, bounded interval equilibria (BIE), and

characterize the primitive parameters for which BIE do and do not exist.

We say that player j adopts the bounded interval strategy (kjL, k
j
R) when

ρj(s
j) = 1 if and only if kjL < sj < kjR, with kjL, k

j
R ∈ R. (3)

Let Γ[si; kjL, k
j
R] be player i’s net expected payoff from taking action 1 when her signal is si

and player j adopts interval strategy (kjL, k
j
R). Mirroring the derivation of equation (1),

Γ[si; kjL, k
j
R] = Pr(kjL < sj < kjR|s

i) (E[θ|kjL < sj < kjR, s
i]− w + µ)− µ. (4)

To characterize best responses to a bounded interval strategy (BIS), it helps to link Γ[si; kjL, k
j
R]

to player i’s net expected payoff from taking action 1 if she knew θ. Let π(θ; kjL, k
j
R) be i’s

incremental return from taking action 1 given θ and (kjL, k
j
R):

π(θ; kjL, k
j
R) = (θ − w) Pr(kjL < sj < kjR|θ) + (l − h) (1− Pr(kjL < sj < kjR|θ))

= (θ − (w − µ)) Pr(kjL < sj < kjR|θ)− µ. (5)

Then we can write player i’s net expected payoff from taking action 1 given signal si as

Γ(si; kjL, k
j
R) =

∫ ∞
−∞

π(θ; kjL, k
j
R) f(θ|si) dθ, (6)

where f(θ|si) is the pdf of θ given si. To analyze the properties of Γ(si; kjL, k
j
R), we use

Karlin’s theorem on the variation diminishing property of totally positive functions (Karlin

1968, Ch. 1, Theorem 3.1). A function K(x, y) is Totally Positive of order n, TPn, whenever∣∣∣∣∣∣∣∣∣∣
K(x, y) ∂

∂y
K(x, y) · · · ∂m−1

∂ym−1K(x, y)
∂
∂x
K(x, y) ∂2

∂x∂y
K(x, y) · · · ∂m

∂x∂ym−1K(x, y)
...

...
. . .

...
∂m−1

∂xm−1K(x, y) ∂m

∂xm−1∂y
K(x, y) · · · ∂2(m−1)

∂ym−1∂xm−1K(x, y)

∣∣∣∣∣∣∣∣∣∣
≥ 0, for m = 1, · · · , n.
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From Karlin’s theorem, if K(si, θ) = f(θ|si) is totally positive of order n and π(θ) has

r ≤ n − 1 sign changes, then Γ(si; kjL, k
j
R) has at most r sign changes. We assume that our

information structure has the following properties:

Assumption A2 For i, j ∈ {A,B} with i 6= j, the probability density of si conditional on θ,

f(si|θ), is totally positive of order three (TP3), and Pr(kL < si < kR|θ) is strictly logconcave

in θ. Moreover, limsi→∞E[θ|sj, si]f(sj|si) = limsi→∞ f(sj|si) = 0 for any sj.

We show in an Online Appendix that A2 holds if si = θ + νi, where θ and νis are in-

dependent normal or iid logistic random variables.11 Given this structure, we use Karlin’s

theorem to derive the shapes of Γ(si; kjL, k
j
R) and π(θ; kjL, k

j
R), using equations (4) to (6).

This allows us to characterize the best response to a BIS:

Lemma 1 Suppose player j adopts a bounded interval strategy. Then, either player i’s best

response is a bounded interval strategy, or it is to always take action 0.

We first use logconcavity to show that (i) π(θ; kjL, k
j
R) has a unique maximum whenever it

is positive, and (ii) when θ increases unboundedly, Pr(kL < si < kR|θ) approaches zero

at a rate faster than exponential functions (An 1998), and hence limθ→∞ Pr(kL < si <

kR|θ)(θ− (w−µ)) = 0. We use these to show that π(θ; kjL, k
j
R) has at most two sign changes.

We then use the fact that because f(si|θ) is TP3, Karlin’s theorem implies that Γ(si; kjL, k
j
R)

has at most two sign changes. Moreover, limsi→±∞ Γ[si; kjL, k
j
R] < 0.12 This implies that

either Γ[si; kjL, k
j
R] has two sign changes or no sign change, in which case it must be neg-

ative. And, if Γ[si; kjL, k
j
R] has exactly two sign changes, then as si traverses from −∞ to

∞, Γ(si; kjL, k
j
R) must first change sign from negative to positive and then from positive to

negative; this is precisely the property of a bounded interval strategy (BIS).

Throughout, we focus on symmetric BIE. The necessary and sufficient condition for

(kL, kR) to be a symmetric BIE is Γ[si; kL, kR] > 0 if and only if si ∈ (kL, kR). To find a sym-

metric BIE, one must solve the system of equations that describe a player’s indifference be-

tween taking actions 0 and 1 at the cutoffs: Γ[si = kL; kL, kR] = 0 and Γ[si = kR; kL, kR] = 0.

11Suppose νi ∼ h. Then, affiliation (TP2) requires h to be log-concave: (h′)2 ≥ hh′′. TP3 involves higher

derivatives of h, in particular, ∂3f(si|θ)
∂si∂2θ = −∂

3f(si|θ)
∂2si∂θ = h(3)(si − θ) and ∂4f(si|θ)

∂2si∂2θ = h(4)(si − θ).
12From A2, (i) limsi→∞E[θ|sj , si]f(sj |si) = 0, which implies limsi→∞ Pr(kL < sj < kR|si) E[θ|kL < sj <

kR, s
i] = limsi→∞

∫ kR
kL

E[θ|sj , si]f(sj |si) = 0; and (ii) limsi→∞ f(sj |si) = 0, which implies limsi→∞ Pr(kL <

sj < kR|si). Therefore, limsi→∞ Γ[si; kjL, k
j
R] < 0. Moreover, A1 (a) implies limsi→−∞ Γ[si; kjL, k

j
R] < 0.
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Γ[kR;kL,kR]=0

Γ[kL;kL,kR]=0

Γ[kL;kL,kR]=0

(-9.98,-1.88)

(-0.63,-0.08)
kL

kR

-μ

(-9.98,0) (-1.88,0)-30 10
si

-4

2

Γ[si;kL,kR]

Figure 3: A bounded interval equilibrium. The left panel depicts contour curves
Γ[kL; kL, kR] = 0, Γ[kR; kL, kR] = 0, and their intersections. The right panel depicts
Γ[si; kL = −9.98, kR = −1.88]. The panels together show that (−9.98,−1.88) is a bounded
interval equilibrium. The numbers are two-decimal approximations. Parameters: w = −5,
µ = 1, and si = θ + νi, i ∈ {A,B}, with θ, νA, νB ∼ iidN(0, 1).

These equations are only necessary conditions. To show that they are also sufficient, Lemma

2 shows that Γ changes sign at any solution of these equations. Therefore, any solution to

these equations describes a BIE:

Lemma 2 (kL, kR) with kL, kR ∈ R and kL < kR is a bounded interval equilibrium strategy

if and only if Γ[kL; kL, kR] = 0 and Γ[kR; kL, kR] = 0.

Figure 3 illustrates an equilibrium in bounded interval strategies. Next, we determine

for a given signal structure f(θ, sA, sB) that satisfies A1 and A2 and an arbitrary bounded

interval strategy (kL, kR), whether there exist primitive payoff parameters {µ,w} that sup-

port (kL, kR) as an equilibrium. Proposition 2 details necessary and sufficient conditions for

(kL, kR) to be an equilibrium for some set of primitives.

Proposition 2 There exist payoff parameters {µ,w} for which (kL, kR) is an equilibrium

BIS if and only if Pr(sj ∈ (kL, kR)|si = kL) > Pr(sj ∈ (kL, kR)|si = kR), for i 6= j.

To see the necessity, observe that the indifference conditions at the bounds of a symmet-
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ric equilibrium BIS, (kL, kR), are Γ[si = kL; kL, kR] = Γ[si = kR; kL, kR] = 0. Rearranging

these indifference conditions yields

µ = Pr(kL < sj < kR|si = kL) (E[θ|kL < sj < kR, s
i = kL]− w + µ)

= Pr(kL < sj < kR|si = kR) (E[θ|kL < sj < kR, s
i = kR]− w + µ).

A player with high signal si = kR is more optimistic about the expected value of θ than if

she sees signal si = kL. To be indifferent between taking actions 0 and 1 after both signals,

she must be more pessimistic about the likelihood of coordinating on θ given si = kR. Thus,

Pr(sj ∈ (kL, kR)|si = kL) > Pr(sj ∈ (kL, kR)|si = kR).

The indifference conditions also shed light on the primitives that support (kL, kR) as a BIE.

Since Pr(sj ∈ (kL, kR)|si = kL) < 1, it must be that

E[θ|kL < sj < kR, s
i]− w + µ > µ, for si ∈ {kL, kR}.

Rearranging yields a bound on the predatory payoff w:

E[θ|kL < sj < kR, s
i] > w, for si ∈ {kL, kR}. (7)

The intuition is simple: player i is hurt when she takes action 1 rather than action 0 if

j takes action 0, receiving l rather than h. Thus, to be willing to take action 1, i must

expect to gain from taking action 1 rather than action 0 if j instead takes action 1. This

inequality also holds for all si > kR—were such a player to know that the other agent had

a signal sj ∈ (kL, kR), she would also want to take action 1 for higher signals; but she as-

signs such a low probability to the event sj ∈ (kL, kR), and hence such a high probability to

miscoordination, that she chooses to take action 0 despite her high signal.

Properties of bounded interval equilibria. To characterize bounded interval equilibria,

we next relate BIE and monotone equilibria. We then specialize to the classical additive

normal noise signal structure to highlight the surprisingly strong structure that Proposition

2 places on the nature and extent of coordination that can occur in any BIE. Recall that

k is the cutoff for the largest finite-cutoff equilibrium, and k̄ is the cutoff for the smallest

finite-cutoff equilibrium when there are multiple equilibria.

12



Proposition 3 If a BIE exists, then finite-cutoff monotone equilibria exist. If (kL, kR) is a

bounded interval equilibrium strategy, then k < kL, i.e., players take action 1 following worse

signals in the largest finite-cutoff (k) equilibrium than in any BIE.

If limk→∞∆1(k) < 0 and a BIE exists, then multiple finite-cutoff monotone equilibria

exist. If (kL, kR) is a bounded interval equilibrium strategy, then kL < k̄, where k̄ is the

cutoff for the smallest finite-cutoff equilibrium.

The intuition comes from a decomposition of Γ[si = kL; kL, kR]:

Γ[si = kL; kL, kR] = −Pr(sj > kR|si = kL) (E[θ|sj > kR, s
i = kL]− w + µ) + ∆1(kL), (8)

where E[θ|sj > kR, s
i = kL] − w + µ > 0.13 A player must be indifferent between actions

0 and 1 when his signal just equals the lower cutoff kL of a BIE. Thus, when a player j

chooses the cutoff strategy kL instead of a BIS, so that j takes action 1 after receiving all

“better signals,” player i has more incentive to take action 1 than in the BIE. In particular,

where she was indifferent between actions (at si = kL) in the BIE, she now strictly prefers

to take action 1: Γ[si = kL; kL, kR] = 0 implies ∆1(kL) = ∆(si = kL; kL) > 0. Because

limk→−∞∆1(k) < 0, there exists a cutoff k < kL at which ∆1(k) = 0.

If, in addition, limk→∞∆1(k) < 0, then there are multiple solutions to ∆1(k) = 0, i.e.,

there are multiple finite-cutoff equilibria. The largest such cutoff, k̄ exceeds kL: this follows

since ∆1(kL) > 0 but ∆1(k) < 0 for k > k̄. Moreover, because the gains from success-

ful coordination following signal k̄ in the cutoff equilibrium exceed those in the BIE given

signal kL, the probability of successful coordination must be lower given k̄ than kL in the

corresponding equilibrium.

Corollary 1 Players are more likely to take action 1 in the largest finite-cutoff equilibrium

than in any BIE.

When w > l, players take action 1 too little in the k equilibrium from a welfare perspec-

tive (Shadmehr and Bernhardt (2015)), implying that BIE are welfare dominated.

Additive normal noise signal structure. To illustrate the sharp bite of the necessary

condition in Proposition 2 that Pr(sj ∈ (kL, kR)|si = kL) > Pr(sj ∈ (kL, kR)|si = kR), we

13Note that (E[θ|sj > kR, s
i = kL] − w + µ) > E[θ|kL < sj < kR, s

i = kL] − w > 0, where the second
inequality follows from (7).
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now specialize to the classical additive normal noise signal structure. The key structure that

we exploit is that the signals shift the distribution, so that single-peakedness and symmetry

are preserved and the dispersions of conditional distributions do not depend on signals.

Suppose si = θ+ νi, i ∈ {A,B}, where θ and νi’s are independent with θ ∼ N(0, σ2) and

νi ∼ N(0, σ2
ν). Let b ≡ σ2

σ2+σ2
ν
, and recall that pdf(sj|si) ∼ N(bsi, (1 + b)σ2

ν). First, observe

that when the noise in signals goes to zero, in the limit, Pr(sj ∈ (kL, kR)|si = kL) = Pr(sj ∈
(kL, kR)|si = kR) = 1

2
, implying that BIE do not exist.14 Proposition 4 details the sharp

restrictions imposed on possible BIE using the fact that raising si from kL to kR just shifts

the conditional distribution f(sj|si) to the right:

Proposition 4 If (kL, kR) is a bounded interval equilibrium strategy, then kL < E[θ] = 0

and |kL| > |kR|.

Recall that if (kL, kR) is an equilibrium BIS, a player i must be more pessimistic about

the likelihood of coordinating on θ given si = kR: Pr(sj ∈ (kL, kR)|si = kL) > Pr(sj ∈
(kL, kR)|si = kR). With an additive normal noise signal structure, this inequality becomes

|bkL − (kL + kR)/2| < |bkR − (kL + kR)/2|. (9)

Inspection of (9) reveals that for it to hold, we must have kL < 0 and |kL| > |kR|.

Corollary 2 Relative to finite-cutoff equilibria, coordination in BIE on action 1 is limited

and it is on less promising values: In particular, k < kL < kR < −k, where k < 0 and

E[θ|kL < sj < kR, s
i = kL] < 0.

The corollary highlights the severity of the endogenously-generated fear of miscoordination

after high signals in any BIE. For a BIE to exist, we must have k < kL < 0; and k < 0

implies that in the finite-cutoff equilibrium supporting the most coordination on θ, players

seek to coordinate on action 1 for a majority of signals. In contrast, in a BIE, players fail

to coordinate following all good signals si > −k.

14limσν→0 Pr(kL < sj < kR|si = kL) = limσν→0 Φ
(
kR−bkL√
(1+b)σ2

ν

)
− limσν→0 Φ

( (1−b)kL√
(1+b)σ2

ν

)
= 1− 1

2 = 1
2 , where

we use limσν→0
1−b√
(1+b)σ2

ν

= 0. Similarly, limσν→0 Pr(kL < sj < kR|si = kR) = 1
2 − 0 = 1

2 .
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These results highlight that BIE have particularly bad welfare properties relative to finite-

cutoff equilibria. In finite-cutoff equilibria, a player’s expected payoff, given just her own

information and conditional on successfully coordinating on action 1 to obtain θ exceeds E[θ]:∫ ∞
k

E[θ|si] pdf(si|si > k) dsi > E[θ] = 0.

The fact that coordination succeeds only when the other player also has a good signal, sj > k

reinforces this. In sharp contrast, in BIE, |kL| > kR and kL < 0 imply that a player’s ex-

pected payoff, given just her own information and conditional on successfully coordinating

on action 1 to obtain θ, is worse than E[θ]:∫ kR

kL

E[θ|si] pdf(si|si ∈ (kL, kR)) dsi < E[θ] = 0.

The fact that coordination only succeeds when the other player also has a signal sj ∈ (kL, kR)

further reduces the expected payoff from ‘successful’ coordination in a BIE.

Because expected payoffs in BIE are lower than those for finite-cutoff equilibria, BIE

cease to exist for lower miscoordination costs than for finite-cutoff equilibria:

Corollary 3 Recall that finite-cutoff equilibria exist whenever µ < µ∗. There exists a

µ∗∗ < µ∗ such that if µ > µ∗∗, then no bounded interval equilibrium exists.

Why then do BIE exist and when? Summarizing our previous results, recall that play-

ers’ indifference at the bounds of an equilibrium BIS (kL, kR) has two implications. First,

equation (7) revealed that E[θ|kL < sj < kR, s
i = kL] > w. Second, Proposition 2 revealed

that Pr(sj ∈ (kL, kR)|si = kL) > Pr(sj ∈ (kL, kR)|si = kR), which Proposition 4 shows for

a normal-noise signal structure implies kL < 0 and |kL| > |kR|. These latter results imply

that E[θ|kL < sj < kR, s
i = kL] < E[θ] = 0. Combining these results yields:

Corollary 4 A necessary condition for a BIE to exist is w < E[θ] = 0.

Thus, for a BIE to exist, absent any private information, the game must be a coordination

game with h > l and E[θ] > w. That is, a player must face a miscoordination risk when

taking the ‘safe’ action 0: unconditionally, were the other player to always take action 1, it

must be better to always take action 1 than to always take action 0. The fact that w < E[θ]
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is necessary for a BIE to exist highlights that there must be sufficient expected potential

surplus from coordinating on action 1 to compensate for the facts that in a BIE, (i) players

fail to coordinate on action 1 precisely when the payoff from doing so is expected to be high,

thereby foregoing much of the benefits of coordinating on action 1; and (ii) a player is hurt

when she tries to coordinate on action 1, but the other player does not.

In many of the economic settings described by the payoffs in Figure 1, the payoff h from

coordinating on action 0 is less than the payoff w from taking action 0 when the other player

takes action 1. For example, in an international trade game, the payoff when both countries

set high tariffs is less than the payoff from setting a high tariff when the other country lowers

its barriers. In such settings, the results in Corollary 4 are reinforced: BIE only exist when

the status quo payoff of h (e.g., trade wars) is also low relative to the ex-ante expected

benefits of coordinating on action 1 (e.g., free trade)—but the agents nonetheless get the

low status quo payoff when signals about coordination are promising.

3 Discussion

A thorough analysis of non-monotone equilibria in a broader class of games is beyond the

scope of our paper. However, it is straightforward to establish that BIE can exist in the

private value analogue of our common value coordination setting, in which a player i’s ex-

pected payoff when both players coordinate on action 1 is given by her signal si. Indeed, the

intuitions and qualitative properties that we have emphasized carry over directly.

One may also wonder if the one-sided limit dominance property15 of our game is essen-

tial for the existence of non-monotone equilibria. Clearly, in games featuring two-sided limit

dominance, a bounded interval strategy is never a best response, and hence bounded interval

equilibria cannot exist. Still, more complex non-monotone equilibria may exist. To see this,

consider the classical private value investment game of Morris and Shin (2003) in Figure 4,

where action 1 corresponds to invest and action 0 corresponds to not invest.

Clearly, no BIE exists because a player always takes action 0 when her signal si is less than

h, and she always takes action 1, when her signal exceeds h+µ. The question is: can slightly

15A player has a dominant strategy to take action 0 if her signal is low enough, but does not have a dominant
strategy if her signal is high: our game features one-sided limit dominance, not two-sided limit dominance.
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player A

player B
0 1

0 h, h h, s2 − µ

1 s1 − µ, h s1, s2

Figure 4: Private Value Game.

more complex non-monotone equilibria exist in which players take action 1 when their signals

are either in a bounded interval or exceed a threshold, (k1, k2)∪(k3,∞) for k1 < k2 < k3 ∈ R?

To show that such non-monotone equilibria can exist, we construct a non-monotone equi-

librium for an additive normal noise signal structure, si = θ+νi, where θ, νA, νB ∼ iidN(0, 1).

In such an equilibrium, players must be indifferent at the cutoffs, k1, k2 and k3. Defining

Ω ≡ (−∞, k1) ∪ (k2, k3), the indifference conditions are:

ki − Pr(Ω|sj = ki) µ = h, i ∈ {1, 2, 3}, j ∈ {A,B}.

In particular, we must have

k2 − k1

Pr(Ω|k2)− Pr(Ω|k1)
=

k3 − k2

Pr(Ω|k3)− Pr(Ω|k2)
. (10)

Then (k1, k2, k3) = (k, 0,−k) satisfies equation (10). For example, (k1, k2, k3) = (−5, 0, 5)

is supported as an equilibrium by µ = k2−k1
Pr(Ω|k2)−Pr(Ω|k1)

≈ 10.8986 and h = ki − Pr(s2 ∈
(−∞, k1) ∪ (k2, k3)|s1 = ki) × µ ≈ −5.4493. Figure 5 illustrates that, for these parameters,

the non-monotone strategy (k1, k2, k3) = (−5, 0, 5) is the best response to itself, and hence

constitutes an equilibrium.
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Figure 5: Net expected payoffs as a function of signal si given the other player’s
non-monotone strategy (k1, k2, k3) = (−5, 0, 5). Parameters: µ = 10.8986 and h = −5.4493.

4 Appendix: Proofs

Proof of Proposition 1: First, we prove a lemma.

Lemma 3 The best response to a finite-cutoff strategy is a unique finite-cutoff strategy.

Proof: Fix a finite cutoff kj. From equation (1), if ∆(si = x; kj) = 0, then (E[θ|sj >
kj, si = x] − w) ≥ 0; and by affiliation, both Pr(sj > kj|si) and E[θ|sj > kj, si] increase

with si. Thus, if ∆(si = x; kj) = 0, then ∆(si; kj) > 0 for all si > x. Furthermore, from A1

(a), limsi→−∞∆(si; kj) < 0 < limsi→+∞∆(si; kj). Thus, for every kj, there exists a unique

si = ki such that ∆(ki; kj) = 0. In addition, at si = ki,

∂∆(si; kj)

∂si

∣∣∣∣∣
si=ki

> 0. � (11)

Now, rewrite equation (2) as

∆1(k) = Pr(sj > k|k) E[θ|sj > k, k]− Pr(sj > k|k) w − (1− Pr(sj > k|k)) µ. (12)

For any k, ∂∆1(k;µ)
∂µ

= −(1−Pr(sj > k|k)) < 0: raising µ uniformly lowers the curve ∆1(k;µ).

Next, we show that when µ is sufficiently small, ∆1(k) crosses zero at least once; and

that when µ is sufficiently large, there is no solution to ∆1(k) = 0. At µ = 0, ∆1(k;µ =
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0) = Pr(sj > k|k) (E[θ|sj > k, k] − w). E[θ|sj > k, si = k] increases in k by affiliation,

and from A1, limk→±∞E[θ|sj > k, si = k] = ±∞. Therefore, for a given w, ∆1(k;µ = 0)

crosses zero from below—at a unique point. Thus, from the continuity of ∆1(k;µ) in k and

µ, ∆1(k;µ) = 0 has a solution for sufficiently small µ > 0.

Lemma 4 There exists a µ̄ > 0 such that if µ > µ̄, then ∆1(k) < 0 for all k.

Proof: Consider ∆1(k;µ) from equation (12), where we have made the dependence of ∆1

on the parameter µ explicit. First, observe that ∆1(k;µ) is uniformly decreasing in µ: for

any k, ∆1(k;µ1) > ∆1(k;µ2) for all µ2 > µ1. Thus, if for some µ = µ̂, ∆1(k; µ̂) < 0 for all

k, then ∆1(k;µ) < 0 for all µ > µ̂. Now, suppose that the statement of the lemma is false.

Then, it must be the case that for all µ, there is some k such that ∆1(k;µ) ≥ 0. We seek a

contradiction.

From A1 (b), limk→−∞E[θ|sj > k, k] = −∞, and hence limk→−∞∆1(k;µ) < 0 for all

µ > 0. Recall our premise that, for all µ, there is some k such that ∆1(k;µ) ≥ 0. Thus,

because ∆1(k;µ) is continuous in k, there exists a smallest k ∈ R at which ∆1(k;µ) ≥ 0.

Call it k(µ) ∈ R, and observe that k(µ) is weakly increasing in µ.

LetM(µ) ≡ supk∈[k(µ),∞) Pr(s
j > k|k) E[θ|sj > k, k] andm(µ) ≡ infk∈[k(µ),∞)(1−Pr(sj >

k|k)). Clearly,

∆1(k;µ) ≤M(µ) + |w| −m(µ) µ.

Because k(µ) is weakly increasing in µ, M(µ) is weakly decreasing in µ and m(µ) is weakly

increasing in µ. Moreover, from A1 (b), limk→∞ Pr(s
j > k|k) E[θ|sj > k, k] < ∞, i.e.,

Pr(sj > k|k) E[θ|sj > k, k] is bounded from above, and hence M(µ) is bounded from above.

Further, A1 (b) implies that limk→∞(1 − Pr(sj > k|k)) = 1. Because this limit is strictly

positive and f(θ, sA, sB) has full support by assumption, m(µ) > 0. Recalling that M(µ) is

weakly decreasing in µ and m(µ) is weakly increasing in µ, we have, M(µ)+ |w|−m(µ) µ < 0

for sufficiently large µ. Since ∆1(k;µ) ≤M(µ) + |w| −m(µ) µ, then for µ sufficiently large,

we have ∆1(k;µ) < 0 for all k, a contradiction. �

Therefore, there exists a µ∗ > 0 such that ∆1(k) = 0 has a solution if µ < µ∗ and it does

not have a solution if µ > µ∗. It is immediate that when ∆1(k) is either single-peaked or

strictly increasing, ∆1(k) = 0 has at most two solutions. �
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Proof of Lemma 1. We proceed in two steps.

Step 1: We show that π(θ; kjL, k
j
R), from equation (5), has at most two sign changes. Ob-

serve that [θ− (w−µ)] Pr(kjL < sj < kjR|θ) has a unique root at w−µ. Let g(θ) ≡ Pr(kjL <

sj < kjR|θ). Differentiating [θ − (w − µ)] Pr(kjL < sj < kjR|θ) with respect to θ yields g(θ) +

[θ−(w−µ)] g′(θ). Thus, g(θ)+[θ−(w−µ)] g′(θ) > 0 if and only if g(θ) > −[θ−(w−µ)] g′(θ).

If θ > w − µ, this inequality is equivalent to − 1
θ−(w−µ)

< g′(θ)
g(θ)

. The left-hand side is strictly

increasing in θ and the right-hand side is strictly decreasing because g(θ) is logconcave by

A2. Thus, they can cross at most once, in which case the intersection identifies a local maxi-

mum. Next, observe that [θ−(w−µ)] g(θ) = 0 at θ = w−µ, and limθ→∞[θ−(w−µ)] g(θ) = 0

from log-concavity (An 1998, Corollary 1). Thus, the crossing, indeed, happens exactly once.

That is, (θ − (w − µ)) Pr(kjL < sj < kjR|θ) has a unique maximum for θ ∈ (w − µ,∞), and

is negative for θ ∈ (−∞, w− µ). Since π(θ; kjL, k
j
R) equals (θ− (w− µ)) Pr(kjL < sj < kjR|θ)

minus µ > 0, it inherits the shape, and has at most two sign changes (see Figure 3).

Step 2: Step 1 shows that π(θ; kjL, k
j
R) has at most two sign changes. Now, consider equation

(6), and recall that A2 implies that f(θ|si) is TP3. Thus, by Karlin’s theorem, Γ(si; kjL, k
j
R)

has at most two sign changes. Footnote 12 shows that limsi→±∞ Γ[si; kjL, k
j
R] < 0. Thus, (i)

Γ(si; kjL, k
j
R) has either no sign change or two sign changes, (ii) if it has no sign change, then

Γ(si; kjL, k
j
R) < 0 for all si, i.e., player i never takes action 1, and (iii) if Γ(si; kjL, k

j
R) has

two sign changes, then as si traverses R from −∞ to ∞, Γ(si; kjL, k
j
R) is first negative, then

positive, and then negative, which implies a bounded interval strategy. �

Proof of Lemma 2: The “only if” part is immediate from the continuity of Γ[si; kL, kR] in

si for i ∈ {A,B}. Next, we prove the “if” part. If Γ[si; kL, kR] changes sign at both kL and

kR, then from Lemma 1, Γ[si; kL, kR] > 0 if and only if si ∈ (kL, kR). Otherwise, Γ does not

change sign at kL or kR or both. We consider two cases:

Case I: Suppose Γ changes sign at only one of kL and kR. WLOG, suppose Γ changes

sign at kR, but not kL. Then kL must be a local maximum (minimum). Adding a small

positive (negative) constant ε to π in equation (6) adds a constant to Γ,∫ ∞
θ=−∞

(π(θ; kjL, k
j
R) + ε) f(θ|si) dθ = Γ(si; kjL, k

j
R) + ε,

and hence creates kLl and kLr at which Γ + ε changes sign, with kLl < kL < kLr < kR. Thus,

Γ + ε changes sign at least three times: at kLl, kLr, and kR + εR for some small εR. But from
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the proof of Lemma 1, π + ε has at most two sign changes, which together with the TP3

property of f(θ|si) implies that Γ + ε has at most two sign changes, which is a contradiction.

Case II: Suppose Γ does not change sign at kL and kR. If kL and kR are both local max-

ima or both local minima, an argument similar to Case I leads to a contradiction. If one is a

local maximum and the other is a local minimum, then there exists a kM with kL < kM < kR

at which Γ changes sign. Now apply the argument in Case I with kM instead of kR. �

Proof of Proposition 2: From Lemma 2, (kL, kR) is a symmetric bounded interval equi-

librium strategy if and only if Γ[kL; kL, kR] = Γ[kR; kL, kR] = 0. Solving for −w from (4) and

using the notation in (3), yields

−w =
µ

Pr(ρj = 1|si = kL)
−µ−E[θ|kL, ρj = 1] =

µ

Pr(ρj = 1|si = kR)
−µ−E[θ|kR, ρj = 1],

(13)

where E[θ|z, ρj = 1] means E[θ|si = z, ρj = 1]. Rearranging the second equality yields,

µ

{
1

Pr(ρj = 1|si = kL)
− 1

Pr(ρj = 1|si = kR)

}
= E[θ|si = kL, ρj = 1]−E[θ|si = kR, ρj = 1],

which implies

µ

Pr(ρj = 1|si = kL) Pr(ρj = 1|si = kR)
=
E[θ|si = kL, ρj = 1]− E[θ|si = kR, ρj = 1]

Pr(ρj = 1|si = kR)− Pr(ρj = 1|si = kL)
. (14)

The left-hand side is positive. Therefore, a necessary condition for the equilibrium to exist

is that the right-hand side be positive. Since E[θ|si = kR, ρj = 1] > E[θ|si = kL, ρj = 1],

existence requires that Pr(sj ∈ (kL, kR)|si = kL) > Pr(sj ∈ (kL, kR)|si = kR). This proves

the “only if” part. To prove the “if” part, note that the right-hand side of equation (14) is

positive whenever Pr(sj ∈ (kL, kR)|si = kL) > Pr(sj ∈ (kL, kR)|si = kR), and it does not

depend on µ. Thus, there exists a µ > 0 such that this equation holds. Finally, substitute

that µ into equation (13). There exists a w that satisfies this equation. �

Proof of Proposition 3: Suppose (kL, kR) is a symmetric bounded interval equilibrium

strategy. From Lemma 2, Γ[kL; kL, kR] = 0. From equation (4),

Γ[si = kL; kL, kR] = Pr(kL < sj < kR|si = kL) (E[θ|kL < sj < kR, s
i = kL]− w + µ)− µ

= Pr(kL < sj|si = kL) (E[θ|kL < sj, si = kL]− w + µ)− µ

−Pr(kR < sj|si = kL) (E[θ|kR < sj, si = kL]− w + µ)

= ∆1(kL)− Pr(sj > kR|si = kL) (E[θ|sj > kR, s
i = kL]− w + µ), (15)
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where the last equality follows from equation (2). Footnote 13 shows that (E[θ|sj > kR, s
i =

kL]−w+µ) > 0. Hence, Γ[kL; kL, kR] = 0 < ∆1(kL). This together with limk→−∞∆1(k) < 0

implies that ∆1(k) has at least one solution to the left of kL, and hence finite-cutoff equilib-

ria exist. In addition, if limk→∞∆1(k) < 0, then ∆1(k) must cross the horizontal axis from

above at least once, i.e., another finite-cutoff equilibrium exists. Let k̄ be the cutoff for the

smallest finite-cutoff equilibrium. Because ∆1(kL) > 0 and ∆1(k) < 0 for k > k̄, we must

have kL < k̄. �

Proof of Proposition 4: Suppose si = θ + νi, i ∈ {A,B}, where θ and νi’s are inde-

pendent with θ ∼ N(0, σ2) and νi ∼ N(0, σ2
ν). Let b ≡ σ2

σ2+σ2
ν
, and note that pdf(sj|si) ∼

N(bsi, (1+b)σ2
ν). From Proposition 2, Pr(sj ∈ (kL, kR)|si = kL) > Pr(sj ∈ (kL, kR)|si = kR),

which holds if and only if

|bkL − (kL + kR)/2| < |bkR − (kL + kR)/2|. (16)

Because kL < kR and b ∈ (0, 1), (16) holds only if both kL < 0 and |kL| > |kR|. �

Proof of Corollary 3: Suppose (kL, kR) is an equilibrium BIS. By Lemma 2, Γ[si =

kL; kL, kR, µ] = 0, where we have made the dependence of Γ on µ explicit. Below, we show

that when µ < µ∗ is sufficiently close to µ∗, Γ[si = kL; kL, kR, µ] < 0, a contradiction. The

result then follows because, from equation (4), Γ[si = kL; kL, kR, µ] is decreasing in µ.

Recall equation (15) from the proof of Proposition 3,

Γ[si = kL; kL, kR, µ] = −Pr(sj > kR|si = kL) (E[θ|sj > kR, s
i = kL]− w + µ) + ∆1(kL;µ)

< −Pr(sj > kR|si = kL) µ+ ∆1(kL;µ), (17)

where the inequality follows from (7) and affiliation. From the proof of Proposition 1,

∆1(k;µ) is continuous and decreasing in µ with ∆1(k) < 0 for µ > µ∗. Thus, limµ→µ∗− ∆1(kL) ≤
0, where µ→ µ∗− means that µ approaches µ∗ from below.

Now, fix ε > 0. For µ ∈ (µ∗− ε, µ∗): (i) k(µ) is increasing in µ (Shadmehr and Bernhardt

2011, p. 836), and hence bounded from below, and (ii) from Corollary 2, k < kL < 0, and

kR < −k, and hence kL and kR are bounded. Thus, Pr(sj > kR|si = kL) is bounded away

from 0. Combining these results, from (17), limµ→µ∗− Γ[si = kL; kL, kR, µ] < 0. �

22



5 References

An, Mark Yuying. 1998. “Logconcavity versus Logconvexity: A Complete Characteriza-

tion.” Journal of Economic Theory 80: 350-69.

Balbus,  Lukasz, Kevin Reffett, and  Lukasz Woźnyc. 2014. “A Constructive Study of Markov
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Online Appendix: Examples

First, we present examples of signal structures that satisfy our assumptions. Then, we

provide sufficient conditions (for signal structures) under which ∆1(k) is single-peaked.

Additive Normal Distribution Signal Structure. Suppose that si = θ + νi, where θ

and νi are independent normal random variables, with θ ∼ N(0, σ2) and νi ∼ N(0, σ2
ν). The

analysis of Shadmehr and Bernhardt (2011) shows with signal structure A1 is satisfied and

∆1(k) is single-peaked. Here, we show that this signal structure also satisfies A2.

Assumption A2. Conditional normal distributions are TPn, n ∈ N (Karlin 1968), and

hence are TP3. Moreover, dLn[Pr(kL<s
i<kR|θ)]

dθ
= − 1

σν

φ(
kR−θ
σν

)−φ(
kL−θ
σν

)

Φ(
kR−θ
σν

)−Φ(
kL−θ
σν

)
, which is decreasing in θ,

implying the logconcavity of Pr(kL < si < kR|θ) in θ. Finally, it is easy to see that, with

the additive normal signal structure, limsi→∞E[θ|sj, si]f(sj|si) = limsi→∞ f(sj|si) = 0 for a

given sj.

Additive Logistic Distribution Signal Structure. Suppose that si = θ+νi, where θ, νi

and νj are iid according to the logistic distribution e−x

(1+e−x)2
, where we have normalized the

mean to zero without loss of generality and set the scale parameter to 1 to ease exposition.

Because the logistic distribution is logconcave, θ, s1 and s2 are affiliated (de Castro 2010).

Assumption A1 (a). Direct calculations show that Pr(sj > k|si) and E[θ|sj > k, si] both

have closed-form expressions, and that this assumption holds.

Assumption A1 (b), and the Shape of ∆1(k). We show that, ∆1(k) is single-peaked

when w < 1 +µ, and is strictly increasing when w > 1 +µ. To calculate ∆1(k), we condition

the terms on θ, and integrate over θ.

∆1(k) =

∫ ∞
−∞

(θ − w + µ) Pr(sj > k|θ) f(θ|si = k)dθ − µ. (18)

We have Pr(sj > k|θ) =
∫∞
k
f(sj|θ)dsj = eθ

ek+eθ
. Using Bayes rule, f(θ|si = k) = f(si=k|θ) f(θ)∫∞

−∞ f(si=k|θ)f(θ)dθ
.

Substituting these into equation (18), and integrating yields

∆1(k) =
1

4

(
k2 k + 2(µ− w)

4− ek(2− k)2 − k2
+ 3

k + 2(µ− w)

1− ek
+ 2

1− k − (µ− w)

2− k

)
− µ. (19)

The limiting properties of ∆1(k) as k → ±∞ are revealing about its shape. We have

lim
k→−∞

∆1(k) = lim
k→−∞

1

4
(−k + 3k + 2)− µ = −∞,
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and as k increases unboundedly, the first two terms go to zero, and

lim
k→∞

∆1(k) = lim
k→∞

1

4

(
2

1− k − (µ− w)

2− k

)
− µ =

{
(1

2
− µ)− ;w ≥ 1 + µ

(1
2
− µ)+ ;w < 1 + µ,

where (1
2
− µ)− means that the function approaches its limit from below (it is increasing),

and (1
2
− µ)+ means that the function approaches its limit from above (it is decreasing).

To see this, suppose k is large enough, and differentiate a−k
b−k with respect to k to get a−b

(b−k)2
,

which is negative if and only if a < b.16 Thus, ∆1(k) approaches 1/2 − µ from above if

and only if 1 − µ + w < 2, i.e., w < 1 + µ. Because limk→∞∆1(k) = 1
2
− µ, we have

limk→∞ Pr(s
j > k|si = k) E[θ|sj > k, si = k] = 1

2
. Direct calculations show

E[θ|sj > k, si = k] = −(1− k)e2k + 2(k2 − k − 1)ek + (k2 + 3k + 1)

e2k + 4(1− k)ek − (2k + 5)
,

and hence limk→−∞E[θ|sj > k, si = k] = −∞. Therefore, A1 (b), holds.

The asymptotic behavior of ∆1(k) means that when w ≥ 1 + µ, ∆1(k) cannot be single-

peaked—it must either be monotone increasing, or it has at least one maximum and one

minimum. From equation (19), note that ∆1(k) and 4(∆1(k) +µ) have the same shape. Let

η ≡ µ−w, so that w ≥ 1 +µ corresponds to η ≤ −1, and w < 1 +µ corresponds to η > −1.

From equation (19),

Ω(k, η) ≡ 4(∆1(k; η) + µ) = k2 k + 2η

4− ek(2− k)2 − k2
+ 3

k + 2η

1− ek
+ 2

1− k − η
2− k

, (20)

where we make the dependency of ∆1(k) on η explicit. Plotting Ω(k, η) in (k, η) space re-

veals that ∆1(k) is monotone increasing when η ≤ −1 (i.e., when w ≥ 1 + µ), and that it is

single-peaked when η > −1 (i.e., when w < 1 + µ).

Assumption A2. A function f(si|θ) is TP3 when si and θ are affiliated (TP2), and the

associated determinant is non-negative for m = n = 3. With an additive logistic sig-

nal structure, direct calculations show that this determinant is 24 e6(s+θ)

(es+eθ)12
> 0. Moreover,

dLn[Pr(kL<s
i<kR|θ)]

dθ
= e(kR+kL)−e2θ

(ekL+eθ)(ekR+eθ)
decreases in θ, so Pr(kL < si < kR|θ) is logconcave in θ.

Direct calculations show that limsi→∞E[θ|sj, si]f(sj|si) = limsi→∞ f(sj|si) = 0 for a given sj.

Sufficient Conditions for ∆1(k) to be Either Single-peaked or Strictly Increasing.

Suppose Pr(sj > k|si = k) is decreasing in k, Pr(sj > k|si = k) is logconcave in k, and

16One can also show that limk→∞∆1(k) = (1
2 − µ)− when w = 1 + µ.

25



E[θ|sj > k, si = k]− w + µ is logconcave in k whenever it is positive. Then, ∆1(k) is either

single-peaked or strictly increasing in k.

Proof: Let h(k) = Pr(sj > k|si = k) and g(k) = E[θ|sj > k, si = k], where h′(k) <

0 < g′(k) by assumption. Rewrite ∆1(k) as ∆1(k) = h(k)[g(k) − w + µ] − µ. Then

∆′1(k) = h′(k)[g(k)− w + µ] + h(k)g′(k). If g(k)− w + µ ≤ 0, then ∆1(k) < 0 < ∆′1(k). If,

instead, g(k) − w + µ > 0, then ∆′1(k) = h′(k)[g(k) − w + µ] + h(k)g′(k) = 0 if and only if
h′(k)
h(k)

= − g′(k)
g(k)−w+µ

, which has at most one solution if h(k) and g(k)− w + µ are logconcave.

Therefore, if Pr(sj > k|si = k) is logconcave, and E[θ|sj > k, si = k]− w + µ is logconcave

whenever it is positive, then ∆′1(k) = 0 has at most one solution, which must be a maximum.

Thus, ∆1(k) is either strictly increasing or single-peaked. �
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