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Abstract: Parkinson’s disease (PD) is a neurodegenerative disorder characterized by fibrillar 

cytoplasmic aggregates of α-synuclein (i.e., Lewy bodies) and the associated loss of dopaminergic 

cells in the substantia nigra. Mutations in genes such as α-synuclein (SNCA) account for only 10% 

of PD occurrences. Exposure to environmental toxicants including pesticides and metals (e.g., 

paraquat (PQ) and manganese (Mn)) is also recognized as an important PD risk factor. Thus, 

aging, genetic alterations, and environmental factors all contribute to the etiology of PD. In fact, 

both genetic and environmental factors are thought to interact in the promotion of idiopathic PD, 

but the mechanisms involved are still unclear. In this study, we summarize our findings to date 

regarding the toxic synergistic effect between α-synuclein and paraquat treatment. We identified 

an essential role for central carbon (glucose) metabolism in dopaminergic cell death induced by 

paraquat treatment that is enhanced by the overexpression of α-synuclein. PQ “hijacks” the 

pentose phosphate pathway (PPP) to increase NADPH reducing equivalents and stimulate 

paraquat redox cycling, oxidative stress, and cell death. PQ also stimulated an increase in glucose 

uptake, the translocation of glucose transporters to the plasma membrane, and AMP-activated 

protein kinase (AMPK) activation. The overexpression of α-synuclein further stimulated an 

increase in glucose uptake and AMPK activity, but impaired glucose metabolism, likely directing 

additional carbon to the PPP to supply paraquat redox cycling. 

Keywords: Parkinson’s Disease; genetics; toxin synergy; molecular mechanisms; NMR; mass 

spectrometry 
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1. Introduction 

1.1. Parkinson’s Disease Overview 

Parkinson’s disease (PD) affects over one million individuals in the United States and more 

than 10 million people worldwide [1]. PD is a chronic progressive neurodegenerative disorder that 

leads to shaking (tremors) and difficulty with walking, movement, and coordination. Currently, 

there is no cure for PD or drug to stop the progression of the disease, but there are treatments to 

manage symptoms [2]. PD is associated with the loss of dopaminergic neurons from the substantia 

nigra pars compacta within the midbrain (Figure 1a) [3,4]. The death of these dopaminergic neurons 

leads to a deficiency of dopamine in the caudate and putamen (“striatum”), which results in an 

observed loss of muscle control. In addition to neuron loss, PD is also characterized by the presence 

of Lewy bodies—protein aggregates within neurons [5]. The exact cause of PD is currently 

unknown, but age is an important risk factor [6]. Individuals over the age of 60 are twice as likely to 

develop PD relative to the general population. Only about 10% of PD cases have a family history of 

the disease, and, to date, 18 genetic mutations (PARK1, PARK2, etc.) have been putatively linked to 

PD [7,8]. Genetic alterations in α-synuclein [9,10], Parkin [11,12], DJ-1 [13], PINK1 [11], and LRRK2 

[14] have been associated with approximately 3 to 5% of PD. Environmental factors have also been 

linked to an increase in the incidence of PD or risk for developing PD [15]. In fact, sporadic or 

idiopathic PD is linked to genetic alterations and occupational or environmental factors. Exposure to 

pesticides, heavy metals, infectious agents, industrialization, and/or dietary factors has been 

associated with an increased occurrence of PD. Recent studies have demonstrated that 

environmental exposures modify DNA methylation patterns, chromatin structure, and non-coding 

RNA signaling (epigenetics), which might contribute to the individual’s susceptibility to developing 

PD. Epigenetic patterns defined during aging and development can be altered by environmental 

exposures [16–18]. Paraquat induces epigenetic changes by promoting histone acetylation [19] and, 

conversely, paraquat toxicity has been reported to be enhanced by inhibition of DNA 

methyltransferases [20]. Thus, PD appears to be multifactorial where a combination of age, genetics, 

and environmental factors contributes to disease development (Figure 1b) [21].  

  

(a) (b) 

Figure 1. Parkinson’s disease results from dopaminergic neuron cell death in the substantia nigra: (a) 

In vivo imaging of dopaminergic activity in the Parkinsonian basal ganglia shown by [18F] 

fluorodopa PET. The signal from striatum in a healthy control subject, a patient with symptomatic 

Parkinson’s disease and a twin who was asymptomatic at the time of scan but who subsequently 

developed the disease. Reproduced with permission from [3]. (b) Schematic of the multiple factors 

that contribute to the development of Parkinson’s disease. Both aging and environmental factors modify 

epigenetic patterns, which may also enhance an individual’s likelihood of developing PD.  

1.2. PD and Environmental Risk Factors 

The largest epidemiology study of PD in the USA identified a number of environmental factors 

correlated with an increased incidence of PD [22]. Specifically, PD was found to be more common in 

the Midwest and the Northeast. In fact, the state of Nebraska was observed to have the highest 

prevalence of PD in the world (Table 1). Again, this is consistent with areas associated with 

agriculture and metal processing having high rates of PD. Thus, prolonged exposure to herbicides or 
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insecticides from farming or metals from industry likely contributes to PD. Consequently, paraquat 

(herbicide), rotenone (insecticide), 6-hydroxydopamine (6-OHDA, neurotoxin), 

1-methyl-4-phenylpyridinium (MPP+, herbicide), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP, prodrug), and manganese have all been shown to induce PD-like symptoms. These 

compounds are routinely and interchangeably used to induce dopaminergic neuron cell death and as 

chemical mimics of PD in animal models. MPTP was discovered as a contaminant in illicit opioid 

synthesis, and acts as a prodrug that is converted to MPP+ in the brain and is selectively taken up by 

dopaminergic cells [23,24]. MPP+ inhibits mitochondrial respiratory complex I of the electron transport 

chain and interferes with oxidative phosphorylation in the mitochondria [25,26]. Paraquat has a 

structure similar to MPTP, but is a poor inhibitor of complex I. Instead, paraquat toxicity has been 

primarily attributed to its redox cycling that generates reactive oxygen species (ROS). Paraquat is 

reported to induce dopaminergic degeneration in vivo, which is one of the pathological hallmarks of 

PD, but contradictory results exist as well. While some environmental toxicants linked to PD such as 

PQ have been demonstrated to have a limited capacity to diffuse across the blood–brain barrier (BBB) 

[27,28], a significant increase in the permeability of the BBB in the postcommissural putamen of PD 

patients has been reported [29] and breakdown of the BBB has been shown to occur during aging [30]. 

Interestingly, α-synuclein impairs tight junction protein expression [30]. These findings again suggest 

the likelihood that neurodegeneration linked to environmental exposure is a consequence of genetics 

and or aging converging to promote dopaminergic cell loss. 

The chemical similarity between paraquat and MPTP initiated an investigation into an 

agricultural link with PD. Consequently, a correlation between paraquat agricultural usage and PD 

rates has been observed. The naturally occurring insecticide rotenone also inhibits complex I, which 

leads to energy failure and cell death [31,32]. Similarly, 6-OHDA has been proposed to induce 

dopaminergic neuron cell death by producing pro-oxidant capacity and selective uptake via 

dopamine transporters [23,33,34]. 

Table 1. Prevalence of PD in Nebraska [35]. 

 Age (Years) 

Nebraska PD Prevalence 
60–70 70–80 80 + 

(Rates per 100,000) 

Men 406 1794 4248 

Women 298 991 2069 

Regardless of the environmental toxin, there appears to be a common mechanism that leads to 

dopaminergic neuron cell death. Neurons have a very high energy demand and high glucose usage. 

Consequently, alterations in energy metabolism have been reported in early PD. Specifically, 

environmental toxins alter redox homeostasis, energy metabolism, and central carbon metabolism. 

Environmental toxins appear to increase ROS either through a direct redox cycling or indirectly by 

inhibiting the electron transport chain. Consequently, this leads to dysfunctional mitochondria and cell 

death. Thus, toxin-induced alterations in metabolic pathways important to central carbon metabolism, 

energy metabolism and redox homeostasis present a clear role for metabolomics in investigating PD. 

1.3. Lewy Bodies and α-Synuclein 

A hallmark of PD is the formation of intracellular protein aggregates or Lewy bodies in the 

dopaminergic neurons within the substantia nigra (Figure 2a) [36]. Lewy bodies are found in the 

cytoplasm as single or multiple spherical masses consisting of a dense protein core surrounded by a 

pale halo. Lewy bodies have a filamentous structure and contain over 70 different biological molecules 

falling within 10 distinct classes. α-Synuclein is a major component of Lewy bodies and forms the 

fibrils (Figures 2b) [37,38]. In addition to α-synuclein fibrils, other components of Lewy bodies 

correspond to proteins involved in: (i) α-synuclein binding; (ii) synphilin-1-binding; (iii) 

ubiquitin-proteasome system; (iv) cellular responses; (v) phosphorylation and signal transduction; (vi) 

cytoskeleton; and (vii) the cell cycle. Importantly, Lewy bodies are correlated with neuronal loss and 
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cognitive impairment, which suggests that neurons that contain Lewy bodies are dying. However, 

there is no evidence that Lewy bodies are the actual cause of cell death. In fact, Lewy bodies may be a 

cytoprotective mechanism in PD, while α-synuclein protofibrils might be cytotoxic agents. Lewy 

bodies may function to sequester and degrade the α-synuclein fibrils.  

  

(a) (b) 

Figure 2. (a) Substantia nigra from patients with Parkinson’s disease (from the MRC Cambridge Brain 

Bank) immunostained for α-synuclein. (top) Two pigmented nerve cells, each containing an 

α-synuclein-positive Lewy body (long arrows). Lewy neurites (short arrows) are also immunopositive. 

Scale bar, 20 μm. (bottom left) A pigmented nerve cell with two α-synuclein-positive Lewy bodies. 

Scale bar, 8 μm. (bottom right) α-Synuclein-positive, extracellular Lewy body. Scale bar, 4 μm. 

Reproduced with permission from [38]. (b) α-synuclein (α-syn) aggregation can take place either in 

the cytoplasm or in association with the cellular membrane. In the cytosol, unfolded monomers 

interact to form initially unstable dimers, which grow slowly to generate oligomers of varying 

morphologies—including transient spherical and ring-like oligomers—that eventually convert to 

fibrils. The α-syn oligomers are in equilibrium with monomers and convert to fibrils by monomer 

addition via a nucleated polymerization mechanism. The accumulation of these amyloid fibrils leads 

to the formation of intracellular inclusions called Lewy bodies. Membrane-bound monomeric α-syn 

adopts a predominantly α-helical confirmation, but at high concentrations the protein undergoes a 

conformational change either before or coincident with its oligomerization to form membrane-bound 

β-sheet-rich structures that self-associate to form oligomers, including trans-membrane amyloid 

pores (the formation of which may involve several intermediates) and fibrils. Note that the ring-like 

cytosolic oligomers may also associate with the membrane and form trans-membrane pores. During 

α-syn fibrillogenesis and aggregation, the intermediate species (oligomers and amyloid fibrils) are 

highly toxic, affecting mitochondrial function, endoplasmic reticulum–Golgi trafficking, protein 

degradation and/or synaptic transmission, and these intracellular effects are thought to induce 

neurodegeneration. The transmembrane pores disrupt membrane integrity as well as intracellular 

calcium homeostasis and signaling, and may also contribute to neuronal toxicity. Interestingly, α-syn 

oligomers and fibrils, as well as the monomers, can be transferred between cells and induce disease 

spreading to other brain regions. Spreading mechanisms are multiple and can occur via endocytosis, 

direct penetration, trans-synaptic transmission, or membrane receptors. Once inside the host cells, 

α-syn aggregates can nucleate aggregation and propagate via the mechanisms described above. 

Reproduced with permission from [39]. 

α-Synuclein is a 140-amino-acid (14.5 kDa) protein of unknown function that is a natively 

unstructured monomer (Figure 3a) [39,40]. However, there has been some progress in revealing a 

role for α-synuclein in vesicle trafficking, synaptic vesicles endocytosis, and chaperoning of the 

SNARE complex assembly [41–43]. The protein consists of three distinct domains: (i) an amphipathic 

lysine-rich N-terminus (1–60) that interacts with membranes and forms an α-helix; (ii) an acidic 

disordered C-terminus (96–140) that is postulated to regulate nuclear localization and is involved in 

interactions with metals, small molecules and other proteins; and (iii) a hydrophobic central region 
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(61–95), which is critical for protein aggregation and is commonly referred to as the non-amyloid-β 

component of AD amyloid plaques (NAC) (Figure 3b). α-Synuclein is an abundant neuronal protein 

(~1% of cytosol proteins) that is expressed throughout the brain with particularly high levels in the 

substantia nigra. α-Synuclein is primarily located in the presynaptic terminal of neurons. Thus, the 

protein may play a role in regulating the release of dopamine or the supply of synaptic vesicles. 

Genetic mutations in α-synuclein (SNCA) [9,10] or overexpression due to multiplication of SNCA 

[44] have been associated with familial and sporadic PD (Figure 3b). Oligomerization of α-synuclein 

and the resulting fibril formation is central to the pathogenesis of PD (Figure 2b). α-Synuclein 

aggregates have been shown to bind lipid membranes, to form pore-like structures, and to increase 

membrane permeability [45–48]. The resulting α-synuclein aggregates cause neuroinflammation, 

neurodegeneration, and neuronal cell death. A variety of factors including oxidative stress [49], 

post-translational modifications [50–52], proteolysis [53,54]; and fatty acids [55–57], phospholipids 

[55,58], and metal ion [59,60] concentrations have been shown to affect α-synuclein aggregation. 

Mitochondrial dysfunction and energy failure induced by environmental toxicants may also lead to 

α-synuclein misfolding and aggregation through impairment in the protein quality control 

mechanisms. Importantly, there is a growing body of evidence that indicates that α-synuclein is 

localized to the mitochondria under both normal and stress conditions [61]. α-Synuclein may play a 

role in regulating mitochondrial function, in which either the overexpression or lose of α-synuclein 

function may result in mitochondrial damage and cell death. So, α-synuclein also plays a prominent 

role in idiopathic PD. Again, PD incidences may increase from combined genetic and environmental 

factors.  

  

(a) (b) 

Figure 3. Structure of α-synuclein: (a) Schematic representation of micelle-bound α-synuclein (α-syn; 

Protein Data Bank ID: 1XQ8) [40]. The N-terminal region, the non-amyloid-β component of 

Alzheimer’s disease amyloid plaques (NAC) region and the C-terminal part are colored blue, orange 

and red, respectively. Numbers refer to amino acid residues flanking the different regions. 

Reproduced with permission from [39]. (b) α-Synuclein protein domain structure. α-Syn is a 

140-amino-acid protein and its sequence can be divided into three regions with distinct structural 

characteristics. The highly conserved N-terminal domain encodes for a series of imperfect 11 amino 

acid repeats with a consensus motif of KTKEGV reminiscent of the lipid-binding domain of 

apolipoproteins, which in certain conditions forms amphipathic helices. The six missense mutations 

known to cause familial PD (A30P, E46K, H50Q, G51D, A53E, and A53T) lie in the amphipathic 

region, suggesting an important function for this region of the protein. The central hydrophobic 

region (non-amyloid-β component or NAC domain) of α-synuclein is associated with an increased 

propensity of the protein to form fibrils [62]. The acidic C-terminal tail contains mostly negatively 

charged residues and is largely unfolded. Reproduced with permission from [63]. 

2. NMR and MS Metabolomics Protocol to Investigate PD 

2.1. Combining NMR and MS Improves Coverage of the Metabolome 

Nuclear magnetic resonance (NMR) [64] and mass spectrometry (MS) [65] have been the 

primary analytical tools used to obtain metabolomics datasets. Historically, only NMR or MS has 

been used for a given metabolomics study, in which the choice of instrumentation has been 

primarily decided upon based on an investigator’s experience and expertise, instead of the needs of 

the study. Consequently, a suboptimal analysis of the metabolome is likely to occur. In fact, NMR 
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and MS are inherently complementary and when employed together provide a broader and more 

accurate coverage of the metabolome [66,67]. While the number of studies is still limited, a few 

projects that have used both NMR and MS have observed a common trend [68–70]. A set of 

metabolites was only observable by NMR, while a second set of metabolites was only detected by 

MS. A smaller subset of metabolites was observed by both NMR and MS. Simply, NMR only 

observes the most abundant metabolites (≥1 µM) and MS only observes the metabolites that readily 

ionize. There are other important differences between NMR and MS. NMR requires minimal sample 

handling before data collection, is easily quantifiable, and provides multiple means of metabolite 

identification. In addition to the higher sensitivity, (femtomolar to attomolar), MS also has a higher 

resolution (~103–104) and dynamic range (~103–104). However, chromatography is commonly 

required for MS because of the relatively narrow nominal mass and mass defect distribution of the 

metabolome [71]. The use of chromatography has its own limitations and may also lead to a loss of 

observable metabolites for a variety of reasons [72–76]. Simply, NMR and MS have unique sets of 

strengths and limitations and both analytical methods beneficially contribute to a metabolomics 

study. In fact, a number of recent methods highlight the benefits of combining NMR and MS to 

improve the accuracy of metabolite identification or for identifying unknown metabolites [77–81]. 

2.2. Combined NMR and MS Metabolomics Methodology 

Towards this end, we recently optimized sample preparation, data collection, and data 

handling protocols to effectively integrate direct-infusion electrospray ionization mass spectrometry 

(DI-ESI-MS) data with 1D 1H NMR spectra (Figure 4) [82,83]. By splitting metabolite extracts 

optimized for NMR acquisition and by diluting the MS-bound aliquots tenfold in 

H2O/methanol/formic acid (49.57 : 49.75 : 0.5), we obtained samples suitable for NMR and DI-ESI-MS 

while avoiding chromatographic separations. We also optimized several DI-ESI-MS ion source 

conditions to maximize the quality of the MS metabolomics data: sampling cone voltage (SCV) of  

40 V, extraction voltage (ECV) of 4.0 V, desolvation temperature of 150 °C, desolvation gas flow of 

500 L/h, and a cone gas flow of 0 L/h. We preprocessed the acquired mass spectra with background 

subtraction, followed by uniform binning with a 0.5 m/z bin size and spectral noise region removal. 

NMR spectra were processed with our MVAPACK [84] software and automatically phased and 

normalized using our phase-scatter correction (PSC) algorithm [85]. Chemical shift regions 

containing spectral baseline noise or solvent signals were removed based on our previously 

developed protocols [86,87]. Binning was performed using an adaptive intelligent binning algorithm 

[88] implemented in MVAPACK [84] that minimizes the splitting of signals between multiple bins.  

Integrating MS and NMR data clearly resulted in better class separation and tighter within-class 

variation than using only NMR or MS datasets (Figure 5). This was accomplished by incorporating 

multivariate statistical techniques to properly handle multiple analytical datasets [89–91]—multiblock 

principal component analysis (MB-PCA) and multiblock partial least squares (MB-PLS)—into 

MVAPACK [84]. Multiblock methods are similar to traditional PLS and PCA, but provide a means for 

analyzing data from multiple analytical sources [89–91]. Simply put, the NMR and MS spectral data 

are placed into separate “blocks,” which allows for the generation and simultaneous usage of 

within-block and between-block data correlations. The inclusion of MB-PLS also led to the use of 

backscaled loadings to identify biologically important metabolites that contributed significantly to 

group separation. Importantly, these NMR and MS spectral changes are now identified as being 

statistically correlated. In addition to MB-PCA and MB-PLS, the data were jointly modeled using 

multiblock orthogonal projections to latent structures (MB-OPLS), which corroborated the MB-PLS 

analysis while better differentiating group separations [92]. By effectively integrating NMR and MS 

datasets, we could thoroughly analyze the metabolic changes to human dopaminergic cells resulting 

from treatments with toxins that were not achievable with just the NMR or MS data. 
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Figure 4. A flow chart illustrating our protocol for combining NMR and MS datasets for 

metabolomics. 2.0 mL of a single metabolite extract was split into 1.8 mL and 0.2 mL for NMR and 

MS analysis, respectively. Spectral binning of the NMR data used adaptive intelligent binning. For 

MS, the background is first subtracted before spectral binning. Spectral binning of the MS data used 

fixed binning with a set bin width of 0.5 m/z. Noise removal and normalization were separately 

applied to the NMR and MS datasets. The NMR and MS datasets were then modeled by MB-PCA 

and MB-PLS. The resulting block scores and loadings are then analyzed for significantly contributing 

metabolites. Reproduced with permission from [82]. 
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(a) (b) 

 

(c) 

Figure 5. Scores generated from (a) PCA of 1D 1H NMR spectra; (b) PCA of DI-ESI-MS spectra; and 

(c) MB-PCA of 1D 1H NMR and DI-ESI-MS spectra of metabolomes extracted from human 

dopaminergic neuroblastoma cells treated with environmental/mitochondrial toxins. The ellipses in 

the PCA score plots correspond to the 95% confidence limits from a normal distribution for each 

cluster. Symbols designate the following classes: Control (●); Rotenone (●); 6-OHDA (●); MPP+ (●); 

and Paraquat (●). Reproduced with permission from [82]. 

3. PD and Mitochondrial/Environmental Toxins 

3.1. Paraquat Induces Unique Metabolic Changes 

In a previous study, human dopaminergic neuroblastoma cells (SK-N-SH) were treated with 

sublethal doses of environmental toxins known to induce dopaminergic cell death. Specifically, cells 

were treated with MPP+, 50 µM 6-OHDA, 0.5 mM paraquat, or 4.0 µM rotenone for 24 h [82,83]. The 

metabolome was extracted as described above (Figure 4) and analyzed with both 1D 1H NMR and 

DI-ESI-MS. The resulting MB-PCA model (Figure 5c) was valid based on both a CV-ANOVA p value of 

1.7 × 10−12 and response permutation testing that yielded a p value equal to zero. The MB-PCA model 

yielded a clear separation between the control group and the four toxin treatments. Furthermore, the 

control and paraquat groups were separated from the other toxin treatments. Also, the MPP+ treatment 

group was significantly separated from 6-OHDA and rotenone treatments. Again, these group 

separations were not apparent if only the NMR or MS dataset was used (Figure 5). More importantly, 

6-OHDA, MPP+, paraquat, and rotenone have been routinely used as experimental models of PD since 

they all result to a certain and variable extent in dopaminergic neuron cell death and PD-like symptoms 

in animal models [93]. Nevertheless, our analysis clearly indicates that the metabolic impact of these four 

toxins is unique and, consequently, the molecular mechanism that results in neuronal cell death must be 

different. Since paraquat treatment resulted in the largest metabolome changes relative to untreated 

controls, we focused our further investigation on the molecular mechanism of PD on paraquat.  

A detailed analysis of the metabolic changes by NMR and MS verified that paraquat uniquely 

perturbed the metabolome of dopaminergic neurons. For example, the S-plot (Figure 6a) generated 

from the MB-PLS-DA model identified metabolites significantly perturbed in dopaminergic neurons 

following paraquat treatment. Specifically, an increase in citrate, glucose 6-phosphate/fructose 

6-phoshate, heptose (sedoheptulose), and hexose (glucose or myoinositol), and a decrease in lactate, 

glutamate, dopamine, and phospho-aspartate were clearly observed. A similar comparison was made 
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between paraquat and the other toxins to determine if these metabolomic changes were unique to 

paraquat. The resulting Shared and Unique Structures (SUS) plot (data not shown), which is a union of 

two S-plots (paraquat vs. controls, and paraquat vs. MPP+, rotenone and 6-OHDA), verified that the 

changes in citrate, glucose 6-phosphate/fructose 6-phoshate, hexose, lactate, and dopamine were all a 

unique neuronal response to paraquat. Metabolome changes were further characterized by monitoring 

changes in the distribution and incorporation of 13C-carbons into metabolites (Figure 7). This was 

accomplished by interrogating intensity changes in 2D 1H-13C HSQC experiments after the addition of 
13C glucose to the cell culture medium. Paraquat treatment resulted in an increase in glucose, glucose 

6-phosphate, fructose-6-phosphate, glucose-1-phosphate, and glucono-1,5-lactone, which are 

associated with the pentose phosphate pathway (PPP). Importantly, these metabolic changes are 

consistent with the observed changes in the 1D 1H NMR and DI-ESI-MS spectral data. Paraquat also 

decreased purine levels (ATP, ADP, and AMP) and metabolites associated the glycolytic pathway 

[3-phospho glycerate, dihydroxyacetone phosphate (DHAP or glycerone phosphate), lactate, and 

alanine]. A decrease in extracellular glucose, lactate, and alanine was also observed. Furthermore, a 

large increase in citrate and a decrease in aspartate were observed following paraquat treatment. This 

is consistent with the inhibition of aconitase by paraquat-induced superoxide anion formation [94], 

since aconitase converts citrate to isocitrate in the tricarboxylic acid cycle (TCA). Also, aspartate is 

generated from oxaloacetate, which is produced from the TCA cycle. Finally, paraquat treatment also 

resulted in a decrease in total reduced (GSH) and oxidized (GSSG) glutathione. Critically, GSH 

depletion is an important contributor to oxidative stress and dopaminergic cell death [95]. Also, a 

decrease in GSH is one of the earliest biochemical alterations detected in incidental Lewy body disease, 

which is considered an asymptomatic precursor to PD [96]. A flow cytometry experiment confirmed a 

76.4% decrease in GSH 48 h after treatment with paraquat. Also, cell death was correlated with the 

GSH decrease. In total, the observed metabolite changes by NMR and MS demonstrate that paraquat 

increased PPP metabolite accumulation while decreasing glycolysis and impairing the TCA cycle. 

  

(a) (b) 

Figure 6. (a) Alterations in citrate, glucose 6-phosphate/fructose 6-phosphate, lactate, and glucose 

content are specific for paraquat treatment. S-plot was generated from the combined MB-PLS-DA of 1D 
1H NMR spectra and DI-ESI-MS spectra. The S-plot was used to identify metabolites that significantly 

contribute to the class separation between untreated controls and paraquat treatment. The metabolites 

located in the upper right quadrant increased significantly while those located in the lower left 

quadrant significantly decreased after paraquat exposure. Reproduced with permission from [83]. (b) 

Western blot analysis of changes in glucose-6-phosphate dehydrogenase (G6PD) expression induced 

by paraquat. Paraquat induces an increase in the expression levels of G6PD. Glyceraldehyde 

3-phosphate dehydrogenase (GAPDH) levels are used as loading controls for WBs. The changes 

observed in GAPDH levels might reflect of overall cell death (overall decrease in protein content) 

induced by PQ. Reproduced with permission from [83]. 



Metabolites 2017, 7, 22  10 of 26 

 

  

(a) (b) 

Figure 7. Paraquat induces selective changes in glucose metabolism, TCA cycle, and the PPP 

pathway. Cells were treated with paraquat (0.5 mM), rotenone (4 µM), MPP+ (2.5 mM), or 6-OHDA 

(50 µM) for 24 h in a glucose-free medium supplemented with 13C-glucose (3.5 g/L). Analysis of 2D 
1H-13C HSQC NMR spectra was used to evaluate changes in glucose-derived metabolites. Bar graphs 

indicate the relative changes in peak intensity (concentration) for metabolites associated with the (a) 

PPP and nucleotide biosynthesis and (b) glycolysis, the TCA cycle, and metabolites found 

accumulated in the extracellular media. Data represent means ± SD of 3 independent experiments. * p 

< 0.05, control vs. neurotoxin treatments. ATP/ADP/AMP, ATP or ADP or AMP; DHAP, 

Dihydroxyacetone phosphate; NADP/NADPH, NADP or NADPH; UDP/UMP, UDP or UMP. 

Reproduced with permission from [83].  

3.2. Glucose 6-Phosphate Dehydrogenase Regulates Paraquat Toxicity 

Metabolomics is a valuable tool of systems biology and provides a unique and complementary 

view relative to traditional cellular assays and molecular biology data. In this context, the value and 

validity of metabolomics data are greatly enhanced when combined with other experimental results. 

Thus, our metabolomics data were supplemented with a proteomics analysis following 24-h 

treatment of human dopaminergic neuroblastoma cells with paraquat. As commonly observed with 

proteomics data, a number of proteins across a variety of biological processes exhibited significant 

upregulation or downregulation due to exposure to paraquat. Consequently, it is difficult to 

ascertain which changes in protein expression levels are primary responses to paraquat toxicity and 

which are downstream or secondary effects. However, by combining the metabolomics and 

proteomics data it was possible to identify overlapping metabolic processes that likely represent 

major biological responses to paraquat toxicity. The proteomics analysis identified increases in 

glucose 6-phosphate dehydrogenase (G6PD), mitochondrial malate dehydrogenase, 

phosphoglycerate kinase 1 (PGK1), ATP-citrate synthase (CS), and pyruvate kinases isozymes 

M1/M2 and a decrease in lactate dehydrogenase A/B chains, which all correlate with the alterations 

in the PPP, TCA cycle, and glycolysis pathway identified from the metabolomics data. G6PD was of 

particular interest since it is a rate-limiting enzyme of the PPP and a major source of NADPH [97]. 

The proteomics data were confirmed by Western blot (Figure 6b) and indicate that G6PD expression 

increased proportional to an increase in paraquat dosage. Thus, the metabolomics and proteomics 

data indicated that alterations in PPP and G6PD activity may be a result of paraquat toxicity. 
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3.3. Paraquat Hijacks the Pentose Phosphate Pathway 

Human dopaminergic neuroblastoma cells were transduced with adenovirus encoding for 

human G6PD (AdG6PD) or empty adenovirus (AdEmpty) to further investigate the role of G6PD in 

paraquat toxicity. G6PD overexpression increased cell death and oxidative death as a result of 

paraquat treatment, but, importantly, no change was observed when cells were exposed to other 

toxins (Figure 8a). Conversely, paraquat-induced toxicity, mitochondrial ROS formation, and GSH 

depletion were reversed when G6PD was inhibited with 6-aminonicotinamide (6-AN) (Figure 8b). 

Again, 6-AN had no effect on cell death or GSH depletion when neuronal cells were treated with 

rotenone, MPP+, or 6-OHDA instead of paraquat. These observations are consistent with the 

recycling of NADPH from NADP+ by G6PD being uniquely required for the redox cycling of 

paraquat to produce ROS. In effect, paraquat would be expected to outcompete NADPH-dependent 

antioxidant systems. As such, unpublished results from our group have demonstrated that depletion 

of GSH is not prevented by overexpression of GSH reductase. NADPH can also be produced by 

6-phosphogluconate dehydrogenase (PGD), malic enzyme (malate dehydrogenase, MDH), and 

isocitrate dehydrogenase (IDH) [97]. Interestingly, paraquat treatment also increased the expression 

levels of malate dehydrogenase, which may also contribute to paraquat’s redox cycle in the 

mitochondria. The observed changes in the metabolome and proteome for human dopaminergic 

neuroblastoma cells following exposure to paraquat are summarized in Figure 9. Our results suggest 

that paraquat hijacks the PPP to increase NADPH-reducing equivalents and stimulate paraquat 

redox cycling, oxidative stress, and cell death.  

 
(a) 

 
(b) 

Figure 8. Paraquat-induced cell death is selectively regulated by glucose 6-phosphate dehydrogenase 

and the pentose phosphate pathway. (a) Cell death induced by paraquat (0.5 mM), rotenone (4 µM), 

MPP+ (2.5 mM) or 6-OHDA (50 µM) after 48 h of treatment, was simultaneously evaluated by flow 

cytometry using PI and mBCl. Cell death is observed as an increase in PI uptake. Data is represented 

as fold increase in the mean PI fluorescence and are means ± SE of three independent experiments. * p 

< 0.05, Empty vs. G6PD values. Reproduced with permission from [83]. (b) Cell death induced by 

paraquat was evaluated in the presence or absence of 6-aminonicotinamide (6-AN, 1 mM). Cell death 

is represented as an increase in the population of cells (%) with increased PI fluorescence. 

Reproduced with permission from [98]. 
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Figure 9. Paraquat hijacks the pentose phosphate pathway to induce oxidative stress and cell death. 

Our results demonstrate that paraquat induces an increase in the PPP (highlighted in green), which is 

reflected by an increase in glucose uptake, and in glucose 6-phosphate, glucono 1,5-lactone, 

erythrose 4-phosphate, and fructose 6-phosphate content (red arrows). In addition, paraquat 

decreases glycolysis as demonstrated by a decrease in 3-phosphoglycerate, alanine and lactate levels 

(green arrows). These metabolic changes were also paralleled by: (1) an increase in G6PD (the 

rate-limiting enzyme in the PPP), and the expression levels of citrate synthase, pyruvate kinases 

M1/M2; and (2) a decrease in lactate dehydrogenase A/B chains, which participate in glycolysis and 

the TCA cycle (highlighted in orange). Paraquat also induced an increase in citrate accumulation 

which is associated to the well-known inhibitory effect on aconitase (highlighted in orange). An 

abnormal increase in citrate levels has been reported to exert an inhibitory effect on glycolysis by 

allosteric inhibition of PFK (broken red line), which explains why an increase glucose uptake and 

impaired TCA cycle is not translated to an upregulation in glycolysis. Modulation of G6PD levels 

and activity was directly linked to paraquat toxicity and oxidative stress. 6-AN, 

6-aminonicotinamide, ACO, aconitase or aconitate hydratase (EC:4.2.1.3; ADC, aspartate 

4-decarboxylase (EC:4.1.1.12); ALDO, fructose-bisphosphate aldolase (EC:4.1.2.13); ALT, alanine 

transaminase (EC:2.6.1.2); CS, citrate synthase (EC:2.3.3.1); FBP, fructose-1,6-bisphosphatase I 

(EC:3.1.3.11); FUM, fumarate hydratase (EC:4.2.1.2); G6PD, glucose-6-phosphate 1-dehydrogenase 

(EC:1.1.1.49); GAPDH, glyceraldehyde 3-phosphate dehydrogenase (EC:1.2.1.12); GLDH, glutamate 

dehydrogenase, (EC: 1.4.1.2); GLS, glutaminase (EC: 3.5.1.2); GOT1, aspartate aminotransferase, 

cytoplasmic (EC:2.6.1.1); GPI, glucose-6-phosphate isomerase (EC:5.3.1.9); HK, hexokinase 

(EC:2.7.1.1); IDH, isocitrate dehydrogenase (EC:1.1.1.42); LDH, L-lactate dehydrogenase 

(EC:1.1.1.27); MDH, malate dehydrogenase (EC:1.1.1.37); OGDH, 2-oxoglutarate dehydrogenase, 

(EC:1.2.4.2); LSC, succinyl-CoA synthetase (EC:6.2.1.4 6.2.1.5); PC, pyruvate carboxylase (EC:6.4.1.1); 

PGD, 6-phosphogluconate dehydrogenase (EC:1.1.1.44); PDH, pyruvate dehydrogenase (EC:1.2.4.1); 

PGK1, phosphoglycerate kinase (EC:2.7.2.3); PGM, phosphoglucomutase (EC:5.4.2.2); PFK, 

6-phosphofructokinase 1 (EC:2.7.1.11); RPI, ribose 5-phosphate isomerase A (EC:5.3.1.6); SDH, 

succinate dehydrogenase (EC:1.3.5.1); TPI, triosephosphate isomerase (EC:5.3.1.1); TAL, 

transaldolase (EC:2.2.1.2); TKT, transketolase (EC:2.2.1.1). Reproduced with permission from [83]. 
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3.4. Glucose Metabolism Regulates Paraquat Toxicity 

We further investigated the role of glucose metabolism on paraquat toxicity based on the prior 

observations that metabolites derived from 13C-glucose are uniquely perturbed by paraquat 

exposure and the hijacking of the PPP. Consequently, glucose availability significantly impacted the 

survivability of rat dopaminergic mesencephalic cell line N27 following exposure to paraquat. 

Specifically, glucose deprivation increased cell survival (Figure 10a). Also, replacing glucose with 

galactose protected cells from paraquat toxicity. Galactose directs metabolism from glycolysis into 

glutaminolysis and OXPHOS phosphorylation for ATP production. An inhibition in glycolysis for 

cells grown in glucose-free or galactose-supplemented media was verified by changes in the 

extracellular medium acidification (ECAR) (Figure 10b). Furthermore, treatment of cells with 

2-deoxy-D-glucose (2-DG), which is a hexokinase inhibitor that prevents the production of 

glucose-6-phosphate, also provided protection from paraquat toxicity (Figure 10c). These results, in 

total, demonstrate that glucose metabolism contributes to the death of cells following treatment with 

paraquat at ≥100 μM. 

The metabolomics analysis indicated both an increase in intracellular glucose and a 

corresponding decrease in extracellular glucose after exposure to paraquat. These observations 

suggested that paraquat treatment increases glucose uptake. A fluorescently labeled analog of 

glucose (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose, 2-NBDG) was used to 

monitor changes in glucose uptake due to paraquat exposure. Correspondingly, neuronal cells 

treated with paraquat exhibited a >60% increase in glucose uptake in response to paraquat treatment 

(Figure 11a), which is consistent with the metabolomics data. Glucose uptake is regulated by a 

saturable transport system involving the Na+-independent glucose transporters (GLUT), and the 

Na+-dependent glucose transporters (SGLT). Exposure to paraquat resulted in a significant increase 

in the translocation of SGLT1 and GLUT4 transporters to the plasma membrane. Consequently, 

inhibiting glucose uptake with STF-31, a GLUT inhibitor, (Figure 11b) or ascorbic acid, a competitive 

inhibitor of glucose, decreased paraquat toxicity. Again, these results clearly demonstrate that 

glucose metabolism is an important contributor to paraquat-induced cell death. 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Inhibition of glucose metabolism protects against paraquat toxicity. Rat dopaminergic N27 

cells were grown in culture media with or without glucose, or in a glucose-free medium 

supplemented with galactose. When indicated, cells were treated with PQ or MPP+ (2.5 mM) for 48 h 

in the presence or absence of 2-DG. (a,c) Cell survival was determined by the simultaneous analysis 

of plasma membrane integrity (PI uptake) and intracellular GSH content (mBCl fluorescence). Bar 

graphs represent % s of viable cells (cell survival) and data are means ± SE of at least n = 3 

independent experiments. (b) Glycolysis rates and glycolytic reserve capacity of cells were 

evaluated by changes in the ECAR sensitive to 2-DG. Glycolysis is observed as an increase in ECAR 

when switching cells from a glucose-free environment (NG) to a medium containing 10 mM 

glucose. Glycolytic reserve capacity is determined by addition of oligomycin. Data are means  SE 

of at least n = 3 independent experiments and are represented with respect to control (+ glucose). 

Two-way ANOVA Holm–Sidak post hoc test: a, p < 0.05 vs. no PQ or MPP+ within the 

corresponding category of  glucose, galactose or 2-DG; b, p < 0.05, vs. + glucose, within the 

corresponding toxicant treatment. t-test: * p 0.05, vs. + glucose. Reproduced with permission from 

[98]. 
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(a) 

 
(b) 

Figure 11. Paraquat increases glucose transport and the translocation of glucose transporters. Cells 

were treated with PQ for 48 h. (a) Glucose transport was evaluated by the uptake 2-NBDG; (b) the 

survival of cells treated with PQ in the presence or absence of STF-31 was determined as explained 

in Figure 10. The bar graph represents %s of viable cells (cell survival). Data in all graphs are means 

± SE of at least n = 3 independent experiments. Two-way ANOVA Holm–Sidak post hoc test: c, p < 

0.05 vs. no PQ within the corresponding ± STF-31 or phlorizin category; d, p < 0.05 vs. control (no 

glucose transport inhibitor) within the corresponding PQ concentration. Reproduced with 

permission from [98]. 

3.5. Paraquat Induced Metabolic Dysfunction in the Mice Midbrain and Striatum  

To further substantiate the validity of our in vitro findings that paraquat uniquely perturbs the 

metabolome of dopaminergic neurons, we evaluated the metabolic dysfunction induced by 

chronically treating C57BI/6 mice with paraquat. We observed that paraquat only induced 

statistically significant changes to the metabolomes of the midbrain, which is the location of the 

substantia nigra and the loss of dopaminergic neurons associated with PD; and to the striatum, 

which receive dopaminergic signals from midbrain and controls motor function. Importantly, we 

observed changes to metabolites associated with glycolysis (e.g., lactate), the TCA cycle (e.g., 

glutamate), and GSH metabolism (e.g., glutathione), consistent with our in vivo results (Figure 12a). 

Paraquat was again observed to induce a large accumulation of citrate consistent with the proposed 

inactivation of aconitase. AMP-activated protein kinase (AMPK) is a metabolic master regulator that 

includes regulating glucose uptake and, like other kinases, is regulated by phosphorylation 

(pAMPK) [99]. Consequently, chronic paraquat treatment also resulted in a significant increase in 

pAMPK and its substrate acetyl-CoA carboxylase (pACC) only in the midbrain and striatum of 

C57BI/6 mice (Figure 12b). These results further corroborate the observation that paraquat 

modulates glucose metabolism and that the midbrain and striatum are selectively sensitive to 

paraquat toxicity. 
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Figure 12. C57Bl/6J mice were exposed chronically to paraquat (PQ). One week after the final 

injection of PQ or PBS, animals were euthanized to isolate metabolites from the midbrain, striatum 

and cortex regions. Integrated positive and negative-ion DI-ESI-MS and 1D 1H NMR were used to 

characterize the alterations in the metabolic profiles of midbrain, striatum, and cortex regions from 

control and PQ-treated mice. (a) The percent fold-change for metabolites contributing to class 

separation as identified from OPLS-DA back-scaled loadings plots are plotted. The percent fold 

changes are all significant (p < 0.05) based on a paired t-test. The green bars indicate metabolites with 

a fold-increase after PQ treatment, whereas red bars indicate that a metabolite decreased after PQ 

treatment. Reproduced with permission from [98]. (b) Changes in the levels of phosphorylated (p) 

AMPKα1 induced by PQ were evaluated by western-bot (WB). Bar graphs represent the 

densitometry analysis of the corresponding WBs from three independent replicas. Data are 

represented as fold change vs. the indicated control. Reproduced with permission from [98].  

4. Synergy of α-Synuclein Genetic Mutations and Paraquat Toxicity 

4.1. α-Synuclein Potentiates Paraquat Toxicity and Metabolic Dysfunction 

PD is a probable multifactorial disease, in which exposure to an environmental toxin is likely 

one component in the development and progression of the disease. Overexpression and aggregation 

of α-synuclein and the subsequent formation of Lewy bodies are hallmarks of PD. Consequently, is 

there a synergistic relationship between α-synuclein and exposure to paraquat? The overexpression 

of wild-type (WT) α-synuclein or an A53T mutant (familial PD mutant [9,10]) did not result in any 

significant change in viability (Figure 13a). Conversely, treatment with paraquat resulted in a 

significant increase in cell death and a major perturbation in the metabolome (Figure 13). 

Specifically, the combination of paraquat and α-synuclein overexpression produced a more 

dramatic change in the metabolome than either paraquat treatment or α-synuclein overexpression 

alone. Importantly, the same results were obtained if either WT or A53T α-synuclein was 

overexpressed. A detailed analysis of the metabolic changes was then made using 2D 1H-13C HSQC 

experiments and following the 13C-carbon distribution resulting from 13C-glucose supplemented 

media (Figure 14a). Overexpression of α-synuclein and paraquat exposure resulted in an enhanced 

glucose accumulation, an impairment in glycolysis, and a reduction in glycolytic capacity and 

mitochondrial respiration (OCR/ECAR ratio) (Figure 14b).  
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Figure 13. α-Synuclein potentiates the metabolic dysfunction and toxicity induced by paraquat (PQ). 

N27 dopaminergic cells were transduced for 24 h with empty adenoviruses or adenoviruses 

encoding either WT or mutant A53T α-synuclein (6 MOI). (a) Cell survival after exposure to PQ for 

48 h was determined as explained in Figure 10. Bar graph represents percentage of viable cells (cell 

survival) and data are means ± SE of at least n = 3 independent experiments. (b) Cells were treated 

with 25 µM PQ for 24 h. Metabolites were extracted for NMR/MS metabolomics. 3D MB-PCA scores 

plot shows the changes in the metabolome based on distances between groups. The ellipsoids 

correspond to the 95% confidence limits from a normal distribution for each cluster. Six independent 

samples of metabolic extract were used for the MB-PCA multivariate analysis. Reproduced with 

permission from [98]. 
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Figure 14. α-Synuclein potentiates paraquat induced metabolic changes. (a) Paraquat N27 

dopaminergic cells were transduced for 24 h with empty adenoviruses or adenoviruses encoding 

either WT or mutant A53T α-synuclein (6 MOI). Cells were treated with 25 µM PQ for 24 h. 

Metabolites were extracted for NMR metabolomics. 2D 1H−13C HSQC NMR spectra from 13C glucose 

labeling experiments were used to evaluate the intracellular metabolic changes shown by the 

MB-PCA multivariate analysis. Data represent the mean of 3 independent replicates. * p < 0.05 vs. 

empty. (b) Cells were treated with 25 µM PQ for 12 h. Basal OCR and ECAR rates were determined 

after 1 h of incubation of cells with fresh medium. Data represent means ± SE of at least n = 3 

independent experiments. Reproduced with permission from [98].  

4.2. Glucose Metabolism Contributes to Synergistic Toxicity between Paraquat and α-Synuclein 

As described in Section 3.4, glucose metabolism was shown to regulate paraquat toxicity. 

Specifically, glucose deprivation protected dopaminergic cells from paraquat-induced cell death. 

Additionally, replacing glucose with galactose or the inhibition of glycolysis with 2-DG were also 

observed to prevent cell death from paraquat exposure (Figure 10). Furthermore, paraquat treatment 

was shown to cause an increase in glucose uptake, and inhibiting glucose uptake was also shown to 
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provide protection against paraquat toxicity (Figure 11). Finally, the inhibition of PPP by 6-AN 

(Figure 8b) significantly increased cell survival following exposure to paraquat. These results raise 

the question: does glucose metabolism play a similar role and contribute to the observed synergistic 

toxicity between paraquat and α-synuclein? To address this question, we repeated all of the above 

experiments with the addition of the overexpression of WT α-synuclein or an A53T mutant. Glucose 

deprivation, the inhibition of glucose uptake, and the inhibition of the PPP were all observed to 

eliminate the stimulatory effect of α-synuclein on paraquat toxicity (Figure 15). These results, in 

total, provide strong evidence that glucose metabolism and signaling are critically involved in the 

toxic synergism of paraquat exposure and the overexpression of α-synuclein. Specifically, 

α-synuclein potentiates paraquat toxicity by impairing energy metabolism, glycolysis, and 

mitochondrial respiration.  

 
(a) 

 
(b) 

 
(c) 

Figure 15. Glucose metabolism and the PPP regulate the toxic synergism of α-synuclein and 

paraquat (PQ). N27 dopaminergic cells were transduced for 24 h with empty viral particles or 

adenoviruses encoding either WT or mutant A53T α-synuclein (6 MOI). After transduction, cells 

were treated with PQ (50 µM in b) for 48 h in the presence or absence of glucose. (a) STF-31 (b, 0.5 

mM), or 6-AN (c, 1 mM). Cell survival was determined as explained in Figure 10. Bar graphs 

represent % s of viable cells (cell survival) and data are means ± S.E.M. of at least n = 3 independent 

experiments. Two-way ANOVA Holm–Sidak post hoc test was done for each PQ concentration 

independently: a, p < 0.05, vs. empty, within the corresponding category of ± glucose (a) ± STF31; (b) 

± 6-AN (c); b, p < 0.05, vs. + glucose (a), -STF31 (b), or -6-AN (c), within the corresponding category of 

Empty or α-synuclein. Reproduced with permission from [98].  

5. Conclusions 

PD is currently believed to be a multifactorial disease, in which age, genetics, and 

environmental toxins are all considered significant risk factors. The overexpression or mutation of 

α-synuclein [9,10] has been identified as a major genetic factor associated with PD. In fact, the 

formation of α-synuclein aggregates or Lewy bodies in dopaminergic neurons are the primary 

clinical sign of the disease. Lewy bodies are correlated with neuronal loss and cognitive impairment, 

which are key symptoms of PD. The biological function of α-synuclein is currently unknown, and 

while a variety of factors have been shown to induce fibril formation, oxidative stress [49] is an 

important contributor. Thus, mitochondrial dysfunction, energy failure, and redox imbalance 

induced by environmental toxicants may be the primary mechanism leading to α-synuclein 

misfolding and aggregation in PD. 

Exposure to environmental toxins, such as herbicides or pesticides, has been correlated with an 

increase in the incidence of PD and has been shown to induce PD-like symptoms. Specifically, 

environmental toxins have been shown to induce cell death of dopaminergic neurons primary 

through an increase in ROS. Consequently, the loss of neurons in the substantia nigra of the 

midbrain is a hallmark of PD. We have demonstrated that paraquat, rotenone, 6-OHDA, and MPP+ 

have distinct molecular mechanisms leading to dopaminergic neuron cell death. We have shown 

that paraquat hijacks the NADPH from the PPP to redox cycle, induces oxidative damage, and 

impairs antioxidant defenses. Furthermore, paraquat increases glucose transport and carbon flux to 

the PPP (Figure 16). Finally, paraquat impairs the TCA cycle, which leads to the accumulation of 
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citrate and impairment of glycolysis. Critically, we have demonstrated a clear toxic synergy between 

paraquat and α-synuclein. α-Synuclein impairs glycolysis and upregulates glucose transport. This 

channels carbon flux to the PPP to increase paraquat’s redox cycling and ROS formation. In effect, 

α-synuclein feeds the production of ROS that leads to its own misfolding and aggregation. 

Consequently, glucose metabolism plays an important role in the molecular mechanism of PD since 

it regulates the effect of α-synuclein on paraquat toxicity. The inhibition of glucose transporters 

prevents the potentiation of paraquat toxicity by α-synuclein. Also, the inhibition of the PPP protects 

against this synergistic toxicity. Consistent with the cell-based assays, we also observed that 

paraquat selectively induced metabolic dysfunction in the midbrain and striatum of C57Bl/6 mice. 

Overall, glucose metabolism and AMPK contribute to dopaminergic cell death, induced by PQ and 

α-synuclein interactions. Central carbon metabolism and metabolic dysfunction/signaling are 

important contributors to dopaminergic cell death induced by gene–environment interactions.  

 

Figure 16. Glucose metabolism and AMPK signaling regulate the toxicity of paraquat + α-synuclein. 

We have demonstrated that PQ hijacks the PPP to use NADPH electrons for redox cycling and to 

induce cell death. (a) We also revealed that glucose metabolism/transport contributes to PQ-induced 

dopaminergic cell death, as evidenced by the protective effects of STF-31, AA (GLUT-like transport 

inhibitors) and 2-DG (glucose metabolism inhibitor). (b) Furthermore, we present evidence that the 

stimulation of glutamine metabolism via the TCA cycle by galactose supplementation also protects 

against PQ; (c) in contrast, glucose metabolism protected against the mitochondrial complex I 

inhibitor MPP+ while sole reliance on glutamine metabolism induced by galactose supplementation 

sensitized cells to MPP+-induced cell death; (d) PQ-induced AMPK signaling is dependent on iNOS; 

(e) AMPK signaling activated in response to PQ or glucose deprivation exerted a protective effect 

against PQ; (f) overexpression of α-synuclein stimulated PQ toxicity (gene-environment interaction), 

metabolic dysfunction and AMPK activation; (g) reproduced with permission from [98]. 

6. Future Perspectives 

The work presented herein provides some insights into potential underlying molecular 

mechanisms that lead to PD, specifically with regards to the herbicide paraquat. It also provides 

valuable evidence in support of a gene–environment interaction that may increase the likelihood of 
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developing PD. Nevertheless, the molecular mechanism attributed to other environmental toxins is 

still currently unknown. Additionally, the biological role in PD for other genetic alterations (i.e., 

Parkin, DJ-1, PINK1, and LRRK2) requires further investigation. Even in the case of α-synuclein, the 

mechanism by which α-synuclein interacts with paraquat to induce cell death is still unclear. For 

example, it is still uncertain if α-synuclein aggregates are a direct cause of neuronal cell death or if 

the formation of Lewy bodies is a protective mechanism. Similarly, while some evidence was 

provided that cell-based results are consistent with in vivo studies, substantial effort is still required 

to verify if any of these processes are related to the development of PD in human patients. 

Consequently, there is more that we still do not know about the molecular processes that lead to the 

development of PD. However, this study clearly demonstrated the inherent value of combining 

metabolic studies with traditional cell biology to explore the molecular mechanisms associated with 

Parkinson’s disease. Metabolomics is expected to continue to play an important role in further PD 

studies. 

While avoiding environmental toxins is obvious advice, it is particularly pertinent for 

individuals with a genetic predisposition to developing PD. However, we are still far from 

identifying the environmental agents that are a current concern to the public and are also linked to 

an increased risk in developing PD. For example, most of the research to date has been focused on 

pesticides (paraquat and rotenone) with a strong epidemiological association with PD, but whose 

usage is restricted and thus are not currently a major risk for human populations. More importantly, 

it is clear that a single environmental exposure will not (at least by itself) cause PD, which 

complicates the further identification of gene–environment interactions, which, together with aging, 

may trigger progressive neurodegeneration.  

Since our research strongly suggests that glucose metabolism contributes to PQ toxicity and to 

the synergistic effect between PQ and α-synuclein overexpression, a low-carbohydrate diet may be 

beneficial to preventing the development and progression of PD [100]. In fact, a ketogenic diet (low 

carbohydrate/high fat) has been reported to exert protective effects in PD [101]. To date, there are no 

successful therapies to treat or prevent PD. As a result, α-synuclein has garnered a tremendous 

amount of attention as a therapeutic target with a number of potential treatments in development or 

in clinical trials [102]. These potential drugs are designed to increase α-synuclein clearance, prevent 

its aggregation, or inhibit post-translational modifications, but no clinical successes have been 

observed as of yet. Correspondingly, an alternative strategy may be to directly target the metabolic 

processes “hijacked” by toxins associated with PD. FDA-approved metabolic inhibitors have been 

safely used as drugs in humans for decades [103]. While broad-based antioxidant therapies have not 

had much success in treating PD [104], a focused effort on developing drugs that inhibit a specific 

target of a toxin, such as G6PD in the case of PQ, may be a viable alternative. Furthermore, a 

personalized therapy based on a patient’s history of toxin exposure coupled with a ketogenic diet 

may prove to be a successful approach to prevent the progression of the disease.  
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