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Abstract

Sample selection arises when the outcome of interest is partially observed in a study. Al-

though sophisticated statistical methods in the parametric and non-parametric framework

have been proposed to solve this problem, it is yet unclear how to deal with selectively

missing covariate data using simple multiple imputation techniques, especially in the ab-

sence of exclusion restrictions and deviation from normality. Motivated by the 2003-2004

NHANES data, where previous authors have studied the effect of socio-economic status

on blood pressure with missing data on income variable, we proposed the use of a robust

imputation technique based on the selection-t sample selection model. The imputation

method, which is developed within the frequentist framework, is compared with compet-

ing alternatives in a simulation study. The results indicate that the robust alternative is

not susceptible to the absence of exclusion restriction- a property inherited from the par-

ent selection-t model- and performs better than models based on the normal assumption

even when the data is generated from the normal distribution. Applications to missing

outcome and covariate data further corroborate the robustness properties of the pro-

posed method. We implemented the proposed approach within the MICE environment

in R Statistical Software.

Key Words: Student-t distribution; Heckman model; Missing data; Multiple imputation; Robust

method; MICE package.
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1 Introduction

Missing data are ubiquitous throughout the social, behavioral and medical sciences. The

incompleteness of a data set may lead to results that are different from those that would

have been obtained had the data set been completely observed.1 distinguished four different

approaches to the analysis of missing data: analysis of only those subjects who complete the

study; analysis of available data; use of a single or multiple imputation techniques to replace

the missing observations with plausible values, then analyse the complete data set; and joint

modelling of observed data and the missingness process. The choice of the method of analysis

depends on the missing data mechanism as characterized by2. Data are missing completely at

random (MCAR) when the probability of missing data on a variable is not related to other

measured variables and is unrelated to the variable itself. In this case, a complete case analysis

could be used. A less restrictive assumption than the MCAR is the missing at random (MAR)

missing data assumption. This occurs when the probability of missing data for a variable

is related to other measured variables in the model but not on the values of the variable

itself. This assumption and the distinctiveness of the parameters in the observed data and

missingness process allows the missingness process to be ignorable. Likelihood inference can

be used under ignorability. Data are missing not at random (MNAR) when the probability of

missing data on a variable is related to the values of the variable, even after adjusting for other

variables. Indeed, the validity of inferences made under different statistical methods depends

on the assumption made about the missingness process.

In settings where covariates or covariates and outcomes are subject to selective missing, the

use of joint modelling of the observed and the non-response process may not be straightforward.

Multiple imputation (MI) is commonly used in such settings, where missing values are filled-in

(singly or multiply) to produce complete data. It has been suggested that the outcome variable

be included in the imputation of missing covariates in order to preserve the relationships among

variables3. This may be challenging for non-monotone missing data patterns. Incidentally,

the use of FCS (fully conditional specification) algorithm can simplify the imputation process.

This algorithm has been implemented in MICE (Multivariate imputation by chained equations)

package in R and STATA. Details of Multiple imputation using MICE can be found in4.

A common misunderstanding about MI is that it is restricted to MAR. While it is certainly

true that imputation techniques commonly assume MAR, the theory of MI is completely

general and also applies to MNAR missingness5. For example, a pattern-mixture approach

to sensitivity analysis, where missing values are imputed under a plausible MNAR scenario,

has been proposed6. A tipping point approach or the so-called delta method adds a constant

δ to the imputation to creates a difference in the means of respondents and nonrespondents

that is equal to δ (7 p88-89). This requires sensitivity analyses to obtain an appropriate
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mean difference which may not be tenable for observational studies with MNAR missingness,

especially the Heckman-type sample selection problem.

Sample selection arises when the outcome of interest can only be observed in a subset of the

population under study. The data are MNAR because the observed data do not represent a

random sample from the population, even after controlling for covariates. A model for selected

sample was introduced by8 and several extensions in the parametric framework9–12, semi-

parametric framework13 and non-parametric framework14 have been proposed. Earlier review

of sample selection models can be found in15. A unified approach to parametric multilevel

sample selection model was proposed in16.

The use of a sample selection modelling framework as an imputation model for MI has been

suggested in the literature12,17. This approach was implemented for missing covariates data

by18 and compared against competing methods. The author implemented the method using

the moment based two-step method because of the perceived computational complexities of

the corresponding full information maximum likelihood method (FIML). However, the two-

step estimator and its corresponding FIML estimator have often been shown to be susceptible

to collinearity in the absence of an exclusion restriction19. An exclusion restriction implies

that there are variables in the selection equation that are absent in the outcome model or vice

versa. This is to avoid multicollinearity as the inverse Mills ratio, which links the outcome and

selection equations, in the two-step method can be linear over a wide range of its support. In

the absence of an exclusion restriction, model identifiability relies on the non-linearity of the

inverse Mills ratio.

In addition, the methods are not robust to outliers and deviations from the assumption

of normality. The former led to the proposal of a model that is robust to outliers even in

the design space20 and the latter led to robust alternatives such as the selection-t model11.

Variants of these proposals exist in the literature (see10). In this paper, we focus on the

use of selection-t model as the imputation model for missing outcome and covariate data in

a Heckman-type missing data problem. We examine its performance in the absence of an

exclusion restriction and other forms of model misspecifications. The method is compared

against competing alternatives. We also apply our approach to the imputation of missing

outcome data (Ambulatory Expenditure) and covariates in the NHANES (National Health

and Nutrition Examination Survey) data sets. The method is implemented within the MICE

environment in R statistical software.
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2 Sample selection model and multiple imputation

In this section, we review the classical Heckman selection model8,9 and describe the implemen-

tation of multiple imputation (frequentist) approach for these models.

2.1 Heckman section model

Let Y ?
i be the outcome variable of interest, assumed to be linearly related to covariates xi

through the standard multiple regression model

Y ?
i = β′xi + σε1i, i = 1, . . . , N. (1)

Suppose the main model is supplemented by a selection (missingness) equation

S?i = γ′wi + ε2i, i = 1, . . . , N, (2)

where β, γ and σ are unknown parameters; xi and wi, which can overlap, are fixed observed

characteristics that may be subject to missingness; and (ε1i, ε2i) are random errors with means

zero, variances one and correlation ρ. If we observe Si = I(S?i > 0) and Yi = Y ?
i Si for

n =
∑N

i=1 Si of N individuals, the sample Yi, i = 1, . . . , n is a selection from the N individuals.

The variance of S?i is fixed at 1, because we only observe the sign of S?, which is insufficient

information to estimate its variance. Suppose further that the errors are correlated and follow

a bivariate normal distribution, that is

(
ε1i

ε2i

)
∼ N2

{(
0

0

)
,

(
1 ρ

ρ 1

)}
;

where ρ ∈ (-1,1) determines the correlation of Y ?
i and S?i , and hence the nature and severity

of the selection process. The selection framework factorizes the joint density of Y ? and S? as

f(Y ?, S?|x,w, β, γ) = f(Y ?|x, β)f(S?|Y ?, w, γ).

Thus,

f(y|x, S? > 0) =
f(y|x)P (S? > 0|y, w)

P (S? > 0|w)
. (3)

The observed data, therefore has a density given by

4

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



f(y|x, S = 1; Θ) =
1

σ
φ
(y − β′x

σ

)
Φ

(
γ′w + ρ

(
y−β′x
σ

)√
1− ρ2

)/
Φ(γ′w), (4)

where Θ = (β, σ, γ, ρ). This density describes the distribution of the observed data. If the

non-intercept terms in γ as well as ρ are 0 in (4), the data is MCAR, ρ = 0 implies the data

is MAR while ρ 6= 0 means the missing data is MNAR. The complete density of the sample

selection model is used to avoid bias in the estimator when ρ 6= 0. This density comprises

of a conditional density defined in (4), and a discrete component given by P (S = 1|w). The

likelihood based inference for sample selection model is based on

l(Θ) =
n∑
i=1

Si

(
ln f(yi|xi, Si = 1; Θ)

)
+

n∑
i=1

Si(ln Φ(γ′wi)) +
n∑
i=1

(1− Si) ln(Φ(−γ′wi)). (5)

The conditional expectation of the observed data, often referred to as the two-step estimator,

is given by

E(Y |x, S? > 0) = β′x+ σρΛ(γ′w), (6)

where Λ(·) = φ(·)/Φ(·) is the inverse Mills ratio. To use (6) in practice, a standard probit

model for S provides an estimate of γ̂. The quantity Λ(γ̂′w) is then taken as an additional

covariate in equation (6), and the least squares coefficient of Λ(γ̂′w) gives an estimate of σρ.

2.2 Multiple imputation for Heckman-type MNAR missing data

2.2.1 18 proposal

Recall that the density, f(y|x, S? > 0) describes the observed data. Imputation of the

missing component under MAR missing data mechanism is based on the assumption that

the distribution of the observed data and the non-response process are the same. That is,

f(y|x, S? > 0) = f(y|x, S? ≤ 0). This relationship does not hold under the MNAR missing-

ness assumption. The effect of a negative correlation between the outcome and the selection

errors is equivalent to a positive correlation, but selection if S? ≤ 0. The imputation model

for the missing values in Y ? is then written as

E(Y |x, S? ≤ 0) = β′x− σρΛ(−γ′w). (7)

5

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Equation (7) is equivalent to equation 6 in18. The authors filled-in the missing data using

the Heckman two-step approach with the equation of the form

Y ∗i = β′∗x− (σρ)∗Λ(−γ′∗w) + η∗, (8)

where η∗ ∼ N (0, σ2∗
η ) and σ2∗

η , β∗, (σρ)∗ are drawn using approximate proper imputation.

Estimated values of these parameters are obtained from the two-step estimator.

18 acknowledged that the two-step method is less efficient than the ML/FIML estimator.

With the advent of powerful computational tools, efficiency and accuracy cannot be traded for

computational complexities. We therefore present two approaches based on the ML estimator,

which will be used in subsequent analyses.

2.2.2 Maximum likelihood estimator approach

If Yi,obs and Yi,mis represent the observed and the missing parts of Y ? respectively, then the

process of imputing values requires that missing values are drawn multiple (M) times from

Y
(k)
i,mis ∼ p (Yi,mis|Yi,obs, xi) , with k ∈ {1, ...,M}, (9)

where p(·) denotes the posterior predictive distribution. It can be difficult sometimes to draw

from this distribution, therefore, iterative imputation approaches such as data augmentation21

can be used. Whilst this approach is theoretically preferable, it can be computationally bur-

densome. We therefore propose two methods based on the approximation of the predictive

distribution in a frequentist framework. In order to motivate these methods, we first note that

sampling from (9) requires the true value of the parameter Θ, which is unknown in practice.

As an alternative value, we consider Θ̂, the maximum likelihood estimator of Θ and, in order

to formally account for the uncertainty on the true value of Θ, we consider sampling from the

following conditional distribution:

p (Yi,mis|Yi,obs, xi) =

∫
p
(
Yi,mis|Yi,obs, xi, Θ̂

)
π(Θ̂)dΘ̂, (10)

where π(Θ̂) represents the distribution of the MLE. This approach clearly takes into consid-

eration the uncertainty about the parameters in the light of the data, which is summarised

in π(Θ̂), and integrated out using the law of total probability. Given that the distribution

π(Θ̂) is not available in closed form in (10), we consider two approaches for approximating

this function and sequentially sampling from it. The first approach is based on the asymptotic
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normality of the maximum likelihood estimators Θ obtained from (5). We approximate the

draws in (9) using

Y
(k)
i,mis ∼ p

(
Yi,mis|Yi,obs, xi, Θ̃(k)

)
,

where Θ̃(k) = (β̃(k), σ̃(k), γ̃(k), ρ̃(k)) are drawn from the asymptotic normal distribution of the

maximum likelihood estimator, Θ̂ML. If we denote the consistent estimator of the correspond-

ing large-sample covariance matrix by C(Θ̂ML), then

Θ̃(k) ∼ N
(

Θ̂ML, C(Θ̂ML)
)
.

C(Θ̂ML) is obtained from the inversion of the observed information matrix of the FIML esti-

mator.

The second approach is based on non-parametric bootstrap and the draws in (9) is approx-

imated by

Y
(k)
i,mis ∼ p

(
Yi,mis|Yi,obs, xi, Θ̌(k)

)
,

where Θ̌(k) = (β̌(k), σ̌(k), γ̌(k), ρ̌(k)) are the maximum likelihood estimates based on a boot-

strapped sample B
(k)
boot of the original data set.

Now, for a given draw Θ(k) based on the asymptotic or bootstrap approach, the imputation

of Y
(k)
i,mis is predicted from equation (7).

3 Robust alternatives using t-distribution

Suppose the error terms in equation (1) and (2) follow a bivariate t-distribution. That is

(
ε1i

ε2i

)
∼ t2

{(
0

0

)
,

(
1 ρ

ρ 1

)
, ν

}
,

where t2 is the PDF of a bivariate t-distribution, ρ is the correlation parameter and ν is the

degrees-of-freedom.11 proposed this approach as a robust alternatives to the selection normal

model of8. The conditional distribution, using (3), is given by
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f(y|x, S = 1; Ξ) =
1

σ
t
(y − β′x

σ
; ν
)
T

{(
γ′w + ρ

(
y−β′x
σ

)√
1− ρ2

)(
ν + 1

ν + (y−β
′x

σ
)2

)1/2

; ν+1

}/
T (γ′w; ν),

(11)

where Ξ = (β, σ, γ, ρ, ν), t(·; ν) and T (·; ν) are the PDF and CDF of a univariate Student’s

t-distribution with ν degrees-of-freedom. The likelihood function corresponding to (11) is

written as

l(Ξ) =
n∑
i=1

Si

(
ln f(yi|xi, Si = 1; Ξ)

)
+

n∑
i=1

Si(lnT (γ′wi; ν))+
n∑
i=1

(1−Si) ln(T (−γ′wi; ν)). (12)

The conditional moment is given by

E(Y |x, S? > 0) = β′x+ σρΛν(γ
′w), ν > 1 (13)

where Λν(k) = ν+k2

ν−1
t(k; ν)
T (k; ν)

. Equation (13) can be used in a similar way as (6). A robit (binary

regression with t-distribution) for S provides estimate of γ̂ and ν̂. The quantity Λν(k) is taken

as an additional covariate in (13) and the least squares estimate gives the value of σρ. The

conditional variance is

var(Y |x, S? > 0) = σ2

[
ν(1− ρ2)
(ν − 1)

+ Λν−2(γ
′w)
{1 + νρ2 − 2ρ2

ν − 1

}
− Λν(γ

′w)
{γ′w(1− ρ2)

(ν − 1)
+ γ′wρ2 + ρ2Λν(γ

′w)
}]
,

(14)

where Λν−2(k) = ν
ν−2

T1(k
√

(ν−2)/ν; ν−2)
T1(k; ν)

, ν > 2 and Λν(k) is as defined in (13). Unlike in

(6), where the estimates of both ρ and σ are obtained by equating the average value of the

conditional variance to the observed residual variance of the OLS regression in the second

stage, equation (13) does not allow for such simplification. Theoretically, the variance of

t-distribution is related to its tailweight (ν) as can been seen in (14).

To minimize the burden of the estimation of ν in equation (12), we used a discretized version

of the t-distribution (see22) to estimate ν. Since it is hard to distinguish models in-between

two integer degrees-of-freedom, and models with ν > 50 are indistinguishable from the normal

model (see figure 1), we consider the set ν = {2.5, 3, 3.5, . . . , 100}. This approach is expected

to produce accurate estimate of ν. Initial values for other parameters are obtained from their

corresponding two-step estimator. These estimates are then used as the initial value in the
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likelihood function (12) to minimize the possibility of model convergence to a local maximum.

We imputed the missing data using E(Y |x, S? < 0) = β′x− σρΛν(−γ′w).

(a) (b)

Figure 1: PDF of t distribution- DOF stands for degrees-of-freedom : (a) with varying ν showing
difference between integers are indistinguishable. only ν = 7 differs from others; (b) with varying ν
showing ν = 50 can approximate the normal distribution.

4 Simulation study

We compare the performance of the proposed robust alternative method of imputation based

on asymptotic (ST) and bootstrap (STB) with the18 two-step imputation method (Tstep). We

also included the Heckman full information maximum likelihood method with the asymptotic

(SNM) and bootstrap (SNMB) imputation for control purposes. We first consider simulation

settings where the outcome and selection models have bivariate-t error distribution. The

outcome equation is Y ?
i = 0.5 + 1.5x1i + x2i + ε1i, where x1i and x2i

iid∼ N(0, 1) and i =

1, . . . , N = 1000. The impact of exclusion restriction on the proposed method is evaluated with

selection equations S?i = 1 + x1i + 0.2x2i + 1.5wi + ε2i, wi
iid∼ N(0, 1) for exclusion restriction,

and S?i = 1 + x1i + 0.2x2i + ε2i without an exclusion restriction. Hence, β′ = (0.5, 1.5, 1.0),

and γ′ = (1, 1, 0.2, 1.5) and (1, 1, 0.2) for selection with and without the exclusion restriction,

respectively. The covariates x1i, x2i and wi are independent and are also independent of the

error terms ε′i = (ε1i, ε2i). The error terms are generated from bivariate t distribution with

9
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degree-of-freedom = 5 and ρ = 0.5. The covariance matrix is Σ =

(
σ2 ρσ

ρσ 1

)
, where σ = 1.

We only observe values of Y ?
i when S?i > 0. About 33% of values are not observed with this

exclusion restriction, and about 28% without it.

Although it is, perhaps, more instructive to focus on the use of the robust imputation method

on covariates that are subject to sample selection, we first examined the performance of the

methods on the imputation of missing outcome data. The following scenarios are considered.

First Scenario- Missingness in outcome

(i) Impact of an exclusion restriction- We used S?i = 1 + x1i + 0.2x2i + 1.5wi + ε2i as the

selection component of the model so that there is an additional variable w not present

in the outcome model

(ii) Impact of the no exclusion restriction- We used S?i = 1 + x1i + 0.2x2i + ε2i as the

selection component of the model. That is, the covariates in the outcome and the selection

equations overlaps

(iii) Impact of noise variables as exclusion restriction- We used the model in (ii) with addi-

tional three noise variables. Noise variables are variables whose true regression coefficients

are zero. These variables are common in prespecified models

(iv) Impact of outliers- We generated the data from a selection model with Gaussian mixture

errors of the form (1− p)N2(0,Σ) + pN2(0, kΣ), where k > 0, p=0.1 and Σ =

(
1 ρ

ρ 1

)
.

The selection equation with the exclusion restriction in (i) is used.

Second Scenario- Missingness in covariates

Simulated data were generated using the regression equation Yi = 0.5+1.5x1i+x
?
2i+σε3i, where

ε3i ∼ N(0, 1), x1i ∼ N(0, 1) and σ = 1. The underlying regression equation for x?2i = 1+x1i+ε1i

with missingness process S?i = 0.4 + x1i + ε2i. We generated the errors from a bivariate-t

distribution with ν = 5 as above. The observed version of x?2i has about 40% missing data.

We consider ρ = 0 (MAR) and ρ = 0.3 and 0.5 (MNAR).

10
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(a) (b)

Figure 2: Boxplots for the imputed outcome data : (a) Exclusion restriction; (b) Absence of exclusion
restriction.

Simulation results

Figure 2 shows the boxplot of the parameter estimates from the imputed outcome data with

or without the exclusion restriction from 1000 simulated data sets. None of the methods is

biased under the exclusion restriction (Figure 2a). ST and STB methods are, however, closer

to the true parameter and less variable than the methods based on the normal distribution

(Tstep, SNM & SNMB). Interestingly, the performance of ST and STB methods in the absence

of the exclusion restriction (Figure 2b) are superior to their counterparts under the exclusion

restriction. This supported the argument of alleviation of the problem of collinearity adduced

for the use of t distribution in sample selection framework by11. The methods based on the

normal distribution are not only biased but highly variable (i.e., imprecise). In particular,

the parameter estimates of the outcome under the Tstep method ranges between -0.15 & 1.27

whereas the ST and STB estimates range between 0.22 & 0.87, and 0.23 & 0.86 respectively.

Thus, Figure 2 implies the distributional misspecification does not bias the parameter estimates

significantly when extra variable predictive of missingness is included in the selection equation

of the normal imputation models. The parameter estimates are biased in the absence of an

exclusion restriction.

The quest for variables to use for the exclusion restriction criteria to be fulfilled is a daunt-

ing exercise in practice. Sometimes, the use of noise variables in the selection equation can
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(a) (b)

Figure 3: Boxplots for the imputed outcome data : (a) Noise variables as an exclusion restriction;
(b) Mixture distribution.

constitute a nuisance in the model estimation. Figure 3a shows that the inclusion of irrele-

vant (noise) variables in order to satisfy the exclusion restriction criteria does not make the

associated problem go away under the normal models. The Tstep method, although unbiased

is highly variable (similar variability as the absence of an exclusion criteria in Figure 2b) pro-

viding the most extreme parameter estimates of the response means. ST and STB methods

yielded unbiased and low variability results.

The robustness of the proposed imputation method is examined against outliers induced as

a result of mixture of normal distributions (Figure 3b). Clearly, both the normal and robust

imputation are misspecified. This however, does not appear to bias the parameter estimates

(although ST and STB methods are more concentrated near the true parameter). Again, both

the ST and STB methods are robust to this misspecification as the estimates are unbiased and

show lower variability than the normal models.

Table 1 shows the coverage of the 95% confidence interval for the parameter estimates using

the five imputation methods. The nominal coverage level of 95% is satisfied by the methods for

data generated under the exclusion restriction criteria and the mixture distribution. However,

the Tstep method shows poor coverage in the absence of the exclusion restriction (91.8%) and

noise variables (92.9%). Only the ST and STB methods exhibit satisfactory coverage under

these conditions.
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Table 1: 95% confidence interval coverage

Exclusion No Exclusion Noise variable Mixture

Tstep 94.1 91.8 92.9 95.3
SNM 94.9 96.5 90.1 94.1
SNMB 94.9 93.6 92.2 94.5
ST 95.1 95.5 94.8 94.7
STB 95.3 95.8 96.0 96.2

Table 2 shows the results of fitting a normal error regression model using the fully observed

variable x1 and partially observed x2. The performance of the models improved as ρ increases.

The results also supported the robustness of the ST model.

Table 2: Simulation results for missing covariate data with coefficient of x2 =
1. ρ = 0 represents MAR

ρ = 0 ρ = 0.3 ρ = 0.5
Mean Variance Mean Variance Mean Variance

Tstep 0.956 0.003 0.966 0.003 0.972 0.004
SNM 0.972 0.002 0.982 0.002 0.986 0.003
SNMB 0.974 0.002 0.983 0.002 0.984 0.003
ST 0.981 0.002 0.991 0.002 0.992 0.002
STB 0.980 0.002 0.989 0.002 0.989 0.002

5 Empirical studies

We consider two data examples to illustrate the performance of the robust imputation method.

The first data is the ambulatory expenditure from the 2001 Medical Expenditure Panel Survey

analyzed by23. The data was also analysed using selection-t model in11. The second application

involves the imputation of the income variable in the 2003-2004 NHANES data. This data was

analysed in24, where missing income data was assumed to be missing not at random. We

focus on the Tstep, SNM and ST methods since the performance of the bootstrap imputation

methods are not too different from the corresponding asymptotic imputation methods.

5.1 Ambulatory expenditure data

The data on ambulatory expenditure contains 3,328 observations of which 526 (15.8%) of the

outcome of interest (expenditure) is missing. Apart from expenditure, which is highly skewed,
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other explanatory variables such as age, gender, education status (educ), ethnicity (blhisp),

number of chronic conditions (totchr), insurance status (ins) and income are available in the

data. We use log expenditure (lambexp) as the outcome variable due to skewness in line with

earlier proposals11,23. The outcome equation, which is usually the model of interest, contains

x = (1, age, female, educ, blhisp, totchr, ins) while the selection equation, w = (x, income).

Income is included for the exclusion restriction criteria although its use for this purpose is

debatable (see11,23). We emphasize that an exclusion restriction is not a necessary condition

for the consistency of the proposed imputation method.

Table 3 shows the results of the robust imputation method and the two alternatives based

on the normal distribution. The result is consistent with equivalent results in11, supporting

the adequacy of the proposed method. Figure 4 shows the distribution of the residuals of the

missing data model. Since the imputation model is correctly specified as an MNAR missingness

process, the spread of the residuals of the observed and the imputed data are very similar.

Table 3: Estimates from the Outcome model of the Ambulatory expenditure
data after multiple imputation. CI- confidence interval

Selection-t Selection-normal Two-step
Estimate 95% CI Estimate 95% CI Estimate 95% CI

Outcome model

(Intercept) 5.203 (4.711,5.695) 5.122 (4.727,5.517) 5.117 (4.329,5.905)
age 0.207 (0.161,0.252) 0.207 (0.165,0.250) 0.206 (0.152,0.261)
female 0.309 (0.182,0.436) 0.341 (0.236,0.445) 0.339 (0.182,0.496)
educ 0.018 (-0.003,0.039) 0.016 (-0.004,0.037) 0.018 (-0.010,0.045)
blhisp -0.193 (-0.317,-0.069) -0.218 (-0.344,-0.092) -0.212 (-0.333,-0.091)
totchr 0.509 (0.422,0.596) 0.533 (0.464,0.601) 0.526 (0.405,0.647)
ins -0.054 (-0.152,0.044) -0.030 (-0.125,0.065) -0.030 (-0.137,0.078)
σ 1.211 (1.144,1.278) 1.283 (1.246,1.319) 1.291 (1.187,1.394)
ν 13.508 (6.214,20.801)

We also imputed the data under the MAR assumption. That is, we imputed the data

using the model specification for the outcome equation. The results are shown in Table 4

Previous analyses of the data posited that all the factors other than the insurance status (ins)

are strong predictors of expenditure11. This was supported by the MNAR results in Table 3.

The parameter estimates under the MAR assumption are generally larger in magnitude than

their MNAR counterparts. Further, two variables (education and insurance status) are not

predictors of expenditure under the MAR model. Figure 5 shows kernel density estimates of

the imputed and observed expenditure data. There are discrepancies between the densities of

the observed and imputed data under the MAR model whereas the densities under the MNAR
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(a) (b) (c)

Figure 4: Distribution of residuals of the missing data model for the outcome data : (a) Selection-t
(ST); (b) Selection normal (SNM); (c) Two-step.

Table 4: Imputation of missing outcome in the Ambulatory expenditure data
under the MAR assumption. CI- confidence interval

Estimate 95% CI

(Intercept) 4.872 (44.536,5.208)
age 0.219 (0.174,0.265)
female 0.389 (0.291,0.487)
educ 0.025 (0.006,0.044)
blhisp -0.244 (-0.350,-0.138)
totchr 0.569 (0.510,0.627)
ins -0.013 (-0.113,0.087)
σ 1.181 (1.132,1.231)
ν 15.709 (8.054,23.364)

model are similar.

5.2 NHANES data

The US National Health and Nutrition Examination Study (NHANES) is a survey data col-

lected by the US National Center for Health Statistics. The survey data dates back to 1999,

where individuals of all ages are interviewed in their home annually and complete the health

examination component of the survey. The study variables include demographic variables

(e.g age and annual household income), physical measurements (e.g. BMI- body mass index),

health variables (e.g. diabetes status), and lifestyle variables (e.g. smoking status).

We used NHANES 2003-2004 data to illustrate the methodology of using the robust im-
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(a) (b)

Figure 5: Kernel density estimates for the marginal distributions of the observed data (blue) and the
10 densities for each imputation for expenditure: (a) MNAR (selection-t); (b) MAR (regression with
t-distributed errors).

putation strategy proposed for the imputation of missing covariates (household income) in a

model developed to study the effect of socio-economic status on systolic blood pressure (SBP).

The data has been used in24 to illustrate the method of subsample ignorable likelihood for

MNAR missing covariates (Income) to study the same effect.24 considered three covariates:

age (in years), gender and BMI, and two socio-economic status variables: income and years of

education. We used the same set of variables but added race as additional variable that can

predict missingness in household income.

Table 5 shows the percentage of missing data in the variables selected for analysis. Age,

gender and race are fully observed, whereas SBP, BMI and household income are subject to

missing data. The data analysed is reconstructed such that only income variable has missing

data. That is, complete data on SBP and BMI are selected with corresponding measurements

on the other variables. This resulted in income having 25.43% misssing data and no missing

data on other variables. In principle, there is no need for this as the MICE algorithm allows

imputation of multiple missing variables with MAR and MNAR missingness. We focus on

income variable in order to evaluate the unalloyed effect of the proposed imputation strategy.

Household income ($1000 per year), was reported as a range of values in dollar (e.g. 0-4999,

5000-9999, etc.) and had 10 interval categories. Figure 6 shows that the ordinal categories

of income can be approximated by a continuous distribution. This allows straightforward

adaptation of the proposed method without the need for adjustments for ordinal data imputed

as continuous data. Education is dichotomized into high school and above versus less than

high school and race is treated as categorical variable with 5 levels.

Age, gender, education and race are potential factors that can predict income. These factors
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are also known to lead to selective reporting of income. Therefore, the same set of variables are

used in the selection and outcome equations (without exclusion restriction) of the imputation

model. Income was imputed using 10 imputations.

Table 5: Percentages of missing data in the NHANES, 2003-2004

Variable % missing (n=9643) SBP and BMI
without missing (n = 6193)

SBP (mm Hg) 34.94 0
Age (years) 0 0
Gender 0 0
BMI (kg/m2) 9.91 0
Education (years) 17.23 0
Race 0 0
Income ($1000 per year) 24.41 25.43

Figure 7 shows kernel density estimates of the imputed and observed income data. The plot

based on the selection-t model produces densities of observed and imputed data that match

up well. The densities based on the selection normal model are approximately match up (two

of the imputed data appears to be shifted away from the observed data). However, there are

discrepancies between the densities of the observed and imputed data for the two-step method.

A possible explanation for this is the anomalous behavior of the method in the absence of an

exclusion restriction, which was also evident from the simulation studies in section 4.

Table 6: Estimates of the effect of socio-economic status on Systolic blood pressure (NHANES,
2003-2004). CI- confidence interval

Selection-t Selection-normal Two-step
Estimate 95% CI Estimate 95% CI Estimate 95% CI

Outcome model

(Intercept) 93.173 (91.483,94.863) 92.676 (90.665,94.688) 92.498 (90.694,94.301)
age 0.489 (0.470,0.508) 0.558 (0.539,0.577) 0.558 (0.540,0.577)
sex (male) -4.362 (-5.022,-3.702) -2.957 (-3.730,-2.184) -2.953 (-3.725,-2.181)
education -2.981 (-3.728,-2.234) -3.273 (-4.131,-2.416) -3.283 (-4.127,-2.439)
bmi 0.432 (0.376,0.488) 0.382 (0.318,0.447) 0.382 (0.318,0.447)
income 0.005 (-0.147,0.156) 0.007 (-0.179,0.192) 0.045 (-0.102,0.193)
σ 11.047 (10.689,11.405) 15.462 (15.190,15.735) 15.462 (15.190,15.734)
ν 3.782 (3.394,4.171)

Table 6 shows the results of fitting regression models (Selection-t: linear regression with
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Figure 6: Histogram of ordinal income variable.

student-t errors; Selection-normal and Two-step: OLS regression) to the imputed data sets.

The models showed that income is not significantly related to SBP. This observation is anal-

ogous to the effect of income in the ignorable likelihood method proposed for the same data

in24. The degrees of freedom (ν) in the selection-t model is significant (Estimate = 3.782, CI

= [3.394,4.171]).
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(a) (b) (c)

Figure 7: Kernel density estimates for the marginal distributions of the observed data (blue) and the
10 densities for each imputation for income (red): (a) Selection-t (ST); (b) Selection normal (SNM);
(c) Two-step.
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6 Concluding remarks

This paper proposes the use of selection-t model developed by11 as a robust imputation al-

ternative for missing outcome and covariates data in Heckman-type missing data problem.

We have denoted the proposed method as ST and compared it with competing alternatives

based on the Heckman’s full information maximum likelihood (SNM ) and the two-step (Tstep)

method. Contrary to the common notion that MI is valid only under MAR, we have shown

that correct specification of the imputation model under MNAR can result in unbiased pa-

rameter estimates and valid statistical inference. We have imputed partially observed data by

drawing from their conditional distributions using the FCS algorithm. Our proposed imputa-

tion method is based on frequentist philosophy (approximate proper imputation) as opposed

to the Bayesian (proper) imputation method. The former is easier to use, less computationally

intensive and works well in large samples.

Apart from the use of ST method to impute missing covariates data, we have shown its

performance for missing outcome data. This was done for two reasons. First, we are able to

show that the method performs equally well as its parent sample selection model. Second,

the method lends itself naturally to various extensions of the traditional MI techniques (e.g.

double robustness concepts can be easily integrated into the imputation model). Specifically,

the method can be easily extended to other MNAR imputation models. For instance, instead of

the use of imputation model E(Y |x, S? < 0) = β′x−σρΛν(−γ′w), which is similar to the jump

to reference approach (see25,26), the imputation approach can also incorporate some form of

pattern mixture-model. That is, the imputation model can be multiplied by a factor or offsets

added based on subject matter knowledge.

Two simulation studies were conducted to assess the performance of the ST imputation

method in missing outcome and covariates data. The method uniformly outperformed the

SNM and Tstep methods in terms of bias and low variance. It attains the nominal coverage

level when the missing outcome is imputed under four possible model misspecifications (ab-

sence of an exclusion restriction, noise variables, distributional misspecification and outliers).

In particular, the ST method performs very well especially in the absence of an exclusion

restriction, a problem which has bedeviled the sample selection modelling framework for some

time. This attribute is inherited from the parent selection-t model. Basically, for the selection-

t model, the inverse Mills ratio is mostly non-linear over a wide range of its support. This

may also explain the shrinkage effect of the function on the noise variables in the selection

process. We emphasize that the good performance of the ST method is not attributable to

the data generation process. Figure 8 (Appendix) shows that the ST method still outperforms

its competitors even when the data is generated from the normal distribution. The simulation

based on covariates data also supported the superiority of the ST method over the SNM and
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Tstep methods.

We analysed two sets of data - Ambulatory expenditure and the 2003-2004 NHANES data

sets. The results from the former is comparable with previous analyses in11. The method

showed similar fit to the SNM and the Tstep methods. This is, perhaps, due to the exclusion

restriction as a result of the omission of income from the outcome equation. However, the

advantage of the robust method became pronounced in the imputation of missing covariate

(income) in the NHANES data set. We have judged the adequacy of the robust MI method

by comparing the distributions of the observed and imputed data. This approach is only valid

for the imputation of data that are MAR. Theoretically, the purpose of a reasonably complex

imputation model, such as the one proposed here, is to supply sufficient auxiliary variables

in appropriate form to make MAR missingness more plausible. As can be seen from Figure

7, the densities of the observed and imputed data are satisfactorily close for the ST method

than competing alternatives. This may be due to the absence of an exclusion restriction. It is

noteworthy that the use of complete data on systolic blood pressure (SBP) in the NHANES

data is for illustrative purposes only. Clearly, missing outcome and covariate data can be

accommodated within the MICE imputation algorithm simultaneously.

Another strength of the proposed methodology is that we do not need to fix any value for

ν (the degrees-of-freedom). This can be estimated from data, even when the data is approxi-

mately normally distributed. To prevent the likelihood function from possibly converging to a

local maximum, we first searched for the values of ν between 2 and 100 that yielded the best fit

for the data. This was set as the initial value for ν in the second stage of the maximization of

the full log-likelihood function. This may be superfluous in many practical applications. Initial

values for other model parameters were obtained from the corresponding two-step method.

Various extensions of the model proposed in section 3 can be formulated. One such extension

involves the development of a more flexible imputation model than the method introduced in

section 3 using copulas. The use of copulas as alternative modelling framework in selectively

reported samples was suggested in10 and further expounded in27. The fact that different

copulas exhibit different dependence patterns offer additional flexibility in its use as imputation

model in this setting. The method can readily be extended to impute missing covariates

in multilevel sample selection settings16. We are currently investigating methodologies for

obtaining unbiased imputation and variance estimates in this framework.

Finally, although the method we proposed is robust against certain misspecification, it has

its limitations, some of which are inherited from the parent selection-t model. For example,

the proposed method produced bias estimates when the missingness in a covariate depends on

the value of the covariate but conditionally independent of the outcome. Apart from the use of

parametric models to achieve robustness, semiparametric and nonparametric sample selection
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models can be adapted. Ultimately, the guiding principle of any imputation method should be

based on the research questions and the use of appropriate sensitivity analysis. The code for

the proposed method is available in the Supporting Information.
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Appendix A

(a) (b)

Figure 8: Boxplots for imputed outcome data with normally generated data: (a) Absence of exclusion
restriction; (b) Noise variables as exclusion restriction.
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#Supplemental online material for " A robust imputation method for missing 
#responses and covariates in sample selection models" 

# Authors: Emmanuel O. Ogundimu and Gary S. Collins 

rm(list=ls()) 
############################################################ 
#R-codes for selection-t model and imputation 
# The code fits a selection-t model 
############################################################# 
tselectEst<-function (selection,outcome,data = sys.frame(sys.parent()),YS, 
XS, YO, XO, start=NULL,print.level=0, 
 maxMethod = "BFGS",...) 
{ 
if (match("sampleSelection",.packages(),0)==0) require(sampleSelection) 
if (match("mnormt",.packages(),0)==0) require(mnormt)  
if (match("mvtnorm",.packages(),0)==0) require(mvtnorm) 
if (!missing(data)) { 

 if (!inherits(data, "environment") & !inherits(data, 
 "data.frame") & !inherits(data, "list")) { 

  stop("'data' must be either environment, data.frame, or list 
(currently a ",  

 class(data), ")") 
 } 

 } 

 mf <- match.call(expand.dots = FALSE) 
 m <- match(c("selection", "data", "subset"), names(mf), 0) 
 mfS <- mf[c(1, m)] 
 mfS$drop.unused.levels <- TRUE 
 mfS$na.action <- na.pass 
 mfS[[1]] <- as.name("model.frame") 
 names(mfS)[2] <- "formula" 
 mfS <- eval(mfS, parent.frame()) 
 mtS <- attr(mfS, "terms") 
 XS <- model.matrix(mtS, mfS) 
 YS <- model.response(mfS) 
 YSLevels <- levels(as.factor(YS)) 
 YS <- as.integer(YS == tail(YSLevels, 1)) 
 badRow <- is.na(YS) 
 badRow <- badRow | apply(XS, 1, function(v) any(is.na(v))) 
 oArg <- match("outcome", names(mf), 0) 

 m <- match(c("outcome", "data", "subset", "offset"), 
  names(mf), 0) 

 mfO <- mf[c(1, m)] 
 mfO$drop.unused.levels <- TRUE 
 mfO$na.action <- na.pass 
 mfO[[1]] <- as.name("model.frame") 
 names(mfO)[2] <- "formula" 
 mfO <- eval(mfO, parent.frame()) 
 mtO <- attr(mfO, "terms") 
 XO <- model.matrix(mtO, mfO) 
 YO <- model.response(mfO) 
 badRow <- badRow | (is.na(YO) & (!is.na(YS) & YS == 1)) 
 badRow <- badRow | (apply(XO, 1, function(v) any(is.na(v))) & 

 (!is.na(YS) & YS == 1)) 

 if (length(YSLevels) != 2) { 
 stop("the left hand side of the 'selection' formula\n", 

 "has to contain", " exactly two levels (e.g. FALSE and 
TRUE)") 

 } 
 XS <- XS[!badRow, , drop = FALSE] 
 YS <- YS[!badRow] 
 XO <- XO[!badRow, , drop = FALSE] 
 YO <- YO[!badRow] 
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 YO[YS == 0] <- NA 
 XO[YS == 0, ] <- NA 

 loglik <- function(bstart) { 

 p <- ncol(XS); k=ncol(XO) 
 b1 =bstart[1:p];b2 =bstart[(p+1):(k+p)] 
 sigma <- bstart[(k+p+1)] 
 if (sigma < 0)  
 return(NA)  
 rho <- bstart[k+p+2] 
 if ((rho < -1) || (rho > 1))  
 return(NA) 
 nu <- bstart[k+p+3]  
 ll <- vector() 

 if( nu >2 ){ 
 XS.g <- XS %*% b1 
 XO.b <- XO %*% b2 
 u2 <- YO - XO.b 
 r <- sqrt(1 - rho^2) 
 z <- u2/sigma 
 B<- (XS.g + rho/sigma * u2)/r 
 K <- ((nu+1)/(nu+(z^2)))^0.5 
 K1 <- K*B 
 l1 <- log(dt(z,nu))-log(sigma)+log(pt(K1,nu+1)) 
 ll<- ifelse(YS==0,log(pt(-XS.g,nu)),l1) 
 return(-sum(ll)) 

} 
else return(Inf) 

} 
if (is.null(start)) 
tobit2 <- selection(selection,outcome, data=data) 

 coefs <- coef(tobit2, part = "full") 
 bstart1 <- coefs[tobit2$param$index$betaS] 
 bstart2 <- coefs[tobit2$param$index$betaO] 
 bstart3 <- coefs['sigma'] 
 bstart4 <- coefs['rho'] 

 start <- c(bstart1,bstart2,bstart3,bstart4) 
startt <- c(start,nu=5) 
fit <- optim(startt,loglik,control=list(maxit=1000),method="BFGS", 
hessian=TRUE) 
loglike <- fit$value 
nn <- length(YS) 
nParam <- length(startt) 

aic <- 2*fit$value + 2*nParam 
bic <- 2*fit$value + nParam*log(nn) 

df <- nn-nParam 
N0 <-sum(YS == 0); N1 <- sum(YS == 1);nObs = length(YS)  
coef <- fit$par 
vcov <- solve(fit$hessian) 
hessian <- fit$hessian 
return(list(coefficients=coef,hessian=hessian,vcov=vcov,level=YSLevels,aic
=aic,bic=bic,df=df, 
loglike=-loglike,N0=N0,N1=N1,NObs=nObs,initial.values=startt)) 
} 

tselect <- function(selection, outcome, data,...) UseMethod("tselect") 

tselect.default <- function(selection, outcome,data, start = NULL, verbose 
= FALSE, ...) 
{ 
 mfs <- model.frame(selection, data) 
 mts <- attr(mfs, "terms") 
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 YS <- model.response(mfs, "numeric") 
 XS <- model.matrix(selection, data = data) 

 mfo <- model.frame(outcome, data) 
 mto <- attr(mfo, "terms") 
 YO <- model.response(mfo, "numeric") 
 XO <- model.matrix(outcome, data = data) 

 est <- tselectEst(selection, outcome, data,start = NULL, verbose = FALSE) 
 co <- est$coefficients 
 NXS <- ncol(XS) 
 NXO <- ncol(XO) 
iGamma <- 1:NXS 
iBeta <- max(iGamma) + seq(length = NXO) 
iSigma <- max(iBeta) + 1 
iRho <- max(iSigma) + 1 
iNu <- max(iSigma) + 2 

betaS <- co[iGamma] 
betaO <- co[iBeta] 
sigma <- co[iSigma] 
rho <- co[iRho] 
nu <- co[iNu] 

aic <- est$aic 
bic <- est$bic 
initial.values <- est$initial.values 
loglik <- est$loglik 

est$call <- match.call() 
class(est) <- "tselect" 
est 
} 

print.tselect <- function(formula, ...) 
{ 
cat("Call:\n") 
print(formula$call) 
cat("\nCoefficients:\n") 
print(formula$coefficients) 
} 

summary.tselect <- function(object, ...) 
{ 
se <- sqrt(diag(object$vcov)) 
tval <- coef(object) / se 
TAB <- cbind(Estimate = coef(object), 
StdErr = se, 
t.value = tval,
p.value = 2*pt(-abs(tval), df=object$df))
res <- list(call=object$call, 
coefficients=TAB) 
class(res) <- "summary.tselect" 
res 
} 

print.summary.tselect <- function(formula, ...) 
{ 
cat("Call:\n") 
print(formula$call) 
cat("\n") 
printCoefmat(formula$coefficients, P.value=TRUE, has.Pvalue=TRUE) 
} 
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################################################################# 
#Imputation code 
################################################################# 
library(mice) 
require(sampleSelection) 
mice.impute.heckST <- function(y, ry, x,...) 
{ 
ry1 <- ry 
data <- data.frame(ry1,x,y) 

selection <- ry1~ age + female+educ +blhisp+totchr+ins+income 
outcome <- y~age + female+educ +blhisp+totchr+ins 

mle2 <- tselect(selection, outcome, data=data) 
meane <- coef(mle2) 
sig <- solve(mle2$hessian) 
rv <- t(chol(sig)) 
b.star <- meane+rv%*%rnorm(ncol(rv))
xo <- model.matrix(outcome, data = data) 
xs <- model.matrix(selection, data = data) 
ng <- ncol(xs) 
nb <- ncol(xo) 
igamma <- 1:ng 
ibeta <- max(igamma) + seq(length = nb) 
isigma <- max(ibeta) + 1 
irho <- max(isigma) + 1 
inu <- max(isigma) + 2 
ggamma <- b.star[igamma] 
beta <- b.star[ibeta] 
sigma <- b.star[isigma] 
rho <- b.star[irho] 
nu <- b.star[inu] 
nu <- ifelse(nu<=2,3,nu) 
xb <- xo%*%beta 
xg <- xs%*%ggamma 
ivmT <- ((nu+(-xg[!ry,])^2)/(nu-1))*dt(-xg[!ry,],nu)/pt(-xg[!ry,],nu) 
return(xb[!ry,]-sigma*rho*ivmT+ sigma*rt(sum(!ry),nu)) 
} 

############################################################### 
# R-codes for fitting the analysis model and combining results 
################################################################ 

ttEst <- function(formula, data,start = NULL, verbose = FALSE){ 
if (match("gamlss",.packages(),0)==0) require(gamlss) 
mf <- model.frame(formula, data) 
mt <- attr(mf, "terms") 
y <- model.response(mf, "numeric") 
X <- model.matrix(formula, data = data) 
n <- length(y) 
k<-ncol(X) 

 tlog <- function(B){ 
 beta <- B[1:k] 
 sigma <- B[k+1] 
 if (sigma < 0)  
 return(NA) 
 nu <- B[k+2] 
 mu <- X%*%beta 

 tempval <- vector() 
 if( nu >2 ){ 
 z <- (y-mu)/sigma 

  tempval <- log(dt(z,nu))-log(sigma) 
 return( -sum(tempval) ) 
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} 
else return(Inf) 
} 
if (is.null(start)) 
ml1 <- gamlss(formula,  data = data,family=TF) 
ak1 <- coef(ml1) 
start<- c(ak1,exp(ml1$sigma.coefficients),exp(ml1$nu.coefficients)) 
options(warn=2) 
fit <- try(optim(start,fn=tlog,control=list(maxit=1000),method="BFGS", 
hessian=T)) 

loglike <- fit$value 
nn <- nrow(X); nParam <- length(start)  
aic <- 2*fit$value + 2*nParam 
bic <- 2*fit$value + nParam*log(nn) 
df <- nn-nParam 
coef <- fit$par 
vcov <- solve(fit$hessian) 
h <- colnames(X); hh <- c(h,"sigma","nu") 
colnames(vcov) <- rownames(vcov) <- hh 
names(coef) <- hh 
list(coefficients = coef,vcov = vcov,df=df,aic=aic,nu=tail(coef,1), 
bic=bic,initial.value=start,loglik = -fit$value) 
} 

tt <- function(formula, ...) UseMethod("tt") 

tt.default <- function(formula,data,start = NULL, verbose = FALSE, ...) 
{ 
mf <- model.frame(formula, data) 
mt <- attr(mf, "terms") 
y <- model.response(mf, "numeric") 
X <- model.matrix(formula, data = data) 
est <- ttEst(formula, data,start = NULL, verbose = FALSE) 
co <- est$coefficients 
NB <- ncol(X) 
iBeta <- 1:NB 
coe <- co[iBeta] 
est$fitted.values <- as.vector(X %*%coe) 
est$residuals <- y - est$fitted.values 
est$linear.predictors <- est$fitted.values 
aic <- est$aic 
bic <- est$bic 
nu <- est$nu 
initial.values <- est$initial.values 
loglik <- est$loglik 
est$call <- match.call() 
class(est) <- "tt" 
est 
} 

print.tt <- function(formula, ...) 
{ 
cat("Call:\n") 
print(formula$call) 
cat("\nCoefficients:\n") 
print(formula$coefficients) 
} 

summary.tt <- function(object, ...) 
{ 
se <- sqrt(diag(object$vcov)) 
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tval <- coef(object) / se 
TAB <- cbind(Estimate = coef(object), 
StdErr = se, 
t.value = tval,
p.value = 2*pt(-abs(tval), df=object$df))
res <- list(call=object$call, 
coefficients=TAB) 
class(res) <- "summary.tt" 
res 
} 

vcov.tt <- function(object){ 
return(object$vcov) 
} 

coef.tt <- function(object){ 
return(object$coef) 
} 

tt.mids <- function (formula, data, ...) { 

 call <- match.call() 
 if (!is.mids(data)) stop("The data must have class mids") 

 analyses <- as.list(1:data$m) 

 for (i in 1:data$m) { 
  data.i        <- complete(data, i) 
 analyses[[i]] <- tt(formula, data = data.i, ...) 

 } 

 object <- list(call = call, call1 = data$call, 
 nmis = data$nmis, analyses = analyses) 

 return(object) 
 } 

pool.impute <- function (object) { 

 if ((m <- length(object$analyses)) < 2) 
 stop("At least two imputations are needed for pooling.\n") 

 analyses <- object$analyses 

 k   <- length(coef(analyses[[1]])) 
 names <- names(coef(analyses[[1]])) 
 qhat  <- matrix(NA, nrow = m, ncol = k, dimnames = list(1:m,names)) 

 u  <- array(NA, dim = c(m, k, k), 
 dimnames = list(1:m, names, names)) 

for (i in 1:m) { 
 fit  <- analyses[[i]] 

 qhat[i, ] <- coef(fit) 
 u[i, , ]  <- vcov(fit) 

 } 

qbar <- apply(qhat, 2, mean) 
 ubar <- apply(u, c(2, 3), mean) 
 e <- qhat - matrix(qbar, nrow = m, ncol = k, byrow = TRUE) 
  b <- (t(e) %*% e)/(m - 1) 
 t <- ubar + (1 + 1/m) * b 
 r <- (1 + 1/m) * diag(b/ubar) 

  f <- (1 + 1/m) * diag(b/t) 
 df <- (m - 1) * (1 + 1/r)^2 

 names(r) <- names(df) <- names(f) <- names 
 fit <- list(call = call, call1 = object$call, call2 = object$call1, 

 nmis = object$nmis, m = m, qhat = qhat, u = u, 
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 qbar = qbar, ubar = ubar, b = b, t = t, r = r, df = df, 
 f = f) 

return(fit) 
} 

summary.impute <- function(object){ 

 est  <- object$qbar 
 se   <- sqrt(diag(object$t)) 
 tval <- est/se 
 df   <- object$df 
 pval <- 2 * pt(abs(tval), df, lower.tail = FALSE) 

 coefmat <- cbind(est, se, tval, pval) 
 colnames(coefmat) <- c("Estimate", "Std. Error", 

 "t value", "Pr(>|t|)") 

 ans <- list( coefficients=coefmat, df=df, 
 call=object$call1, fracinfo.miss=object$f ) 

 #invisible( ans ) 
  class(ans) <- "summary.impute" 

 ans 

 } 

print.summary.impute <- function(object) 
{ 
if (!is.null(object$call1)){ 

 cat("Call: ") 
 dput(object$call1) 

  } 
cat("\nCoefficients:\n") 

  printCoefmat(object$coefficients, P.values=T, has.Pvalue=T, 
signif.legend=T ) 
cat("\nFraction of information about the coefficients 

 missing due to nonresponse:","\n") 
 print(object$f) 

} 

##################################################################### 
# Ambulatory expenditure example 
################################################################# 
library(ssmrob) 
data(MEPS2001)#3328  

dat <- MEPS2001 
lambexp <- dat$lambexp 
dambexp <- dat$dambexp 
age <- dat$age 
female <- dat$female 
educ <- dat$educ 
blhisp <- dat$blhisp 
totchr <- dat$totchr 
ins <- dat$ins 
income <- dat$income 

dd <- data.frame(lambexp,dambexp,age,female,educ,blhisp,totchr,ins,income) 

#Imputation 
ab <- mice(dd, m = 10, seed = 1234,method=c("heckST", "", "", 
"","","","","","")) 

# Results combination across imputed data sets 
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fit <- tt.mids(lambexp ~ age + female+educ +blhisp+totchr+ins, data=ab) 
ak <- pool.impute(fit) 
nam <- summary.impute(ak) 

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60




