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Abstract: Camera distortion is a critical factor affecting the accuracy of camera calibration.
A conventional calibration approach cannot satisfy the requirement of a measurement system
demanding high calibration accuracy due to the inaccurate distortion compensation. This paper
presents a novel camera calibration method with an iterative distortion compensation algorithm.
The initial parameters of the camera are calibrated by full-field camera pixels and the corresponding
points on a phase target. An iterative algorithm is proposed to compensate for the distortion. A 2D
fitting and interpolation method is also developed to enhance the accuracy of the phase target.
Compared to the conventional calibration method, the proposed method does not rely on a distortion
mathematical model, and is stable and effective in terms of complex distortion conditions. Both the
simulation work and experimental results show that the proposed calibration method is more than
100% more accurate than the conventional calibration method.

Keywords: camera calibration; distortion compensation; phase measurement

1. Introduction

Camera calibration is the first and most essential step in optical 3D measurement such as
stereo vision [1,2], fringe projection techniques [3–5] and deflectometry [6–8]. There are generally
two aspects affecting the accuracy of camera calibration. One is the accuracy of the chosen camera
model. The other is the location accuracy of the feature points in terms of the world coordinate system.
Camera distortion is a critical factor affecting the accuracy of the camera model. The pinhole model is
popularly adopted for the description of a general imaging process, which is a linear projection between
a 3D point in the world and the corresponding 2D image in a camera. However the real imaging
process is a nonlinear projection due to camera distortion. Camera lens distortion can be classified as
radial distortion, eccentric distortion and thin prism distortion. The parameter-based approaches are
popularly researched to compensate lens distortion [1,9,10]. Alvarez et al. [11] proposed a mathematical
model to study the distortion variation of zoom lenses. Santana-Cedrés et al. [12] researched to estimate
the distortion model by minimizing a line reprojection error. Conventional calibration approaches
use infinite high order polynomials with distortion parameters to express the distortion caused from
different sources [1,9,10]. Initial distortion parameters are estimated firstly, and then an optimization
algorithm is applied to optimize the distortion parameters with other camera parameters based on the
least squares method. Since the accuracy of the input plays an important role in the constringency
of the iterative optimization, the accuracy of camera calibration is highly dependent on the accuracy
of the initial distortion parameters. Moreover, the real distortion is the result of the cumulative
effects of a complex lens system, the camera geometry error, and the imperfect shape of the image
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sensor; therefore a model with enough parameters is required to simulate any plausible distortion [13].
However, popular conventional calibration [1,10–15] has to only apply a distortion model with partial
distortion parameters of radial distortion and eccentric distortion; experiments show that a more
elaborative model would not help to improve accuracy but would also cause numerical instability [1].
Therefore, the applied distortion mathematical model of the conventional method cannot match the
real distortion perfectly, which also restricts the calibration accuracy. In order to tackle this problem,
non-parametric distortion compensation methods have been studied. Thirthala et al. [16] proposed
an approach to recover radial distortion using multifocal tensors; however this approach is based
on the assumption that the center of distortion is at the image center, which is generally not a safe
assumption. Hartley et al. [17] proposed a parameter-free calibration approach that only considers the
radial distortion. Ryusuke et al. [18] proposed a method to compensate lens distortion by using binary
structured-light, however this approach cannot calibrate the internal parameter of a camera. Therefore,
the investigation of a flexible, stable method is needed for calibrating the camera’s internal parameters,
external parameters, and distortion.

Usually, a set of 2D or 3D control points or feature points with known world coordinates are
used as input data for the calibration process [1,10]. Compared to 3D targets, 2D patterns such as
checkerboards, squares and circles on a plane have been used frequently because they are easily
manufactured and handled [1,19,20]. Recently, a 2D phase target has been studied as a substitute for
traditional planar targets due to the advantage of its highly accurate feature detection, massive arbitrary
provision of control points, and full automatic process [21,22]. Xue et al. [23] presented a method for
camera calibration based on the orthogonal vanishing point calibration using concentric circles grating
and wedge grating. Liu et al. [24] introduced a crossed-fringe pattern as the model plane for camera
calibration. Ma et al. [25] proposed a feature extraction method by using fringe pattern groups as the
calibration target. Moreover, a phase target can effectively calibrate the camera with a small depth of
focus and long working distance because the obtained phase from sinusoidal fringe has little influence
on out-of-focus images [26,27]. Schmalz et al. [18] made a comparison of camera calibration with a
phase target and a classic planar target to show the superiority of the phase target.

In order to increase calibration accuracy, methods have been studied to decrease the location error
of phase target. Schmalz et al. [21] proposed a fitting approach to smooth the phase value based on four
neighboring pixels. Huang et al. [22] applied a windowed polynomial fitting technique to optimize
the phase target and compared the result with linear interpolation, biquadratic fitting, and bicubic
fitting. There were few details given for the principle and calculation process. A windowed bicubic
fitting with a window size of 200 × 200 pixels was used in the experiment. However, the reasons why
the window size was chosen and how much the window size affected the results were not provided.
Though a remarkable reprojection accuracy was achieved, the feasibility of the window size needed to
be discussed. The techniques mentioned above focus on the research of the calibration target design
and the improvement of location accuracy of feature detection. However, no research has been done to
improve the compensation accuracy of the camera distortion and to optimize the camera model with
phase target.

This paper proposes a novel camera calibration method with an iterative distortion compensation
algorithm. Full-field camera pixels and the corresponding points on a phase target are used to calculate
calibration parameters. The deviation caused by distortion between the real pixel and the reprojection
pixel based on a linear projection can be obtained. A corrected coordinate for the pixel can be
obtained by compensating the deviation. By using the Levenberg–Marquardt algorithm, the calibration
parameters are iteratively optimized by minimizing the difference between the corrected coordinate
and the reprojection pixel. To enhance the location accuracy of the world coordinates, fitting techniques
and the feasibility of the window size applied to the phase target have been presented to compensate
for any phase error.
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2. Principle and Methods

2.1. Phase Target

A phase target is used to assist in the proposed calibration method for this paper (as shown
in Figure 1). Apart from the advantages of the phase target as described in the introduction,
the main reason for using a phase target is because it is a dense and continuous target and
satisfies the requirement of the proposed distortion compensation algorithm. The proposed distortion
compensation method is required to calculate the deviation between the real pixel and the reprojection
pixel in terms of different calibration poses. When using the phase target, the camera pixel can
find the corresponding world points in terms of different calibration poses based on the continuous
phase maps. While a traditional 2D calibration board (such as the chessboard) is used, the proposed
calibration method will fail because the same camera pixel cannot discover the corresponding world
points in different calibration poses due to the limited and discrete feature points. Two groups of
mutually perpendicular phase-shifting fringe patterns are displayed on a liquid crystal display (LCD)
screen in sequence, and these displayed patterns are captured by a camera from different viewpoints.
After applying the phase shifted method and the phase unwrapping method [28–30], two mutually
perpendicular absolute phase maps are obtained, as shown in Figure 1. If the size of LCD pixel pitch p
and the number np of LCD pixels per fringe period are known, one camera pixel can uniquely locate
its corresponding physical position (xw, yw) in the world coordinate system based on its phase value
(ϕx, ϕy) according to Equations (1) and (2).

xw = (np · p/2π) · ϕx (1)

yw = (np · p/2π) · ϕy (2)
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Figure 1. Phase target. (a) Vertical fringe patterns; (b) horizontal fringe patterns; (c) vertical phase map;
(d) horizontal phase map.

2.2. Calibration with Iterative Distortion Compensation Algorithm

The proposed camera calibration process is illustrated in Figure 2. Two groups of orthogonal
fringe patterns are displayed on a LCD screen in sequence. Images at arbitrary n LCD poses are
captured during the whole calibration process, as shown in Figure 3. In terms of each LCD pose,
k camera pixels uniformly distributed on a CCD (charge coupled device) plane are selected to calibrate
the parameters. The selected pixels can be full pixels or sampled pixels with the same gap in order
to enhance calculation speed. The corresponding world coordinates are obtained based on their
phase values according to Equations (1) and (2). A linear projection H can be obtained according to
Equation (3).
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where (u, v) is the camera pixel coordinate and (xw, yw) is the corresponding world coordinate. A is
the internal parameter of a camera, (u0, v0) are the coordinates of the principal point, α and β are
the scale factors in image u and v axes.

[
R t

]
is the transformation from the world system to the

camera system. Let’s denote the i-th column of the rotation matrix R by ri, the i-th column of the linear
projection H by hi. With the knowledge that r1 and r2 are orthonormal, two constraints on the internal
parameter can be obtained: {

hT
1 A−T A−1h2 = 0

hT
1 A−T A−1h1 = hT

2 A−T A−1h2
(4)
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Under the linear projection model, for one camera pixel m , distortion will cause the deviation
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Since one calibration pose can provide two constraints according to Equation (4), the internal
parameter A can be calculated from at least three poses. Once A is known, the external parameter
{Ri, ti|i = 1..n} for each calibration pose can be calculated according to Equation (5):

r1 = λA−1h1

r2 = λA−1h2

r3 = r1 × r2

t = λA−1h3

with λ = 1/‖A−1h1‖ (5)

Under the linear projection model, for one camera pixel m, distortion will cause the deviation ∆m
between real coordinate and the reprojection m̂:

∆m = m̂(A, R, t, M)−m (6)
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where M is the corresponding world coordinate of pixel m. Because distortion is a systematic error
for a camera with fixed focal lens and short work distance, the deviation should be a fixed value
for different calibration poses. By compensating the distortion with the average deviation ∆m of n
calibration poses according to Equation (7), a corrected coordinate m∗ accurately matching the linear
model can be obtained:

m∗ = m + ∆m (7)

Until now, the initial value of internal parameter A, external parameter {Ri, ti|i = 1..n},
and distortion deviation ∆m are obtained, and then they are recalculated and optimized through
an iterative loop to minimize the following function with Levenberg-Marquardt Algorithm:

n

∑
i=1

k

∑
j=1
‖m∗(m, ∆m)−m̂(A, Ri, ti, Mij)‖2 (8)

2.3. Compensation Algorithm for Phase Target Error

When the phase target is placed in the depth of focus of the camera, an observable deformation
on the captured fringe pattern appears as shown in Figure 4a. The deformation comes from the
recorded pixel grids on the LCD screen and also the moiré fringe created by the interference between
camera pixels and LCD pixels. Taking a small area located at the middle of a calculated phase map,
the influence can be seen from the difference between the phase value and its fitting plane, as shown in
Figure 4b. In order to enhance the location accuracy of the phase target and guarantee an appropriate
input for the following calibration process, a noise compensation algorithm is researched to refine the
phase target. A Gaussian filter can be applied to the captured fringe patterns as the virtual defocusing
technique used in [19]. However, it is difficult to determine the size of the filter. A flexible approach to
eliminate the influence is to locate the phase target at an out-of-focus position of the camera by moving
the target position or adjusting the camera focus, as shown in Figure 4c.
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Because the obtained absolute phase map is continuous and smooth, phase data can be smoothed
by applying a fitting and interpolation method as shown in Figure 5. For a camera pixel (up, vp) as
the yellow dot shown in Figure 5, its original phase is represented as the green dot shown in Figure 5.
Near the point on the phase surface, there is only a small difference between the phase surface and
the tangent plane. Therefore a phase plane (such as the French grey plane shown in Figure 5) can
be fitted with the phase values (the blue dots) of the neighboring L/2 pixels using the least square
algorithm. Based on the fitted plane, an interpolated phase value (the red dot) can be calculated by
smoothing the original phase according to the fitted plane based on cubic polynomial interpolation.
Using a bigger fitting window (L) is more effective to remove errors and to enhance the accuracy of
phase data. However based on Equations (1)–(3), the relationship between the obtained phase map
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and camera pixel coordinate (u, v) can be obtained by Equations (9) and (10), which are not linear
equations, so that the captured phase map is a curve surface.

ϕx =
2π · (h11 · u + h12 · v + h13)

np · p · (h31 · u + h32 · v + h33)
(9)

ϕy =
2π · (h21 · u + h22 · v + h23)

np · p · (h31 · u + h32 · v + h33)
(10)

where hij (i = 1..3; j = 1..3) is the elements of inverse matrix of H. Therefore, if the applied window is
too big, the slope data in the window will have an obvious variation and the calculated point will be
inaccurately adjusted.
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In order to optimize the fitting window size, a simulation experiment has been conducted as
shown in Figure 6. Random phase error is the only error source in the simulation. Along with the
window size increasing from 0 (no fitting and interpolation applied) to 5 pixels, the RMS (root mean
square) of the reprojection error decreases dramatically (as shown by the red line). In this process,
a reduction also happens in the error of rotation matrix R and the error of translation matrix t (as shown
by the black and green lines, respectively). However, when the window size increases from 5 pixels
to 60 pixels, though the RMS of the reprojection error decreases from 0.0016 pixels to 0.000172 pixels,
the error of the rotation matrix and the translation matrix both increase. The simulation shows that
five pixels is an appropriate fitting window size, which can reduce phase noise and not excessively
adjust the original phase value.
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3. Results and Discussion

3.1. Simulation Study

A simulation work has been done to test the proposed non-parameter-based distortion
compensation method. The size of the simulated camera image is 1616 × 1216 with the principal point
at (828,628) pixel. The scale factors along the u and v axes are 3543 pixel and 3522 pixel respectively.
Radial distortion (∆ur, ∆vr), eccentric distortion (∆ue, ∆ve) and thin prism distortion (∆up, ∆vp) are
simulated according to Equation (11) with the coefficients k1 = 3× 10−8 pixel, k2 = 3× 10−14 pixel,
k3 = 1× 10−20 pixel, k4 = 1× 10−26 pixel, p1 = 1× 10−5 pixel, p2 = 1× 10−5 pixel, s1 = 5× 10−5 pixel,
s2 = 5× 10−5 pixel, and the distortion center is (808,608) pixel.

∆ur = up(k1r2 + k2r4 + k3r6 + k4r8)

∆vr = vp(k1r2 + k2r4 + k3r6 + k4r8)

∆ue = 2p1upvp + p2(u2
p + 3v2

p)

∆ve = p1(3u2
p + v2

p) + 2p2upvp

∆up = s1(u2
p + v2

p)

∆vp = s2(u2
p + v2

p)

with r =
√

u2
p + v2

p (11)

where (up, vp) is the ideal pixel. Figure 7 shows the simulated ideal pixels and distorted pixels.
8 LCD pose are simulated with r1 = [2.7695◦,−2.7856◦,−0.1811◦]T, t1 = [0.7916,−0.4575,−2.7113]T,
r2 = [2.8293◦,−2.7519◦,−0.2241◦]T, t2 = [0.7275,−0.3875, 2.7896]T, r3 = [3.0690◦,−2.6283◦,−0.2358◦]T,
t3 = [0.5033,−0.4775, 2.8014]T, r4 = [2.8311◦,−2.7483◦,−0.3103◦]T, t4 = [0.7353,−0.0266, 3.1896]T,
r5 = [2.8887◦,−2.7270◦,−0.0773◦]T, t5 = [0.7295,−0.4887, 2.8933]T, r6 = [3.0078◦,−2.6686◦,−0.1458◦]T,
t6 = [0.5983,−0.4071, 2.9964]T, r7 = [−3.1212◦,−2.5625◦,−0.3108◦]T, t7 = [0.3537,−0.2911, 3.1097]T,
r8 = [2.8760◦,−2.7257◦,−0.2398◦]T, t8 = [0.7231,−0.0588, 3.3075]T. Random noise from 0 to
0.005 radian are added in the phase target. Figure 8 shows the reprojection error with the proposed
calibration method. The result demonstrates the proposed calibration method can effectively
compensate the camera distortion from complex distortion source.
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3.2. Experiment Study

To verify the proposed method, calibration experiments have been conducted on a Lumenera
CCD camera (Model Lw235M). The camera’s CCD sensor has a resolution of 1616 × 1216. The camera
lens is a Navitar lens with a 35 mm fixed focal length. A LCD monitor (Dell E151Fpp with a resolution
of 1024 × 768, Philips, Shanghai, China) was used as the phase target. The pixel pitch of the LCD is
0.297 mm. The setup of the hardware system is illustrated in Figure 9. During the calibration process,
the phase target was placed at 11 different poses. Absolute phase maps were obtained by using an
eight-step phase shifting algorithm and the optimum frequency selection method [19,20], and thereafter
they were smoothed by fitting and interpolating algorithm with a 5 × 5 fitting window. Every 10th
camera pixel was selected to form a grid with the size of 161 × 121 as the input to calibrate the cameras
with the corresponding points in the world coordinates. The distortions of the selected pixels under
the linear projection model are shown in Figure 10. Since Zhang’s calibration approach [1] and the
calibration toolbox [10] are very popular in practical applications, a comparative experiment has been
made between the proposed method and Zhang’s approach as shown in Figure 11. Zhang’s method
can be classified as four steps: (1) To discover the corresponding position between feature points and
camera pixels; (2) To calculate the initial values of a camera’s parameter and external parameters
based on the pinhole model; (3) To consider distortion compensation based on a mathematical model;
(4) To optimize the initial camera parameters, external parameter and distortion parameter with the
Levenberg–Marquardt algorithm. The feature points can be detected from a chessboard as used in
Zhang’s article [1] or another calibration target. To avoid the difference caused by the extraction
accuracy of different calibration target, the same camera pixels and the corresponding physical points
were used to test the two methods. Using the proposed method, the RMS of the reprojection error
is 0.025 pixels before applying the fitting method and 0.015 pixels after applying the fitting method
respectively. In contrast, the RMS of the reprojection error of the conventional method is 0.033 pixels
before applying the fitting method and 0.025 pixels after applying the fitting method respectively,
which are 1.3 and 1.6 times respectively worse than the proposed method.
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Figure 11. Calibration results with the two calibration approach. (a) Reprojection error of calibration
points with the conventional method before using the fitting method; (b) Reprojection error in terms
of pixel coordinate with the conventional method before using the fitting method; (c) Reprojection
error in terms of pixel coordinates with the conventional method after using the fitting method;
(d) Reprojection error of calibration points with the proposed method before using the fitting method;
(e) Reprojection error in terms of pixel coordinates with the proposed method before using the fitting
method; (f) Reprojection error in terms of pixel coordinates with the proposed method after using the
fitting method; Different calibration poses are distinguished with 11 colors.

4. Conclusions

A novel camera calibration method with an iterative distortion compensation algorithm based on
a full-field camera pixel and dense phase target has been proposed. To enhance the location accuracy
of the phase value, techniques of defocus, fitting and interpolation are studied. Without relying on the
distortion mathematical model, the proposed calibration method can obtain pixel-by-pixel distortions
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and high calibration accuracy. Next steps will include the proposed calibration method applied in a
deflectometry system.

It would have been preferable if the proposed method were compared with other
non-parameter-based distortion compensation approaches. However, there were several different
factors to consider in this experiment: (1) It is difficult to obtain the open code for these
approaches; (2) Some of these approaches are based on a particular calibration target, therefore it
is impossible to guarantee the comparative experiment having the same calibration input. In fact,
the simulation study in this paper can demonstrate the superiority of the proposed method, as the
other non-parameter-based approaches cannot handle the eccentric distortion and the thin prism
distortion [16,17], or cannot obtain the internal parameter of the camera [18]. This simulation study
shows that the proposed method can effectively calibrate a camera with a complex distortion condition.
Based on this point, the conclusion can be made that the proposed method is superior to the other
non-parameter-based distortion compensation approaches.
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