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Abstract

Due to the environments in which they will operate, future autonomous systems

must be capable of reconfiguring quickly and safely following faults or environmental

changes. Past research has shown how, by considering autonomous systems to perform

phased missions, reliability analysis can support decision making by allowing compari-

son of the probability of success of different missions following reconfiguration. Binary

Decision Diagrams (BDDs) offer fast, accurate reliability analysis that could contribute

to real-time decision making. However, phased mission analysis using existing BDD

models is too slow to contribute to the instant decisions needed in time-critical situa-

tions. This paper investigates two aspects of BDD models that affect analysis speed:

variable ordering and quantification efficiency. Variable ordering affects BDD size,

which directly affects analysis speed. Here, a new ordering scheme is proposed for use

in the context of a decision making process. Variables are ordered before a mission

and reordering is unnecessary no matter how the mission configuration changes. Three

BDD models are proposed to address the efficiency and accuracy of existing models.

The advantages of the developed ordering scheme and BDD models are demonstrated

in the context of their application within a reliability analysis methodology used to

support decision making in an Unmanned Aerial Vehicle.

Key words: Decision Support, Reliability analysis, Binary Decision Diagrams, Vari-

able ordering, Phased mission.
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1 Introduction

Systems that perform a sequence of tasks in order to achieve a specific objective are called

phased mission systems (PMS). The periods in which each of these successive tasks takes

place are known as phases and the series of phases as a whole is known as a mission. A

mission configuration is defined according to the tasks that must be completed, the time

duration of each task and the sequence of the tasks. A mission is successfully completed if

all of its phases are successfully completed. PMS are common in autonomous systems such

as unmanned aerial vehicles (UAV), satellites and MARS rovers and autonomous transporta-

tion. In practice, PMS such as those carried out by a UAV are non-repairable since repairs

are not possible during a mission.

The analysis of PMS is made complex by the dependencies that arise when considering the

phases in which components fail, since component failures could lead to loss of functionality

immediately or in a later phase, when the use of the system changes. Consideration of

mutually exclusive component failure modes also introduces dependencies into the analysis,

again making it more complex than the analysis of systems operating for single phases, which

contain components that fail in single failure modes1.

Past research has proposed the used of reliability analysis to support decision making for

PMS2. Mission reliability was proposed as a key decision variable to determine whether or

not a mission should continue in its present format. The reliability of a phased mission is

defined as the probability that all phases in the mission are completed without failure.

The initial unreliability, calculated before the mission begins, is used to help determine

whether the mission should start. An updated unreliability is calculated once the mission

is underway, whenever new information is obtained about the system. If the updated un-

reliability is unacceptably high, then other mission configurations must be considered to

eliminate potential risks.

In time-critical applications where alternative missions must be evaluated quickly in order

to allow a quick response to a changing situation, the strategy makes use of offline and online

computation in order to maximize the analytical efficiency. The aim is to carry out as much

analysis as possible before the mission begins (offline) and to hence reduce the amount of

computation required once the mission is underway (online), therefore minimizing the time

taken to make a decision3.

Binary Decision Diagram (BDD) models have been found to offer potential for performing

the real-time mission unreliability analysis that is needed in the decision making process,

due to their ability to provide accurate, fast updated unreliability analysis.
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Research into the use of BDDs to analyze PMS can be categorized as following two

approaches. In the first approach, presented in4 5, the BDDs representing individual phase

failures are rapidly connected together to represent the mission failure logic without account-

ing for dependencies, which are dealt with during the quantification process. The benefit

of this approach is that it allows quantification to begin almost immediately. However, the

quantification process itself is inefficient due to the fact that dependencies must be accounted

for during implementation. In the second approach, the BDDs are built in such a way that

the dependencies are considered during construction, meaning that the quantification process

is more efficient than in the first approach. However, the start of the quantification process

is delayed when compared to the first approach due to the more complex BDD construction

process. In5, researchers developed BDD construction rules using a phase algebra and made

changes to the quantification process to analyze the reliability of PMS using BDDs for the

first time. Work presented in6 7 improves the analysis efficiency of the BDD model in5 by

replacing modules, subtrees whose basic events do not occur anywhere else in the phased

mission fault tree, with module events in order to simplify the fault tree structure.7 8 ex-

tended the BDD model presented in5 to allow mission reliability to be analyzed for PMS

containing components that can fail in multiple modes.

Despite the research already conducted, further work is required in order to achieve

the speed of quantification needed to make real-time decisions when considering PMS with

multiple failure mode components. Tests on a set of benchmarks have indicated that the

second approach is the most efficient9. Therefore, the investigation presented here will focus

on this second approach.

BDD construction initially requires variable ordering and this can have a big impact

on BDD size10 11 and hence the time taken to perform quantitative analysis. Thus if the

reliability analysis of a PMS is to be used to support a decision making process, the variable

ordering scheme used to construct the BDD can directly affect how quickly decisions can be

made as to the best next course of action.

In this paper, an ordering strategy is developed specifically for application within a deci-

sion making process. Its aim is to allow the fastest possible calculation of updated unreliabil-

ity no matter what the future mission configuration. The work presented in this paper also

aims to address the requirement for fast, accurate calculation of updated unreliability, by

proposing two amendments to the BDD model presented in7 in order to correct inaccuracies

that have been highlighted in past research8 12, and proposing a more efficient quantification

method for the BDD model presented in8.

3



The remainder of this paper is organized as follows. Section 2 reviews the fundamentals of

BDD and PMS analysis. Section 3 proposes a new ordering scheme, which has features that

make it ideal for use in a decision making process. Section 4 reviews existing BDD models

and proposes changes, which are intended to correct inaccuracies or improve the efficiency

of quantification. Section 5 demonstrates the impact of the variable ordering schemes and

BDD model developments using a set of randomly-generated PMS. Finally, conclusions are

drawn to highlight the potential impact of this research on the use of reliability analysis to

support decision making in a PMS.

2 Background

2.1 BDD

A BDD is a directed acyclic graph based on Shannon’s Decomposition13. Fault trees can be

converted into BDD format13 to allow efficient analysis of system failures. A BDD node is

represented by an if-then-else (ite) structure:

F = ite < x, F1, F0 >= x · F1 + x̄ · F0. (1)

If x occurs, then the BDD is traversed along the 1-branch to node F1, otherwise, it is

traversed along its 0-branch to node F0. The BDD is traversed in this way until a terminal

node, with a value of 0 or 1, is reached.

In order to construct a BDD, a variable ordering scheme is first defined. The variable

ordering can significantly impact the BDD size10, which is measured by the number of distinct

non-terminal nodes the BDD contains, and hence the time taken to perform analysis.

Two BDD nodes, F = ite < x, F1, F0 > and G = ite < y,G1, G0 >, where x appears

before y in the ordering scheme or the two variables are identical (x ≤ y), are combined as

follows:

F♦G =

ite < x, F1♦G,F0♦G > if x < y

ite < x, F1♦G1, F0♦G0 > if x = y
(2)

where ♦ is the Boolean operator, AND(+) or OR(·).
Figure 1 shows the impact of two variable ordering schemes on BDD size for an example

fault tree, with the BDDs constructed using Equation 2.
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Figure 1: An illustration of the effect of variable ordering on BDD size.

2.2 Modelling PMS failures

A PMS performs a number of tasks in sequence in order to carry out a mission. To analyze

the reliability of the mission, fault trees are used to model the failure of the system to

perform each task. These fault trees can then be combined to model phases and overall

mission failure.

The logic expression for the failure of phase i, Fi, is represented by a fault tree whose basic

events are associated with a phase index subscript notation to represent the occurrence of the

component failure within a certain time duration and superscript notation to represent the

failure mode in which the component fails14. Using this notation, the failure of component

A in mode q between the start of the mission and the end of phase i is denoted as Aq
0i. The

fault tree representing mission failure, Fmiss, is represented by an OR gate with inputs Fi,

where i = 1, 2, · · · , n and n is the total number of phases in the mission9.

The mission unreliability, Qmiss, is the top event probability of the fault tree representing

Fmiss:

Qmiss = P (Fmiss) = P (F1 + F2 + · · ·+ Fn). (3)

The probability of the conditional failure of phase i (failure in phase i conditional on the

success of the previous i− 1 phases), P (ph)i, is calculated using the probability of F1 +F2 +
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· · ·+ Fi
6.

P (ph1) = P (F1),

P (phi) = P (F1 + F2 + · · ·+ Fi)− P (F1 + F2 + · · ·+ Fi−1).
(4)

In order to perform the analysis efficiently, BDDs can be constructed to represent the

logic expression for phase and mission failures with dependencies between variables dealt

with as necessary during construction and quantification5 7 8.

3 A Novel Variable Ordering Scheme

3.1 The Motivation for the Best Order Interleaving Scheme (BOI)

When analyzing a PMS, a variable will contain information about which component it relates

to and in which failure mode and phase it fails. Therefore, variables must be ordered at three

levels15 11: component, phase and failure mode level. There are two types of phase ordering:

forward ordering considers variables in order of their phase index and backward ordering

considers variables according to the reverse of their phase index16. The only requirement

for failure mode ordering is that the ordering of failure modes in all phases is consistent.

Component level ordering is the most complex aspect of variable ordering since the number of

components, if large, can lead to many alternative variable lists. Several different component-

level ordering schemes have been investigated and can be applied to mission failure fault trees

where phase and failure mode indices are neglected (referred to as ‘don’t care’ fault trees),

as shown in Appendix A.

However, when events (such as component failures or changing environmental conditions)

render the reliability of the current mission unacceptable and make it obligatory for mis-

sion reconfiguration to take place, it is necessary to assess and compare the reliability of

alternative missions that involve different functionality from the original configuration. This

changing system functionality will lead to a requirement for different task fault trees to be

considered during the analysis. These fault trees will have different structures to those orig-

inally considered and may also contain different basic events. Therefore, if using existing

ordering schemes, variables must be reordered given the alternative mission configuration,

BDDs constructed for the relevant task failure fault trees and the completed mission phases

and analysis of the proposed mission phases conducted. This is potentially inefficient, since

the variable ordering and BDD construction must be carried out online, while the mission is

in progress, as shown in Figure 2, before quantification can be carried out.
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Figure 2: Illustration of the source of the efficiency advantage of BOI over existing ordering

schemes, considering the steps required to compute the unreliability of new mission config-

urations after m phases of the original mission.

Ideally, if taking advantage of the offline-online strategy introduced in3, online compu-

tation and analysis time would be minimized by carrying out as much analysis as possible

offline. The Best Order Interleaving Scheme (BOI) is introduced in order to allow variable

ordering and BDD construction to be carried out offline, before the mission begins, as shown

in Figure 2. The goal is to promote efficiency and to ensure that a decision can be made

about the best next course of action without unnecessary delay.

BOI arranges variables according to the structures of the fault trees representing the

failures of all tasks that a PMS is capable of rather than the structure of the fault tree

representing mission failure. Variables are ordered before the mission starts and the variable

order list remains unchanged no matter how the mission configuration changes. The princi-

ples of the BOI scheme allow the online-offline strategy to be adopted and hence maximize

the amount of computation that is carried out offline. This will save a large amount of effort

to re-order variables and construct BDDs when performing reliability analysis for alternative

mission configurations when the mission is underway.

3.2 Application of BOI

BOI uses an interleaving technique, which was first introduced in17 to provide an optimal

order list for multiple output combinatorial circuits. The technique combines the variable

order lists that lead to the smallest BDD size for each task failure fault tree to obtain an

overall list for all possible variables.
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The ordering schemes described in Appendix A can be classified into two groups according

to the principles followed when applying them: group 1: Schemes 1, 5, 6, and 8 and group

2: Schemes 2, 3, 4, and 7.

In the group 1 schemes, variables are ordered in a global range according to an assigned

value of certain parameters. In the group 2 schemes, variables are explored in a depth-

first manner, i.e., variables below a gate are fully allocated before the exploration of another

gate. This common principle of group 2 schemes provides a basis for applying the interleaving

technique. Therefore, the BOI scheme uses group 2 schemes to obtain optimal variable order

lists for individual task failure fault trees so that they can be integrated using the interleaving

technique.

The principles of the BOI scheme are:

1. Identify task failure fault trees for the PMS.

2. Use the four schemes to analyze each of the task fault trees, thus obtaining 4 BDDs

for each fault tree.

3. Compare the sizes of the 4 BDDs and select the optimal ordering scheme for each,

i.e., that which leads to the smallest BDD size. Cache the optimal order list and the

smallest BDD size for each fault tree.

4. Prioritize the order lists according to decreasing size of the smallest BDD for each fault

tree.

5. Interleave variables in the order lists using the interleaving technique described below

until all variables are included in the final list17:

(a) For the first variable in the order list, if the variable is already in the final list,

then do nothing; otherwise, insert it at the beginning of the final list.

(b) For the other variables in the order list, check whether the variable, (assume

without loss of generality) A, is in the final list, if so, do nothing; otherwise,

identify the position in the final list of the variable B that is immediately in front

of variable A in the current order list and insert variable A immediately after

variable B in the final list.

Consider for instance a system that can perform 4 tasks. The fault trees representing the

failure of the system to complete these tasks are shown in Figure 3. In a mission, MA, the

system is required to perform task 1, task 2 and task 3 in sequence. The failure of mission
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MA is represented by the fault tree in Figure 4, where the variables associated with the fault

tree basic events encode information relating to the phase (superscript) and failure mode

(subscript) in which a component fails. For example, Aq
0i represents component A failing in

failure mode q between the start of the mission and the end of mission phase i.

Figure 3: Fault trees representing the failure of a system to complete 4 tasks.

Although task 4 is not included in the mission, variables are ordered according to the

fault tree structures of all tasks the system can perform, as shown in Figure 3, so that when

considering an alternative mission that includes task 4, there is no need to re-order variables

or reconstruct BDDs for previous successfully completed phases.

Applying the four schemes to each of the task failure fault trees leads to the following

order lists and associated BDD size for each fault tree: Task 1: B < A < E with size 8,

Task 2: D < A < B < C with size 4, Task 3: C < E < A < B < D with size 6, Task

4: F < G with size 2. Thus, the order lists are considered in the sequence Task 1, Task 3,

Task 2 and Task 4. The final variable order list is created as follows. First, the order list

of Task 1 is copied to the final list to give B < A < E. Variables from Task 3 that are not
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Figure 4: The fault tree representing the failure of the system to complete mission MA.

yet in the final list must then be added. C is the first variable in the order list for Task 3.

Therefore, it is allocated at the start of the final list. E, A, and B are already in the final

list, meaning no action is required. The final variable, D, appears after B in Task 3 so it

is inserted immediately after B in the final list to obtain C < B < D < A < E. The final

variable order list is complete after the variables from Task 2 and Task 4 have been added:

F < G < C < B < D < A < E.

4 Improving the Efficiency of PMS Reliability Analysis

Using BDDs

Two BDD models have been developed to address the dependencies that appear in PMS

with multiple failure mode components during BDD construction. The DEP-BDD model

presented in7 takes account of the dependencies that arise due to the mission phases and

multiple failure modes using dependence and phase algebra. The model has been shown to

give inaccurate results8 12 but instead of correcting the DEP-BDD model, the researchers

who discovered the inaccuracy developed a new model, which uses a forward phase ordering

for BDD construction and an Implicant Tree method for quantification. This model will be

referred to here as the Forward-BDD model.

The remainder of this section details suggested improvements to existing PMS BDD

models:

• Two amendments are proposed to the DEP-BDD analysis to correct the previously-

observed inaccuracies;
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• A more efficient quantification method is proposed to replace the quantification method

of the Forward-BDD model.

4.1 Amending and Improving the DEP-BDD Model

4.1.1 Analytical Inaccuracies

The failure probability of the mission modelled by the fault tree given in Figure 5 can be

shown to be18:

P (Top) = P (A2
01) + P (A1

02). (5)

Figure 5: Example mission fault tree.

Using the DEP-BDD model (as presented in Appendix B), variables in the example fault

tree shown in Figure 5 are ordered as: A1
02 < A2

01 < A1
01 and the constructed BDD is shown

in Figure 6.

Figure 6: The BDD representing the mission failure conditions show in Figure 9 obtained

using the DEP-BDD model.
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The root node probability evaluated using the DEP-BDD evaluation, Equation 15, is:

P (Top) = P (A2
01) + P (A1

01) + P (A1
02), (6)

which is incorrect. The inaccuracy arises due to the node N1, which is redundant12.

In Section 4.1.2 and Section 4.1.3, two modifications are proposed in order to correct

the DEP-BDD analysis by eliminating redundant nodes from the BDD and hence allowing

accurate quantification to be performed. These two modified models are referred to here as

Model 1 and Model 2 and are quantified using the same method that is used in the original

DEP-BDD model.

4.1.2 Applying a Reduction Process (Model 1)

Model 1 retains the variable ordering of the DEP-BDD model and corrects the quantifica-

tion process by adding a reduction process to simplify the construction of two nodes when

variables relate to the same component but different failure modes to ensure BDDs remain

in a compact format.

• The calculation of L1 in the DEP-BDD model is modified so that L1 is the first node

with a variable relating to a component other than x or relating to the same component

and failure mode as x encountered on the traversal down the 0-branches of the node

starting from G. This is because x = 1 implies variables related to another failure

mode of the same component must be equal to 0 whereas this is not true for other

cases.

• The calculation of L0 can be simplified to G0, since using the construction rules of

Model 1, the 0-branch of node G always links two variables that relate to different

failure modes of the same component or that relate to different components, meaning

that when x = 0, L0 = (y · G1 + ȳ · G0)x=0 = (0 · G1 + 1 · G0)x=0 = (G0)x=0 = G0

always applies.

• A reduction is carried out when computing the combination of two nodes whose vari-

ables relate to an identical component and failure mode. The process involves travers-

ing down the 0-branch of the newly-created node and replacing any node with a variable

relating to an identical component and failure mode as the newly-created node by its

0-branch.
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This reduction process eliminates redundant nodes in the BDD, keeping the BDD in a

simplified form. Since there are no redundant nodes, the DEP-BDD quantification process

described in7 will yield accurate results. The speed of the analysis should also reduce due

to the reduction in the BDD size.

4.1.3 Amending Variable Ordering (Model 2)

Model 2 corrects the DEP-BDD analysis by changing the variable ordering and adopting the

same L1 and L0 calculation as used in Model 1. Model 2 requires the variables to be ordered

firstly according to failure mode level and then phase level. This is the only change from the

Model 1 analysis. However, by considering failure mode level first, the phase dependency

operation automatically eliminates redundant nodes from the BDD. No additional reduction

process is needed.

In common with Model 1, the elimination of redundant nodes in the BDD when it is

constructed using Model 2 means that applying the DEP-BDD quantification process will

yield accurate results.

4.1.4 Example

For the fault tree shown in Figure 5, the BDD constructed using Model 1 before reduction

is shown in Figure 6. Traversing the BDD from N3 along its 0-branch, it can be seen that

the variable of node N1, A1
01, relates to the same failure mode of the same component as

the variable of the root node N3, A1
02. This means that N1 is a redundant node and thus is

replaced by its 0-branch, 0, leading to the BDD shown in Figure 7.

Figure 7: BDD obtained using Model 1.

Using the DEP-BDD quantification process gives:

P (Top) = P (A2
01) + P (A1

02). (7)
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Using Model 2, the variables are ordered as: A2
01 < A1

02 < A1
01, with A2

01 being listed earlier

than A1
02 because Model 2 considers dependency between failure modes before dependency

between phases. Using the same construction rules as those given for Model 1, the BDD

shown in Figure 8 is obtained and the DEP-BDD quantification process gives:

P (Top) = P (A2
01) + P (A1

02). (8)

Figure 8: BDD obtained using Model 2 and Forward-BDD model.

It can be seen by comparing Equation 5 to Equation 8 that Models 1 and 2 correct the

observed inaccuracy of the DEP-BDD model and yield accurate results following quantifica-

tion.

4.2 Amending the Forward-BDD method (Model 3)

The Forward-BDD model8 was developed as an accurate alternative to the DEP-BDD for

analyzing PMS with multiple failure mode components. Variables are ordered according to

failure mode level before phase level and it uses forward phase level ordering.

4.2.1 The Forward-BDD Model

The Forward-BDD model uses the following rules to compute the operation between two

nodes, F = ite < x, F1, F0 > and G = ite < y,G1, G0 >. Suppose that x ≤ y: F �G =

ite < x, F1 �G1, F0 �G0 > x = y

ite < x, F1 �G,F0 �G > cp(x) 6= cp(y)

ite < x, F1 � L1, F0 �G > cp(x) = cp(y), fm(x) 6= fm(y)

ite < x, F1 �G1, F0 �G > cp(x) = cp(y), fm(x) = fm(y)

(9)

where L1 = (G0)x=1 is the first node with variable relating to a component other than x

encountered during a traversal down the 0-branch of the BDD starting from G.
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For a newly-created node as shown in Figure 9, a reduction rule is introduced to remove

redundant nodes8. If cp(x) = cp(z), fm(x) = fm(z), and G1 = I1, then node G is replaced

by its success branch G0.

Figure 9: A general node in a PMS BDD.

For the fault tree in Figure 5, variables are first ordered by backward failure mode and

then forward phase index: A2
01 < A1

01 < A1
02. By applying the Forward-BDD construction

rules and reduction process, the BDD obtained is the same as that obtained using Model 2,

as shown in Figure 8.

The Implicant Tree method developed in8 allows quantification of the BDDs constructed

using the Forward-BDD model by constructing a dependency free data structure, the Impli-

cant Tree.

However, the Implicant Tree is a new data structure that must be constructed from

the BDD prior to quantification. This is likely to add significant computation time to the

quantification procedure, particularly when the BDD is large. This is not a desirable feature

for a phased mission analysis technique that is to be used as part of a decision making

process. Therefore, a new method is developed here to quantify the Forward-BDDs directly.

The efficiency of the proposed quantification method is demonstrated in Section 5.1.

4.2.2 Proposed Quantification Method for Forward-BDDs (Model 3)

In Model 3, the 1-branch always links two variables that relate to different components and

the 0-branch can either link two variables that relate to different components or two variables

that relate to the same component due to the Forward-BDD construction rules8.

The proposed quantification method is based on the phase algebra in Table 1, which is

used to deal with dependencies across phases5 and the dependency algebra in Table 2, which

is introduced to deal with dependencies between multiple failure modes7, of two variables

relating to the same component.
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Table 1: Phase algebra for two variables (Ap
0i and Ap

0j) relating to the same component and

failure mode but with different phase index (i < j)

Ap
0i · A

p
0j = Ap

0i Ap
0i · A

p
0j = Ap

0j

Ap
0i + Ap

0j = Ap
0i Ap

0i + Ap
0j = Ap

0j

Ap
0i + Ap

0i = 1 Ap
0i · A

p
0j = 0

Table 2: Dependency algebra for two variables (Ap
0i and Aq

0j) relating to the same component

but different failure modes (p 6= q).

Ap
0i · A

q
0j = 0 Ap

0i · A
q
0j = Aq

0j

Ap
0i · A

q
0j = Ap

0i Ap
0i + Aq

0j = Aq
0j

Ap
0i + Aq

0j = Ap
0i Ap

0i + Aq
0j = Ap

0i + Aq
0j

For a node G shown in Figure 9, the quantification method is given by: P (G) =
p(x) ∗ P (G1) + [1− p(x)] ∗ P (G0) case 1

P (G0) + p(x) ∗ [P (G1)− P (I1)] case 2

P (G0) + p(x) ∗ [P (G1)− P ((I0)x=1)] case 3

(10)

where ∗ is the probability multiplication, (I0)x=1, is the first node with variable relating to

a component other than x encountered during the traversal down the 0-branch of node G0

and the conditions relating to each case are:

case 1: cp(x) 6= cp(z)

case 2: cp(x) = cp(z) and fm(x) = fm(z)

case 3: cp(x) = cp(z) and fm(x) 6= fm(z)

The proof of Equation 10 is given below. Since cp(x) 6= cp(y) in all cases, P (x · G1) =

p(x) ∗ P (G1). Three cases must then be considered.
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1. When cp(x) 6= cp(z):

P (G) = P (x ·G1 + x̄ ·G0)

= P (x ·G1) + P (x̄ ·G0)

= p(x) ∗ P (G1) + p(x̄) ∗ P (G0)

= p(x) ∗ P (G1) + (1− p(x)) ∗ P (G0)

2. When cp(x) = cp(z) and fm(x) = fm(z),

P (x̄ ·G0) = P (x̄ · (z · I1 + z̄ · I0))

= P (x̄ · z · I1 + x̄ · z̄ · I0)

(according to the phase algebra, x̄ · z = z − x · z

and x̄ · z̄ = z̄)

= P ((z − x · z) · I1 + z̄ · I0)

= P (z · I1 + z̄ · I0− x · z · I1)

(according to the phase algebra, x · z = x )

= P (G0− x · I1)

= P (G0)− p(x) ∗ P (I1)

Here, (I1)x=1 = I1 always holds because the variable of I1 is always different to x8.

Substituting P (x̄ ·G0) into P (G) gives:

P (G) = P (x ·G1 + x̄ ·G0)

= P (x ·G1) + P (x̄ ·G0)

= p(x) ∗ P (G1) + P (G0)− p(x) ∗ P (I1)

= P (G0) + p(x) ∗ [P (G1)− P (I1)]

3. When cp(x) = cp(z) and fm(x) 6= fm(y),

P (x̄ ·G0) = P (x̄ · (z · I1 + z̄ · I0))

= P (x̄ · z · I1 + x̄ · z̄ · I0)

(according to the dependence algebra, x̄ · z = z and

x̄ · z̄ = z̄ − x · z̄)

= P (z · I1 + z̄ · I0− x · z̄ · I0)
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(according to the dependence algebra, x · z̄ = x)

= P (G0− x · I0)

= P (G0)− p(x) ∗ p((I0)x=1)

Substituting P (x̄ ·G0) into P (G) gives:

P (G) = P (x ·G1 + x̄ ·G0)

= P (x ·G1) + P (x̄ ·G0)

= p(x) ∗ P (G1) + P (G0)− p(x) ∗ P ((I0)x=1)

= P (G0) + p(x) ∗ (P (G1)− P ((I0)x=1))

4.2.3 Example

Quantification of the BDD shown in Figure 8 using the proposed quantification needs only

to consider the case when cp(x) = cp(z) and fm(x) 6= fm(z) and gives the same result as

Equation 5:

P (top) = P (A2
01) + P (A1

02). (11)

5 Performance Results and Comparison

The accuracy of the DEP-BDD model and the Forward-BDD model were compared in8,

where it was shown that the quantification results obtained using the Forward-BDD model

were accurate, unlike those obtained using the DEP-BDD model. The mission failure prob-

abilities obtained using the three new models presented here are identical to those obtained

using the Forward-BDD model, thus the four models are compared solely in terms of ana-

lytical efficiency.

Two efficiency measures are used to assess the performance of the BDD models: the size

of the BDD representing mission failure (number of BDD nodes), and the mission analysis

time. This mission analysis time is considered in the context of mission reconfiguration,

when updated failure probabilities must be calculated for a number of alternative mission

configurations and a decision made as to the best next course of action. Since this is the

case, the time taken to order variables and to construct and quantify mission failure BDDs

must be included. In order to allow decisions to be made quickly, the shorter the mission

analysis time, the better.

Software was written to generate benchmark fault trees of varying size and structure

using the method presented in19. The structural features of a fault tree are mainly decided
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by the following parameters: the minimum and maximum number of gates, the percentage

of gate inputs in each fault tree layer and the maximum number of component failure modes.

A number of fault tree sets were produced and combined at random in order to create 100

mission profiles, which could then be used to test the efficiency of the four BDD models.

5.1 Comparison of Model Efficiency
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Figure 10: The percentage of additional BDD sizes generated using Model 1 and Model 2

compared with the BDD sizes generated using Model 3 and Forward-BDD model

Table 3 shows the number of missions for which each model produces a BDD smaller than

those produced by the other models. Model 3 shares its BDD construction rules with the

Forward-BDD model and therefore shares its BDD sizes. These models are seen to generate

smaller BDDs than the other two models for 59 PMS. For the other 41 cases, the smallest

BDD is produced by either Model 1 or Model 2. Figure 10 shows a comparison of the size

of the BDDs generated by Model 1 and Model 2 relative to those generated by Model 3 and

the Forward-BDD Model for each of the PMS considered.

Table 3: Performance comparison of BDD models in terms of BDD sizes

BDD model Model 1 Model 2 Model 3 and Forward-BDD

No. of missions 23 18 59

Table 4 shows the number of missions for which the analysis of each model takes less time
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Figure 11: The percentage of additional analysis time generated using Model 1, Model 2 and

Forward-BDD model compared with the analysis time generated using Model 3

than the analysis of the same mission using other models. In 51 cases, the fastest analysis

comes when using Model 3. For the other 49 cases, Model 1 or Model 2 result in the fastest

analysis (the Forward-BDD Model never results in the fastest analysis). Figure 11 shows a

comparison of the time taken to perform the analysis when using Model 1, Model 2 and the

Forward-BDD Model relative to the time taken when using Model 3 for each of the PMS

considered.

Therefore, improved efficiency can be expected when using Model 1, 2 and 3. Of the

three developed BDD models, Model 3 can be seen to generally perform better than Model

1 and Model 2, since it leads to the smallest analysis time for around 50% of the missions.

Table 4: Performance comparison of BDD models in terms of analysis time

BDD model Model 1 Model 2 Model 3 Forward-BDD

No. of missions 30 19 51 0

Table 5 gives the efficiency improvement of the three developed BDD models over the

Forward-BDD model computed by the average reduction in mission analysis time. The time

taken to perform analysis when using the Forward-BDD model is longer in all cases than the

time taken to perform analysis when using the other models. All of the new BDD models

show greatly reduced analysis time in comparison to the Forward-BDD model. A particularly

noteworthy result is seen for Model 3, which, despite using the same BDD structure as the
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Forward BDD model, results in an analysis time that is on average 90.09% less than that

required for the Forward BDD model.

Table 5: Analysis of the efficiency improvement (percentage of time reduced) of the three

developed BDD models over the Forward-BDD model

BDD models Model 1 Model 2 Model 3

Average improvement 75.28% 54.12% 90.09%

5.2 Comparison of Variable Ordering Schemes

Since Model 3 proved to be the most efficient BDD model for the tested phased missions,

it is used to analyze the efficiency of the variable ordering schemes. Using Model 3, each

ordering scheme is used during the construction of mission failure BDDs for the 100 test

mission profiles. Table 6 shows the number of missions for which each scheme produced

the smallest BDD and also the number of missions for which each scheme resulted in the

lowest mission analysis time. The table shows that it is possible for any scheme to produce

the smallest BDD. When considering analysis time, Scheme 6 and Scheme 8 never result in

the lowest time, since the variable ordering time required when applying these schemes takes

longer than that required when applying the other ordering schemes. Scheme 5 results in the

smallest mission failure BDD in 30 out of the 100 cases and the lowest analysis time in 48 out

of the 100 cases. Therefore, Scheme 5 would appear to be most likely to offer performance

advantages in terms of reduced analysis time when compared to the other ordering schemes.

It should give the greatest chance of producing the lowest analysis times when calculating

updated probabilities.

Table 6: Performance comparison of the nine ordering schemes measured by size of BDD

and analysis time for mission unreliability
Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8 BOI

BDD size 4 4 10 4 30 10 19 16 3

Analysis time 8 11 22 6 48 0 4 0 1

5.3 The Performance of BOI

The proposed BOI scheme can be seen to perform inefficiently in comparison to the other

ordering schemes when analyzing mission unreliability. However, this scheme was specially
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developed with a view to enabling the efficient use of the reliability analysis of PMS in

a decision making tool. It is expected to improve analysis efficiency when calculating the

unreliability of possible alternative missions that must be considered when the unreliability

of the current mission drops to an unacceptable level and alternatives must be considered.

In particular, this improvement in analysis time is likely to be observed when calculating

the unreliability of the first phase that involves performing a task that was not a part of the

original mission, since the fault tree representing the failure to complete this task is most

likely to contain basic events that do not appear in the current mission fault tree. This

means that variable re-ordering is required before any further analysis can be performed and

that the analysis of the phases completed up to the current point in the mission must be

repeated for this new ordering (as illustrated in Figure 2).

Table 7 shows the average efficiency advantages (percentage reduction in analysis time)

derived when using BOI in preference to the other ordering schemes to analyze the unre-

liability of the first altered phase, in an alternative mission configuration for two different

situations: when the first altered phase is the third phase in the alternative mission and when

it is the penultimate phase. The average efficiency advantage of the BOI scheme over the

other schemes varies from 39.33% to 95.13%. In all cases, BOI leads to a lower unreliability

analysis time for the first altered phase in the alternative mission, thus demonstrating the

potential for its use in supporting fast decision making in PMS.

Table 7: Average relative advantage of BOI compared to the eight ordering scheme when

analyzing the first altered phase in the alternative mission
Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

The third phase 47.96% 40.19% 39.33% 69.95% 48.40% 83.21% 76.44% 95.13%

The penultimate phase 45.42% 49.13% 44.04% 56.62% 43.47% 63.21% 64.23% 75.62%

6 Case Study

In order to further demonstrate the efficiency advantage of the proposed BDD Model 3 in

comparison to the other models, and the advantage of the developed BOI scheme within

the context of decision making processes for a real world application, an example search

and rescue (SAR) mission to be completed by a UAV is considered and different application

scenarios modelled by varying mission configurations are tested.

The UAV is capable of performing six tasks and the failure of each task is represented by

a modularised fault tree whose structure is detailed in6. The six fault trees have structure
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information shown in Table 8. It is assumed that the highest acceptable mission unreliability

is 0.001. If the unreliability exceeds this value for a mission then alternative missions will

considered.

Table 8: Fault tree information for the UAV SAR mission case study6

Task fault tree No. gates (OR, AND) No. events (Non-repeated) Max. failure mode

FT1 (Takeoff) 17 (9,8) 19 2

FT2 (Climb) 14 (8,6) 14 2

FT3 (Cruise and Search) 15 (8,8) 22 2

FT4 (Cruise and Detect Submarine) 15 (8,9) 27 2

FT5 (Descend) 14 (8,6) 14 2

FT6 (Land) 17 (9,8) 20 2

The six tasks are arranged in specific sequence and frequency to form a mission config-

uration. The initial SAR mission failure is shown by the fault tree in Figure 12. Suppose

failure probabilities of the basic events follow an exponential distribution20 with randomly

generated failure rates of the order 10−6 per hour.

Figure 12: The fault tree representing the failure of the UAV to complete the initial SAR

mission

Before the mission starts (off-line), enough time is allowed to analyse the mission unrelia-

bility using different ordering schemes and BDD models to select the optimal ones, i.e. those

that have the highest potential to provide the most efficient analysis of the updated mission

unreliability when the the UAV is in flight. Table 9 shows that for every ordering scheme

(comparing the horizontal data), the BDD constructed using Model 3 and the forward-BDD

model are smaller than those constructed using Model 1 and Model 2. The analysis per-
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formed using Model 3 is always faster than using the other models and thus is selected for

future updated mission reliability analysis. The calculated mission unreliability is 0.00016

which is lower than the acceptable threshold of 0.001 and thus the UAV starts the initial

mission.

Table 9: Analysis results for the original SAR mission configuration in the off-line stage
Parameter BDD size Mission analysis time(s)

Model 1 Model 2 Model 3 Forward-BDD Model 1 Model 2 Model 3 Forward-BDD

Scheme 1 1309 1342 922 922 0.5 0.6 0.5 2.9

Scheme 2 2496 2496 1422 1422 2.5 2.5 0.7 3.4

Scheme 3 2496 2457 1422 1422 2.5 2.5 0.7 3.3

Scheme 4 2820 2714 1791 1791 2.7 2.7 0.8 6.6

Scheme 5 1650 1642 1084 1084 0.8 0.8 0.5 3.2

Scheme 6 6349 6321 1759 1759 11.2 11.2 2.2 19.7

Scheme 7 2766 2741 1788 1788 2.6 2.6 0.9 5.9

Scheme 8 1314 1314 873 873 0.6 0.6 0.5 2.7

BOI 2020 2034 1012 1012 1.8 1.9 0.5 2.8

Suppose during the performance of phase 2 of the SAR mission, the existence of hostile

armed submarines is detected which will lead to potential threat that affects a future phase.

This means the probabilities of basic events representing the occurrence of an external threat

in a later phase fault tree will be updated to a larger value. After a calculation of current

mission unreliability based on updated variable probabilities, the mission unreliability is

proved to be too high to accept (> 0.001) and thus the original SAR cannot be continued.

Therefore, two alternative mission configurations (as shown in Figure 13) are considered to

ensure the success of the mission objective.

Both of the missions involve a new task failure fault tree (FT4). Due to the requirement

for an instant decision to be made when it is no longer safe to carry on the current mission, it

is necessary to calculate the unreliability of the first altered phase and the entire alternative

mission14. It is seen from Table 10 that the analysis speed when using the BOI scheme is

faster than when using the other schemes (comparing vertically).

The results of the case study again support the testing results presented in 5, i.e. Model

3 is more efficient than the other models in terms of analysis speed. For this case study, the

BOI scheme is an optimal choice to calculate the unreliability of the first altered phase when

an immediate decision is required as to the best next course of action.
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Figure 13: The fault trees representing the failure of the UAV to complete the 1st or the 2nd

alternative mission

Table 10: Exact analysis for two mission alternatives
Parameter BDD size Analysis time(s)

Mission Scenario 1 Scenario 2 Scenario 1 Scenario 2

Scope Phase 3 Mission Phase 3 Mission Phase 3 Mission Phase 3 Mission

Model 1 Model 2 Model 3 Forward-BDD Model 1 Model 2 Model 3 Forward-BDD

Scheme 1 891 1026 896 1134 0.1 0.6 0.1 0.8

Scheme 2 1375 1519 1375 1851 0.3 1.2 0.3 1.7

Scheme 3 1375 1519 1375 1851 0.3 1.2 0.3 1.7

Scheme 4 1635 1863 1685 2038 0.9 1.6 0.9 1.9

Scheme 5 1048 1233 1124 1404 0.2 0.7 0.3 1.0

Scheme 6 2109 3600 1987 3186 1.6 15.1 1.4 10.3

Scheme 7 2157 2329 1542 2043 1.4 2.8 1.2 2.3

Scheme 8 895 958 932 1081 0.2 0.6 0.2 0.8

BOI 937 1089 960 1190 0.0 0.6 0.0 0.1
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7 Conclusion

If a reliability analysis methodology is to be used to support real-time decision making for

systems operating phased missions in changing mission environments, it is crucial that the

applied methodology can analyze PMS quickly and accurately.

The construction of BDDs initially requires variables to be ordered and how they are

ordered can greatly affect the sizes of the constructed BDDs. This paper has tested the

efficiency of eight ordering schemes by applying them to ‘don’t care’ fault trees represent-

ing PMS failures. A new ordering scheme, BOI, is proposed, which is designed to work

efficiently within the decision making process described in the literature. It is specifically

developed to enable updated reliability analysis, which is performed when alternative mis-

sion configurations must be considered while a mission is in progress, to be performed more

quickly.

When there is no time constraint for identifying an appropriate mission alternative (and

hence no great urgency to the calculation of mission unreliability), Scheme 5 appears to

be the best choice of ordering scheme to use in the analysis, as it has shown to have the

highest chance of producing the smallest BDD sizes for mission failure and the lowest mis-

sion unreliability analysis time for the tested missions. When time is limited (meaning the

configuration of the next phase needs to be decided almost immediately), and particularly in

the case when variable reordering would be necessary, the BOI scheme is recommended to be

used since it avoids the need for variable reordering and repeated analysis of phases shared

by the original and alternative missions, so that the unreliability of the first altered phase

of the mission alternative can be quickly computed and an acceptable mission configuration

can be decided in the shortest possible time.

In this paper, after reviewing the DEP-BDD analysis, two amendments, Model 1 and

Model 2, have been proposed, which correct the previously-observed inaccuracies. The

Forward-BDD model is improved by introducing a more efficient quantification method.

As shown by results in Section 5 and the case study, all of the three developed models

offer much faster analysis for the PMS with multiple failure modes than the Forward-BDD

model. The analysis efficiency advantage of Model 3 over the Forward-BDD model is purely

down to the improvement in efficiency that comes from the proposed quantification method,

since they use the same BDD construction rules.

Model 3 (or the Forward-BDD model) was shown to have a higher chance of obtaining

smaller BDDs compared with the two models that are based on DEP-BDD analysis. Of

the three new models, Model 3 was seen to result in the highest percentage reduction in
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mission analysis time when compared to the other two models for the missions tested. This

means that Model 3 would appear to be the most promising to be used when performing

reliability analysis for PMS containing components with multiple failure modes to help the

system make real-time decisions as to its next course of action in dynamic, rapidly changing

mission environments.

Appendix A: Variable Ordering Schemes

Modified Top-down Ordering (Scheme 1)21

Variables are ordered as they appear in the ‘don’t care’ fault tree in a top-down, left-right

arrangement, with priority given to variables that appear in higher levels of the fault tree.

For tied variables, the one that occurs most frequently is ordered earlier.

Modified Depth-first Ordering (Scheme 2)2215

The ‘don’t’ care fault tree is considered to be made up of sub-trees, each of which is fully

explored in turn (from left to right as they appear in the fault tree) according to Scheme 1.

Modified Priority Depth-first Ordering (Scheme 3)19

Scheme 3 is a modified version of Scheme 2. Instead of considering gates from left to right

as they appear in the ‘don’t care’ fault tree, scheme 3 considers gates with only event inputs

before those with both event and gate inputs.

Modified Leaves Depth-first Ordering (Scheme 4)2219

Scheme 4 is also a modified version of Scheme 2. A gate is considered first if it:

1. Contains the smallest number of leaves (total number of basic events beneath the gate).

In case of ties, then

2. Contains the smallest number of unconsidered leaves.

Variables that occur most frequently appear earlier in the variable order list.
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Non-Dynamic Top-down Weighted Ordering (Scheme 5)

11

A variable in the ‘don’t care’ fault tree is listed before others if it has:

1. The biggest contribution weight to the top event (the top event is given weight 1; the

weight of each gate is then equally distributed between its inputs). Weights of repeated

variables are added together. In case of ties, then

2. The smallest average level of appearance (the sum of the levels on which the variable

appears, divided by how many times it occurs). In case of ties, then

3. The highest number of occurrences. In case of ties, then,

4. The highest priority in the order list when applying scheme 1.

Dynamic Top-down Weighted Ordering (Scheme 6)21

Scheme 5 is applied to a changing series of ‘don’t care’ fault trees, each of which is created

by deleting an allocated variable from the ‘don’t care’ fault tree following its allocation.

Weights are then reassigned to each modified fault tree to allocate another variable. The

process repeats until all variables are allocated.

Bottom-up Weighted Ordering (Scheme 7)22

Variables under gates are sorted according to Scheme 1 with a gate being explored first if it

has:

1. The highest weight. In case of ties,

2. The highest percentage of repeated variables (divide the total number of leaves by the

number of repeated leaves).

A gate’s weight is calculated according to the weight of its inputs:

1. The weight of an AND gate: WAND =
∏n

i=1 qi,

2. The weight of an OR gate: WOR = 1−
∏n

i=1(1− qi),

where qi is the weight of the ith input of the gate. Basic event inputs are given a weight

of qi = 1/(mmax + 1), where mmax is the maximum number of failure modes related to any

variable.
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Event Criticality Ordering (Scheme 8)2324

Variables in a ‘don’t care phase’ fault tree (a mission failure fault tree where phase indices are

neglected) are ordered according to a version of Birnbaum’s structural importance measure,

modified to account for multiple failure modes. Firstly, the importance measure for each

component A in each of its failure mode i is calculated using:

I(Ai) = Q(1Ai ,q)−Q(0Ai ,q). (12)

Q(1Ai ,q) is the top event probability with probability 1 for event Ai, probability 0 for any

event Aj (i 6= j) and probability q = 1/(mmax +1) for any of the remaining events; Q(0Ai ,q)

is the top event probability with probability 0 for event Ai and probability q = 1/(mmax +1)

for any of the remaining events; mmax is the maximal number of failure modes experienced

by any component in the ‘don’t care phase’ fault tree.

The Birnbaums structural importance measure for component A is then calculated by:

I(A) =

mA∑
i=1

1

mA

∗ I(Ai), (13)

where mA is the number of failure modes in which component A can fail in the ‘don’t care

phase’ fault tree.

A component is ordered earlier if it:

1. Has the highest Birnbaums structural importance measure value. In case of ties;

2. Appears earlier in the “don’ t’ care phase’ fault tree in a top-down, left-right manner.

For all of the schemes, fault tree basic event inputs are considered before gate inputs

and if basic events or gates cannot be sorted using the principles of the schemes, those that

appear earlier, i.e. towards the top left of the fault tree, are given priority.

Appendix B: DEP-BDD Model

All of the existing variable ordering schemes can be used to order variables in a PMS at

a component level. The DEP-BDD model requires backward phase ordering and backward

failure mode ordering and considers ordering at phase level before at failure mode level.

The DEP-BDD model7 uses the following rules to compute the operation between two

nodes F = ite < x, F1, F0 > and G = ite < y,G1, G0 >. Supposing x ≤ y, and cp(x) and
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fm(x) are the component variable x relates to and the failure mode it fails in respectively,

then: F �G = 

ite < x, F1 �G1, F0 �G0 > x = y

ite < x, F1 �G,F0 � L0 > cp(x) = cp(y), fm(x) = fm(y)

ite < x, F1 � L1, F0 �G > cp(x) = cp(y), fm(x) 6= fm(y)

ite < x, F1 �G,F0 �G > x 6= y.

(14)

where L1 = (G0)x=1 , L0 = (G0)x=0 is the first node with variable relating to a component

other than x encountered during a traversal down the 0-branches of the BDD starting from

G.

For a general node G = ite < x,G1, G0 >, where G1 = ite < y,H1, H0 > and G0 =

ite < z, I1, I0 >, the probability is calculated as follows7: P (G) =

p(x) ∗ P (G1) + [1− p(x)] ∗ P (G0) case 1

P (G1) + P (G0)− P (H0) + p(x) ∗ [P (K1)− P (G0)] case 2

P (G0) + p(x) ∗ [P (G1)− P (K2)] case 3

P (G1) + P (G0)− P (H0) + p(x) ∗ [P (K1)− P (K2)] case 4

(15)

where K1, and K2 are the first node with variable relating to a different component to x

encountered during the traversal down the 0-branch of node G1 and G0 respectively. The

cases for the relationships between x, y and z are:

case 1: cp(x) 6= cp(y) and cp(x) 6= cp(z).

case 2: cp(x) = cp(y), fm(x) = fm(y) and cp(x) 6= cp(z).

case 3: cp(x) 6= cp(y) and cp(x) = cp(z), fm(x) 6= fm(z).

case 4: cp(x) = cp(y) and cp(x) = cp(z), fm(x) = fm(y), pn(x) 6= pn(y) and fm(x) 6=
fm(z).
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