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Abstract

In solar engineering, we encounter big time series data such as the satellite-derived irradiance data
and string-level measurements from a utility-scale photovoltaic (PV) system. While storing and
hosting big data are certainly possible using today’s data storage technology, it is challenging to
effectively and efficiently visualize and analyze the data. We consider a data analytics algorithm
to mitigate some of these challenges in this work. The algorithm computes a set of generic and/or
application-specific features to characterize the time series, and subsequently uses principal com-
ponent analysis to project these features onto a two-dimensional space. As each time series can
be represented by features, it can be treated as a single data point in the feature space, allowing
many operations to become more amenable. Three applications are discussed within the overall
framework, namely (1) the PV system type identification, (2) monitoring network design, and (3)
anomalous string detection. The proposed framework can be easily translated to many other solar
engineer applications.

Keywords: Principal component analysis, Time series features, Solar irradiance, Characterization

1. Introduction

Many solar engineering datasets, such as high-resolution satellite-derived irradiance data (e.g.,
Nikitidou et al., 2015), power output data from hundreds of photovoltaic (PV) plants in an area
(e.g., Yang et al., 2017) and module-level measurements from a PV plant (e.g., Guerriero et al.,
2016), align well with the HACE theorem' proposed by Wu et al. (2014) that characterizes big
data. One of the main challenges of processing these raw datasets is the high noise and irrelevant
information embedded. Moreover, visualization and analysis through operating directly on the
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!Big Data starts with large-volume, heterogeneous, autonomous sources with distributed and decentralized control,
and seeks to explore complex and evolving relationships among data (Wu et al., 2014).
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raw datasets can be ineffective. On this point, the Pareto principle, better-known as the 80/20
rule, commonly applies: researchers and solar engineers often spend most of their time collecting,
cleaning, filtering, reducing and formatting the data. In this paper, a data analytics algorithm is
used to overcome some of the aforementioned challenges. We will look into a class of applications
which involve big time series data, or more specifically, solar irradiance and other related forms.

A time series is a collection of observations taken sequentially in time; this definition provides
a natural grouping for the data. Instead of viewing the data points as individual entities, we can
view time series as entities. Once this seemingly trivial statement is understood, much convenience
can be added to data handling and analytics. Traditionally, to reduce the complexity in time series
data, we often shorten each time series, but preserve the number of entities. For example, satellite-
derived irradiance data can be considered as time series of lattice processes. As the data usually
span decades, some reduced form, such as a typical meteorological year (TMY) file, can be useful.
Composition of the TMY data typify conditions at a particular site over a longer period of time,
i.e., 10 to 30 years. For computer simulations of solar energy conversion systems and building
systems to facilitate performance comparisons of different designs, this type of reduced dataset is
sufficient (Wilcox and Marion, 2008). Our approach of representing raw time series is similar to
the construction of TMY datasets.

The core concept is rather simple: each time series is treated as an individual entity which can
be characterized by a set of generic or application-specific features. This step dramatically reduces
the dimension of the data, i.e., from hundreds of samples in a time series to a few descriptive
features. As each time series can now be treated as a single data point in the feature space, many
operations become more amenable in that feature space. Furthermore, it is also easier to visualize
big time series data in the feature space as compared to the traditional time series visualization
methods such as the spaghetti plot and horizon plot, which are informative but not very scalable.
We illustrate these points with a toy example.

1.1. A toy example

Let us consider the problem of detecting faulty strings using commonly available data from a
PV plant. Suppose we represent each string-level output current time series with a single feature,
namely the mean value over a period of time, and plot it on the real line, the faulty string could be
detected by locating the outliers in that one-dimensional feature space, as illustrated in Figure 1.
While the single feature approach may allow us to detect the faulty strings, it is difficult to isolate
the fault type. The decrease in output current is a shared observation for several different fault types
(see Table 2 in Chine et al., 2016). If a second feature is added, namely, the mean output voltage
over that period of time, the faulty strings can now be represented in a two-dimensional space.
Since the voltage of the faulty strings can increase, decrease or remain constant, corresponding to
different faults, combining two features would better identify fault types.

The above idea can immediately be expanded to a feature space with p dimensions, with the
additional features being, e.g., mean short circuit current, mean open circuit voltage and number of
maximum power point; these features were used in Chine et al. (2016). Within the narrow premise
of this toy example, more features imply better isolation of faults. In the ideal case, the described
approach could circumvent the tedious string-by-string fault check, which often involves complex
procedure and flow chart.
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Figure 1: An illustrative example of PV string fault detection in a one-dimensional feature space.

The one-dimensional case displayed in Figure 1 provides excellent visualization of multiple
time series. It is not difficult to imagine such plots in a two- or three-dimensional space. When
p > 3, the scatter plot can still be visualized by performing principal component analysis (PCA)
on the features. PCA uses an orthogonal transformation to convert possibly correlated features to
linearly uncorrelated variables, known as principal components (PCs). As the first few PCs often
contain most variation, it is common to plot the data points — recall each data point represents a
time series in our case — in a new low-dimensional space constructed by the directions of the first
few PCs. When PCA is considered, its companion algorithms, such as the k-means clustering,
a-hull and high density region, can be then applied to solve a variety of problems, and thus make
the data analytics algorithm very versatile.

1.2. Applications

We study three applications in this work, namely, (1) PV system type identification, (2) moni-
toring network design and (3) anomalous PV string detection. We note that all three applications
are well-studied in the literature (the literature review will distribute to respective sections), how-
ever, the merit of the present work goes to the new point of view on data handling. In clustering
problem like the first two applications, the k-means algorithm will be used together with PCA.
Unlike other alternatives, this approach does not cluster raw point values using a distance metric,
rather it clusters based on global features extracted from each time series. The third application
is in line with the toy example above. A two-dimensional outlier detection algorithm, the a-hull
algorithm, will be applied to the result of PCA. This is also distinct from most outlier detection
studies in the literature, where outliers are identified within one time series or based on statisti-
cal rules. Besides the these applications, there are many other applications that could potentially
benefit from the analytics algorithm. We briefly enumerate several other applications in Appendix
E.

2. Principal component analysis and biplot

For a centered dataset X, an n X p matrix, where n is the number of time series (observation,
each time series is considered as one observation) and p is the number of time series features
(variable), PCA computes the most meaningful® basis to re-express X. If Z is the re-represented
data, the above statement can be written as Z = XA, where A is an p X p matrix and its columns
are a set of basis vectors for representing of columns of X.

2For a detailed discussion on the motivation for PCA, and what should be considered as “most meaningful”, we
refer the readers to Shlens (2003).



PCA assumes all basis vectors are orthonormal. It first selects a normalized direction in p-
dimensional space along which the variance in X is maximized; this basis vector is denoted as
a,. In other words, we maximize V(a| x), where x is vector of p random variables (p time series
features in this case). Since the maximum will not be achieved with finite a;, a normalization
constraint is imposed, namely, a; a; = 1. The subsequent direction is again selected based on the
maximum variance criterion, however, due to the orthonormal assumption, the choice is limited to
the directions that are perpendicular to @;. The procedure continues until p directions are selected.
Thus a; x is defined as the kth sample principal components and z; = a; x; is the score for the ith
observation on the kth PC.

2.1. Solving PCA with eigendecomposition

As the goal of PCA is to reduce redundancy, it is desired that each variable co-varies as little
as possible with other variables. In other words, we aim to diagnolize the covariance matrix of the
re-represented data. Let Sz be the covariance matrix of Z, i.e.,
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can be diagnolized (note that A=! = AT when A is orthogonal). This was the goal for PCA. The
eigenvectors can be found via eigendecomposition. Alternatively, a more mathematically involved
approach to solve PCA is through singular value decomposition (SVD). One advantage of using
SVD is that it can handle the situation where there are more dimensions than samples. However,
this is rarely the case when big time series data is considered.

The derivation shown above are based on the eigenvectors and eigenvalues of the covariance
matrix. However, when the variables in the centered dataset vary by orders of magnitude, per-
forming PCA with this data will lead to large loadings® for variables with high variance, which is

3Eigenvectors are cosines of rotation of variables into components. Loadings are eigenvectors normalized to
respective eigenvalues, i.e., loading = eigenvectors - +/eigenvalues.
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undesirable. It is therefore appropriate to perform scaling before PCA; this is achieved by dividing
each variable by its standard deviation.

There are various statistical packages which provide implementations of PCA. For instance
two popular functions in software R, namely, princomp and prcomp, which compute principal
components using eigendecomposition and SVD, respectively. In this paper, we use princomp
throughout and the supplementary material, i.e., the R code, is provided in Appendix A.

2.2. Biplot

A biplot represents both the observations and variables of a matrix of multivariate data on the
same plot. It uses points to represent the scores of the observations on the principal components,
and uses vectors to represent the coeflicients of the variables on the principal components. Super-
imposing the observations and variables provides additional insights about relationships between
them not available in either individual plot (Jolliffe, 2002).

Recall that PCA splits covariance or correlation matrix into a scale part (eigenvalues) and a
direction part (eigenvectors), plotting loadings instead of eigenvectors makes them comparable by
magnitude with the covariance or correlation observed between the variables. In fact, loadings
are the covariances or correlations between the original variables and the unit-scaled components.
This point will be reiterated in later sections of this paper.

Biplots are informative; we will thus interpret them in the following three sections. At this
stage, several interpretations are summarized:

1. Biplots are scatter plots, the points in a biplot can therefore be interpreted the same way:
closer points correspond to observations that have similar scores on the PCs. This interpre-
tation is useful for clustering applications;

2. Projection of points onto a vector gives original values of that variable. By examining points
along the particular direction of a vector (and its opposite direction as well), samples with
anomalous values on what the variable measures can be identified;

3. Angle between two vectors denotes their correlation. Vectors that point in the same direction
correspond to variables that have similar response profiles;

4. The apparent length of a vector gives an idea about the variance of that variable. This can
be used to conclude the importance of a variable during clustering.

3. Applications A: PV system type identification (generic time series features)

The first, and arguably the simplest, application is PV system type identification. In particular,
we are interested in identifying whether a PV system has a fixed orientation or single-axis tracking;
these two types of systems are more utilized than duel-axis tracking systems due to their better
cost, reliability and energy production trade-off (Mousazadeh et al., 2009; Nann, 1990).

The data used in this application comes from the western wind and solar integration study
(WWSIS). WWSIS is a three-phase project (GE Energy, 2010; Lew et al., 2013; Miller et al.,
2014) conducted by the National Renewable Energy Laboratory (NREL) to explore the operational
impact of high renewable penetration into an electricity grid. The sub-hour solar irradiance data
in WWSIS were synthetically generated using the algorithm developed by Hummon et al. (2012).

5
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Figure 2: Sample time series from the WWSIS dataset during 2006 August 1 to 7. Power output from PV systems
with trackers (right column) has a flatter top as compared to that from systems with fixed orientations (left column).

The irradiance was then converted to solar power output through the System Advisor Model.
The full dataset contains approximately 6000 PV plants of different size in western US locations,
however, for demonstration purposes, only data from 405 plants in California are used. The data
is first normalized by dividing the series with its respective system size.

Figure 2 shows some samples of the normalized time series from the WWSIS dataset (five
random samples from each type of systems). It can be seen that the power output from those PV
systems with trackers (plotted in the column on the right) has a flatter top, due to the DNI gain
by the sun-tracking panels. This effect is most apparent in the late morning and early afternoon
hours. Although identifying PV systems types by visually inspecting the time series transient is
easy, the method is not scalable when thousands or more series need to be identified. The proposed
framework can be useful in this application. Due to the simplicity of this application, using only
generic time series features would suffice.

Generic time series features refer to the statistics (such as mean, variance and autocorrelation)
and results of simple counting (such as number of times a series crosses its mean and length of
a time series) which can be applied to most, if not all, time series. Hyndman et al. (2015) con-
solidated a total of 15 generic time series features; these features are listed verbatim in Table 1.
Since time series are often being recorded in different scales, despite the earlier normalization us-
ing system size, another round of normalization is in general recommended. After normalization,
the series should have zero mean and unit variance. Two features, namely, the mean and variance,
can thus be dropped.

The 13 time series features are computed for each of the 405 normalized PV power time series.
Using the earlier notation, the data matrix X has a dimension of 405 X 13. The total process time
for computing the generic time series features is 257 s on a late 2013 MacBook Pro. After running
PCA, the data points are projected onto the two-dimensional feature space as shown in Figure 3;
the numbers in the figure index their corresponding systems. We note that our biplot presentation
follows Gabriel (1971), where observations are scaled up by v/n and variables scaled down by /n.
After the projection, two linearly separable clusters can immediately be seen. At this stage, any
sensible 2-dimensional clustering algorithm could be used to identify the system types. For our
choice, k-means clustering with 2 centers and 25 random initialization of centers is used. Multiple
initializations are used because this clustering approach can be sensitive to the initial selection



Table 1: Fifteen non-seasonal time series features used for PV system type identifications. These generic features are
adopted from Hyndman et al. (2015).

Feature Description

Mean Mean.

Var Variance.

ACF1 First order of autocorrelation.
Trend Strength of trend.

Linearity Strength of linearity.
Curvature Strength of curvature

Entropy Spectral entropy.

Lumpiness Changing variance.

Spikiness Strength of spikiness.

Lshift Level shift using rolling window.
Vchange Variance change.

Fspots Flat spots using discretization.
Cpoints The number of crossing points.
KLscore Kullback-Leibler score.

Change.idx  Index of the maximum KL score.
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Figure 3: Clustering of PV system types (fixed or tracking) using k-means with principal component analysis. The
Indian red cluster shows the PV systems with fixed orientations; the turquoise blue cluster shows the PV systems with
trackers. The cluster centers are indicated with black crosses. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

of centers. The initialization that leads to the best results* is chosen. The resulting clusters are
displayed in Figure 3 using Indian red and turquoise, which represent PV systems with fixed
orientations and trackers, respectively.

It can be seen from the biplot that some features, namely, vchange and change.idx, are less

“Best results refer to the smallest sum of squares of the observations to their assigned cluster centers.
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variable than others across all time series; they contribute less in terms of separating the systems.
The figure also reveals some opposing features, e.g., curvature and linearity; Ishift and cpoints.
Time series with high linearity in general expects a low curvature. It is worth to mention that the
separation of the two clusters is along the direction of Ishift, the level shift using rolling window.
As this feature computes the maximum absolute difference between consecutive mean values from
a rolling window?, the tracker systems with more rapid power changes have higher Ishift values
than those systems with fixed orientations.

A concluding remark of this section is on the time series feature design. As most of the
generic time series features used in this application are well distributed in the two-dimensional
space, i.e., pointing to various directions, redundancy in the feature space is minimal. A similar
distribution of feature vector direction was observed earlier for fast moving consumer goods time
series (Yang et al., 2015a). We thus believe that these features designed by Hyndman et al. (2015)
are representative and sufficient for many applications.

4. Applications B: Irradiance monitoring network design (application-specific features)

Tobler’s first law of geography states that near things are more alike than distant things, and
solar irradiance is no exception. In an irradiance monitoring network design problem, we aim
to separate a geographical area into strata, so that irradiance at locations in each stratum can
be sufficiently represented by data from a single sensor. The immediate task is thus to define
a distance measure to gauge the proximity between locations, and such measure needs not be
geographical distance. Once the proximity is defined, the stratification of the geographical area
can be performed using clustering algorithms in the proximity space, or feature space if PCA is
considered.

In alignment with the present work is the study carried out by Zagouras et al. (2013), in which
the PCA plus k-means framework was used on satellite-derived irradiance maps. In their ap-
proach, the satellite-derived irradiance was first converted to a so-called “cloud modification factor
(CMF)”, which is essentially just clear sky index. Two years (730 days) of daily average values
of CMF at 28800 pixels over the greater area of Greece were arranged into a data matrix. After
PCA, the 730 initial dimensions were reduced to 102 eigenvectors that were thought to preserve
sufficient initial variance. The k-means algorithm was subsequently used to cluster the dimension-
reduced dataset into 22 clusters; the optimal number is determined based on two validation indices.
In Zagouras et al. (2013)’s case, proximity is the Euclidean distance in the feature space derived
by performing PCA.

Although the work is perhaps the first in using PCA to design irradiance monitoring network, it
has two drawbacks. The first drawback, as mentioned by Yang and Reindl (2015), is its inflexible
design criterion. Since the data matrix is formed by daily CMF values, the optimality of the
design is solely based on the geometrical structure of the data. On this point, a method which
would consider multiple criteria is desired. Secondly, the dimension-reduced dataset carries little
physical meaning, and the feature space cannot be interpreted graphically (102 is still a big number
to be plotted). Our present approach could effectively improve on these two drawbacks.

SThis is the precise reason that we include the code segment in the paper. The computational details can be well
understood from the code.
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Figure 4: SUNY data used for the network design covers a 10° by 10° square (10000 pixels) over some states in
Southern US. The heatmap shows the mean hourly clearness index in 2004.

4.1. SUNY data

The State University of New York (SUNY) gridded satellite-derived irradiance data is used
in this application. The full dataset contains hourly estimates (using the Perez et al., 2002,
model) of global, diffuse and direct irradiance over a 10 km (about 0.1° latitude and longitude)
grid for all states in the United States, except for Alaska where satellite cannot resolve cloud
cover information, for 1998 to 2005. A copy of the dataset can be obtained freely at ftp:
//ftp.ncdc.noaa.gov/pub/data/nsrdb-solar.

To demonstrate our algorithm, using a spatio-temporal subset of the full dataset is sufficient.
The partial dataset of our choice contains estimates from the year 2004 and covers a 10° by 10°
square (10000 pixels) over some states in Southern US. A commonly adopted irradiance data
transformation technique, namely, converting global horizontal irradiance to clearness index, k;,
is then applied to the partial dataset for diurnal trend removal. The geographical coverage of the
partial dataset and the heatmap of the mean hourly clearness index over that region are shown in
Figure 4.

4.2. Choice of features

Recall that we are interested in constructing a proximity so that the similarity in irradiance
at different locations can be quantified. More specifically, if each irradiance time series can be
represented by a set of characteristics, the proximity will be the Euclidean distance in the (re-
expressed) feature space. The most intuitive features under this consideration are perhaps the
geographical locations, namely, the latitude and longitude of each pixel. By including the locations
as features, the Tobler’s first law is reinforced numerically during the analysis.

Besides the geographical locations, the next best approach to generate characteristics is using
statistics. Watanabe et al. (2016) used sample mean, variance and entropy to evaluate the variation
in solar irradiance. Woyte et al. (2007) used a wavelet-based localized spectral analysis to identify
and classify the fluctuations in time series of the instantaneous clearness index. One could give
plenty of examples of such statistics for characterizing irradiance. Our network design approach
is thus flexible in terms of choice of features.



Generally speaking, a random variable can be well characterized by its distribution function
(Kobayashi et al., 2011). There are various ways to describe a distribution function. For instance,
we can use quantiles to describe an empirical distribution function, and use parameters to describe
a parametric distribution function. In the monitoring network design problem, it is found that some
descriptive statistics are more useful than others. After some exploratory analyses, see Appendix
B, it is concluded that two features, namely, the lag 12 autocorrelation of the clearness index time
series and the highest location parameter in the fitted skew-normal mixture distribution®, are most
informative.

Besides statistical features, features with physical and engineering implications can also be
considered. For example, it is well-known that the optimal orientation of a PV system, in terms of
maximizing its annual yield, is subjected to not only the Sun path, but also the intricate geograph-
ical and climatic conditions. Many works have shown that by deviating from the conventional PV
placement strategy (latitude-level tilt and equator-facing), the annual energy yield of a PV system
can be improved significantly (Smith et al., 2016; Lave et al., 2015; Khoo et al., 2014). More
details on optimizing PV orientation are provided in Appendix C and the references therein cited.
Suppose one of the tasks of the designed monitoring network is to help monitor the PV perfor-
mance in its proximity, features such as the optimal tilt and azimuth angles are useful. These two
features, together with the earlier features, are arranged in Table 2; four feature maps are plotted
in Figure 5. It is observed that all four features contain strong spatial structure (see discussion
below), which is in favor of the linearity assumption in PCA.

Table 2: Six application-specific time series features used for irradiance monitoring network design. See Appendix B
and Appendix C for more details.

Feature Description

Lat Latitude.

Lon Longitude.

ACF12 Lag 12 autocorrelation.

Hi The highest location in the fitted skew-normal mixture distribution.
Opt.Tilt Optimal PV tilt angle that maximizes annual yield.

Opt.Azimuth ~ Optimal PV azimuth angle that maximizes annual yield.

4.3. Clustering results

The data matrix X in this application has a dimension of 10000 X 6. Once the data matrix is
prepared, PCA is performed and the corresponding biplot is shown in the left panel of Figure 6.
Unlike the previous application, it is observed that the clusters are not linearly separable in this
case. It is therefore necessary to choose a “k” during clustering. As mentioned earlier, Zagouras
et al. (2013) computed two indices, namely, the DB index (Davies and Bouldin, 1979) and CH
index (Calinski and Harabasz, 1974). As both indices decrease with the number of clusters, the el-
bow method (Thorndike, 1953) was then used to identify the optimal value of k. Besides these two

It is known that the distribution of clearness index is bimodal. Mixture distributions are often used to model
distributions with two peaks. The highest location parameter in the mixture distribution is essentially gauging the
position of the second peak in the bimodal distribution.
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Figure 5: Maps of four PCA features extracted from k, time series. (a) The highest mean value (location parameter)
from the mixture distribution fitting; (b) the autocorrelation at lag 12; (c, d) optimal PV tilt and azimuth angles that
maximize the annual yield of a flat surface collector.

indices, the elbow method can be applied to many other evaluation metrics, such as the percentage
of variance explained (Goutte et al., 1999) and Silhouette index (Rousseeuw, 1987). However, it
is not our immediate interest to advise on the “most appropriate” validation index for irradiance
monitoring network design in this work. Instead, a fixed number of clusters, 10, is adopted. This
fixed number can be thought of in a practical context as the number of sensors that an installation
budget allows. Based on the setting of k = 10, the final cluster map is shown on the right panel of
Figure 6.

The clustering results show a series of important findings. Firstly, latitude and longitude appear
to be the major features defining the first and second principal components, respectively. This
indicates that the geographical location contributes the most to the overall variation in the time
series feature space, i.e., a major deciding factor in our network design setup. Secondly, the
small angle between latitude and the optimal PV tilt suggests that the optimal PV tilt depends
largely on the site’s latitude (the two variables are highly correlated), but not on longitude; this

11
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Figure 6: (Left) Biplot of the satellite-derived irradiance data; a total of 6 features are considered during PCA. (Right)
The k-means clustering results. Pixels with same colors have similar properties, and thus can be approximated by a
single sensor.

knowledge is known a priori. Another important observation is that the clustering results shown
in Figure 6 agree well with the features maps. For example, the chartreuse cluster along the vector
representing optimal PV azimuth can be related to the observations shown in the bottom left corner
of Figure 5 (d), namely, the lime green patch; the pink and light steel blue clusters along the vector
u; can be linked to the high yu; values depicted in the left side of Figure 5 (a). We conclude that
the geographical shapes of the final clusters are influenced by the selected features. This linkage
between the feature maps and clustering results gives flexibility and practical advantages to our
network design approach. The design framework can be applied to any features that are thought
appropriate, and the results are readily interpretable.

5. Applications C: PV string fault detection (exploratory features)

In the era of data, solar engineers are often required to study PV data for tasks such as PV
degradation estimation, monitoring quality control and string fault identification. Many traditional
data processing techniques, which examine a few time series of a few parameters at a time, can be
inadequate when dealing with large amount of data. For instance, identifying a faulty string from
a utility-scale PV plant with thousands of strings is difficult; this section considers such scenarios.
In particular, we analyze data from a PV plant located in Senftenberg, Germany. The monthly
files contain 15 min information including string-level current, voltage, main switch status, surge
protector status and combiner box temperature.

In the literature, many PV fault detection methods involve comparing a signal (power, voltage
or current) to its theoretical expectation (e.g., Dhimish and Holmes, 2016; Chine et al., 2016;
Platon et al., 2015). Such methods mostly likely would require meteorological measurements
such as irradiance and ambient temperature, which may not be always available. An alternative

12



to these methods is to use peers to identify anomalous strings with statistical outlier detection
rules (e.g., Zhao et al., 2014, 2013). The statistical outlier detection is usually performed in a
univariate setting, i.e., based on a single variable such as current in a string. In other words, this
type of method is somewhat limited to detecting faults that can be associated to a single variable.
However, as Chine et al. (2016) summarized in Table 2 of their work, deviations observed in
parameters such as string output current, voltage and short circuit current can be linked back to
more than one type of fault. A statistical outlier detection method that can operate in multivariate
settings is thus desired. On this point, the approach discussed in this paper is suitable.

Similar to the previous applications, a set of features is first defined based on domain knowl-
edge or experts’ view. After the PCA, the data are again represented in the feature space in the
form of a biplot. Standard two-dimensional anomaly detection algorithms such as highest den-
sity regions and a-null can then be applied to identify outliers in the space formed by first and
second PCs. This approach was first discussed by Hyndman et al. (2015). In this way, the faulty
string could be detected based on its “overall” anomalousness. Detailed fault identification and
root cause analysis could be carried out subsequently.

5.1. Feature selection

The power plant in Senftenberg is connected to PVGuard WebPortal’, a online monitoring
platform that gained popularity through the past decade. The web portal itself is equipped with
the capability of generating fault alarms up to string level. We examine some frequently reported
faults to select our time series features; these faults include:

Inverter power drop-out, current Power: 0 kW;
DC Current: String x differs from the other strings by y%;
Combiner box status event: Voltage Deviation;

sl NS .

Combiner box status event: Power Drop;
5. Inverter fault state: IGBT Switch Fault.

It can be concluded that most faults can be detected by observing the output current and voltage at
difference levels, i.e., inverter, combiner box and string levels. It is also noted that if -V curves
are available, more faults can be identified (Chine et al., 2016). Unfortunately, our dataset does
not contain /-V curve information. To that end, the four features considered for this part of the
work are listed in Table 3. Each feature can be evaluated over a period of T, which is taken as one
week in this case study. A total of 14 (= 4 X 4 — 2) features are generated using the four weeks of
data from 2017 March. Two weeks in that month contain no missing data, feature F1 from these
two weeks are thus excluded from the data matrix X.

5.2. Outlier detection

After performing PCA, the biplot of this application is depicted in Figure 7. A total 1391 points
are indexed in the plot, representing the 1391 strings in the Senftenberg system. Some anomalous

"http://www.skytron-energy.com/en/system/supervision-software/
pv-scada-software-webportal/
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Table 3: Four exploratory time series features used for PV string fault detection.

Feature  Description

F1 Number of missing data points.

F2 Number of data points that record a negative current,.
F3 Mean current in a string.

F4 Mean voltage across a string.
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Figure 7: Biplot for the anomalous PV string detection application. Four features, names, F1 to F4, are extracted
from four weeks of data from 2017 March. The a-hull algorithm, with @ = 0.5, is used for outlier detection. The
outliers are marked with Indian red triangles; the main hull is contoured with turquoise blue. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

strings, such as string numbers 254 and 613, can be spotted immediately without any detection
algorithm. However, there are many definitions of an outlier in the literature (e.g., Barnett and
Lewis, 1994; Hawkins, 1980). There is not any universal rule that governs what should be called
an outlier. Under such considerations, we prefer sequential outlier detection methods (identify one
or few outliers at a time) over the single-step methods (identifying all outliers at once), which in
general grants more control over the outlier detection and provides a rank of anomalousness in the
outliers detected.

We consider the a-hull algorithm (see Appendix D for more details). When the control param-
eter, namely, a, decreases from oo to 0, a continuous transform from the convex hull to isolated
points (singletons) is observed. Based on this property, the a-hull algorithm can be used as a se-
quential two-dimensional outlier detection algorithm. An example hull with @ = 0.5 is shown in
Figure 7. Four singletons have been isolated at this stage.

14



It can be seen from Figure 7 that features F3 computed from different weeks are well correlated
with each other, i.e., pointing to similar directions. Similar observations can be found for F2
and F4, but not for F1. Recall the features defined in Table 3, high correlation in features from
different weeks reveal that various faults persist through the month. String numbers 254 and 613
locate along the opposing direction of F3, indicating the mean current values in these strings are
low. String numbers 978 and 787 locate along the direction of F2, indicating that there are some
negative current measurements in these strings. At this stage, four outliers have been identified;
a quick plot of data confirms the findings (we omit the plot). The proposed detection method
is shown to be able to narrow down the unusual strings, so that detailed investigation can be
performed subsequently.

6. Concluding remarks

An analytics method for handling big time series data is discussed. In this method, each time
series is reduced to a set of features, either generic or application-specific. The reduced feature
space facilitates visualization and analyses. Three solar engineering applications are considered
to demonstrate the idea. Traditional approaches to these applications consider data points as indi-
viduals; the present approach that considers time series as entities is thus novel in terms of data
handling. Principal component analysis and biplot are the main tools in all three applications. Bi-
plots make the results of PCA interpretable. By examining the biplots, geometrical relationships
among the features and original time series can be established, which leads to insights that are
otherwise unobservable using traditional methods.

The analytics method is flexible in terms of feature design and can be applied to a variety of
other applications. However, common to all dimension reduction strategies, extracting time series
features may result in information loss. One should be cautious when replacing the traditional
methods with the present method. We advise readers to use the proposed method as an exploratory
tool rather than solely relying on the method itself.
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Figure B.8: Statistical characteristics of 100 randomly selected clearness index time series. Subplots (a, b) show the
probability density functions of k; and Ak;, respectively; subplots (c, d) show the autocorrelation functions of k; and
Ak,, respectively. The pdf of k; is shown to be bimodal; the pdfs of various time series differ mostly at their second
peaks.

Appendix B. Exploratory analysis on distributions of clearness index

It is considered appropriate that an irradiance (or clearness index) time series can be character-
ized through statistical distributions. Where a parametric distribution is concerned, its parameters
describe the distribution (e.g., u and o describe a normal distribution). When the distribution is
taken as an empirical one, statistics such as quantiles can be used to summarize the distribution
(e.g., 25, 50, 75 percentiles). In either case, the original time series is reduced to a few numbers
(parameters and/or quantiles), which can be taken as features for our irradiance monitoring net-
work design application. Besides the distribution itself, other statistics can also be employed. On
this point, Hansen et al. (2010) suggested three statistics, namely,

1. Statistical distribution of irradiance (or clearness index);
2. Statistical distribution of ramps of irradiance (or clearness index);
3. Autocorrelations functions of clearness index and of ramps in clearness index.

This appendix aims to explore these statistics visually and select the most meaningful features, so
that satellite pixels with similar time series features could be subsequently grouped together.
Figure B.8 (a) shows the kernel density estimates (KDE) of distributions of 100 randomly
selected k, time series, while subplot (b) shows the KDE for the corresponding Ak, distribution.
Figure B.8 (c) and (d) show the autocorrelation functions of those selected k; and Ak, time series,
respectively. As our goal is to use features to describe each time series for clustering purpose, it
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is more amenable if the features are descriptive and distinctive. To that end, the information con-
tained in density and autocorrelation function of Ak, time series can be dropped immediately due to
the high similarities among various time series. On the other hand, as annotated in Figure B.8 (c),
it is observed that the spread of autocorrelation functions of k, is most significant around lag 12.
We therefore select ACF12 as one of our features.

It is also noticeable from Figure B.8 (a) that the distributions of k; time series are most dis-
tinguishable around k, = 0.7, i.e., the higher peaks in the KDE. A parameter which can describe
the position of this peak is thus needed. More particularly, given the bimodal distribution, we
are looking for the “center” of the largest component of some finite mixtures of distributions. A
mixture distribution has density of the form

8(z:0) = Z pif(z 6)), (B.1)
i=1

where p; > 0, with }}7, p; = 1, are the mixing weights; f(-; 8;) is density of the i-th component in
the mixture, parameterized by 6;; and @ = (py,--- , p,, 07,--- ,6,)". In describing the irradiance
distribution, the value for n, i.e., the number of components, it is often taken as 2 or 3.

In fact, the statistical distribution of solar irradiance, or clearness index, has been well-studied
for data over a wide range of temporal granularities (Voskrebenzev et al., 2015; Hollands and
Suehrcke, 2013; Jurado et al., 1995; Saunier et al., 1987; Hollands and Huget, 1983). Most of these
works confirm that the distribution of clearness index follows a bimodal distribution, originated
from the clear and cloudy radiation states. Among various modeling approaches, mixtures of
normal distributions are most commonly used. For examples, Jurado et al. (1995); Hollands and
Suehrcke (2013) use two- and three-component normal mixtures, respectively. Figure B.9 shows
the fittings of two- and three-component normal mixture distributions to four randomly selected
clearness index time series. The results are however unsatisfactory, due to the skews observed
at both high and low k, values. Furthermore, the bimodal distribution is found having a positive
skewness at low k, and a negative skewness at high k, values. To model this, we consider the scale
mixtures of skew-normal distribution.

A univariate random variable Z has skew-normal distribution with location parameter p, scale
parameter o> and skewness parameter A, if its density is given by

Az —,U))

(o8

f@6) =24 (zp.07) cD( (B.2)
where @ = (u,02,A)7; ¢ is the probability density function of a normal distribution with mean
u and variance o%; and @ is cumulative distribution function of the standard normal distribu-
tion. If we assume the mixture distribution can be modeled with three components, its parame-
ter @ = (p1, p2, p3,0,0,,05)", where 6; = (u;, O'l-z, A;))", can be determined by fitting the para-
metric distribution to observations. In this paper, parameter ® is estimated via the expectation—
maximization algorithm, as described in Prates et al. (2013), for each clearness index time series.
Four examples of the fitted density are plotted in Figure B.9. It can be seen that the skew-normal
mixtures fit the empirical distributions better than two- or three-component normal mixtures. In
this way, we obtain our second feature, namely, u* = max(uy, i, u3). This feature, together with
ACF12, is plotted in Figure 5.
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Figure B.9: Distributions of 4 randomly selected clearness index time series. The scale mixture of skew-normal
distributions with three components shows best fit.

Appendix C. Determining the optimal orientation for a flat surface solar collector

To maximize the annual yield of a flat surface solar collector, the collector is often placed at a
tilt angle equals to the latitude of the site, facing the equator. However, due to the intricate location-
specific geographical and climatic conditions, this rule-of-thumb may not be always optimal. For
such reasons, simulation is used to optimize the orientation and thus maximize the expected energy
output of a solar collector (Smith et al., 2016; Lave et al., 2015; Khoo et al., 2014).

The procedure of the simulation usually involves a so-called “transposition model”, which con-
verts a set of irradiance measurements collected on a horizontal surface to the irradiance expected
on a tilted surface. For every pair of tilt (@) and azimuth (8) angles, the global tilted irradiance
(G,) can be simulated. In this way, the optimization problem can be written as:

T
argmax Z Ec(t), (C.1H
of 0

where 5c(t) is the modeled global tilted irradiance.

There are many transposition models available; most of them require the information of global
horizontal irradiance and diffuse horizontal irradiance. The transposition models have varying
degree of complexity, we refer the readers to the review by Yang (2016) for a detailed comparison
of transposition models. However, for our current purpose, we adopt the simplest model, namely,
the isotropic model (Liu and Jordan, 1961), in our simulation. The maximization problem is solved
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using the general-purpose optimization routine (function optim) in R (R Core Team, 2016). The
detailed procedure of our simulation and the computational issues are discussed in Yang et al.
(2016). After the pair optimal tile and azimuth angles is found for each pixel, the two features (&
and p) are plotted in Figure 5.

Appendix D. The a-hull algorithm

The a-convex hull, or simply a-hull, is a generalized convex hull® that is studied in different
fields of research, primarily in computational geometry. Informally, a hull can be considered as
a geometrical structure that serves to characterize the shape of a set. Unlike the convex hull, the
a-hull is able to reconstruct non-convex sets. The mathematical definition of a-hull is given by
Pateiro-Lopez and Rodriguez-Casal (2016): if we denote an open ball with center x and radius «
with é(x, @), aset A ¢ R? is said to be a-convex, for @ > 0, if

A=Cw= () (Bea)

{é(x,a):é(x,a)ﬁA:U)}

c
2

(D.1)

where C,(A) is called the a-hull of A. We can immediately see that the shape of the hull is
influenced by the ball radius «.

Starting from some big enough initial @ value which returns a hull that bounds all points, a
series of a-hulls are computed in the space formed by first two PCs with decreasing a. A point is
identified as an outlier when it becomes a singleton. With the decreasing «, the outliers identified
in each step are naturally assigned with a rank; the highest rank corresponds to the « value that
leads to the first singleton. The implementation of the a-hull invoves the Delaunay triangulation,
Voronoi diagram and a-shape. We use the R package alphahull (Pateiro-Lopez and Rodriguez-
Casal, 2016) to compute a-hulls for our application.

Appendix E. Several other potential applications of the analytics algorithm

Three applications are demonstrated in the main text. We outline several other potential appli-
cations that can benefit from the PCA-based algorithm.

Appendix E.1. Forecasting with sensor network

Irradiance forecasting is an important aspect towards integrating variable solar energy into
the electricity grid reliably and efficiently. There is a rich literature in solar forecasting; a good
overview on this topic is found in Inman et al. (2013). With the advent of sensor network tech-
nology, spatio-temporal forecasting methods became popular. As solar irradiance is a spatio-
temporal process, there is very little reason to use univariate methods when data from multiple
sensors within a certain geographical proximity are available (see forecast comparisons made by
Aryaputera et al., 2015b; Yang et al., 2015c).

8The convex hull of a set of points, X, in an affine space is the smallest convex set that contains X. In such a space,
the convex set is a subset of that space that is closed under convex combination.
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The variability in irradiance is primarily caused by moving clouds. Suppose a regression ap-
proach is used for prediction, i.e., predicting the irradiance at a focal station using lagged time se-
ries measured at neighboring stations, the direction and speed of these moving clouds have strong
implication on predictor selection. In a previous work, the lasso regression was used to make such
variable selection (Yang et al., 2015c). However, it was found that even with only 17 stations,
the predictor pool could be large, owing to the fact that the number of predictors multiplies when
lagged versions of a variable are considered. For example, if time series up to lag-10 from each of
the 17 stations are used, the total number of predictors is 170, including the autocorrelated series.
On this point, we can consider the approach discussed in this work and pre-select some predictors
based on their similarities to the predictand. We refer the readers to a parallel work by Kim and
Swanson (2016) for further reading.

Appendix E.2. Forecasting with satellite-derived irradiance

As an alternative to an irradiance sensor, satellite images provide estimates of ground level irra-
diance. When ground-based measurements are not available, after some bias corrections, satellite-
derived irradiance data can be used for forecasting with a horizon up to a few days. One of the
options to perform such forecasting is to used time series models such as the seasonal autoregres-
sive integrated moving average model (SARIMA) and exponential smoothing (ETS) model, as
seen in Aryaputera et al. (2015a); Yang et al. (2015b, 2012).

These statistical forecasting modals require parameter estimation, e.g., process orders in an
SARIMA model; the parameters are periodically updated when rolling forecasts are used. When
irradiance values at a large number of locations need to be forecast, training and iteration can be
time consuming. If we cluster the time series based on features such as autocorrelation and partial
autocorrelation, process orders in a cluster can be assumed similar. This could reduce the search
space for ‘optimal’ process order based on information criteria, which are often used in automated
forecasting.

Appendix E.3. PV performance evaluation

Projects like “solar city”, in Ota, Tokyo, prove allure of Sun’s energy in Japan. As three
quarters of homes in Ota city’s Pal town neighborhood are equipped with rooftop PV systems
that are free for their residents, centralized monitoring is important for the investors to ensure the
performance of these PV systems. Similar to the application discussed in Section 5, anomalous
PV systems can be identified using the proposed method with a set of properly designed evaluation
indices, such as performance ratio and yield.
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