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Transpulmonary Thermodilution:   
Its Role in Assessment of Lung Water and Pulmonary Edema 

 
 

Abstract:   

Tissue edema, and in particular pulmonary edema, is increasingly 

recognized as a perioperative complication impacting outcome. Management 

strategies directed at avoiding excessive fluid administration, reducing 

inflammatory response and decreasing capillary permeability are commonly 

advocated in perioperative care protocols. 

In this review, we examine transpulmonary thermodilution (TPTD) as a 

bedside tool to quantitatively monitor lung water accumulation and optimize fluid 

therapy.  We explore its roles as an early detector of fluid accumulation prior to 

the development of overt pulmonary edema and in risk stratification. In addition, 

the ability of TPTD to provide insight on the etiology of pulmonary edema, 

specifically differentiating hydrostatic versus increased pulmonary capillary 

permeability, is emerging as an aid in therapeutic decision-making. The 

combination of hemodynamic and lung water data afforded by TPTD offers 

unique benefits for the care of high-risk perioperative patients.   

 
Introduction:  
 

The clinical manifestation of excessive accumulation of extravascular lung 

water (EVLW) is pulmonary edema.  In normal circumstances, a tight balance 

between the net fluid filtered from the pulmonary circulation and fluids absorbed 

by the lymphatic system ensures only a small volume of fluid in the interstitial 
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space. Excessive accumulation of fluid in the extravascular space results from 

either an increase in the amount of filtered fluid secondary to marked increases 

in pulmonary hydrostatic pressure or an increase in the pulmonary capillary 

permeability, which causes water and proteins extravasation1 or from interruption 

of the lymphatic drainage as in lung resection surgery2. 

The perioperative period represents a well-known trigger for edema, and 

in particular pulmonary edema, where factors such as fluid overload, systemic 

inflammatory response to surgery, myocardial ischemia, blood product 

transfusion, and others contribute to increased fluid transudation from capillary to 

interstitium and alveoli. The resultant fluid accumulation in the lung impairs 

respiratory gas exchange resulting in respiratory distress and the need for 

mechanical ventilation.  This is increasingly recognized as a perioperative 

complication impacting outcome and management strategies directed at avoiding 

excessive fluid administration (e.g. goal directed fluid therapy) or reducing 

inflammatory response and capillary permeability (e.g. protective lung ventilation 

to avoid ventilator induced lung injury) are commonly advocated in perioperative 

care protocols1, 3-5.  

The impact of postoperative pulmonary edema both in respect of patient 

harm and healthcare resources is alarming. A review of 8195 patients who 

underwent major inpatient operations in 2 university teaching hospitals revealed 

an incidence of pulmonary edema of 7.6% with an associated in hospital 

mortality rate of 11.9%6. Pulmonary edema is associated with higher morbidity 

rates and prolonged intensive care (ICU) stay, in which 15% will require 
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mechanical ventilation7. Further, the addition of mechanical ventilation will extend 

the length of stay in the ICU from 6 days to 11 days8. As such this complication 

adds an enormous burden on healthcare costs9.  

Auscultation and chest radiography have been the mainstays for clinicians 

to diagnose pulmonary edema and monitor response to therapy.  Recognition of 

limitations in accuracy and sensitivity of these methods and the desire for 

detection of early lung water changes to assist in guidance of fluid therapy are 

leading to the adoption of newer technologies10.  Of these, lung ultrasound and 

transpulmonary thermodilution methods have now entered the clinical arena. The 

aim of this review is to examine the role of quantitative EVLW to perioperative 

medicine. We will emphasize the emerging role of TPTD quantitative EVLW 

measurements in the perioperative period as a new tool to guide fluid therapy 

and provide early diagnosis of pulmonary edema. 

 

The Indicator Dilution Technique of lung water measurement:  

Transpulmonary Indicator Dilution:  Anesthesiologists are most familiar 

with indicator dilution as a technique to measure cardiac output (CO). In common 

practice a bolus of cold saline (i.e. thermodilution such that the ‘indicator’ is 

temperature) is injected into the central circulation and its passage is detected at 

a point downstream either in the pulmonary artery (trans-cardiac thermodilution, 

TCTD), or in the distal aorta (trans-pulmonary thermodilution, TPTD). The 

principles developed by Stewart and Hamilton provide the calculation of cardiac 

output by examining the passage of the indicator against time with the 
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subsequent generation of an indicator dilution curve (concentration vs. time)11. In 

clinical practice, TPTD utilizes a central venous catheter inserted into the 

superior vena cava through either the internal jugular or subclavian veins for 

injection and a thermistor tipped catheter placed in the femoral or axillary artery 

for detection.  

There is a good association between TPTD and TCTD in measurement 

and detection of changes in CO with a correlation coefficient of >0.9 and bias 

<10%12. The TPTD was found to have a systematic, yet, clinically acceptable 

overestimation of CO. This overestimation is widely thought to result from the 

loss of the indicator due to thermal transfer from the intravascular compartment 

between injection and detection sites13, 14. This thermal transfer can be 

capitalized upon to measure intrathoracic volumes and most importantly 

extravascular lung water (EVLW).  

Transpulmonary Double Indicator Technique: The volume of distribution of 

a dye indicator during TPTD measurement consists of the blood volume between 

the site at which the bolus is delivered and the site at which passage of indicator 

is detected. Accordingly, the combined volumes of a portion of the superior vena 

cava, that of all four cardiac chambers, and the pulmonary blood volume as well 

as the aorta are included and is conventionally referred to as the intrathoracic 

blood volume (ITBV). Unlike dye techniques where the indicator is restricted to 

the vascular space, part of the thermal indicator escapes due to heat transfer to 

the vessel walls and the surrounding lung parenchyma. Thus the volume of 

distribution for a thermal indicator is significantly greater than the ITBV and is 
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referred to as the intrathoracic thermal volume (ITTV). The extravascular lung 

water can be estimated by the difference between the ITTV and ITBV. 

Historically, measurement of EVLW relied upon the simultaneous injection 

of both cold saline and indicator dye (“double-indicator technique”), with the 

volume of distribution of each indicator calculated as the product of flow (CO) 

and the mean transit time (MTt) for the indicator. ITTV and ITBV are thus 

determined as the volumes of distribution of the cold and dye indicator 

(commonly indocyanine green) respectively and from the difference, EVLW is 

estimated.  

Unfortunately, the technique of ‘double-indicator’ TPTD is time consuming, 

cumbersome and expensive, and despite promise failed to become established 

in routine clinical practice13, 15, 16. Fortunately, a more clinically suitable alternative 

was developed utilizing a ‘single’ bolus thermal indicator that by a series of 

calculations and assumptions provided determination of EVLW.  

Transpulmonary Thermodilution EVLW: Figure 1 demonstrates the single 

indicator TPTD method to calculate EVLW. Whilst ITTV can be determined as 

the product of CO and MTt; ITBV cannot be directly measured and must be 

derived by an alternative mechanism. Newman et al17 using a dye indicator 

demonstrated that the down-slope of the indicator dilution curve  is determined 

solely by the volume of the pulmonary circulation which acts as the largest 

“chamber” in the series. For TPTD with a thermal indicator, the pulmonary 

thermal volume (PTV) can thereby be determined as the product of CO and 
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down-slop time (DSt). ITTV is greater than PTV by an amount, which is 

approximately equivalent to the thermal volume of the non-pulmonary chambers, 

i.e. the blood volumes of the cardiac chambers. As these are largest at end-

diastole, this volume has by convention become known as the global end-

diastolic volume (GEDV). 

To progress from the calculation of ITTV and GEDV to the determination of 

EVLW, Sakka et al13, 18 demonstrated and subsequently validated with thermo-

dye double indicator technique that there is a constant and linear relationship 

between intrathoracic blood volume (ITBV) and GEDV that is well maintained 

even in conditions associated with hypovolemic shock19 such that: 

𝐼𝑇𝐵𝑉 = (1.25 x GEDV)          [1] 

Once ITBV has been determined by this method, it is a simple step to derive 

EVLW from the difference of ITTV (calculated from mean transit time) and ITBV. 

As shown below, conditions associated with independent changes in GEDV from 

PBV will subsequently lead to errors in EVLW estimations. 

Validations of TPTD Derived EVLW Measurements: 

 In the absence of a gold standard in-vivo measure of pulmonary edema, 

the validity of EVLW using single thermal indicator technique has been 

demonstrated in a variety of animal models by comparison to ex-vivo gravimetric 

techniques20, 21. In combination, these studies demonstrate good agreement 

between TPTD EVLW and laboratory techniques, albeit with a systematic 
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overestimation by TPTD EVLW.  Notably in humans, Tagami et al also observed 

good association between EVLW and post-mortem lung weight (r=0.90; p<0.001) 

in 30 human lung specimens harvested at autopsy16. In ARDS patients, EVLW 

was shown to correlate well with quantitative computed tomography22. Further 

‘face’ and ‘construct’ validity of EVLW measurement in a clinical setting has been 

demonstrated by numerous studies observing association between EVLW and 

clinical findings suggestive of increased lung water such as: oxygenation16, 23-26, 

chest X-ray scores23, 25, 27, 28, lung injury score16, 23-26, 29, and pulmonary 

compliance25, 26. TPTD showed high accuracy in detecting small changes in 

EVLW of as little as 10-20% from baseline30. 

Limitations of the single thermal indicator technique 

 TPTD is an invasive modality requiring central venous access and a 

central arterial thermistor tipped catheter commonly inserted in a femoral or 

axillary artery. The central venous access is achieved through the superior vena 

cava via a catheter placed into either the internal jugular or subclavian veins. 

Catheters placed in the inferior vena via the femoral vein led to unacceptable 

percentage errors in calculating EVLW31 and underestimation of pulmonary 

vascular permeability index. 

Currently two proprietary TPTD systems are commercially available (PiCCO2 

System (Pulsion Medical Systems SE, Munich, Germany) and 

VolumeView/EV1000 system, (Edwards Lifesciences, Irvine CA, USA) (Figure 2). 

The main differences between the 2 systems are shown in table 1. In brief, both 
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systems rely on the Stewart-Hamilton equation to calculate the thermodilution 

derived cardiac output but they use different algorithms to calculate GEDV. The 

PiCCO2 system use the mean transit time (MTt) and the downslope time (DSt) 

according to the paradigm, while the VolumeView system applies a newly 

developed algorithm using the maximum up-slope and down-slope of the 

thermodilution curve. The algorithm for EVLW calculation is the same between 

both systems. However, EVLW calculation relies on GEDV that is calculated 

differently between both systems according to the following formulas: 

 EVLWPiCCO = CO . DSt – (0.25 . GEDVPiCCO) [2] 

 EVLWVolumeView = CO . DSt – (0.25 . GEDVVolumeView)  [3] 

As they are based on the same underlying principles, it is not surprising the 

resulting data appear comparable32. Similarly, both systems share common 

limitations which we briefly describe following.  

Ventilation-perfusion relationships:  TPTD methods for measuring EVLW 

can only measure lung water in perfused areas of lung and so rely upon a 

homogeneous distribution of pulmonary perfusion in order to accurately 

determine EVLW; a large perfusion deficit will lead to underestimation of EVLW. 

Regional pulmonary perfusion is influenced by many factors pertinent to the 

critically ill population; hypoxic pulmonary vasoconstriction33, lung injury34, 

vascular obstruction35 and positive end-expiratory pressure36, 37 can all influence 
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ventilation-perfusion relationships and so lead to errors in the estimation of 

EVLW.  

Systemic-venous circulatory shunt represents another source of 

erroneous measurements. In fact, overestimation of EVLW in the absence of gas 

exchange abnormalities can be used as an indicator suggesting circulatory 

shunt38.  

Independent changes in GEDV or PBV:  The assumption of a constant 

and linear relationship between ITBV and GEDV (Equation 1) is fundamental to 

EVLW measurement by the single-dye technique. As such, any circumstance in 

which GEDV and/or PBV may change independently of one-another could lead 

to error in the estimation of EVLW. This is of particular importance in the context 

of mechanical ventilation. The original observations made by Sakka et al13, 18 was 

made in critically ill patients undergoing positive pressure ventilation. During 

mechanical ventilation, increases in intra-thoracic pressure result in reduced 

inferior vena caval blood flow and a reduction in pre-load to the right ventricle39. 

Reduced preload (and consequently reduced GEDV) in the context of an 

unchanged pulmonary blood volume would result in an increase in the 

ITBV:GEDV ratio; Kirov et al40 demonstrated a significantly increased 

ITBV:GEDV in mechanically ventilated sheep when compared to those 

spontaneously breathing. Clinicians must therefore be cautious in making direct 

comparison of (for example) baseline values of EVLW made ventilated intra-
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operatively with post-operative estimates made whilst spontaneous breathing; 

potentially leading to a relative underestimation of EVLW post-operatively. 

 Lung resection is a unique situation in which PBV may be reduced 

independently of GEDV; it seems implausible that PBV can remain constant 

when a significant portion of the pulmonary circulation has been resected. A 

single human study exploring changes in the ITBV:GEDV relationship in humans 

demonstrated that there are large and inconsistent changes in ITBV:GEDV 

following lung resection41. It has been suggested that adjustment of the 

GEDV/ITBV relationship might improve the validity of TPTD monitoring following 

lung resection42, but this approach (though built into some commercially available 

monitors) has not been validated.  

Application of EVLW in Clinical Practice  

The application of EVLW measurement in perioperative practice has 

focused on its use to guide fluid management in major surgeries and critical care 

settings and as means by which to objectively quantify and track changes in lung 

water in response to therapy (Table 2). Quantitative EVLW measurements are 

also showing value in several additional domains including as a predictor of 

outcome and for the early detection of lung water accumulation prior to clinical 

manifestations, In addition, TPTD, as it offers both hemodynamic and lung water 

assessments, provides promise as an effective means to differentiate hydrostatic 

versus high permeability pulmonary edema and identify appropriate therapy for 

the given situation (Table 3). 
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EVLW as a Prognostic Tool 

The use of EVLW as an early marker for postoperative pulmonary 

complications and prolonged mechanical ventilation in patients post major 

surgery was studied in a group of patients undergoing esophagectomy. Elevated 

EVLW 12 hours post surgery was shown to be a marker for pulmonary 

complications, which had an incidence of 33% in this group 43. In a study of 

patients undergoing orthotopic liver transplant, the development of elevated 

EVLW at the end of surgery was associated with prolonged mechanical 

ventilation44. In lung transplant, immediate post reperfusion elevation of EVLW 

(optimal cut off: 13.7 ml/kg) was shown to be an early predictor of pulmonary 

graft dysfunction and may trigger early therapeutic interventions45. Similar 

findings were observed in a prospective study of patients undergoing high-risk 

cardiac or aortic vascular surgery. Intraoperative and early postoperative 

monitoring of EVLW effectively predicted postoperative pulmonary edema and 

outcome. These patients faced increased incidence of hypoxia, prolonged 

mechanical ventilation, intensive care stay and hospital stay46.  

  In a study of 29 patients at risk to develop adult respiratory distress 

syndrome (ARDS), the use of cutoff for EVLW index of 10ml/kg was associated 

with high sensitivity and specificity to predict the development of ARDS. The 

elevation preceded the clinical and radiological signs of ARDS by 2.6 + 0.3 

days47.   

The persistence of elevated EVLW beyond 48 hours from initial 

resuscitation in septic patients was associated with an odds ratio of mortality of  
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2 - 4.7 48, 49. In contrast, a drop in the EVLW after 48 hours was associated with a 

higher 28-day survival50. A meta-analysis of diagnostic tests confirms EVLW 

measures as a good predictor of mortality in critically ill patients51. Indexing 

EVLW to predicted body weight instead of actual body weight was shown to 

improve the predictive value of EVLW for survival and correlation with markers of 

disease severity in a study of patients with ARDS24. 

These studies lead to the recommendation of EVLW exceeding 10 ml/kg 

is an early marker for at risk patients.  As such, EVLW monitoring can provide an 

opportunity for more prompt and appropriate early therapy in surgical patients. 

 

Use of EVLW to Guide Fluid Therapy 

 One of the difficult questions anesthesiologists and intensivists face 

regarding fluid management is how much is enough but not too much. 

Inadequate fluid administration risks tissue hypoperfusion and end organ 

damage, while excessive fluids risk tissue edema including pulmonary edema. 

The challenge of appropriate fluid management is further complicated in the 

perioperative period due to the potential for injury of the endothelial glycocalyx 

layer resulting in increased permeability and edema formation52. This was shown 

in a study of patients undergoing orthognathic surgery where the volume of 

infused fluid failed to increase the intravascular volume; instead, it resulted in an 

increase in the amount of fluid leakage into the interstitial space53. In these 

circumstances, small increases in intravascular volume may result in amplified 

increases in the EVLW.  
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Anesthesiologists have been early adopters of sophisticated 

hemodynamic monitors such as central venous pressure, pulmonary artery 

catheters, as well as echocardiography to guide the fluid management. In clinical 

practice, however, these modalities fall short as none measure EVLW directly. 

The clinician is left to rely on surrogate measures such as pulmonary capillary 

occlusion pressure (PAOP) and cardiac chamber dimensions. In addition, 

alterations in pulmonary capillary permeability in the perioperative period further 

limit the utility of hemodynamic based assessments.  Although firm evidence is 

lacking to support its use at this time, the potential benefit to the technique and 

its impact on clinical management has been demonstrated in several studies as 

we discuss in the following sections.  

Hydrostatic Pulmonary Edema:  The challenges of fluid management in the 

operating room and ICU provide an ideal domain to take advantage of the 

benefits of EVLW measurement in patients at risk for hydrostatic pulmonary 

edema from overly aggressive fluid loading.  In a study of patients suffering from 

vasospasm following subarachnoid hemorrhage (SAH), fluid loading guided with 

pulmonary artery catheter derived indices resulted in greater fluid administration 

and a higher incidence of pulmonary edema compared to TPTD guided fluid 

loading54.  In patients with Takostubo cardiomyopathy who suffered SAH, serial 

cardiac output measurements and EVLW determinations provided an easy 

bedside method to detect early changes in cardiopulmonary function and 

directing proper post SAH treatment55.  The benefit of EVLW guided fluid therapy 

was shown in 101 patients with pulmonary edema randomized to receive a fluid 
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protocol based on EVLW or PAOP using pulmonary artery catheter. The EVLW 

group received lesser amounts of fluids and resulted in shorter ventilator days 

and intensive care stay with no clinically significant adverse effect 56.   The utility 

of EVLW monitoring in pediatric populations was shown in burn patients where 

excessive fluid resuscitation was detected and shown to be associated with poor 

survival57. Furthermore, the use of TPTD in this patient population was shown to 

accurately reflect the severity of the hyperdynamic state when compared to 

transthoracic echocardiography58. 

The benefits of EVLW measurement as a complement to 

echocardiographic evaluation in guiding fluid therapy were evaluated by using an 

algorithm that provided a safe and practical framework for fluid administration in 

the critically ill patients. This algorithm utilized lung ultrasound as means to 

assess lung water and ultrasound of the inferior vena cava as means to assess 

fluid status59.  

The addition of EVLW monitoring provides new insights to clinical 

management of patients susceptible to fluid overload and hydrostatic pulmonary 

edema with potential to improve case management. For example, 

hypotension/low CO in the context of elevated EVLW > 10 ml/kg suggests the 

use of vasopressors/inotropes and restriction of volume expansion.  Conversely 

in the normotensive patient diuresis and vasodilators are indicated (Figure 3).   

TPTD monitoring, providing parameters of CO and GEDV in conjunction 

with lung water, has also been extended into the intraoperative period. Surgical 

patients with major comorbidities and undergoing procedures where the 
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possibility of major cardiorespiratory insult or hemorrhage is a concern are those 

where TPTD monitoring may provide the greatest benefit.   

In a study of patients undergoing coronary artery bypass grafting (CABG) 

under cardiopulmonary bypass (CPB), randomized to receive either hydroxyethyl 

starch 200/0.5 (HES) or 0.9%NaCl at a dose of 4 ml/kg 30 minutes after 

induction of anesthesia. There was no difference between the 2 groups in the 

fluid management in the intraoperative or postoperative periods. EVLW was 

significantly lower in the HES group on the first postoperative day, which was 

associated with significantly higher PaO2/FiO2 ratio and significantly lower 

alveolar arterial O2 difference 60. These benefits on pulmonary functions were 

seen also in patients undergoing CABG under CPB randomized to receive 

combined general anesthesia with epidural anesthesia/analgesia (EA) versus 

general anesthesia (GA) alone. In the GA group, the EVLW was significantly 

higher, while, in the EA group, there was no significant increase in intrathoracic 

blood volume and no increase in EVLW. This was associated with shorter 

mechanical ventilation duration in the EA group 61.  

  

Permeability Pulmonary Edema:  In patients at risk for high permeability 

pulmonary edema, such as patients with sepsis or ARDS, fluid management 

represents a particular challenge as conventional hemodynamic monitors fall 

short in monitoring EVLW accumulation. The limitations of PAOP were 

highlighted in a study of 102 mechanically ventilated patients where pulmonary 

edema was detected over a wide range of PAOP values, including low to normal 
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values62.   In a study of ARDS and/or sepsis patients who were thought to be 

euvolemic under conventional parameters (e.g. central venous pressure), the 

implementation of EVLW based protocol in the therapeutic management resulted 

in a change in original treatment plan in 52% of the patients (Figure 4). This 

clinical protocol was effective in 82% of the patients63. 

 

In a study of fluid protocol based on EVLW (using double-indicator technique) 

versus pulmonary artery catheter in patients presenting with permeability 

pulmonary edema (15 patients), the EVLW fluid protocol reduced the mortality 

rate from 100% to 33%64. These findings offered a preliminary signal that EVLW 

assessment to guide fluid management in patients with increased capillary 

permeability might be useful.  

Lung resection surgery carries a high risk for postoperative complications 

of increased capillary permeability and ARDS with an incidence varying between 

0.9% for sublobar resection up to 8% for pneumonectomy65.  ARDS has multiple 

etiologies post thoracic surgery, including excessive fluid administration; 

ventilator induced lung injury and other inflammatory conditions and has led to 

the long-term practice of restrictive fluid therapy.  This practice comes with a risk 

of tissue hypoperfusion and acute kidney injury66.  

EVLW monitoring provides a unique opportunity to closely track the 

balance between hemodynamic optimization and lung water accumulation during 

lung resection surgery.  Our group published an observational study of patients 

undergoing lung resection surgery who received a fluid protocol targeting 
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normovolemia.  EVLW was monitored for 3 postoperative days together with 

hemodynamic indices and tissue perfusion biomarkers. Using protective lung 

ventilation together with normovolemia resulted in improvement in cardiac index, 

favorable tissue perfusion markers, and no elevation in EVLW 67.  

Haas et al. studied the use of stroke volume variation (SVV) and EVLW to guide 

fluid therapy in patients undergoing lung resection or esophagectomy under 

protective lung ventilation.  This resulted in optimized cardiac performance 

without pulmonary fluid overload68.  These studies support a new paradigm for 

fluid management in high-risk patients such that cardiac and pulmonary functions 

can be optimized. 

Extravascular lung water measurement is useful beyond fluid 

management during lung resection as a means to guide ventilation strategies 

and pharmacologic interventions. EVLW was employed to monitor the resolution 

of pulmonary edema from treatment with aerosolized salbutamol in high-risk 

patients following lung resection surgery 69.  

 The use of EVLW was also extended to monitor the effect of different 

ventilation strategies and recruitment maneuvers during the one-lung ventilation 

on the lung water accumulation.  In patients undergoing video-assisted thoracic 

surgery ventilation during OLV with a tidal volume of 4 ml kg-1 was associated 

with lower EVLW accumulation than ventilation with 6 ml kg-1 or 8 ml kg-1 of ideal 

body weight70.  The safety of intermittent reinflation of the deflated lung to 

improve oxygenation during OLV for thoracic surgery was also addressed using 
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EVLW measurements.  Here the beneficial effects of reinflation on oxygenation 

were established without adverse increases in EVLW71.  

 

Differentiating Hydrostatic Vs. Permeability Pulmonary Edema 

 Pulmonary edema is a result of either an increase in pulmonary 

hydrostatic pressure or an increase in pulmonary permeability or both. The ability 

to differentiate between the two causes is of utmost importance in management 

yet remains a diagnostic dilemma.  In an attempt to provide an estimate of 

pulmonary vascular permeability ratios of EVLW to TPTD derived blood volumes 

have been utilized. These ratios are intended to reflect EVLW in the context of, or 

indexed to preload, and were first described in 2001 by Honore et al 72. The 

concept is intuitive; a high EVLW in a hypovolemic patient (and therefore an 

elevated ratio) would suggest capillary permeability is the primary pathology 

whilst low EVLW in a patient with elevated preload (and therefore a low ratio) 

would suggest capillary permeability to be intact. Similarly the diagnosis of 

hydrostatic pulmonary edema is suggested by high EVLW in a patient with high 

preload and therefore a normal ratio of EVLW to preload. Intrathoracic blood 

volume (ITBV)72-74 global end-diastolic (GEDV)73, 75 and pulmonary blood volume 

(PBV)73-75 are indices of cardiac preload derived from TPTD to which EVLW has 

been indexed in the derivation of  ‘pulmonary vascular permeability indices’ 

(PVPIs). 

Attempts to establish the validity of PVPIs are challenged by the technical 

complexities involved in determining a ‘gold standard’ measure of pulmonary 
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vascular permeability. PVPIs have however, been shown to agree well with 

radio-isotope derived pulmonary leak index 73, 74, to be strongly associated with 

clinically and radiographically derived measures of lung injury25, 75, and have high 

sensitivity and specificity in distinguishing patients with ALI/ARDS from controls, 

in fact, a PVPI >/= 3 allowed the diagnosis of ALI/ARDS with a sensitivity of 85% 

and specificity 100%75,76.    

Whilst determination of PVPIs offers much promise in aiding clinicians to 

distinguish between hydrostatic and permeability induced pulmonary edema, 

these techniques are far from mature. Additional work, such as defining ‘normal’ 

PVPI values and the ideal preload parameter to which EVLW should be indexed, 

will advance its utility as a clinical monitor. 

Conclusion:  TPTD is a major advancement in our monitoring armamentarium, 

offering a quantitative, bedside means to monitor EVLW and the development of 

pulmonary edema.  Its sensitivity provides both early detection of lung water 

accumulation prior to overt pulmonary edema and offers new approaches to 

more optimally guide perioperative fluid therapy.  In addition, the ability to provide 

insight on the etiology of pulmonary edema, specifically hydrostatic versus 

increased pulmonary capillary permeability, is emerging as an aid in therapeutic 

decision-making.  Whilst the technique is not without limitations, both on 

technical and physiologic grounds, the combination of hemodynamic and lung 

water data afforded has unique benefits for the care of perioperative patients.   
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Figure Legends:  

Figure 1: Schematic representation of the determination of extravascular lung 

water (EVLW) from ‘single indicator’ transpulmonary thermodilution curve using 

Stewart-Hamilton, Newman and Sakka principles.  EVLW is calculated from the 

difference between the ITTV and ITBV.  Additional hemodynamic parameters 

provided include CO and GEDV, a preload measure consisting of the combined 

volumes of the RA, RV, LA, & LV in diastole.  

ITTV: Intrathoracic thermal volume, ITBV: intrathoracic blood volume, CO: 

cardiac output, GEDV: cardiac global end diastolic volume, RA: right atrium, RV: 

right ventricle, LA: left atrium, LV: left ventricle, PBV: pulmonary blood volume.  

 Figure 2. Displays from two proprietary TPTD systems commercially available 

(PiCCO2 System (Pulsion Medical Systems SE, Munich, Germany) and 

VolumeView/EV1000 system (Edwards Lifesciences, Irvine CA, USA). 

 

Figure 3. Proposed algorithm for hemodynamic management based on 

transpulmonary thermodilution parameters. (Adapted from Pulsion Medical 

Systems). 

GEDI: global end diastolic index.  EVLW: extravascular lung water. 

 

Figure 4. Hemodynamic protocol in sepsis/ARDS patients based on EVLW 

determination. (Protocol adapted from Pino-Sanchez F, et al.: Influence of 
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extravascular lung water determination in fluid and vasoactive therapy. J Trauma. 

67:1220-1224, 2009). 

EVLW: extravascular lung water ml/kg. ARDS: acute respiratory distress 

syndrome. 
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