
Open Research Online
The Open University’s repository of research publications
and other research outputs

A Framework for Ontology Reuse and Persistence
Integrating UML and Sesame
Conference or Workshop Item

How to cite:

Pedrinaci, Carlos; Bernaras, Amaia; Smithers, Tim; Aguado, Jessica and Cendoya, Manuel (2004). A Framework for
Ontology Reuse and Persistence Integrating UML and Sesame. In: Current Topics in Artificial Intelligence, pp. 37–46.

For guidance on citations see FAQs.

c© 2004 Springer

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1007/978-3-540-25945-94

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82958297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1007/978-3-540-25945-9_4
http://oro.open.ac.uk/policies.html

A Framework for Ontology Reuse and Persistence
Integrating UML and Sesame

C. Pedrinaci, A. Bernaras, T. Smithers, J. Aguado, M. Cendoya

San Sebastian Tecnology Park, Paseo Mikeletegi 53,
20009 San Sebastian, Spain

{carlos, amaia, tsmithers, jessica}@miramon.net
mcendoya@miramon.es

Abstract. Nowadays there is a great effort underway to improve the World
Wide Web. A better content organisation, allowing automatic processing, lead-
ing to the Semantic Web is one of the main goals. In the light of bringing this
technology closer to the Software Engineering community we propose an ar-
chitecture allowing an easier development for ontology-based applications.
Thus, we first present a methodology for ontology creation and automatic code
generation using the widely adopted CASE UML tools. And based on a study
of the art of the different RDF storage and querying systems, we couple this
methodology with the Sesame system for providing a framework able to deal
with large knowledge bases.

1 Introduction

The huge amount of information available in the World Wide Web has led research-
ers to work towards improving its organisation, by providing machine-understand-
able data. "The Semantic Web is an extension of the current web in which informa-
tion is given well-defined meaning, better enabling computers and people to work in
cooperation."[1]. It is obvious that the Semantic Web will offer new possibilities for
the web but as Mark Frauenfelder suggests "There is a big question as to whether
people will think the benefits are worth the extra effort of adding metadata to their
content in the first place. One reason the Web became so wildly successful, after all,
was its sublime ease of creation."[2].

This paper presents some of the results obtained in the ongoing EU project OB-
ELIX (IST-2001-33144) during the creation of an ontology-based online events
design application [3],[4]. We propose a framework for the development of Semantic
Web applications development so as to bring this technology closer to the Software
Engineering community. Bearing that purpose in mind, the proposed framework fo-
cuses on the ease of creation and use. The same way web designers don't have to be
aware of HTTP protocol's details (and very often even of HTML details), it would be
interesting to obtain the same level of independency from the implementation details
surrounding the Semantic Web which are much more complex. Obtaining such facil-
ities for creating Semantic Web applications is difficult due to its inherent complex-
ity, but we should however try to fill the gap between AI community and the Soft-
ware Engineering community, by providing an easy and suitable framework.

Moreover, software agents will need to interact with other systems, usually based on
different ontologies, supported by different architectures and adequately supporting
the interaction with humans. Semantic Web applications are complex systems, thus,
maintaining and/or improving them is a hard task. Software Engineering has proven
that in such cases, and in general for every system, a clear, well defined and powerful
methodology is a must. Such methodologies facilitate the creation and minimize the
problems raised when improving and modifying a system.

In this paper, we first present the use of the Unified Modelling Language (UML)
[5] for knowledge representation, along with a procedure for generating from a UML
class diagram a specialised RDF schema [6],[7] and a set of Java classes correspond-
ing to the classes in the model. Afterwards we compare the different RDF storage
and querying systems, and justify the selection of Sesame for ensuring persistance for
large RDF knowledge bases [8]. Next, we present and explain Sesame. In section
five, we propose an architecture for developing ontology-based applications, using
UML for knowledge representation and relying on Sesame for data persistance. Fi-
nally, we conclude and present some directions for future research.

2 UML for Knowledge Representation and Exchange

The Unified Modeling Language (UML) is a standard language from the Object
Management Group (OMG) [9] with an associated graphical notation for object-ori-
ented analysis and design. It is widely adopted in industry, and several CASE tools
are already available to facilitate software engineers' work. The benefits of using
UML for ontology development have been extensively argued in [10], [11], [12] and
[13]. Some of these benefits are: (i) UML is a standard language; (ii) UML is a
graphical notation based on many years of experience in software analysis and
design, which is currently suported by widely-adopted CASE tools that are more ac-
cessible to software practitioners than current ontology tools; (iii) agent-based sys-
tems will need to interact with legacy enterprise systems, which often have UML
models; (iv) knowledge expressed using UML is directly accessible for human com-
prehension and for machine processing; (v) thanks to the modular nature of object-
oriented modelling, the knowledge in a UML model can be changed without affect-
ing other features.

In [11] and [13] Stephen Cranfield proposes an implementation for object-ori-
ented knowledge representation, using UML for defining ontologies and domain
knowledge in the Semantic Web. Fig. 1 shows a pictorical description of this propos-
al. The proposed methodology is as follows. First, a domain expert designs the onto-
logy graphically with one of the available CASE tools supporting UML (e.g. Ration-
al Rose, Poseidon, ArgoUML, etc). The ontology is then saved in the standard format
XML Model Interchange (XMI) [14]. Using a pair of XSLT stylesheets the XMI rep-
resentation of the ontology is transformed into a set of Java classes and interfaces
corresponding to the concepts present in the ontology, and into an RDF schema. The
java classes allow an application to represent knowledge about the domain as in-
memory data structures. The RDF schema, defines the concepts that an application
can reference when serializing the knowledge in RDF/XML. For performing the mar-
shalling and unmarshalling of objects to and from RDF/XML documents, a mar-

shalling package is also provided. This feature is provided via two classes: Marshal-
Helper and UnmarshalHelper. These delegate to the generated Java classes decisions
about the names and types for each field, and are then called back to perform the
un/marshalling from/to RDF, using the Stanford RDF API [15].

It is important to note that the generated RDF schema does not contain all the in-
formation from the designed UML model. Its purpose is to define resources corres-
ponding to all the classes, interfaces, attributes and associations in the ontology in or-
der to allow serialisation of in-memory objects in the standard language RDF. Thus,
for accessing all the ontology information one of the available Java APIs for XMI
can be used: [16] and [17].

The system does also allow modelling incomplete knowledge. Therefore, the gen-
erated Java classes include extra boolean fields for each attribute that record whether
the value is known or not. Also, when marshalling incomplete information, a non-
standard RDF property, notClosedFor, is used and associates a property with a re-
source, meaning that the information is incomplete.

Obtaining an instance from the RDF/XML representation involves parsing the
whole file, which is not a problem for small knowledge bases. However, when deal-
ing with large knowledge bases, there are more efficient approaches: RDF storage
and querying systems.

Fig. 1. Overview of the imlementation for object-oriented knowledge representation. (Taken
from [13])

3 Comparison of the RDF Storage and Querying Systems

To adapt Cranefield's approach to large knowledge bases, we have studied the differ-
ent RDF storage and querying facilities available. The state of the art of the different
systems is based on [18], with updated information.

Table 1 presents an analysis of the different storage systems currently available.
The main criteria that were kept in mind for determining the RDF storage and query-
ing system that suits better to our needs are:

� Storage: The method/architecture used for ensuring the data persistance.
� Platform: List of all the different platforms supported. It includes the Operat-

ing Systems but also the need for any other components like a Perl interpreter
or a Java Virtual Machine.

� API: The possible ways for interacting with the system. It includes protocols
and APIs provided for different programming languages.

� Querying: The languages the system allows to be used for querying a data re-
pository.

� Inferencing: The capability of the system to infer new knowledge, that is to
generate new statements based on the existing knowledge. For the majority of
the systems only class subsumption is provided. However, some systems allow
more powerful inferencing by providing mecanisms for defining user rules.

� Extras: Whether the system has other functional elements associated or pre-
pared for interacting with it.

From the analysis and comparison performed, and shown in , Sesame was chosen
for the following reasons:

Sesame allows inferencing over RDF(s) thanks to its query language RQL [19],
[20]. Moreover, the system can be deployed in any platform with a Java Virtual Ma-
chine. It provides several ways for interacting with it such as RMI, SOAP or HTTP.
It has been installed on top of many DBMS like Oracle, MySQL or PostgreSQL and
has a generic implementation for SQL92 compliant DBMS. In addition to all these
characteristics, support for DAML+OIL [21] has been added, improving its capabilit-
ies but also showing Sesame's modularity and the possibility to adapt the system to
new languages. Finally, the new versionning and access control features implemen-
ted, turn Sesame into a suitable system for developing and maintaining knowledge
bases providing the same control level as CVS does for programmers.

It is worth noting that, although KAON [22] and Cerebra [23] are good candidates
for their interesting features, Sesame is superior to KAON for its support for
DAML+OIL. Concerning Cerebra the fact it is not Open Source was determinant.

4 Sesame

Sesame is a system for efficient storage and expressive querying of large quantities
of metadata in RDF and RDF Schema. It was initially developed by Aidministrator
Nederland b.v. as part of the European IST project On-To-Knowledge [24] and is
currently been extended and improved by Aidministrator Nederland b.v., the
"Sesame community" and NLNet [25].

Table 1. RDF storage and querying systems comparison

Querying Platform API Storage Inference Extras

ICS-RDFSuite RQL Solaris - Linux Java - C++ - SQL O-RDBMS Yes

Sesame RQL*, RDQL Any (JVM) Java - HTTP
RMI - SOAP O-RDBMS Yes OMM, BOR

Inkling SquishQL Any (JVM) Java Memory - JDBC No

RDFDB SquishQL* Solaris - Linux - FreeBSD C - Perl SleepyCat Yes

RDFSTORE SquishQL Any (Perl) Perl Memory - BerkeleyDB Yes

EOR Triple-matching Any (JVM) Java - HTTP
SQL SQL DB No

Redland Triple-matching Solaris - Linux - MacOS X
FreeBSD - OSF/1

C - Java - Perl
Python - Tcl

Memory - SleepyCat
BerkeleyDB No

Jena RDQL Any (JVM) Java Memory - BerkeleyDB
PostgreSQL No

RDF Gateway RDFQL Windows NT/2000 ADO - JDBC RDBMS Yes (+ user-defined)

TRIPLE TRIPLE Any (JVM) Java Memory Yes (+ user-defined) RACER

KAON F-Logic Any (JVM) Java Memory - RDBMS Yes (+ user-defined) KAON TOOL
SUITE

CEREBRA DL-based Any (JVM) Java - SOAP Distributed data
(CORBA) Yes (+ user-defined) Cerebra Suite

"Sesame's design and implementation are independent from any specific storage
device. Thus, Sesame can be deployed on top of a variety of storage devices, such as
relational databases, triple stores, or object-oriented databases, without having to
change the query engine or other functional modules" [8]. This independence is gran-
ted by the Storage And Inference Layer (SAIL) (see Fig. 2). SAIL is an Application
Programming Interface (API) that offers specific methods for accessing RDF inform-
ation. It defines a basic interface for storing, retrieving and deleting RDF and RDFS
from repositories while it abstracts from the particular storage mechanism. It was de-
signed to support low end hardware like PDAs and to be extendable to other RDF-
based languages. Several implementations of SAIL are distributed with Sesame like
SQL92SAIL, which is a generic implementation for SQL92 compliant DBMS, Sync-
SAIL for supporting concurrent reads as well as implementations for specific DBMS
like MySQL, OracleDB and PostgreSQL.

Sesame implements the Resource Query Language (RQL) a declarative language
for querying both RDF descriptions and RDF schemas, as well as RDQL [26] which
is derived from SquishQL [27]. These functions are provided by the Query Module
which performs the queries on a repository. Any query is first parsed to build a tree
model representation, which is afterwards optimised. The majority of the query is
evaluated in this module, the access to the repository is handled by SAIL. It is im-
portant to note that Sesame implements a slightly modified version of the RQL lan-
guage proposed in [20]. Sesame's version of RQL includes support for domain and

Fig. 2. Sesame's architecture. Taken from [8]

HTTP Protocol Handler SOAP Protocol Handler

H
TTP

Client1

H
TTP

Client2

SO
A

P

Client3

Admin Module Query Module Export Module

Storage And Inference Layer(s)

Repository

Request Router

Modules

SAILs

…

range restrictions as well as multiple domain and range restrictions, but it does not
feature support for datatyping.

For the metadata administration, another module is provided, the Admin Module.
Its purpose is to manage the insertion and deletion of RDF and RDF Schema inform-
ation into/from a repository.

The extraction of any information from a Sesame repository is handled by the Ex-
port Module. This module allows to selectively export the schema, the data or both
from a repository, facilitating the integration and interaction with other RDF tools.

Concerning the interaction with external applications Sesame currently offers
three methods: HTTP, SOAP and RMI. Each protocol has its associated handler,
which translates and redirects any query received into an intermediate module: the
Request Router. This intermediate module abstracts Sesame's core from any protocol
specificity leaving the possibility to add a new handler without having to modify the
rest of the system.

For making the results of the On-To-Knowledge project easier for integration in
real-world applications an "administrative" software infraestructure was created: The
Ontology Middleware (OMM). "The central issue is to make the methodology and
modules available to the society in a shape that allows easier development, manage-
ment, maintenance, and use of middle-size and big knowledge bases"[28]. In particu-
lar the OMM supports versionning, access control and meta-information for know-
ledge bases forming the Knowledge Control System (KCS). In addition to the admin-
istrative modules, BOR extends the reasoning capabilities of Sesame by providing
support for DAML+OIL. This new reasoning module implements the SAIL API,
thus it can perfectly interact with the rest of the modules of Sesame.

5 Architecture Proposal

We have seen previously that in Stephen Cranefield's approach a marshalling pack-
age is used for mashalling and unmarshalling object-oriented information between
in-memory data structures and RDF serialisations of that information. This solution
is not efficient enough for managing large RDF files. Thus, the available RDF stor-
age and querying tools have been studied, and Sesame was choosen based on its
characteristics.

In order to support large knowledge bases (more than five thousand triples), Fig.
3 shows an adaptation of Stephen Cranefield's approach by replacing the marshalling
elements by calls to the Sesame API. Any serialisation or deserialisation of know-
ledge is performed over an RDF repository in Sesame. The generation of ontology-
based applications remains, from the developer point of view, unchanged and trans-
parent. The process still involves editing the ontology in a CASE environment sup-
porting UML and XMI. Afterwards Java classes and the RDF Schema file are gener-
ated and their usage, during the creation of an ontology-based application, remains
unmodified. However, the architecture gains greatly in versatility and power due to
the new mechanisms that grant the persistence and access of the knowledge base
provided by Sesame. The RDF/RDF Schema is stored in a Sesame repository. Thus,
applications interact with Sesame for retrieving and/or storing knowledge and at the

same time they have all the Sesame's features available like, for example, the query-
ing language RQL.

There is however an important difference concerning the generation of the Java
classes. The proposed architecture maintains the XSLT for generating the RDF
schema file, whereas the generation of the Java classes is not performed using XSLT.
We are developing a Java Code Generator that benefits from Sesame's features by ac-
cessing the ontology stored in a Sesame repository where the associated RDF schema
has been stored. Thanks to the SAIL API Sesame offers, our program can browse the
whole ontology in a more confortable way. Thus, the difficulties associated to the use
of a stylesheets processor are avoided. Moreover, the code generation gains in modu-
larity, and ease of maintenance, so that future improvements can be easily added.

We are also investigating another important aspect, which is the possibility of ad-
apting the whole system to a more powerful language like DAML+OIL. Several pro-
jects are already using UML and DAML+OIL together. The UML Based Ontology
Tool-set (UBOT) project [29] is working on an UML to DAML mapping [30]. In this
project UML is also used as a front-end for visualizing and editing DAML ontolo-
gies. Also, the Components for Ontology Driven Information Push (CODIP) project
[31] is using UML to build and map DAML ontologies. This project is creating the
DAML-UML Enhanced Tool (DUET) which provides a UML visualization and au-
thoring environment for DAML. Core DAML concepts are being mapped into UML
through a UML profile for DAML. DUET is currently available as a plug-in for Ra-
tional Rose [32] and ArgoUML [33]. The results of both projects could be applied to
the proposed architecture for obtaining a “DAML+OIL version”.

Finally, in addition of the persistance related benefits, Sesame comes with a Web
interface, that can be installed on a web server like Tomcat. This is a step forward for
publishing the ontologies along with the instances in the World Wide Web, so that
external applications like agents, can also retrieve the information and process it.

Fig. 3. Architecture proposal

UML

XMI

RDF Schema

Java Code Generator

Sesame API

Java source files

ApplicationsSesame
Repository

XSLT

Stored

Reads

Read/Write

Loads

Uses

Uses

Generates

6 Conclusions and Future Research

In the previous sections we have described an architecture for creating ontology-
based applications in a more suitable way for Software Engineers than the currently
available tools like OilED, Ontoedit or Protégé. This architecture integrates the UML
to RDF mapping based on the approach presented in [11] and [13], with Sesame as
the RDF storage and querying system. This integration is also improved by the addi-
tion of our Java Code Generator which makes use of the best of the two integrated
approaches. The result is a framework for developing ontology-based applications in
an easy and scalable way, with an automatic code generation to facilitate the use of
object diagrams as internal knowledge representation structures. However, the major-
ity of the ontology-based applications that have been developed, have shown that an
ontology expressed in RDF or DAML+OIL is not enough for obtaining all the
needed functionality. They still need the capability to define rules and constraints, so
as to provide more powerful inferencing over the knowledge base. Unfortunately
there is no standard language for defining rules. This has been solved by different de-
velopers with ad hoc methods: choosing the most appropriate and convenient inferen-
cing engine or directly with hard-wired code. In our case, there is no mechanism
provided for defining inferencing rules, thus it would be desirable to cover also that
aspect. UML's definition includes the Object Constraint Language (OCL), however it
lacks a formal definition. Currently the precise UML group [34] is addressing this is-
sue.

With a formal specification, the code generation could also integrate automatic
rules generation based on the OCL rules definition. This kind of code generation has
already been undertaken by Frank Finger in [35]. Further research is needed in that
respect.

Finally, we are also investigating dynamic code generation over evolving ontolo-
gies so as to provide a better adaptability to the dynamism of the Web.

References

1.T. Berners-Lee, J. Hendler and O. Lassila: The Semantic Web. Scientific American (2001)
2.M. Frauenfelder: A Smarter Web. Technology Review (2001)
3.M. Cendoya, A. Bernaras, T. Smithers, J. Aguado, C. Pedrinaci, I. Laresgoiti, E. García, A.

Gómez, N. Peña, A. Z. Morch, H. Sæle, B. I. Langdal, J. Gordijn, H. Akkermans, B. Om-
elayenko, E. Schulten, J. Gordijn, B. Hazelaar, P. Sweet, H.-P.Schnurr, H. Oppermann, and
H. Trost: D3 Business needs, Applications and Tools Requirements (2002)

4.A. Maier, J. Aguado, A. Bernaras, I. Laresgoiti, C. Pedinaci, N. Peña,T. Smithers: Integra-
tion with Ontologies. 2nd Conference on knowledge management (WM2003) (2003)

5.OMG: Unified Modelling Language Specification version 1.5 (2003)
6.D. Brickley, R.V. Guha: Resource Description Framework(RDF) Schema Specification 1.0.

http://www.w3.org/TR/2000/CR-rdf-schema-20000327 (2000)
7.O. Lassila, R. R. Swick: Resource Description Framework(RDF) Model and Syntax Spe-

cification. http://www.w3.org/TR/REC-rdf-syntax/ (1999)
8.J. Broekstra, A. Kampman, and F. van Harmelen: Sesame: A Generic Architecture for Stor-

ing and Querying RDF and RDF Schema. International Semantic Web Conference (ISWC)
(2002)

9.Object Management Group web page. http://www.omg.org. (Last visited: June 2003)
10.S. Cranefield and M. Purvis: UML as an Ontology Modelling Language. In Proceedings of

the Workshop on Intelligent Information Integration, 16th International Joint Conference on
Artificial Intelligence (IJCAI-99) (1999)

11.S. Cranefield: Networked Knowledge Representation and Exchange using UML and RDF.
Journal of Digital Information (2001)

12.P. Kogut, S. Cranefield, L. Hart, M. Dutra, K. Baclawski, M. Kokar, J. Smith. UML for
Ontology Development. Knowledge Engineering Review Journal Special Issue on Ontolo-
gies in Agent Systems (2002)

13.S. Cranefield: UML and the Semantic Web. Proceedings of the International Semantic
Web Working Symposium (2001)

14.Object Management Group: OMG XML Metadata Interchange (XMI) Specification (2002)
15.Sergey Melnik: RDF API. http://www-db.stanford.edu/~melnik/rdf/api.html. (Last visited:

June 2003)
16.Unisys Corporation: Java Metadata Interface (JMI) specification (2002)
17.Novosoft: Novosoft metadata framework and UML library (2002)
18.A. Magkanaraki, G. Karvounarakis, T. T. Anh, V. Christophides, D. Plexousakis: Ontology

storage and querying. Technical Report 308, ICS-FORTH (2002)
19.G. Karvounarakis, V. Christophides: The RQL v1.5 User Manual.

http://139.91.183.30:9090/RDF/RQL/Manual.html . (Last visited: June 2003)
20.G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl: RQL: A

Declarative Query Language for RDF. 11th International World Wide Web Conference
(WWW2002) (2002)

21.Joint United States / European Union ad hoc Agent Markup Language Committee:
DAML+OIL (March 2001) release (2001)

22.KAON web page. http://kaon.semanticweb.org/ . (Last visited: June 2003)
23.Cerebra home page. http://www.networkinference.com/. (Last visited: June 2003)
24.On-To-Knowledge (IST-1999-10132) web page. http://www.ontoknowledge.org/ .(Last

visited: June 2003)
25.Sesame Project web page. http://sourceforge.net/projects/sesame/. (Last visited: June 2003)
26.RDF Data Query Language (RDQL). http://www.hpl.hp.com/semweb/rdql.htm. (Last vis-

ited: June 2003)
27.L. Miller: RDF Squish query language and Java implementation.

http://www.ilrt.bris.ac.uk/discovery/2001/02/squish/. (Last visited: June 2003)
28.A. Kiryakov, K. Simov, D. Ognyanov: Ontology Middleware: Analysis and Design. IST

Project IST-1999-10132 On-To-Knowledge Deliverable 38 (2002)
29.UBOT web page. http://ubot.lockheedmartin.com/. (Last visited: June 2003)
30.K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith, W. Holmes, J. Letkowski, M. Aron-

son: Extending UML to Support Ontology Engineering for the Semantic Web. 4th Interna-
tional Conference on UML (2001)

31.DARPA, AT&T: Components for Ontology Driven Information Push (CODIP) Home
Page. http://codip.grci.com/. (Last visited: June 2003)

32.Rational UML software home page. http://www.rational.com/uml/index.jsp. (Last visited:
June 2003)

33.ArgoUML web page. http://argouml.tigris.org/. (Last visited: June 2003)
34.Precise UML group home page. http://www.puml.org/. (Last visited: June 2003)
35.Frank Finger: Design and Implementation of a Modular OCL Compiler. Diploma Thesis

(2000)

