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   In the paper proposed we will make use of the gradient flow approach to consider 

a generalization of the well-known oblique Procrustes rotation problem, involving 

oblique simple structure rotation of both the core and component matrices resulting from 

three-mode factor analysis. The standard oblique Procrustes rotations to specified 

factor-structure and factor-pattern follw as special cases. The approach adopted leads 

to globally convergent algorithm and includes solving of initial value problem for certain 

matrix ordinary differential equation. Necessary conditions are established for the 

solution of the problem. The same approach is extended easily to the weighted oblique 

Procrustes rotation. Finally, some simulated numerical results are given and 

commented.

1. Introduction 

   Many data analysis problems may be formulated as a matrix fitting problem 

subject to constrains. Among these, one frequently used model in psychometrics is 

the so called oblique Procrustes problem (ObPP) (Cox & Cox, 1995; Gower, 1984; 

Mulaik, 1972) :

minimize ~~ AQ-B MF (1)
subject to diag (QTQ)=Iq. (2)

   In the above, columns in QERp"q stand for the direction cosines of q oblique 

axes in RP relative to p orthogonal axes and rows of AE=-Rnxp standing for n 

observed points in Rp. Typically, we assume n > p >_ q. The goal is to select these 

oblique axes so that rows of the projection AQ are closest to n given points in Rq 

which are represented by rows in Bc=-Rn"q. In factor analysis the problem (1)-(2) 

is referred to as oblique Procrustes rotation to the specified factor-structure matrix 

(containing the covariances/correlations between observed variables and factors). 
Similarly, the problem

minimize 11 AQ-T -B II F (3)
subject to diag (QTQ)=Iq. (4)

is referred to as oblique Procrustes rotation to the specified factor-pattern matrix 

(containing the weights assigned to the common factors in factor analysis model).
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For details, e.g. (Mulaik, 1972). 

   A special case of the ObPP with QTQ=Iq, the so called orthonormal Procrustes 

problem (OPP), has attracted considerable attention in the literature (Gower, 1984 ; 
Mulaik, 1972). While the symmetric case p=q of the OPP, also known as the 

orthogonal Procrustes problem, enjoys a closed-form solution (Golub & Van Loan, 

1989 ; Mulaik, 1972), thus far only indirect methods are available for solving the 

asymmetric OPP (p>q). Among these, we mention the Green and Gower iterative 

algorithm (Gower, 1984), where the asymmetric problem is first embedded into a 

symmetric problem for which a solution is easy to find, that solution is then used to 

update the system, and the cycle is repeated. A monotonically decreasing algo

rithms has been proposed for solving the more complicated weighted OPP in 

(Mooijaart & Commandeur, 1990; Kiers, 1990; Koschat & Swayne, 1991 ; Kiers & 
ten Berge, 1992). Recently in (Chu & Trendafilov, 1998; Chu & Trendafilov, sub

mitted) a gradient flow approach has been adopted to solve these problems for 

which both the symmmetric and asymmetric OPP are special cases. The OPP are 

solved by simply following the integral curve of an ordinary differential equation to 

the limit point. Its solution can be found by any appropriate ODE numerical 

integrator (Shampine & Reichelt, 1997). The necessary and the sufficient condi

tions for both the symmmetric and the asymmetric OPP are well understood (Chu 

& Trendafilov, 1998; Chu & Trendafilov, submitted ; Elden & Park, 1999; ten 

Berge, 1977). 

   The ObPP (1)-(2), to our knowledge, appears firstly in explicit form in Mosier 

(1939) where its first approximate solution is given also. The ObPP finds its 
application in many areas of multivariate data analysis including exploratory 

factor analysis for common-factor extraction (MINRES) (Mulaik, 1972), maximal 

degree structure fitting, and various multidimensional scaling techniques (Cox & 

Cox, 1995 ; Gower, 1984 ; ten Berge, 1991). It also occurs in the context of least 

squares minimization with a quadratic inequality constraint (Golub & Van Loan, 

1989), Section 12.1. 

   A common feature of the "classical" solutions of the ObPP (1)-(2) is that they 

take advantage of the fact that the constraint diag(QTQ)=Iq is equivalent to q 

copies of the unit sphere Sp-' in R", i.e. the problem can be transformed into q 

separate problems for each column of Q. The main two approaches to the ObPP 

differ in using spectral decomposition of AA (see Browne, 1967; Cramer, 1974) and 

singular value decomposition of A (see Golub & Van Loan, 1989; ten Berge & 

Nevels, 1977 ; ten Berge, 1991). Both approaches lead to identical secular equa

tions, which in principle, can be solved through the application of any standard 

root-finding technique, such as Netwon's method. The convergence can be very 

slow and also the iteration can diverge, due to the fact that one solves the equation 

close to a pole. For solving the secular equation by bidiagonalization of A e.g. 

(Elden, 1977). The technique considered further in this work does not rely on 
solving secular equations. The second ObPP (3)-(4) has been solved columnwize in



(Browne & Kristof, 1969; Browne, 1972) by making use of planar rotations and in 

(Gruvaeus, 1970)-by penalty function approach. 
   Recently has been found that there are more sophisticated problems involving 

an oblique rotation where the classical approach can not be applied. Indeed, the 

problem for oblique simple structure rotation of both the core and component 
matrices resulting from three-mode factor analysis leads to the following minimiza

tion problem (Kiers, 1997) :

Minimize a II AQ  B II +,3 II XQ-T  Y II (5)
Subject to QE=-Rp"p, diag(QTQ)=Ip (6)

where A, B, X and Y are given matrices of proper dimensions and a and ~ are 

known weights. The two extreme cases a=1, 3=0 and a=0, 8=1 simply give the 

well-known standard ObPP (1)-(2) and (3)-(4) respectively. The problem (5)-(6) 

can not be solved columnwise, as for the classical ObPP. In the present paper we 

intend application of the gradient flow approach to solve the problem (5)-(6). The 

projected gradient approach for solving and analyzing matrix fitting problems 
involves system of ordinary differential equations (Chu & Driessel, 1990 ; Helmke & 

Moore, 1994). The idea is that certain numerical method can be though as a 

disctretization of a dynamical system governing a flow that starts at a certain 
initial state and evolves until it reaches an equilibrium point. By construction it 

leads to globally convergent algorithms. The method is rather general and can 

serve as an unified approach for considering least squates data matching problems 

subject to oblique constraints. 

   This paper is organized as follows. In Section 2 will be given a formulation of 

the ObPP in matrix form as a projected gradient flow on the manifold of all square 

oblique rotations. To make the method presentation less abstract and illustrate 

how it works we solve (1)-(2) step by step. We start our main task-solving the 

problem (5)-(6)-in Section 3 with formulation of the three-mode factor analysis 
model and the problem for simultaneous oblique rotation. The projection tech

nique developed in Section 2 will be applied for solving the problem. As has been 

told before, its numerical solution can be found by any appropriate ODE numerical 

integrator. Particularly, we make use of the MATLAB ODE solvers (Shampine & 

Reichelt, 1997). At the end of the Section we outline briefly how the projected 

gradient approach can be applied to the following more general problem :

Minimize a II AQC  B II + l3 II XQ-TZ  Y II (7)

Subject to QE=-Rp"p, diag(QTQ)=Ip (8)

   This is an oblique analog of the well-known weighted orthogonal Procrustes 

problem (known also as Penrose regression problem) (Mooijaart & Commandeur, 
1990; Koschat & Swayne, 1991; Kiers, 1990; Kiers & ten Berge, 1992; Chu & 

Trendafilov, 1998). The problem of different weighting of the different dimensions 

is a special case of (7)-(8). Finally, some simulated numerical results will be given



and commented.

2. Matrix gradient flow approach to ObPP 

   Here we reconsider the problem (1)-(2) in matrix form. We restrict ourselves 

to the case when the matrix of oblique rotation Q is square, i.e. p= q. The case 

when p$q can be developed by the same manner but is beyond our interest for the 

aims of the next Section. Let A and B be given matrices. Without loss of 

generality they can be also assumed p x p square (follows from the QR decomposi
tion of A and the properties of the Frobenius norm). Consider the function :

F(Q) := 2 <AQ-B, AQ-B>, (9)

where <X, Y> denotes the Frobenius inner product of two matrices X and Y and 

is defined by

<X, Y> :=tr(XYT).

Consider the smooth manifold OL3(p) of all px p oblique rotations, i.e.,

O,3 (p):={ Q E Rp"p : Q 'Q-correlation ma

or simply

o,C3(p):={QERpxp : diag(QTQ)=Ip},

keeping in mind that every QEQz3(p) is nonsingular. 

   The tangent space TQQB(p) of this manifold at any Qc=-013(p) is given by 

              TQO,3(p)={H(=-RPxP : diag(HTQ+QTH)=0}. 

   Apparently, the oblique Procrustes rotation problem (1)-(2) is equivalent to the 

minimization of (9) on the feasible set (93(p). 

   By the chain rule and the product rule it is easy to obtain the gradient VF(Q) 

with respect to the Frobenius inner product of the function F(Q) to be minimized :

VF(Q) =AT(AQ-B). (10)

   Suppose the projection g(Q) of the gradient VF(Q) onto the tangent space 

TQO,3(p) can be computed explicitly. Then the differential equation

dQ =-g(Q) 
dt (11)

naturally defines a steepest descent flow for the function F on the feasible set O,3(p). 

Along the flow Q(t) the function value F(Q(t)) is decreasing most rapidly relative 

to any other direction. Indeed, we have

dF(Q) =-<VF(Q(t)) , g(Q(t))>  dt 

    =-II g(Q(t))112
(12)



due to the fact that g(Q(t)) is the orthogonal projection of VF(Q(t)) into 
TQ(t).13(p). In follows from (12) that F(Q(t)) is monotonically decreasing function 
of t. This descent property is universal regardless whehe the flow starts. Here we 
give some basic results concerning the convergence properties of the gradient flows. 
If Q(t) converges to a stationary (or equilibrium) point Q, i.e. a point for which 

g(Q)=0, it follows from (12) that a critical point of F has been reached. Clearly, 
the convergence of Q(t) to a stationary point is of primary interest for the problem. 
Denote by

 =f QEEO,3(p) : g(Q)=0}

the set of all stationary points of (11). Then every solution of (11) exists for all t >0 

and converges to a compact and connected set that is a subset of g . Moreover, if 

the stationary points of g are isolated, then every solution of (11) converges to a 

single stationary point of g, which is also a critical point for F (12) (Stuart & 

Humphries, 1996). An example, that convergence to a set (but not to a point) can 

really happen is constructed in (Palis & de Melo, 1982). Let F is a Morse function, 

i.e. FE=-Cr, (r> 2), (F is continuous together with its rth derivative) and has a 

finite number of nondegenerate critical points (with nonsingular Hessian). Then 

Q(t) exists for all t >0 and converges to one of the critical points of F (Hirsh & 
Smale, 1974 ; Palis & de Melo, 1982). The above result is also true if the finiteness 

condition is removed. This, together with the fact that the set of the Morse 

functions is open and dense in Cr, means that the convergence of Q(t) to a single 

critical point is a generic property, i.e. the convergence to a set of critical points 

occurs not "quite offen" (Smale, 1960; Helmke & Moore, 1994). Another important 

feature of the gradient dynamical systems is their structural stability, i.e. any 

sufficiently small perturbation of the original flow is homeomorphic to the original 

one. The set of structurally stable gradient fector fields is open and dense in the set 

of all gradient fector fields, i.e. the structural stability of gradient dynamical 

systems is generic property (Smale, 1961 ; Hirsh & Smale, 1974). Particularly, 

from (12) follows that (11) has no periodic solutions and strange atractors, there is 

no chaotic behaviour (Peitgen & Richter, 1986). 

   The core of the method is the construction of the projection of the gradient 

VF(Q). In the present case this is not a difficult task since TQOL3(p) is explicitly 

known. The identification of its elements can be found by the well-known fact that 

any matrix X can be expressed as a sum of its symmetric and skew-symmetric 

parts, as follows:

X=X+XT+X-XT      2 2 (13)

   For our purposes we represent the symmetric part as a sum of a diagonal 

matrix of the same size composed by its diagonal elements and a symmetric matrix 

composed by its off-diagonal elements and zero main diagonal. Then for any p x



p matrix the expression (13) can be rewritten as follows:

Z X=off(X 2XT )+diag (X 2XT )+xxT, (14)

where for any p x p matrix X the operator off (X) is defined as (lplp-Ip) O X and, 

diag(X)  as Ip o X, where O denotes the elementwise Hadamard matrix product, 

1p  an p x 1 vector-column of ones and Ip  an p x p identity matrix. 

   In this terms the tangent space TQQ13(p) at any QE=-(l3(p) is given by:

TQOB(p)={HERp"p : diag(HTQ+QTH)=0} 

    ={H: QTH=off ( QTH 2 HT Q )+ QTH 2 HTQ { 
      ={H : H=Q-T[off (S)+K]} ,

where S is symmetric and K-skew-symmeric. 

   It follows that the orthogonal complement of TQQB(p) in Rp"p with respect to 

the Frobenius inner product is given by :

1V QOB (p)  Q-TD, for some diagonal D.

   In other words we have the following direct-sum representation of Rp"p with 

respect to the Frobenius inner product :

Rp x p =TQO3 (p) O+ MQ013 (p) 
   = Q-T{[off (S (q)) O+ S (q)1] O+ D(p)1 ,

where

  S (p)={all symmetric p x p matrices), 
S (p)1={all skew-symmetric p x p matrices}

and

D(p)={all diagonal p x p matrices}.

   Therefore for any HE=-Rp"p its projection onto TQO 3(p) has the following 

unique representation :

;rTQc~5(p)(H) = Q T [off (_QTH+HTQ 2 )+ QTH 2 -HT Q J (15)

   Accordingly the projection g(Q) of VF(Q) onto the tangent space TQQ,3(p) has 

the form :

g(Q)== Q T [off (QT VF(Q)+VF(Q)TQ)+(QTVF(Q)-OF(Q)TQ)] 
     Q -T [off (2QTATAQ-QTATB-BTAQ)+(BTAQ-QTATB)]

(16)

   Summarizing, the solution of the ObPP is given by an initial (Cauchy) value 

problem for the ordinary matrix differential equation



dQ = Q-T [off (2QTATAQ-QTATB-BTAQ)+(BTAQ-QTATB), . dt 2(17)

and some starting point for the flow. A reasonable starting point for the flow can 

be the orthonormalized At B, where t is some generalized inverse. 

   Finally we show that a projected gradient system derived by the projection 

formulae (15) preserves the flow oblique for all t >0. Indeed, as it has been shown 

before the general form of the steepest descent flow equation (11) is :

dQ/dt=Q-T(off(S)+K) (18)

for some symmetric S and skew-symmetric K. It is easily seen that if Q(t) 

satisfies (18), then diagQ(t)TQ(t)=Ip for t >0. Indeed, noting that

d(diag (QTQ))/dt=diag (d(QTQ)/dt) (19)

we compute

d(QTQ)/dt=(dQ/dt)TQ+QT(dQ/dt)=2off(S). (20)

Thus we have the equation

d(diag(QTQ))/dt=0 (21)

and an initial condition diag(Q(0)TQ(0))=lp. From the fundamental existence and 

uniqueness theorem of the ODE theory (Hirsch & Smale, 1974) one can conclude that 

the equation (21) leads to diag(Q(t)Q(t)T)=diag(Q(0)Q(0)T)=Ip for all t>0. 

   We can derive from the fundamantal theory (Gill, Murray, & Wright, 1981), 3.4. 

a first-order derivative necessary condition for stationary point identification.

Theorem 2.1 A necessary condition for QE=-O 3(p) to be a stationary point of the 

square ObPP is that : 
    • BTAQE=-S(p), i.e. BTAQ is a symmetric px p matrix. 

   • the off-diagonal elements of the matrix QTATAQ are equal to those of BTAQ . 
   Proof Obviously Q is a stationary point if and only if g(Q)=0. The assertion 

then follows from (16) since Q is of full rank and the fact that the symmetric and 

skew-symmetric parts of the projection (16) must zero independently. 0 

   The first condition in Theorem 2.1 is the well-known necessary condition for 

orthogonal Procrustes problem derived in (ten Berge, 1977), see also (Chu & 

Trendafilov, 1998). Our additional second condition is new and reflects the fact we 

deal with oblique rotations.

3. Oblique simple structure rotation in three-mode factor analysis 

   We start with a brief outline of the three-mode factor analysis model. Let Z 

 {zijk} E R l x m x n be a three-mode data matrix, for example, zijk denotes the observed 
score of the ith individual (i =1, 2, ..., 1) on the jth variable (j =1, 2, ..., m) under the 

kth condition (k =1, 2, ..., m). For fixed ko, we have a matrix composed by {zi;ko},



for (i =1, 2, ..., 1) and (j =1, 2, ..., m). It is called koth frontal slice. Similarly, are 

defined the ioth horizontal slice and the joth lateral slice. The three-mode factor 

analysis (Tucker, 1966) can be formulated as a method to seek for representation of 

the data matrix Z in a form :

      L M N 

zijk  c rgiah;RekY, 
        a=1R=1Y=1

(22)

where

    • G=f gia}(ER1XL H={hjf}E=-R" and E={ek7}E= R' IN are factor-loadings 
     matrices of the "idealized individuals", "idealized variables" and "idealized 

     conditions" respectively ; 
    • C={C'adY}ERLxMxN is a three-way array called "core" and its elements can be 

     seen as an interaction indicator of the three modes. 
   Also a matrix formulation of the three-mode factor analysis model (22) in terms 

of two-mode matrices has been proposed in (Tucker, 1966) :

Zc=GCG(HTOE T), (23)

where O denotes the Kronecker matrix product, ZGE=-R" and CGE=-R`xMN. The 

l x mn matrix Zc is a matrix composed by the frontal slices of the original data 

matrix Z arranged next to each other. Correspondingly, L X MN matrix Cc is 

formed by the frontal slices of the original core array C arranged next to each 

other. Equivalently we have :

ZH=HCH(ET OO GT ), (24)

ZE=ECE(GT(&HT), (25)

where ZHE=-Rmx1n, ZEE=-R'tx`m, CHE=RMxLN and CEE=RNxLM 

   In (Tucker, 1966) has been shown that the solution of the three-mode factor 

analysis is not unique. That is, the factor-loadings matrices G, H, and E can be 

transformed by any nonsingular matrix which can be compensated by the inverse 

transformation applied the core, i.e. :

Zc = GCc(HT OE T) = GCc(HT OET ), (26)

where G=GS-T, H=HT-T, E=EU-T and CG =STCc(TOO U). This freedom in 

three-mode factor analysis is commonly used to make factor-loadings matrices or/ 

and core array easier to interpret reflecting the factor analysis simple structure 

concept (Mulaik, 1972). All of the existing methods aim to transform either the 

factor-loadings matrices or the core array separately. However, when, say, the 

core is rotated to simple structure this may spoil the simplicity of the factor

loadings matrices and vice versa. 

   In order to avoid this problem (Kiers, 1997) suggested that oblique simple 

structure transformation (rotation) should be applied simultaneously on the factor

loadings matrices and the core array. Formally, it leads to solving the following 

equality constrained optimization problem :



Minimize a II AO  B II + 2 II X9-T  Y II (27)

Subject to QERp"p, diag (QTQ)=Ip (28)

where A, B, X and Y are given matrices and a and /3 are known weights. As it 

has been said in the beginning of the previous Section the matrices A, B, X and Y 

can be assumed p x p square without loss of generality. In this Section the problem 

(27)-(28) will be considered in details. Consider the function :

F(Q) :=Fi(Q)+F2(Q) 

     2 a<AQ-B, AQ-B>+ 2 /3<XQ-T  Y XQ-T  Y>.
(29)

   Apparently, the problem (27)-(28) is equivalent to the minimization of (29) on 

the feasible set 013 (p). The gradients of F1 (Q) and F2(Q) with respect to the 

Frobenius inner product are :

VF(Q)=aAT(AQ-B) (30)

and

V F2(Q)=  aQ-T(XQ-T  YTXQ-T (31)

correspondingly. 

   Then the projection g(Q) of VF(Q) onto the tangent space TQOL3(p) has the 

form :

T 

g(Q) = ` {off [2aQTATAQ-2/Q-'XTXQ-T 
     -a(QTATB+BTAQ)+ N( YTXQ-T +Q-1XT Y)] 

     +a(BAAQ QTATB)+j9( YTXQ-T -Q-1XT Y)}.

(32)

   Correspondingly, the solution of the problem (27)-(28) is given by an initial 

(Cauchy) value problem for the ordinary matrix differential equation

dQ =  Q T {off [2aQTATAQ-2 '3Q-IXTXQ-T dt 2 

    -a(QTATB+BTAQ)+/3( YTXQ-T+ Q-1XTY)] 

    + a(BTAQ  QTATB) +,3( YTXQ-T  Q-1XT 1,)} (33)

and some starting point for the flow. 

   We can derive from the fundamental theory (Gill, Murray, & Wright, 1981), 3.4. 

a first-order derivative necessary condition for stationary point identification.

Theorem 3.1 A necessary condition for QEQ,j3(p) to be a stationary point of the 

problem (27)-(28) is that : 
    • aBTAQ-/3Q 'XTYC-S(p), i.e. aBTAQ-/3Q-1XTY must be a symmetric px 

     p matrix ; 
    • the off-diagonal elements of the matrix aQTATAQ-/3Q-1XTXQ-T must be 

     equal to those of aBTAQ-/3Q-1XTY.



   Proof Obviously Q is a stationary point if and only if g(Q)=0. The assertion 
then follows from (32) since Q is of full rank and the fact that the symmetric and 
skew-symmetric parts of the projection (32) must zero independently. 0 

   In case a=1 and /3=0 we have precisely the necessary condition known from 
the previous Section. A necessary condition for factor-pattern Procrustes rotation 
can be obtained by simply chosing a=0 and /3=1. 

   Finally, at the end of this Section we outline how the projected gradient 
approach can be applied to the following more complicated oblique Procrustes 

problem :

Minimize a JJ AQC  B II + /3 II XQ-TZ  Y II (34)
Subject to QERp"p, diag (QTQ)=Ip (35)

   This is an oblique analog of the well-known weighted orthogonal Procrustes 

problem (known also as Penrose regression problem) (Mooijaart & Commandeur, 
1990 ; Koschat & Swayne, 1991 ; Kiers, 1990 ; Kiers & ten Berge, 1992 ; Chu & 

Trendafilov, 1998). Indeed, the problem of different weighting of the different 

dimensions

Minimize a l ~ (AQ  B)Dc II + /3 I1 (XQ-T  Y)Dz ll (36)
Subject to Q(-=Rp"p, diag (QTQ)=Ip (37)

for given nonnegative diagonal matrices Dc and Dz is special case of (34)-(35). 

   Consider the function :

F(Q) Fi(Q)+F2(Q) 

     I a<AQC  B, AQC  B> + 1 <XQ-TZ  Y, XQ-TZ  Y>. (38)

   Apparently, the problem (34)-(35) is equivalent to the minimization of (38) on 

the feasible set QB(p). The gradients of F1(Q) and F2(Q) with respect to the 

Frobenius inner product are :

OF1(Q)=aAT(AQC-B)CT (39)

and

VF2(Q)=-/9Q-TZ(XQ-TZ Y)TXQ-T (40)

correspondingly. 

   Repeating the formalizm described above we arrive at the following matrix 

ordinary differential equation:

dQ = Q-T {off [a(QTaQc+cQTaQ)-a(QTb+bTQ) d
t 2 

    +/9(YTQ-T +Q-ly)-/3(zQ-1xQ-T +Q-1xQ-T4)] 
    +a(QTaQc-cQTaQ)-a(QTb-bTQ) 

     +, (yT Q-T  Q-ly)  a(zQ-1xQ-T  Q-1xQ-Tz){, (41)

where a=ATA, c=CCT and b=ATBCT, and x=XTX, z=ZZT and y=XTYZT.



The flow, starting from some initial value, approximate the solution of (34)-(35).

Theorem 3.2 A necessary condition for Q Q f3 (p) to be a stationary point of the 

problem (34)-(35) is that

aQTAT(AQC-B)CT -/3Q-IXT(XQ-TZ_ Y)ZT (42)

must be symmetric p x p matrix. 

   Proof. Obviously Q is a stationary point if and only if g(Q)=0. The asser

tion then follows from (41) since Q is of full rank and the fact that the symmetric 

and skew-symmetric parts of the projection (41) must zero independently. In the 

present case they both give identical condition. 
   The first term in the necessary condition Theorem 3.2 coincides with the 

corresponding condition for the weighted orthogonal Procrustes problem derived in 

(Chu & Trendafilov, 1998). It is easy to check that if C and Z are dropped then we 
arrive at the result of Theorem 3.1.

4. Numerical experiment 

   In this section, we report some of our numerical experiments with the equation 

(33). The computation is carried out by MATLAB 4.2c on an SUN Ultra-2/200 
workstation. We choose to use odel5s from the MATLAB ODE SUITE (Shampine 

& Reichelt, 1997) as the integrator for the initial value problems. These codes are 

available from the network. The code odel5s is a quasi-constant step size imple

mentation of the Klopfenstein-Shampine family of the numerical differential for

mulas (implicit) for stiff systems. More details of these codes can be found in the 

document (Shampine & Reichelt, 1997). 

   In our experiments, the tolerance for both absolute error and relative error is 

set at 10-12. This criterion is used to control the accuracy in following the solution 

path. The high accuracy we required here has little to do with the dynamics of the 
underlying vector field, and perhaps is not needed for practical applications in data 

analysis. It is used only for illustration to accurately follow the flow. Lower 

accuracy requirement in the calculation certainly can save some CPU time, but not 

significantly since our calculation is fast already. The output values at time 

interval of 10 are examined. The integration terminates automatically when the 

relative improvement of F(Q) between two consecutive output points is less than 

10-10, indicating local minimizer has been found. This stopping criterion can be 

modified if desires to do so. 

   We should make one more comment concerning the implementation. Note 

that in theory the flows defined by (33) should automatically stay on the manifold 

Qz3(p). In numerical calculation, however, round-off errors and truncations errors 
can easily throw the computed Q(t) off the constraint manifold. This can be 

remedied by replacing Q(t) by the closest oblique rotation in least squares sense



(Section 2 and 3), or simply by

Q(t) =Q(t)diag(diag(Q(t)'Q(t))-1/2). (43)

   We have experimented with many tests where the problem data are generated 

randomly. Because of the global convergence property of our method, all tests 

have similar dynamical behavior. So as to fit the data comfortably in the running 

text, we display all numbers only with five digits. All codes used in this experiment 

are available upon request. 

   The simulation is organized as follows. We assume a=1 and 3=1. We 

generate uniformly distributed matrices A and X by rand(p) and a matrix Q by 
rand(p). After rescaling Q as in (43) it becomes an oblique rotation and we denote 

it by Q,n. Then we define B=AQ;n and Y=AQ,nT so that the underlying problem 

has a global solution at Q,n. We form initial value for the flow by adding random 

matrix Qo to Qin and rescaling the perturbed matrix Qo, i.e. :

Qo :=Q;n+ Qo ; Qo :=Qo diag(diag(QoQo)-111); (44)

and thus Qo is the oblique initial value for the particular problem. We use random 

matrices with uniformly distributed elements and normally distributed elements 

with mean 0 and variance 1. The idea of the experiment is to find out how 

frequently the method proposed is capable to reconstruct Q,n starting with random 

initial Qo. 

   Firstly, we report 100 numerical solutions of the problem (27)-(28) obtained by 

solving the equation (33). The results presented here are for p=3, and 100 pertur

bations Qo. For Qo generated by rand, the results obtained are as follows: in 62 

cases a perfect reconstruction of Q,n is found ; in 21-the solution deviates consider

ably from Q,n ; in the rest 17 cases no solution is produced for certain CPU time. 

Total number of flops for all 100 runs is 389464278. For Qo generated by randn, the 

results obtained are : in 41 cases a perfect reconstruction of Q,n is found ; in 34-the 

solution deviates considerably from Q1,; in the rest 25 cases no solution is produced 

for certain CPU time. Total number of flops for all 100 runs is 488098461. The 

difference is easily understandable. It is caused by the fact that the random 

perturbations generated by randn produce initial values Qo more deviating from the 
supposed global solution Qin than those ones generated by rand. 

   Secondly, we give in details a numerical solution of the problem (27)-(28) based 

on the equation (33) for p=4. The following example represent a typical run 

although the length it takes to reach convergence may vary from data to data. 

Consider the case where we generate by rand :

   0.9772 0.7433 0.9397 0.1238 

   0.4677 0.2053 0.9649 0.5263 A_ 
0.3291 0.1714 0.2550 0.1601 ' 

   0.4459 0.3725 0.0703 0.5177



    0.1052 0.3272 0.7582 0.9352 

    0.8416 0.7135 0.8366 0.6056 X 

0.3686 0.5768 0.6998 0.3621 ' 

    0.4239 0.8719 0.3891 0.5395

and

    0.6914 0.5987 0.1819 0.7349 

    0.6103 0.6708 0.6741 0.2074 Q
in _ 0

.3653 0.4115 0.4433 0.6055 

    0.1262 0.1491 0.5621 0.2244

Then we compute

   1.4883 1.4888 1.1650 1.4690 

 _ 0.8677 0.8933 0.9471 1.0886 B 
0.4455 0.4407 0.3784 0.4676 

   0.6267 0.6230 0.6544 0.5637

and

    -0 .5783  0.9428 1.6231 1.0536 

     0.5573  0.4456 0.7519 0.7978 
Y_  2

.8275 3.0091 0.2193 0.6562 

     1.7693 -1.2351 1.0236 -0.3351

After perturbing Q,,, we start from the following oblique matrix :

    0.6022 0.5565 0.3625 0.6241 

    0.5645 0.5898 0.5889 0.3786 Q
° _ 0.4508 0.4700 0.4827 0.5638 

    0.3398 0.3488 0.5374 0.3865

and we find that the flow Q(t) converges to the oblique matrix

     0.6914 0.5987 0.1819 0.7349 

     0.6103 0.6708 0.6741 0.2074 Q
°ut 0.3653 0.4115 0.4433 0.6055 

     0.1262 0.1491 0.5621 0.2244

   Figure 1 records the history of the changes of the objective value F(Q(t))= 
a 1~ AQ(t)  B 11+,3 II XQ(t)-T  Y II where Q(t) is determined by integrating the 
differential equation (33). Clearly, the global solution is obtained in this case, i.e. 
the input value Q;,, is reconstructed completely (QOllt). It is easy to check that Q°ut 
fulfills the Theorem 3.1. 

   Also recorded in Figure 1 is the history of the function

Q(Q(t)) :=11 Ip-diag(Q(t)TQ(t)) 11 (45)



that measures the deviation of Q(t) from the manifold of constraint 013(p). It is 

seen that Q(t) is well kept within the local tolerance. 

   The author thank the anonymous reviewers for the observations and construc

tive suggestions which help me better to reconstruct the paper and make precise 

stress on the important issues in the text.

Fig. 1 A semi-log plot of F(Q(t)) and Q(Q(t)) with global minimizer
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