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Abstract 24 

Genetic analyses based on non-invasively collected samples have become an important tool for 25 

evolutionary biology and conservation. Crested macaques (Macaca nigra), endemic to 26 

Sulawesi, Indonesia, are important for our understanding of primate evolution as Sulawesi 27 

macaques represent an exceptional example of primate adaptive radiation. Crested macaques 28 

are also Critically Endangered. However, to date we know very little about their genetics. The 29 

aim of our study was to find and validate microsatellite markers useful for evolutionary, 30 

conservation and other genetic studies on wild crested macaques. Using faecal samples of 176 31 

wild macaques living in the Tangkoko Reserve, Sulawesi, we identified 12 polymorphic 32 

microsatellite loci through cross-species PCR amplification with later modification of some of 33 

these primers. We tested their suitability by investigating and exploring patterns of paternity, 34 

observed heterozygosity and evidence for inbreeding. We assigned paternity to 63 of 65 infants 35 

with high confidence. Among cases with solved paternity, we found no evidence of extra-group 36 

paternity and natal breeding. We found a relatively steep male reproductive skew B index of 37 

0.330±0.267; mean±SD) and mean alpha paternity of 65% per year with large variation across 38 

groups and years (29-100%). Finally, we detected an excess in observed heterozygosity and no 39 

evidence of inbreeding across our three study groups, with an observed heterozygosity of 40 

0.766±0.059 and expected heterozygosity of 0.708±0.059, and an inbreeding coefficient of -41 

0.082±0.035. Our results indicate that the selected markers are useful for genetic studies on 42 

wild crested macaques, and possible also other Sulawesi and closely related macaques. They 43 

further suggest that the Tangkoko population of crested macaques is still genetically variable 44 

despite its small size, isolation and the species’ reproductive patterns. This gives us hope that 45 

other endangered primate species living in small, isolated populations may also retain a healthy 46 

gene pool, at least in the short term. 47 

 48 
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 52 

Introduction 53 

The development of genetic analyses has revolutionized various fields in the medical and life 54 

sciences. More recently, genetic analyses based on naturally dropped animal waste such as fur, 55 

feathers and faeces have created new opportunities for studies of wildlife under natural 56 

conditions, particularly endangered and/or elusive species, and other species in which capturing 57 

constitutes an ethical problem (e.g. Waits & Paetkau 2005). Potential applications of genetic 58 

analyses for field studies include examining the occurrence, distribution and history of species 59 

(e.g. Hewitt 2000; Leonard 2008; Ram et al. 2015), investigating taxonomic relationships and 60 

speciation (e.g. Tosi et al. 2004), assessing hybridization (e.g. Roos et al. 2011; Charpentier et 61 

al. 2012; Godinho et al. 2015), determining the level of heterozygosity, gene flow and the risk 62 

of inbreeding depression of isolated populations (Luikart et al. 1998; Nürnberg et al. 1998; 63 

Widdig et al. 2004; Knief et al. 2015; Ram et al. 2015; Widdig et al. 2017), monitoring 64 

population developments and movements (e.g. Nowak et al. 2014), identifying species (Harms 65 

et al. 2015), and studying reproductive patterns (Widdig et al. 2004; Engelhardt et al. 2006; 66 

Syrůčková et al. 2015) and kin relationships in groups and populations (e.g. van Horn et al. 67 

2008; Montague et al. 2014). Hence, studies of evolutionary biology, biogeography and 68 

behavioural ecology greatly benefit from the availability of genetic analyses based on non-69 

invasively collected samples, as does conservation management (Schwartz et al. 2007). The 70 

genetic markers used in such studies often need to be specified for the species in question, 71 

although the same markers can be used for closely related species.  72 



Genetic markers are not yet available but would be very important for the Sulawesi macaques. 73 

The seven species of macaques on the island of Sulawesi (Macaca brunnescens, M. hecki, M. 74 

maurus, M. nigra, M. nigrescens, M. ochreata, M. tonkeana), the main island of the Wallacea 75 

biodiversity hotspot, are an important group for our understanding of primate evolution. 76 

Endemic to the island, they are a prominent example of primate adaptive radiation and 77 

speciation in relation to the processes of geological change and colonization of new areas 78 

(Groves et al. 1980). All seven species live in different habitats with only narrow overlapping 79 

contact zones, in which interbreeding occurs (Fooden 1982; Evans et al. 2003). Furthermore, 80 

Sulawesi macaques are the only macaques classified as extremely socially tolerant with high 81 

conciliatory tendencies and low degrees of power asymmetries (Thierry et al. 2000; Thierry 82 

2004). Few studies have investigated Sulawesi macaques in the wild because their habitat is 83 

very difficult to access. However, the rainforests of Sulawesi are now more accessible, and the 84 

infrastructure on Sulawesi has improved, facilitating studies of Sulawesi wildlife. However, 85 

with these developments, the natural habitat of the macaques is shrinking and fragmented, and 86 

heavily exploited by humans. As a result, all seven Sulawesi macaques are in danger of 87 

extinction to various degrees (IUCN 2016). Given the precarious situation and geographic 88 

isolation of Sulawesi macaques, genetic studies on these species are important not only for our 89 

understanding of primate evolution (Evans et al. 1999, 2003), but also for their conservation 90 

management. 91 

Crested macaques, M. nigra, are only found on the northern tip of Sulawesi. Habitat degradation 92 

and bushmeat hunting have brought this species to the edge of extinction, with the largest 93 

remaining population of less than 2000 animals seemingly occurring in Tangkoko Reserve 94 

(Palacios et al. 2012; Melfi 2010). There are at least two reasons why we need genetic studies 95 

of crested macaques. First, crested macaques are of particular interest for better understanding 96 

primate evolution since the species possesses features not found in any of the other Sulawesi 97 

macaques. For example, other Sulawesi macaques live in groups of up to 40 animals, while 98 



crested macaques live in large groups sometimes containing over 100 individuals (Riley 2010; 99 

Marty et al. 2015). Despite the large group size, crested macaques seem to be an extreme case 100 

in terms of male-male reproductive competition with males fighting fiercely for dominance 101 

(Marty 2015) and dominant males able to monopolize matings with fertile females (Engelhardt 102 

et al. in revision). The male hierarchy, particularly the first three ranks, is so important that it is 103 

clearly signalled in the occurrence and structure of loud calls (Neumann et al. 2010). Based on 104 

these observations, we can expect male reproductive skew in favour of dominant males as 105 

observed in other primates (reviewed in Widdig 2013), meaning that many infants sired during 106 

a male’s tenure will share paternal genes. At the same time, the male hierarchy in crested 107 

macaques is highly dynamic (Neumann et al. 2011), with high takeover rates resulting in a mean 108 

alpha tenure of only 12 months (Marty et al. 2015), so infants born in different years often have 109 

different fathers. However, the genetic consequences of male reproductive strategies at the 110 

population level remain unclear as no study has investigated male reproduction in crested 111 

macaques using genetic data. High reproductive skew may result in lower genetic variation as 112 

only few, top-ranking males pass on their genes to the next generation; however, the high 113 

takeover rate in alpha male position may counteract the effect of reproductive monopolisation 114 

and contribute to the maintenance of genetic variation in the population.  115 

The second reasons why we need genetic studies of crested macaques is that they are the most 116 

threatened Sulawesi macaques, and are Critically Endangered (IUCN 2016). Genetic studies of 117 

crested macaques are limited to mitochondrial and autosomal DNA phylogeny (Evans et al. 118 

1999, 2003). The degree of gene flow and the risk of inbreeding depression remain unclear for 119 

the remaining populations of crested macaques. Furthermore, many animals, rescued from 120 

illegal captivity and currently held in sanctuaries, await release into the wild. We cannot 121 

determine the genetic value of these individuals for wild populations until genetic evaluations 122 

are feasible. It is important to detect hybrids amongst these rescued individuals to avoid 123 

releasing them into hybrid-free populations. Finally, we need to understand the genetic variation 124 



in the largest population remaining in its natural distribution range, Tangkoko. This information 125 

is highly relevant to conservation management. However, we still lack genetic markers useful 126 

for such analyses in crested macaques.  127 

The first aim of this study was to identify highly polymorphic microsatellite (short tandem 128 

repeats or STR) markers for reliable genotyping in crested macaques. Testing primers originally 129 

designed for other, usually closely related species (cross-species amplification) is often the 130 

cheapest and fastest way to define a set of useful markers. Our second aim was to test the 131 

suitability of the selected markers. To do this, we determined maker polymorphism and checked 132 

for Hardy-Weinberg equilibrium and Mendelian inheritance between known mother-offspring 133 

pairs. Our third aim was to assign paternity to the Tangkoko animals and determine the degree 134 

of male reproductive skew (using the B index, Nonacs 2000, 2003) which we predicted to be 135 

high based on the observed mating skew (Engelhardt et al. in revision). We predicted a low 136 

degree of extra-group paternities and natal breeding, given that a few males monopolize all 137 

receptive females. As a final aim, we investigated whether this isolated population shows signs 138 

of loss of heterozygosity by comparing observed and expected heterozygosity, as well as 139 

evaluated estimates of inbreeding in this fragmented population. 140 

 141 

Methods 142 

Study population 143 

We studied crested macaques at Tangkoko Reserve (1N 32’39’’, 125E 12’42’’), North 144 

Sulawesi, Indonesia. A recent study in the reserve estimated the population size to be less than 145 

2000 individuals (Palacios et al. 2012). Tangkoko Reserve borders another nature reserve, 146 

Duasudara Reserve, but is disconnected from all other forested areas in North Sulawesi. The 147 

number of crested macaques currently living in Duasudara Reserve is unknown, but preliminary 148 



data suggest it to be very low (Palacios et al. 2012). However, there may be some genetic 149 

exchange between individuals in the two reserves.  150 

As in other macaque species, female crested macaques stay in their natal groups for life, forming 151 

matrilines, while males emigrate from their natal group. Males are fully grown when they 152 

emigrate and frequently challenge alpha males in another group when immigrating (Marty et 153 

al. 2015).  Although females give birth year-round, they are moderately seasonal (Marty et al. 154 

2016) with an inter-birth interval of about 22 months (Marty et al. 2015).  155 

The Macaca Nigra Project observes three groups (R1, R2, PB) almost daily (R1 and R2 since 156 

2006 and PB since 2008 until present) collecting behavioural data including aggressive 157 

interactions and their outcomes through focal animal and ad libitum sampling (Altmann 1974). 158 

We also recorded births, deaths, and migration events. All adult individuals and sampled infants 159 

were individually recognised. During our study period, the home range of group R1 overlapped 160 

with that of R2 and PB. All three groups also overlapped with other, non-study groups. We 161 

individually recognised all adult individuals of the three groups as well as infants used for 162 

paternity analysis in this study. Group size ranged between 36 and >100 individuals across 163 

years.  164 

We used the David’s score (de Vries et al. 2006) to assess dominance rank on a matrix of 165 

proportions of wins calculated for each male-male dyad. We calculated David scores using the 166 

package “Steepness” (Leiva&de Vries 2011) in R (RTeam 2009). We used either hormonal 167 

data or data of sex skin swelling size to assess conception windows (for details see Higham et 168 

al. 2012). In addition, we combined demographic and hierarchy data to compute annual alpha 169 

tenure (A. Engelhardt, C. Neumann, P. Marty unpublished data). 170 

 171 

Sample collection 172 



We collected non-invasive faecal samples immediately after defecation from 176 individually 173 

recognized animals from all three groups from 2006 onwards. We collected up to three samples 174 

for each individual. Following the two-step alcohol-silica storage protocol (Nsubuga et al. 175 

2004), we placed 1-2 g from the surface of fresh faeces into a 50 ml plastic tube filled with 30 176 

ml of 99% ethanol for at least 24 hrs. Subsequently, we placed the sample in another tube filled 177 

with 30 ml of silica beads and stored it at room temperature until extraction. In a few cases, we 178 

collected ejaculates from males, which we stored in 98% ethanol at room temperature until 179 

extraction. We considered any adult males present or immigrating into our study groups during 180 

our study period as potential sires. We defined adult males as larger than fully grown females, 181 

with fully erupted canines and completely descended testes. We obtained DNA samples for 54 182 

of 56 potential sires (96%), including all adult males present in one of the three study groups 183 

since 2006. For one male, however, we only obtained one sample and the DNA obtained was 184 

of such low quality that it amplified successfully at only nine loci.  185 

We also obtained faecal and blood samples during regular health checks of seven crested 186 

macaques (one of each per individual) from Dublin Zoo.  187 

 188 

DNA extraction 189 

We extracted DNA from 100-150 mg of faeces with the GEN-IAL® all-tissue DNA extraction 190 

kit following the manufacturer’s instructions with the exception that we eluted DNA in distilled 191 

water.  192 

 193 

Identification of polymorphic markers  194 

a: Testing potential markers via cross-species amplification 195 

We tested 39 microsatellite loci previously described to be polymorphic in rhesus (M. mulatta), 196 

long-tailed (M. fascicularis) and Barbary (M. sylvanus) macaques (Nürnberg et al. 1998; 197 

Engelhardt et al. 2006; Brauch et al. 2008; Widdig et al. 2017) for allele amplification and 198 



polymorphism with a set of nine different PCR conditions to increase the chances of successful 199 

cross-species amplification (cf. Moore et al. 1991) in crested macaques. For this, we combined 200 

three different magnesium salt concentrations (1.5 mM, 2.0 mM, 2.5 mM) with three different 201 

annealing temperatures (56, 58 and 60 °C or 51, 53 and 55 °C, depending on primer pair). In 202 

this step, we used a high quality pooled DNA sample (from blood) from the seven Dublin Zoo 203 

individuals. When we obtained a readable product for a primer pair, we selected the condition 204 

that yielded the highest concentration of the specific product and fewer stutters for individual 205 

genotyping and polymorphism check. We included the matching faecal and blood samples from 206 

the seven Dublin crested macaques to confirm that genotypes obtained from faecal samples 207 

matched those from blood samples. Finally, we tested Mendelian inheritance by individually 208 

amplifying DNAs from known mother-offspring pairs. 209 

 210 

b: Genotyping and determination of alleles 211 

To genotype the 176 subjects, we used a two-step multiplex polymerase chain reaction (PCR) 212 

approach (modified from Arandjelovic et al. 2009). First, we amplified all loci in a multiplex 213 

approach using 4 μL of DNA extract (diluted 1:50 or 1:100), of 0.2 μL H20, 2 μL 10x Master 214 

Taq Buffer with Mg2+ (5PRIME®, 500 mM KCl, 100 mM Tris-HCl pH 8.3, 15 mM 215 

Mg(OAc)2), 2 µl 5x TaqMaster PCR Enhancer (5PRIME®), 0.8 μL dNTPs (10 mM), 1.2 μL 216 

MgCl (25 mM), 0.4 μL (10 pmol) of 12 unlabelled forward and reverse primers, respectively, 217 

and 0.2 μL 5PRIME® Taq DNA Polymerase (5 U/μL, Enzyme storage Buffer: 20 mM Tris⋅HCl 218 

pH 8.0, 100 mM KCl, 0.1 mM EDTA, 1 mM DTT, 50% glycerol, 0.5% Tween®20, 0.5% 219 

Igepal®CA-630) in an Eppendorf® Master Cycler Gradient. We started with 2 min of 220 

denaturation at 94 ˚C, then ran 30 cycles of 20 sec denaturation at 94 ˚C, 30 sec of annealing at 221 

54 ˚C, 30 sec of elongation at 70 ˚C and ended with 10 min of final elongation at 70 ˚C. 222 

Following the multiplex approach, we ran singleplex PCRs to amplify one locus at a time using 223 

a similar protocol with specific annealing temperatures per primer pair (Table 1). Specifically, 224 



we amplified 1 μL of multiplex PCR  with 13.7 μL H20, 2 μL 10x Master Taq Buffer with 225 

Mg2+ (5PRIME®, 500 mM KCl,100 mM 206 Tris-HCl pH 8.3, 15 mM Mg(OAc)2), 0.5 μl 5x 226 

TaqMaster PCR Enhancer (5PRIME®), 0.8 μL dNTPs (10 mM), 0.8 μL MgCl (25 mM), 0.5 227 

μL (10 pmol) of each primer labelled (HEX or FAM) forward and unlabelled reverse, and 0.2 228 

μL 5PRIME® Taq DNA Polymerase (5U/μL, Enzyme storage Buffer: 20 mM Tris⋅HCl pH 8.0, 229 

100 mM KCl, 0.1 mM EDTA, 1 mM DTT, 50% Glycerol, 0.5% Tween®20, 0.5% Igepal®CA-230 

630). We prepared singleplex PCR products for analysis by diluting PCR products between 231 

1:25 and 1:500, and mixing 1.5 μL of diluted product into 14 μL of Hi-Di Formamide buffer 232 

mixed with a size standard (HD400 from Applied Biosystems®). Finally, we ran amplicons on 233 

an ABI 3130xL sequencer and determined allele sizes with PeakScanner (Applied 234 

Biosystems®). 235 

We analysed the samples in two laboratories (German Primate Center and Max-Planck Institute 236 

for Evolutionary Anthropology), with the identical protocols and equipment. We compared five 237 

individuals genotyped in both laboratories on the 12 markers and found genotype inconsistency 238 

in 2 of the 118 alleles, giving an error rate of 0.016.  239 

 240 

c: Modification of markers 241 

Many of the tested primer pairs produced unspecific products, typically detected as three or 242 

more differently sized amplicons resulting from the simultaneous amplification of two or more 243 

loci (Smith et al. 2000). Since only 7 markers repeatedly produced up to two alleles per 244 

individual, we modified specific primers for crested macaques for the other five identified 245 

markers (Table 1). For this, we located sequences closer to the repetitive sequence than the 246 

respective original primers. We then generated ligation of PCR products of the specific 247 

microsatellites into plasmid vector pCR®2.1-TOPO® with the TOPO TA Cloning®Kit 248 

(INVITROGEN, Carlsbad, USA) followed by colony hybridisation as described in Takenaka 249 

et al. (1993). We isolated plasmids containing the specific repeats from E. coli using the 250 



QIAprep Spin Miniprep Kit (Qiagen). Next, we conducted fluorescent sequencing with the 251 

Autocycle Sequence Kit Big Dye in the ABI Prism 3100 sequencer (Applied Biosystems, Foster 252 

City, USA). Finally, we synthesised the selected primer sequences with Thermo Hybaid, Ulm, 253 

Germany (Table 1). There may be further additional suitable markers among those we tested, 254 

particularly if they are optimised for the species.  255 

 256 

d: Final marker selection  257 

We selected the 12 best markers using the following criteria: 1) we preferred markers with tetra-258 

repeats over di-repeats, 2) amplification success at least 50%, 3) markers that were polymorphic 259 

with at least 3 alleles) and 4) markers with reliable allele size scoring (no or few 260 

stutters/multiple peaks). As faecal samples contain only a small amount of DNA and a high 261 

level of allelic dropouts (Bayes et al. 2000), we genotyped three independent faecal samples for 262 

each individual if available. Based on previous studies (Engelhardt et al. 2006; Brauch et al. 263 

2008), we accepted a heterozygous genotype only if two different samples of the same 264 

individual showed the same result in at least four amplifications; likewise, we accepted a 265 

homozygous genotype if it was consistent in at least six amplifications (Taberlet et al. 1996). If 266 

we identified a third allele during analysis, we doubled the number of amplifications.   267 

 268 

Testing the suitability of selected markers 269 

a: Polymorphic information content and Hardy-Weinberg equilibrium 270 

To investigate the suitability of our markers, we first calculated the polymorphic information 271 

content (PIC), an estimate of the discriminating power of markers (ranging from 0-1, from no 272 

allelic variation to only new alleles) (Botstein et al. 1980). We also tested markers for deviation 273 

from Hardy-Weinberg equilibrium (HWE). We considered that deviation from the HWE would 274 

indicate genotyping problems, such as segregating null alleles or incorrectly distinguished 275 

alleles. 276 



 277 

b: Assessment of Mendelian inheritance  278 

We investigated whether behavioural mothers (known from behavioural observations, i.e. 279 

association and nursing) were also the genetic mothers by testing Mendelian inheritance for 65 280 

mother-offspring pairs through genotype matching using the 12 best markers (including the 5 281 

specifically designed for crested macaques). 282 

 283 

Investigating paternity distribution 284 

a: Paternity determination 285 

We used the 65 mother-offspring pairs in paternity analysis. Our paternity dataset included all 286 

offspring born into the three groups between 2006 and 2011 that we could sample. Following 287 

a conservative approach, we assigned paternity only when exclusion and likelihood calculations 288 

revealed the same father (cf. Widdig et al. 2017). In our exclusion method, we assigned 289 

paternity to the male who had no mismatches with a given mother-offspring pair across all loci 290 

while all other potential sires mismatched the offspring at two or more loci (strict exclusion). 291 

We also assigned paternity to the male with no mismatches with a given mother-offspring pair 292 

across all loci while one or more males mismatched the offspring at one locus only (relaxed 293 

exclusion). We used the program FINDSIRE (https://www.uni-kiel.de/medinfo/ 294 

mitarbeiter/krawczak/download/) to establish paternity exclusion. We used the same set of 295 

males (i.e., all potential sires) to calculate likelihood-odds (LOD) scores and confidence levels 296 

and confirm sires using likelihood analyses in CERVUS 3.0. We used the following parameters 297 

in CERVUS: simulated offspring: 100; number of candidate fathers: 56; proportion of candidate 298 

fathers sampled: 0.96; proportion of loci typed: 0.99; proportion of loci mistyped: 0.01; 299 

minimum number of typed loci: 10. To assess the proportion of extra-group paternities, we 300 

checked whether the assigned sire was a member of the infant’s birth group at the time of 301 

infant’s conception using demographic and hormonal data (A. Engelhardt, unpublished data). 302 

https://www.uni-kiel.de/medinfo/%20mitarbeiter/krawczak/download/
https://www.uni-kiel.de/medinfo/%20mitarbeiter/krawczak/download/


Given the delay in natal dispersal, we also investigated whether the assigned sire was natal to 303 

the birth group of the infant to detect cases of natal breeding using demographic data (A. 304 

Engelhardt, unpublished data). 305 

 306 

b: Degree of male reproductive skew 307 

We determined the degree of male reproductive skew using Nonacs’ B Index (Nonacs 2000, 308 

2003) with Skew Calculator 2003 (http://www.eeb.ucla.edu/Faculty/Nonacs/PI.htm). Positive 309 

values of the B index suggest that the skew is higher than expected, while negative values 310 

suggest that reproduction is more equally distributed than expected (Kutsukake & Nunn 2006). 311 

Furthermore, an index close to 0 indicates a random distribution of paternities across potential 312 

sires, whereas values close to 1 suggest a high monopolization of reproduction by a single male. 313 

The advantage of the B index is that it can incorporate the total number of days adult males 314 

spent in a given group per year. We included information on group membership in the skew 315 

calculation based on demographic data. The program also computes 95% confidence intervals 316 

(CI) with the width of the confidence interval revealing the precision of the estimates. If the CI 317 

includes zero, then the distribution of paternity among group males is not significantly different 318 

from random.   319 

As our sampling effort was not consistent across the study period, the skew analysis includes 320 

only years and groups in which we sampled at least 45% of offspring born 321 

(mean±SD=66.8%+28.6%). Therefore, we restricted the skew analysis to offspring born 322 

between 2007 and 2009 in R1 and R2 and born in 2009 in PB, giving 51 offspring with solved 323 

paternity. Although crested macaques are only moderately seasonal, we calculated the annual 324 

skew per group and year. Ideally, we should determine the degree of skew in successful 325 

conceptions during each alpha tenure, however, the number of offspring conceived per alpha 326 

tenure was low due to the typically short tenure (mean 12 months; see Marty et al. 2015).  327 

 328 



Assessing genetic variation and inbreeding 329 

For each of the selected markers, we computed standard population genetic parameters of 330 

genetic variation within a population. First, we calculated the expected heterozygosity (He), 331 

defined as the probability that an individual in a population is heterozygous at a given locus. 332 

Second, we determined the observed heterozygosity (Ho) by counting the frequency of 333 

heterozygous individuals per locus. If the observed heterozygosity is lower than expected, this 334 

indicates inbreeding, while a higher than expected heterozygosity suggests a mixture of two 335 

previously isolated populations (Hartl & Clark 1997). Furthermore, we determined inbreeding 336 

coefficients (FIS), where positive values indicate a deficit of heterozygosity (i.e., inbreeding) 337 

while negative values indicate an excess of heterozygosity (Hedrick 2000). We conducted all 338 

calculations (including PIC and HWE) in CERVUS 3.0 (Kalinowski et al. 2007) except the 339 

Wright F statistics (FIS), which we computed in FSTAT (version 2.9.3.) (Goudet 2001). 340 

 341 

Ethical note 342 

Research complied with protocols approved by the Indonesian Institute for Science and 343 

Technology (RISTEK) and the Indonesian Ministry of Forestry (PHKA) and adhered to the 344 

legal requirements of Indonesia and Germany. We received permits to collect samples and 345 

export DNA extracts from the Indonesian Ministry of Forestry. Furthermore, we carried out our 346 

research in compliance with the animal care regulations and the principles of the American 347 

Society of Primatologists and the German Primate Center for the ethical treatment of non-348 

human primates. We collected faecal samples from wild and captive individuals non-invasively 349 

after the animals left the site without disturbing, threatening or harming them in their natural 350 

behaviour, and obtained blood samples as part of the regular health check. 351 

 352 

Results 353 



Identification of polymorphic markers  354 

Overall, 31 % (12/39) of the markers we tested were suitable for investigating the crested 355 

macaque population at Tangkoko. These included 10 tetra-nucleotide and 2 di-nucleotide loci 356 

(Table 1) with 4-9 alleles per locus (Table 2). We typed 176 individuals at 12±0.3 (mean±SD) 357 

loci (Table 2).  358 

 359 

Testing the suitability of selected markers 360 

a: Polymorphic information content and Hardy-Weinberg equilibrium 361 

The PIC ranged 0.538 - 0.790 with a mean of 0.658±0.075 (mean±SD) (Table 2) suggesting 362 

our markers had high discriminating power. We detected no significant deviation from Hardy-363 

Weinberg or evidence of null alleles (Table 1).  364 

 365 

b: Mendelian inheritance 366 

We confirmed all 65 maternities (assigned by behavioural observations) through genotype 367 

matching (65 pairs * 10-12 loci) with one mismatch in one mother-offspring pair. 368 

 369 

Investigating paternity distribution 370 

a: Paternity determination 371 

Our dataset included 65 offspring for which we could solve 63 paternities (97%). In 40 cases, 372 

we excluded all males on at least two loci, except for the assigned sire, who matched the 373 

offspring-mother pair at all loci (strict exclusion). In 14 cases, the assigned sire had no 374 

mismatch with the respective mother-offspring pair, but we excluded the next candidate sire at 375 

only one locus (relaxed exclusion). In 8 further cases, the assigned sire had one mismatch with 376 

the given infant, while the next likely sires had at least two mismatches (best match). In one 377 

case, two males matched the infant-mother pair at all loci (tie) and both males were also present 378 



in the group around the conception of the infant. In this case, we accepted the male assigned by 379 

CERVUS (Kalinowski et al. 2007) as the sire. In all cases, CERVUS supported the sires 380 

assigned based on exclusion rules (95% confidence level, see Supplement for an overview of 381 

genotypes and trios). In the remaining two cases, we did not assign paternity because the 382 

exclusion and likelihood approach did not reveal the same father. We found no evidence of 383 

extra-group paternity or natal breeding in the solved paternity cases.  384 

 385 

b: Degree of male reproductive skew 386 

Although 18 males sired the 63 infants investigated, the mean male reproductive skew per group 387 

and year as assessed by the B index was relatively high (mean±SD: 0.330±0.267, range: 0.021 388 

to 0.672). The B index was significantly different from a random distribution across groups and 389 

years (e.g., very high for all years in group R2), except for two of three years in group R1 (Table 390 

3). A posteriori analysis showed that the sex ratio (m/f) was negatively related to the B index; 391 

a female biased sex ratio significantly increased the B index (Spearman rho=-0.857, N=7, 392 

p=0.014) (Table 3). Finally, the mean proportion of alpha paternity was 65% per year with high 393 

variation across groups (29-100%).  394 

  395 

Assessing genetic variation and inbreeding 396 

The observed heterozygosity (Ho) ranged from 0.665 to 0.856, and expected heterozygosity 397 

(He) from 0.613 to 0.818 (Table 2). The mean observed heterozygosity 398 

(mean±SD=0.766±0.059) was greater than the mean expected heterozygosity 399 

(mean±SD=0.708±0.059) (Table 2) suggesting no risk of inbreeding at this point in time in our 400 

study groups (see Hartl & Clark, 1997, for comparison). In other words, while we expected 401 

around 70% of individuals to be heterozygous at a given locus under random mating conditions, 402 

on average approximately 76% of individuals were heterozygous. Similarly, the mean FIS 403 

across the three groups was -0.082±0.035 (mean±SD) with FIS consistently below zero for all 404 



12 polymorphic loci, indicating an excess of observed heterozygosity (see Hedrick, 2000, for 405 

comparison). In other words, individuals were less related than expected under random mating. 406 

Finally, we found no major differences between groups in terms of number of alleles per locus 407 

and degree of heterozygosity (Table 2), suggesting comparable estimates of genetic variability 408 

despite different group size, degree of skew and duration of alpha tenure.  409 

 410 

Discussion 411 

Our results show that the 12 selected microsatellite markers provide reliable information on 412 

individual genotypes in crested macaques and are useful for various applications in field studies 413 

on this species. Specifically, they provided high confidence in paternity assignment, a relatively 414 

high level of polymorphic information content and genetic variation (assessed by 415 

heterozygosity and inbreeding coefficients) and a high accuracy of allele characterization (i.e., 416 

low occurrence or absence of mutations). Furthermore, they mainly comprise tetra-nucleotide 417 

repeats, which are usually easier to analyse and thus enhance the reliability of genotyping. 418 

Altogether, the selected markers fulfil important genetic and technical criteria that are critical 419 

for the precision and efficacy of high-throughput genotyping (Butler et al. 2001). 420 

We report highly polymorphic markers in Sulawesi macaques. Although we used primers 421 

formerly applied to other macaque species, several markers did not generate satisfying PCR 422 

products. We thus modified specific primers for crested macaques that produced much more 423 

reliable amplification results. However, given that Sulawesi macaques split from their common 424 

ancestor with southern pig-tailed macaques from Borneo (M. nemestrina) only in the early to 425 

middle Pleistocene (Fooden 1969; Evans et al. 1999), most, if not all, of the loci used in this 426 

study are likely informative in the other Sulawesi macaque species too. With the validated 427 

markers and improved primers, we thus provide an important tool for conservation management 428 

to assess gene flow, heterozygosity and inbreeding depression of small and/or isolated 429 



populations across the whole island. Furthermore, with this set of markers, we will be able to 430 

conduct more detailed studies of population genetics, sexual selection, behaviour and 431 

sociobiology, including parentage data. We encourage the application of the selected markers 432 

to other Sulawesi macaque species.  433 

We assigned paternity to 97% of offspring sampled with 95% confidence, demonstrating the 434 

high analytical power of the marker set and its usefulness for studies of sexual selection and 435 

reproductive success. Although we cannot draw conclusions for the two offspring with 436 

unsolved paternity, all cases of solved paternity show no indication of extra-group paternity and 437 

natal breeding. This is interesting, given that male crested macaques do not disperse until they 438 

fully developed, and their competitive ability is sufficient for challenging alpha males in non-439 

natal groups (Marty et al. 2015). Furthermore, groups are large enough for unrelated potential 440 

mates to coexist in the natal group. It thus seems that male crested macaques need to migrate 441 

and successfully take over the alpha position to reproduce (Marty et al. 2016). It is also 442 

surprising that we found no extra-group paternity. Adjacent groups meet frequently and groups 443 

are too large and the vegetation is too dense for males to oversee the whole group. This suggests 444 

that females ready to conceive are either well mate-guarded during inter-group encounters, or 445 

refrain from mating with non-group males. More detailed behavioural observations during 446 

intergroup encounters are needed to show which of these two explanations hold true for crested 447 

macaques. 448 

As predicted from mating observations, we found a skew in male reproduction towards alpha 449 

males. The mean alpha paternity was 65% and ranged 29-100% across years and groups. 450 

Similarly, the degree of skew varied considerably across groups. Notably, our study on crested 451 

macaques found the highest B index reported so far for any primate (maximum: 0.672, mean: 452 

0.330). In a study of free-ranging rhesus macaques, the skew in one large group varied 0.049-453 

0.106 across six consecutive years (Widdig et al. 2004) and in one small group, the mean B 454 



index was 0.084 over two consecutive years (Dubuc et al. 2011). In wild Assamese macaques 455 

(M. assamensis), the mean B index was only 0.087 over six years in one group, with the alpha 456 

share of paternity limited to 29% (Sukmak et al. 2014).   457 

Takeover rates had a negative effect on reproductive skew. The largest group, R1, generally 458 

had a lower skew and was subject to frequent alpha takeovers (i.e., the male hierarchy was 459 

dynamic), while group R2 showed skew values as high as 0.672, but had fewer takeovers (i.e., 460 

extended alpha tenure). These data are in line with results from species with extraordinary long 461 

alpha tenures, such as capuchin monkeys (Cebus capucinus), with an observed B index 462 

calculated across eight alpha tenure periods varying from -0.125 to 0.473 (mean: 0.274) (Muniz 463 

et al. 2010). Similarly, mountain gorillas (Gorilla beringei beringei) showed B indices between 464 

0.337-0.432 in four groups containing multiple males of long tenure (Bradley et al. 2005). It is 465 

surprising, however, that the skew in R2 study group was higher than in the gorilla study, where 466 

a single male usually monopolizes all reproduction in his group. Skew calculations across these 467 

three studies are comparable as they were calculated over the timeframe of alpha male tenure 468 

typical for each species. In other words, for crested macaques with their extraordinary short 469 

alpha tenure we computed annual skew per group, while in the two other species with long 470 

tenure, skew was computed over multiple years of alpha tenure per group. One potential reason 471 

for the comparatively large skew in crested macaques is that male crested macaques need to 472 

maximize their reproductive effort in a short timeframe. Hence, alpha tenure length might affect 473 

the inter-specific variation in reproductive skew. However, our study might also provide a 474 

potential explanation for the intra-specific variation in skew. A more female biased sex ratio 475 

significantly increased the B index which suggests that when more females are available, there 476 

is more room for a few males to successfully monopolize receptive females, in contrast to when 477 

more male competitors are present. This supports the hypothesis that enhanced male 478 

monopolization, among other factors, results in higher degree of reproductive skew (Ostner et 479 

al. 2008; Gogarten & Koenig 2012). 480 



The high degree of male reproductive skew observed in our study animals did not translate into 481 

lower genetic variation in the population than we would expected under random mating. This 482 

is interesting given that only a few dominant males pass their genes into the next generation. 483 

Most likely, the high rates of alpha male takeover reported for this population counterbalance 484 

this effect. We need more detailed data on genetic variation in relation to tenure length to 485 

understand this process better.  486 

Our study animals reflect a geographically isolated population of a Critically Endangered 487 

species, but our analysis indicates no recent threat of considerable loss of heterozygosis and/or 488 

of inbreeding depression in the study population. Compared to studies of other macaque 489 

species, mainly using different markers (e.g. M. mulatta, Bercovitch and Nürnberg 1997; M. 490 

sinica, Keane et al. 1997; M. sylvanus, Kümmerli and Martin 2005; M. fuscata, Inoue and 491 

Takenata 2008; M. assamensis, Sukmak et al. 2014), our markers were highly polymorphic. 492 

Despite the small population size, it is possible that males migrate in and out of the Tangkoko 493 

population, contributing to the genetic variability observed.  494 

In contrast to our results, we found no polymorphism in a set of mtDNA markers in another 495 

study using a subset of the individuals included here (i.e., 12 females and 4 non-natal males 496 

from two groups) (A. Engelhardt, unpublished data). This could indicate that the population of 497 

Tangkoko may already be inbred or stems from one single matriline. To determine the degree 498 

of inbreeding in crested macaques at Tangkoko more precisely, we will need extended studies 499 

over a broader range of groups. Furthermore, we need studies investigating the links between 500 

reproductive patterns, genetic variation and population demography over time to expand our 501 

understanding of viability of threatened populations in the wild.  502 

In conclusion, we provide genetic markers useful for studies on the conservation management 503 

and evolutionary biology of crested macaques, and likely of Sulawesi macaques in general. 504 

Parentage analysis of these species can contribute insights to the relationship between social 505 



style, reproductive patterns and relatedness among macaque species (Schülke & Ostner 2008). 506 

The fact that the Tangkoko population of crested macaques is still genetically variable despite 507 

its small size, isolation and the species’ reproductive patterns gives hope that other endangered 508 

primate species living in small, isolated populations may also retain a healthy gene pool, at least 509 

in the short term. However, while the population in Tangkoko does not seem to be suffering 510 

from genetic depletion, other isolated populations of crested macaques might. With the 511 

described markers at hand, we will now be able to assess and manage genetic variation across 512 

all populations of crested macaques scattered over North Sulawesi. 513 
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Table 1: Characterization of 12 primer pairs for amplifying polymorphic microsatellite loci in crested macaques with PCR conditions, deviation from Hardy-

Weinberg equilibrium and estimated null allele frequency. F indicates forward primers and R indicates reverse primers.  

 

Locus 
Repeat 
pattern 

Length of PCR 
product Zoo [bp] 

Length of PCR 
product 

Tangkoko [bp] 

Annealing 
temperature 

[°C] 

Hardy-
Weinberg 
deviationa 

Estimated null 
allele frequency 

Primer sequence (5‘-3‘)  
(including modified primers) 

Reference 

D1S548 Tetra 181-201 185-209 58 n.s. -0.0394 
F: GAACTCATTGGCAAAAGGAA 
R: GCCTCTTTGTTGCAGTGATT 

Lathuilliere and Menard 2001  

D3S1768 Tetra 129-137 129-157 58 n.s. -0.046 
F: GGTTGCTGCCAAAGATTAGA 
R: AACTACATGATTCTAGCACA 

Lathuilliere and Menard 2001 

D5S1457 Tetra 123, 127, 131 123-139 60 n.s. -0.0609 
F: TAGGTTCTGGGCATGTCTG 
R: TTGCTTGGCACACTTCAGG 

Bayes et al. 2000 

D6S493* Tetra 261-269’** 139-159*** 58 n.s. -0.0374 
F: GCAACAGTTTATGCTAAAGC 
R: TTCCATGGCAGAAATTGTTT 

Nürnberg et al., 1998 

D6S501* Tetra 163-179** 129-145*** 58 n.s. -0.0345 
F: GCTGGAAACTGATAAGGGCT 

R: CTTTATCTTTAATATAGGATTATTGG 
Lathuilliere and Menard 2001 

D7S2204 Tetra 171-247 220-268 58 n.s. -0.0579 
F: TCATGACAAAACAGAAATTAAGTG 
R: AGTAAATGGAATTGCTTGTTACC 

Lathuilliere and Menard 2001 

D10S1432 Tetra 137-145 132-148 58 n.s. -0.0773 
F: CAGTGGACACTAAACACAATCC 

R: TAGATTATCTAAATGGTGGATTTCC 
Lathuilliere and Menard 2001 

D11S925 Di 205-221 179-237 60 n.s. -0.0379 
F: GAACCAAGGTCGTAAGTCC 

R: TAGACCATTATGGGGGCAAA 
Lathuilliere and Menard 2001 

D12S67* Tetra 135,177-193** 159-185*** 58 n.s. -0.0262 
F: GCAACAGTTTATGCTAAAGC 
R: TGTTGTTCAAGGGTCAAATG 

Nürnberg et al., 1998 

D13S765* Tetra 220,224,232** 137-165*** 58 n.s. -0.0512 
F: TGTAACTTACTTCAAATGGCTCA 
R: ATTTACCTAACATTTCACCCATC 

Zhang et al. 2001 

D14S255* Di 173-185** 91-113*** 60 n.s. -0.0142 
F: AGCTTCCAATACCTCACCAA 
R: CTCTTAGTGGTCATTCTCAC 

Nürnberg et al., 1998 

D18S536 Tetra 144-152 144-164 58 n.s. -0.0491 
F: ATTATCACTGGTGTTAGTCCT 
R: CACAGTTGTGTGAGCCAGT 

Kümmerli and Martin 2005 

an.s.=no significant deviation 

*primers of this marker were modified to be specific to crested macaques 

**before primer modification 

***after primer modification 
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Table 2: Number of alleles, observed and expected heterozygosity, polymorphic information content and inbreeding coefficient for twelve selected markers 

overall (all) and per group (R1, R2, PB), with the mean and standard deviation (SD) across all markers. The analysis is based on 176 crested macaques from 

three groups in the Tangkoko population in North Sulawesi, Indonesia  

 

 Number of alleles Observed heterozygosity Expected heterozygosity Polymorphic information content Inbreeding coefficient 

Locus all R1 R2 PB all R1 R2 PB all R1 R2 PB all R1 R2 PB all R1 R2 PB 

D1s548 6 5 6 5 0.784 0.726 0.833 0.881 0.736 0.726 0.765 0.736 0.697 0.681 0.725 0.690 -0.065 0.000 -0.090 -0.199 

D3s1768 7 7 6 6 0.851 0.855 0.881 0.833 0.781 0.757 0.776 0.768 0.744 0.713 0.734 0.721 -0.089 -0.131 -0.137 -0.086 

D5s1457 6 5 5 5 0.727 0.714 0.717 0.714 0.649 0.674 0.645 0.609 0.589 0.613 0.581 0.541 -0.121 -0.060 -0.112 -0.175 

D6s493 5 4 5 3 0.688 0.683 0.627 0.780 0.643 0.648 0.614 0.658 0.579 0.580 0.553 0.577 -0.070 -0.054 -0.021 -0.190 

D6s501 5 4 5 4 0.727 0.679 0.783 0.714 0.682 0.675 0.692 0.669 0.614 0.602 0.621 0.598 -0.067 -0.006 -0.133 -0.068 

D7s2204 6 6 6 6 0.805 0.831 0.817 0.756 0.724 0.727 0.69 0.721 0.674 0.673 0.633 0.668 -0.112 -0.144 -0.185 -0.049 

D10s1432 4 4 4 4 0.710 0.690 0.833 0.548 0.613 0.615 0.628 0.567 0.538 0.542 0.545 0.476 -0.159 -0.124 -0.332 0.035 

D11s925 9 9 8 9 0.792 0.805 0.746 0.810 0.748 0.754 0.731 0.758 0.725 0.731 0.701 0.714 -0.059 -0.068 -0.020 -0.069 

D12s67 9 9 8 7 0.856 0.869 0.879 0.762 0.818 0.825 0.779 0.806 0.790 0.796 0.735 0.768 -0.047 -0.054 -0.130 0.055 

D13s765 7 7 7 6 0.795 0.762 0.800 0.810 0.727 0.691 0.703 0.762 0.693 0.655 0.656 0.713 -0.095 -0.104 -0.140 -0.063 

D14s255 3 3 3 3 0.665 0.774 0.550 0.619 0.651 0.669 0.601 0.626 0.575 0.591 0.529 0.537 -0.021 -0.158 0.085 0.011 

D18s536 6 6 5 5 0.787 0.771 0.767 0.805 0.723 0.711 0.705 0.702 0.672 0.655 0.651 0.635 -0.089 -0.085 -0.089 -0.149 

Mean 6.1 5.8 5.7 5.3 0.766 0.763 0.769 0.753 0.708 0.706 0.694 0.699 0.658 0.653 0.639 0.637 -0.082 -0.082 -0.109 -0.079 

SD 1.7 1.9 1.4 1.6 0.059 0.064 0.095 0.089 0.059 0.054 0.059 0.070 0.075 0.069 0.072 0.087 0.035 0.049 0.097 0.082 

 



Table 3: Degree of male reproductive skew in three groups of crested macaques at Tangkoko Reserve, Indonesia, 2007-2009. We provide the number of potential 

group sires, number of group sires, number of adult females, number of determined paternities, proportion of alpha-male paternity, proportion of alpha-male 

tenure across the year, the observed B value, the lower and upper confidence interval (each 0.95%) together with the P value that the observed B value is due to 

chance (significant values in bold). The B index incorporates male residency in days per group and year. This analysis includes a total of 51 offspring. 

Group 
and 
year 

Number of 
potential 

group sires 

Number of 
group sires 

Number of 
adult 

females 

Number of 
determined 
paternities 

Proportion of alpha-
male paternity 

 [%] 

Proportion of alpha-
male tenure across the 

year [%] 

Observed B 
index

P level Lower 
confidence 

interval 

Upper 
confidence 

interval 

R1 2007 15 4 20 9 55.56 73.15 0.179 0.001 0.033 0.455 

R1 2008 20 2 21 3 33.33 73.42 0.139 0.165 -0.303 0.562 

R1 2009 21 5 25 7 28.57 97.26 0.021 0.250 -0.133 0.289 

R2 2007 14 3 18 9 77.78 18.38 0.527 0.000 0.192 0.865 

R2 2008 7 1 19 7 100.00 100.00 0.672 0.000 0.214 0.672 

R2 2009 10 1 20 9 100.00 100.00 0.621 0.000 0.251 0.621 

PB 2009 16 3 17 7 57.14 31.51 0.153 0.016 0.016 0.506 

Mean 14.7 2.7 20.0 7.3 64.63 70.53 0.330 

SD 5.0 1.5 2.6 2.1 29.14 33.44 0.267 




