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ABSTRACT 

Development of anthracnose disease caused by Colletotrichum gloeosporioides Penz. is one of the major issues 

within the avocado supply chain. Exposure to methyl jasmonate (MeJA) and methyl salicylate (MeSA) vapours 

10 and 100 µmol l-1 was investigated as an alternative solution to commercial fungicide - prochloraz® that is 

currently being used by the industry. The incidence of anthracnose disease was found to be significantly reduced 

in ‘Hass’ avocado fruit treated with MeJA or MeSA vapours, especially at 100 μmol l-1. The mechanism involved 

enhanced activity of defence related enzymes, i.e. chitinase, β-1,3-glucanase and PAL, and higher content of 

epicatechin. 
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1. Introduction 

Avocado (Persea americana Mill.) is becoming a popular fruit mainly due to its nutritional content 

(Dreher & Davenport, 2013), in particular being rich in monounsaturated fatty acids (Ozdemir & Topuz, 2004; 

Lu et al., 2009). The production of avocados in South Africa is mainly export driven, and according to the latest 

(2015) food trade and supply chain directory (www.foodtradesa.co.za), the European Union, and United Kingdom 

in particular, is the biggest export market.  

Development of postharvest disease, such as anthracnose (caused by Colletotrichum gloeosporioides 

Penz.), is one of the major issues within the avocado supply chain, affecting marketability of the produce. At the 

moment prochloraz®, a synthetic fungicide, is being used in the packhouses to control anthracnose disease. 

However, since there is an increasing demand to reduce the use of fungicides (Bill, Sivakumar, Thompson, & 

Korsten, 2014), there is clearly a need for new techniques that could reduce undesired fungal decay. 
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One of the possible options to reduce the disease development is via inducing the defence mechanisms 

in the fruit (Romanazzi et al., 2016). There are numerous methods used to reduce microbial contamination of fresh 

produce and to extend its storage life (Ramos, Miller, Brandao, Teixeira, & Silva, 2013), however the postharvest 

use of jasmonates and salicylates seems to be overlooked. These are natural plant signalling compounds that play 

a role in stimulating natural defence mechanisms against both biotic and abiotic stress, and the information on 

their use to reduce losses within the fruit supply chain has recently been reviewed (Glowacz & Rees, 2016). 

It has been reported that dipping ‘Hass’ avocado fruit in 2.5 µmol l-1 methyl jasmonate solution for 30 s 

reduced the development of chilling injury in fruit subsequently stored for 2 weeks at 1 °C (Sivankalyani et al., 

2015) and 4 weeks at 2 °C (Meir et al., 1996), respectively. It was further confirmed in our trials with methyl 

jasmonate and methyl salicylate that these compounds have the ability to maintain the postharvest quality of cold 

stored ‘Hass’ avocado fruit by altering their fatty acids content and composition (Glowacz, Bill, Tinyane, & 

Sivakumar, 2017). However, to the best of our knowledge there is no information in the literature on the effects 

of methyl jasmonate and methyl salicylate on the anthracnose disease susceptibility in ‘Hass’ avocado fruit, while 

the ability of these compounds to reduce fungal decay has already been reported for numerous products, e.g. 

loquat (Cao, Zheng, Yang, Tang, & Jin, 2008; Cao et al., 2008) and mango (Zeng, Cao, & Jiang, 2006). 

It is well known that the activity of defence related enzymes, i.e. chitinase and β-1,3-glucanase is 

enhanced when the produce is challenged by the fungal pathogen (Mauch, Mauch-Mani, & Boller, 1988). These 

enzymes, acting synergistically, are capable of hydrolysing polymers of fungal cell walls - chitin and β-1,3-glucan 

respectively, leading to weakened cell wall and cell lysis (Stintzi et al, 1993). Chitinase and β-1,3-glucanase are 

thus involved in the plant defence mechanisms preventing/delaying the fungal growth and in this way reducing 

the decay (Theis & Stahl, 2004).  

The activity of PAL is often induced by both abiotic and biotic stress (Dixon & Paiva, 1995), e.g. in 

response to wounding or pathogen attack, where synthesised phenolics could either act directly as defence 

compounds or indirectly, due to being precursors of lignin and suberin, producing a barrier and strengthening cell 

walls (Passardi, Penel, & Dunand, 2004), which would prevent the infection and limit pathogen expansion in 

infected fruit.  

Finally, epicatechin, an antioxidant present in the peel, is also involved in delaying/preventing the fungal 

decay via lowering the activity of lipoxygenase during the activation of quiescent infection (Karni, Prusky, 

Kobiler, & Kobiler, 1989) and slowing the rate of decline of antifungal 1-acetoxy-2-hydroxy-4-oxo-heneicosa-

12,15 diene compound (Ardi, Kobiler, Keen, & Prusky, 1998). 
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The concentrations of 10 and 100 μmol l-1 of MeJA and MeSA were used in majority of the studies 

reviewed by Glowacz and Rees (2016), e.g. loquat treated with MeJA at 10 μmol l−1 (Cao et al., 2008; Cao, Zheng, 

Wang, Jin, & Rui, 2009), mangos treated with MeJA at 10 μmol l−1 and 100 μmol l−1 (Gonzalez-Aguilar, Buta, & 

Wang, 2001) or MeSA at 100 μmol l−1 (Han, Tian, Meng, & Ding, 2006), papaya treated with MeJA at 10 and 

100 μmol l−1 (Gonzalez-Aguilar, Buta, & Wang, 2003), peaches treated with MeJA at 100 μmol l−1 (Meng, Han, 

Wang, & Tian, 2009), pears treated with MeJA at 100 μmol l−1 (Zhang et al., 2009), pomegranates treated with 

MeJA or MeSA at 10 and 100 μmol l−1 (Sayyari et al., 2011), and tomatoes treated with MeJA or MeSA at 10 and 

100 μmol l−1 (Ding, Wang, Gross, & Smith, 2002). 

Thus, the objective of this study was to investigate the effect of methyl jasmonate (MeJA) and methyl 

salicylate (MeSA) vapours exposure at two concentrations of 10 and 100 µmol l-1 on i) disease incidence ii) 

epicatechin content, and iii) activity of defence related enzymes (chitinase, β-1,3-glucanase, PAL) in naturally 

and artificially infected ‘Hass’ avocado fruit kept at 2 °C for 14 d, followed by 6-7 d shelf-life at 20 °C. 

2. Materials and methods 

2.1. Plant material and handling 

Freshly harvested, unblemished late season ‘Hass’ avocado fruit were obtained from Koeltehof Packers 

(Nelspruit, Mpumalanga province, South Africa) at commercial maturity (28-30% DM). Fruit were organised into 

the following treatment: i) untreated control – fruit that were transported to the laboratory and then left untreated; 

ii) dipped for 5 min in 0.05 % prochloraz® – fruit were treated at the pack house, i.e. the commercial treatment, 

prior to being transported to the lab; iii) fruit that were transported to the laboratory and then exposed to methyl 

jasmonate (MeJA) or methyl salicylate (MeSA) vapours at two concentrations of 10 and 100 µmol l-1 for 24 h at 

20.0±0.5 °C. 

After placing the fruit in a 10 l air-tight container, the appropriate volume of MeJA or MeSA to reach 

the desired concentration of 10 and 100 µmol l-1, respectively was deposited on the Petri dish at the bottom of the 

container (Gimenez et al., 2016), using the system set up previously designed for the thyme oil fumigation (Bill, 

Sivakumar, Beukes, & Korsten, 2016). The container was immediately hermetically-sealed and solutions were 

left to evaporate over the 24 h period. Control and prochloraz® treated fruit were also kept in similar sealed 

containers. Thereafter half of the fruit were wounded and inoculated at the equatorial region with 20 µl of C. 

gloeosporioides spore suspension (105 spores ml-1) as previously described (Bill et al., 2016). Both naturally and 

artificially infected ‘Hass’ avocado fruit were subsequently kept at 2.0±0.2 °C for 14 d followed by 6-7 d shelf-

life at 20.0±0.5 °C, RH 70 %. 
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2.2. Pathogen 

Colletotrichum gloeosporioides was obtained from the Fruit and Vegetables Technology Laboratories, 

Tshwane University of Technology, South Africa. The C. gloeosporioides isolate was cultured and maintained on 

potato dextrose agar (PDA) (Merck, Johannesburg, South Africa) and incubated at 25 °C for 12–13 d. Spore 

suspension was prepared following a method of Bill et al. (2016). The mycelia fragments were removed from the 

suspension by filtering through three layers of muslin cloth. Spores count was determined using a haemocytometer 

and adjusted to 105 spores ml-1. Fruit were prepared for artificial infection by disinfecting the place of inoculation 

with 70% ethanol (left to dry for ~30 min). The inoculation was then performed by uniformly wounding the fruit 

with a sterile needle (1 mm x 1 mm) and transferring 20 µl of spore suspension (105 spores ml-1). 

2.3. Disease incidence 

At the ‘ripe and ready to eat’ stage (firmness near to 6.7 N, which has been defined by Arpaia, Collin, 

Sievert, and Obenland (2015) as the optimal eating firmness) fruit were assessed for signs of rotting (anthracnose), 

by giving them a score of 0 or 1 – no/ signs of rotting, respectively. In case of stem-end rot being noticed in 

naturally infected fruit, the note of it was taken. Disease incidence was expressed as the proportion (%) of fruit 

showing signs of rotting out of the total number of fruit in each treatment. 

2.4. Physical properties of the fruit 

Firmness was determined along the equator of the fruit using a Chatillon Penetrometer, Model DFM50 

(Ametek, Largo, Florida, USA) with an 8 mm diameter flat-head stainless steel cylindrical probe (Mpho, 

Sivakumar, Sellamuthu, & Bautista-Banos, 2013) to ensure that only ripe fruit are being assessed. 

2.4. Biochemical analysis 

2.4.1. Epicatechin content 

 Epicatechin was determined following the method used by Guetsky et al. (2005), with some 

modifications. Freeze-dried samples (20 mg) were homogenised in methanol: water (1:1; v/v) solution. Thereafter, 

the Eppendorf tubes were centrifuged for 10 min at 14 000 x g. The supernatant was transferred to the new tubes, 

and subsequently filtered through a 0.45 μm membrane (Nylon syringe filter, PerkinElmer™, China) prior to 

injection. The analyses were carried out using a Flexar™ HPLC system (PerkinElmer, USA) consisting of a Flexar 

Isocratic LC Pump Platform and a variable wavelength Flexar UV/ ViS LC detector. Separation was done on an 

Analytical C18 column (100 x 4.6 mm; 5 μm) at 25 °C, using water/methanol (25:75 v/v) as a mobile phase, with 

a flow rate of 1 ml min-1. Chromatographic peak of the epicatechin was identified by comparing the retention time 

with that of the pure epicatechin (HPLC grade) standard at 320 nm. 
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2.4.2. Activity of defence related enzymes 

Enzyme activity assays for chitinase, β-1,3-glucanase and PAL were performed as previously described 

(Sellamuthu, Sivakumar, Soundy, & Korsten, 2013). Protein concentration was determined by the method of 

Bradford (1976). 

2.5. Statistical analyses 

Avocado fruit were organised into six treatments, each treatment had six replicate boxes containing 

eighteen fruit, i.e. 108 fruit per treatment, equalling to a total of 648 fruit per trial. The experiment was conducted 

twice with similar results. Data are presented as mean values from a fully randomised design. The significance of 

main effect was established using ANOVA. Duncan's multiple range test was used to compare individual 

treatment mean values. All statistical analyses were performed using GenStat 18th Edition software (VSN 

International Ltd, UK). 

3. Results and discussion 

3.1. Disease incidence 

 Anthracnose disease was observed in more than 50 % of the naturally infected untreated fruit (Fig. 1A), 

whereas its occurrence was significantly (P<0.05) reduced in fruit treated with prochloraz® (16.9 %), MeJA at 10 

μmol l-1 (25.7 %) and 100 μmol l-1 (12.4 %), or MeSA at 10 μmol l-1 (7.9 %) and 100 μmol l-1 (8.9 %). The stem-

end rot incidence was noted to be within the range of 2.5-10 %, with no significant difference between the 

treatments. 

 In the case of artificially infected fruit, development of anthracnose disease was observed in nearly all 

untreated fruit (Fig. 1B); disease incidence was significantly (P<0.05) reduced in all treated fruit, being the lowest 

in those treated MeJA at 100 μmol l-1 (41.0 %), or MeSA at 10 μmol l-1 (35.9 %) and 100 μmol l-1 (43.6 %). 

 Reduced disease incidence in fruit exposed to MeJA and MeSA is in agreement with previous reports, 

where disease incidence was reduced, due to delayed infection, in loquat fruit exposed to MeJA at 10 μmol l−1 for 

24 h prior to being stored at 20 °C (Cao et al., 2008a,b) and mango fruit treated with SA solution at 1000 μmol l−1 

for 2 min prior to being stored at 13 °C (Zeng et al., 2006), confirming the ability of jasmonates and salicylates to 

enhance disease resistance in the fruit. 

3.2. Physical properties of the fruit 

All the fruit used in our trials were in the firmness range from 6.4 to 8.5 N - previously defined as ripe 

fruit by Gamble et al. (2010), i.e. near to 6.7 N, which according to Arpaia et al. (2015) is the optimal eating 

firmness.  
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3.3. Fruit biochemistry 

3.3.1. Epicatechin content 

 Epicatechin content in the skin of naturally infected untreated ‘Hass’ avocado fruit was significantly 

lower than in their counterparts treated with prochloraz®, MeJA at 100 μmol l-1, or MeSA at 10 μmol l-1 and 100 

μmol l-1 (Fig. 2A). In the case of artificially infected fruit, the lowest epicatechin content was also observed in 

untreated samples, being significantly lower than in all the other treatments (Fig. 2B). Interestingly, the highest 

epicatechin content was observed in fruit exposed to MeSA at 100 μmol l-1, regardless whether fruit were naturally 

or artificially infected. 

 One of the findings of this research is the fact that exposure of ‘Hass’ avocado fruit to MeJA and MeSA 

at 10 μmol l-1 and 100 μmol l-1 prior to cold storage led to higher content of epicatechin. Ardi, Kobiler, Keen, and 

Prusky (1998) have previously suggested that epicatechin is involved in the resistance of avocado fruit to C. 

gloeosporioides, i.e. the cultivars of avocado that are more resistant to fungal decay, were reported to have high 

epicatechin content, which declines with a slower rate (Prusky, Kobiler, & Jacoby, 1988). Epicatechin is also 

involved in slowing the rate of decline of antifungal diene compound via lowering/delaying the expression of the 

LOX genes (Prusky, Alkan, Mengiste, & Fluhr, 2013), which in fact has been observed in our research (Glowacz, 

Bill, Tinyane, & Sivakumar, 2017). These results are also in agreement with previously reported findings 

(Sivankalyani et al., 2015) where avocado fruit were dipped for 30 s in MeJA solution at 2.5 μmol l-1, and 

subsequently stored at 1 °C, and those of Cao, Zheng, Wang, Jin, and Rui (2009) where loquat fruit were exposed 

to MeJA at 10 μmol l-1 for 24 h prior to storage at 1 °C, and thus highlighting the ability of these treatments to 

alter membrane stability, making the fruit less susceptible to fungal attack and subsequent disease development 

(Guestsky et al., 2005). 

3.3.2. Activity of defence related enzymes 

 The activity of PAL was only increased in fruit treated with MeJA or MeSA at 100 μmol l-1 (data not 

presented) regardless whether fruit were naturally or artificially infected, but not in those treated at 10 μmol l-1, 

which suggests that phenolics content could be higher in these samples. A substantial increase in the activity of 

PAL has in fact been previously reported in several fruit exposed to jasmonates or salicylates e.g. in mangos 

treated with SA at 1000 μmol l−1 and inoculated with C. gloeosporioides (Zeng et al., 2006), in loquat treated with 

MeJA at 10 μmol l−1 and inoculated with C. acutatum (Cao et al., 2008b). Phenolic compounds improve the 

antioxidant capacity and reactive oxygen species (ROS) scavenging capacity, thus they could contribute to 

reduced susceptibility to diseases. Phenolics could either act directly as defence compounds or indirectly, due to 
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being precursors of lignin, by producing a barrier and strengthening cell walls (Passardi, Penel, & Dunand, 2004), 

which would prevent the infection of wounds by fungal pathogens and limit their expansion in infected fruit.  

 The mechanism of improved host resistance against pathogens in fruit treated with jasmonates and 

salicylates also involves increased activity of defence-related enzymes, i.e. chitinase and β-1,3-glucanase (Yao & 

Tian, 2005; Cao et al., 2008a; Xu & Tian, 2008; Yu, Shen, Zhang, & Sheng, 2011). The activity of chitinase was 

indeed found to be significantly increased in MeJA and MeSA exposed fruit, regardless whether the fruit were 

naturally (Fig. 3A) or artificially (Fig. 3B) infected, especially at 100 μmol l-1. Similarly, the activity of β-1,3-

glucanase was significantly increased in naturally infected fruit exposed to MeJA and MeSA at 10 μmol l-1 and 

100 μmol l-1 (Fig. 4A), but not in their artificially infected counterparts, where only exposure to MeJA or MeSA 

at 100 μmol l-1 led to a significant increase in the activity of β-1,3-glucanase (Fig. 4B). 

4. Conclusion 

The incidence of anthracnose disease was found to be significantly reduced in fruit treated with MeJA 

or MeSA vapours, especially at 100 μmol l-1. The results obtained in this research highlight the fact that increased 

activity of chitinase, β-1,3-glucanase and PAL, and higher content of epicatechin, are all involved in enhancing 

resistance of ‘Hass’ avocado fruit to C. gloeosporioides via exposure to MeJA or MeSA vapours. Therefore, 

exposure to MeJA or MeSA vapours prior to cold storage is a promising alternative to commercial fungicide - 

prochloraz® that is currently being used by the industry. 
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