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Bacterial growth models are commonly used for the prediction
of microbial safety and the shelf life of perishable foods. Growth
is affected by several environmental factors such as temperature,
acidity level and salt concentration. In this study, we develop two
models to describe bacterial growth for multiple populations under
both equal and different environmental conditions. First, a semi-
parametric model based on the Gompertz equation is proposed. As-
suming that the parameters of the Gompertz equation may vary in
relation to the running conditions under which the experiment is per-
formed, we use feedforward neural networks to model the influence
of these environmental factors on the growth parameters. Second, we
propose a more general model which does not assume any underlying
parametric form for the growth function. Thus, we consider a neural
network as a primary growth model which includes the influencing
environmental factors as inputs to the network. One of the main dis-
advantages of neural networks models is that they are often very
difficult to tune, which complicates fitting procedures. Here, we show
that a simple Bayesian approach to fitting these models can be imple-
mented via the software package WinBugs. Our approach is illustrated
using real experimental Listeria monocytogenes growth data.

1. Introduction. The predictability of bacterial growth is of major inter-
est due to the influence of bacteria on food safety and health. The evolution
of microorganisms in food products can spoil the products or even cause
pathogenic effects. Foods are ecosystems composed of the environment and
the organisms that live in it. The food environment is composed of intrin-
sic factors inherent to the food (pH, water activity, nutrients) and extrinsic

Received June 2012; revised August 2013.
1Supported by the Spanish Ministries of Education Culture and Sports and Economy

and Competitiveness.
Key words and phrases. Bacterial population modeling, growth functions, neural net-

works, Bayesian inference.

This is an electronic reprint of the original article published by the
Institute of Mathematical Statistics in The Annals of Applied Statistics,
2014, Vol. 8, No. 3, 1516–1537. This reprint differs from the original in pagination
and typographic detail.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Greenwich Academic Literature Archive

https://core.ac.uk/display/82957699?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1411.5780v1
http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/14-AOAS720
http://www.imstat.org
http://www.imstat.org
http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/14-AOAS720


2 PALACIOS, MARÍN, QUINTO AND WIPER

factors external to it (temperature, gaseous environment, bacteria). The in-
teractions between the chemical, physical and structural aspects of a niche
and the composition of its specific microbial population emphasize the dy-
namic complexity of food ecosystems [ICMSF (1980)]. Food may contain
multiple microenvironments and can be heterogeneous on a micrometer scale
[Montville and Matthews (2005)]. Products in the modern food supply are
often preserved by multiple hurdles that control microbial growth, increase
food safety and extend product shelf life [Leistner (2000)]. Salt, high- or low-
temperature processing and storage, pH, redox potential and other additives
are examples of hurdles that can be used for preservation [IOM, Institute of
Medicine of National Academies (2010)]. The influence of pH on bacterial
gene expression is a relatively new area [Montville and Matthews (2005)].
The expression of genes governing proton transport, amino acid degradation,
adaptation to acidic or basic conditions, and even virulence can be regulated
by the external pH. The influence of temperature on microbial growth is very
important, both in growth rate and in gene expression. Cells grown at dif-
ferent temperatures express different genes (governing from motility to vir-
ulence) and are physiologically different [Montville and Matthews (2001)].
Salt is effective as a preservative because it reduces the water activity of
foods (i.e., the amount of unbound water available for microbial growth
and chemical reactions) by the ability of sodium and chloride ions to asso-
ciate with water molecules [Fennema and Tannenbaum (1996); Potter and
Hotchkiss (1998); IOM, Institute of Medicine of National Academies (2010)].
Adding salt to foods can also cause osmotic shock in bacteria cells, limit the
oxygen solubility, interfere with cellular enzymes, or force cells to expend
energy to exclude sodium ions from the cell [Davidson (2001); Shelef and
Seiter (2005); IOM, Institute of Medicine of National Academies (2010)].
L. monocytogenes is able to grow over a wide range of temperatures (−0.4
to 45◦C), pH values (4.39 to 9.4) and osmotic pressures (NaCl concentra-
tions up to 10%). It is also facultatively anaerobic [Montville and Matthews
(2005)]. Summarizing, all these factors can be manipulated to preserve food
due to their influence on the microbial growth. However, even when it is well
known that these factors affect bacterial growth, the kind of effects and the
interactions of the factors are still unclear and need more research. Accurate
models which describe the bacterial growth and the effect of environmental
factors are very important to prevent diseases by determining the shelf life
of perishable foods or by predicting the behavior of foodborne pathogens.

Starting from Gompertz (1825), various parametric growth models which
describe the evolution of the population size directly as a function of time—
called primary models—have been developed; see, for example, McKellar
and Lu (2004) for a good comparison. These models perform well in describ-
ing the evolution of bacterial density under fixed experimental conditions.
Nevertheless, as described before, bacterial growth is strongly affected by
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environmental conditions such as temperature, acidity or salinity of the en-
vironment and, therefore, when multiple bacterial populations are analyzed,
it is important to account for these effects in growth curve modeling.

In predictive microbiology, models that describe the effect of environmen-
tal conditions on the growth parameters are called secondary models; see, for
example, Ross and Dalgaard (2004). For example, the square-root model of
Ratkowsky et al. (1982) was developed to describe the effect of suboptimal
temperature on growth rates of microorganisms. This initial approach was
later extended to include other factors such as level of acidity, water activity
and salt concentration in additive or multiplicative models; see, for example,
McMeekin et al. (1987), Miles et al. (1997), Wijtzes et al. (1995, 2001). The
most common secondary models are polynomial models [see, e.g., McClure
et al. (1993)], which allow any of the environmental factors and their in-
teractions to be taken into account but include many parameters without
biological interpretation. Another important model class is the cardinal pa-
rameter models [see Rosso et al. (1995), Augustin and Carlier (2000) and
Pouillot et al. (2003)], which assume that the effect of environmental factors
is multiplicative.

A disadvantage of these models is that they assume simple parametric
forms for the effects of the different environmental factors. Therefore, more
recently, there has been interest in modeling bacteria growth curves using
nonparametric approaches such as artificial neural networks; see, for ex-
ample, Hajmeer, Basheer and Najjar (1997), Geeraerd et al. (1998) and
Garćıa-Gimeno et al. (2002). One advantage of neural networks is their ca-
pability to describe very complex nonlinear relationships without imposing
any structure on the relationship between the interacting effects. Further-
more, using a suitable (logistic) basis function which is of a similar shape
to typical bacterial growth curves, neural networks can capture these curves
without the necessity of using large numbers of nodes.

To achieve the general objective of a high level of protection of hu-
man health, food law shall be based on risk analysis [FAO/WHO (1995);
NACMCF (1997); CEC (2002)]. Quantitative microbial risk assessment
(QMRA) is the scientific evaluation of the known or potential adverse health
effects resulting from human exposure to foodborne microbiological hazards.
The objective of a QMRA is to derive a mathematical statement, based
on the probability of certain events, of the chance of adverse health conse-
quences resulting from exposure to a microbiological agent capable of causing
harm [FAO/WHO (1995); CAC (1996); NACMCF (1997)].

In this paper, we shall develop two approaches which are applicable to
growth curve estimation for bacterial populations under different environ-
mental conditions. The first model is based on the Gompertz function where
the dependence of the growth parameters on the environmental factors is
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modeled by a neural network. Second, we shall consider a direct nonpara-
metric approach based on the use of neural networks as a primary growth
model. An important feature of our approaches is that in cases where we
observe bacterial growth in various colonies under possible different envi-
ronmental conditions, we use hierarchical modeling to improve estimation
of any single growth curve by incorporating information from the various
different bacterial populations. Although hierarchical analysis of parametric
bacteria growth models has been undertaken [see, e.g., Pouillot et al. (2003)],
to the best of our knowledge, hierarchical analysis has not been combined
with nonparametric approaches previously in this context.

In most empirical work the fitting of any secondary models is carried
out in two steps. First, a primary growth model is fitted to estimate the
growth parameters and, second, a secondary model is fitted conditional on
the estimated parameters to estimate the controlling factors. One problem
with this strategy is that the estimated uncertainty of the first stage is not
taken into account in the second stage and, therefore, a poor fit at the first
stage could produce inaccurate estimations at the second stage. Second,
most work in fitting such models has used classical statistical techniques
such as least squares, which, as noted in Pouillot et al. (2003), may also
underestimate uncertainty.

To overcome these problems, inference for our models is undertaken
throughout using a Bayesian approach. In the case of the parametric pri-
mary model and neural network secondary model, the use of this approach
avoids the problems inherent in the two-stage inference outlined previously.
Furthermore, our Bayesian approach permits the prediction of unobserved
growth curves and of growth curve values at future time periods. To our
knowledge, neural networks techniques have not been used either in food risk
analysis or with the objective of a QMRA procedure in mind. We have built a
neural network risk model with direct application in food industry and using
very well-known noncommercial software in the context of Bayesian analy-
sis, because, although previously the implementation of Bayesian inference
for neural networks models has required the use of complicated sampling al-
gorithms [see, e.g., Lee (2004)], here, we show that inference can be carried
out via the use of the well-known WinBugs software through the R2WinBugs
interface.

The present work covers different issues related to bacterial dynamics: (i)
the use of the hurdle technology with different combinations of tempera-
tures, pH values and percentage of NaCl with great importance in ready-to-
eat foods safety conditions and in food handling as part of the foodservice
industry; (ii) the use of NN to model the selected combinations of hurdles
because of its absence of imposed restrictions (i.e., a new approach to the
variability of the bacterial behavior under different environmental conditions
and its application to QMRA); (iii) predictions of new data (interpolate)
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from the experimental growth curves obtained in the laboratory (i.e., to
obtain proper new data avoiding the time-consuming and expensive assays
carried out in the laboratory); and (iv) the study of the behavior of Liste-
ria for its application to ready-to-eat foods under the legal requirement of
100 CFU (colony-forming units)/g or ml established by the EU Regulation
2073/2005 [CEC (2005)] and the QMRA procedures widely applied in food
industry.

We begin in Section 2 with a brief introduction to neural networks. In
Section 3 we propose two alternative models for bacterial growth curves that
include environmental conditions as influencing factors modeled by neural
networks. In Section 4 we show how to undertake Bayesian inference for these
models and then, in Section 5, we illustrate the models with an application to
a database of Listeria monocytogenes growth curves generated under various
experimental conditions. Finally, in Section 6, we present our conclusions
and some possible extensions of our approach.

2. Feedforward neural networks. In many situations it is assumed that
there are q dependent variables, (Y1, . . . , Yq) =Y, and they can be modeled
as an approximate linear or polynomial function of a set of explanatory vari-
ables, (x1, . . . , xp) = x, via, for example, multivariate regression. However,
such a relationship may not always be appropriate and a more general func-
tional relation between the dependent and independent variables must be
assumed, say,

E[Y|x] = g(x),

where the functional form, (g1, . . . , gq) = g :Rp →R
q, is unknown. One of the

most popular methods of modeling the function g is via neural networks;
see, for example, Stern (1996). In particular, a feedforward neural network
takes a set of inputs x and from them computes the vector of output values
as follows:

g(x) =B ·ΨT (xTΓ),(1)

where B is a q × M matrix with q ∈ N the number of output variables
and M ∈ N the number of nodes and Γ is a p × M matrix with p ∈ N

being the number of explicative variables. The element γrk ∈R is the weight
of the connection from input r to hidden unit k and the element βsk ∈
R is the weight connection from hidden unit k to output unit s. Finally,
Ψ(a1, . . . , aM ) = (Ψ(a1), . . . ,Ψ(aM )), where Ψ is a sigmoidal function such
as the logistic function

Ψ(x) =
exp(x)

1 + exp(x)
,(2)
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Fig. 1. Neural network representation.

which we will use here, as typically bacterial growth curves have an approx-
imately sigmoidal form. Equations (1) and (2) define a feedforward neural
network with logistic activation function, p explanatory variables (inputs),
one hidden layer with M nodes and q dependent variables (outputs) that
can be illustrated as in Figure 1.

Note that each output combines the node values in a different way. For
practical fitting of neural networks models, it is typically assumed that the
input variables are all defined to have a similar finite range, for example,
[0,1]. From now on, we shall assume this throughout.

3. Neural network-based growth curve models. Bacterial growth is very
influenced by environmental factors. For example, bacteria grow in a wide
range of temperatures, but in higher temperatures bacterial growth increases
and in lower temperatures it decreases. In a similar way, changes on the
level of acidity or salinity affect the growth of bacteria. The grade and the
direction of the effect depend on the strain of bacteria and also on the level of
the other factors. Figure 2 shows the different behaviors of Listeria growth
under different environmental conditions.

To account for these effects, we develop growth curve models based on
the use of neural networks.

3.1. A neural network-based Gompertz model. The bacterial growth pro-
cess is typically characterized by three distinct phases, that is, the lag stage
that reflects the adaptation of cells inoculated in a new medium; the ex-
ponential stage that represents the bacterial growth by binary fission; and,
finally, the stationary stage which describes the decay of the growth rate
as a consequence of nutrient depletion and accumulation of waste which is
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Fig. 2. Bacterial growth under different environmental conditions.

followed by death or decline of the population. Sigmoidal functions which
account for these three phases have been typically used to model microbial
growth; see, for example, Skinner, Larkin and Rhodehamel (1994). In par-
ticular, the Gompertz equation is a well-known model for bacterial growth
over time and it has been used extensively by researchers to fit a wide vari-
ety of growth curves from different microorganisms; see, for example, Ross
and McMeekin (1994) and McKellar and Lu (2004).

Here we consider a reparameterized Gompertz equation proposed by Zwi-
etering et al. (1990). Let Nt represent the population concentration of bac-
teria cultivated in a Petri dish experiment at time t≥ 0. Then the Gompertz
equation is

E[Nt|N0,D,µ,λ] = g(t,N0,D,µ,λ)
(3)

where g(t,N0,D,µ,λ) =N0 +D exp

(

− exp

(

1 +
µe(λ− t)

D

))

,

where e is Euler’s number, N0 is the initial bacterial density, D is the dif-
ference between the maximum bacterial density, µ is the maximum growth
rate and λ is the time lag.

The primary growth model described in (3) does not allow for the case
where we wish to study bacterial populations under a variety of controlled
environmental conditions. Thus, suppose that we observe the growth of I
bacterial populations under similar initial conditions and that we have J dif-
ferent environments determined by temperature, level of acidity (pH) and
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salt concentration (NaCl). Under fixed environmental conditions, it may be
reasonable to assume that all replications have the same growth curve pa-
rameters. However, growth rates will vary under different conditions and,
therefore, assuming a Gompertz model, we propose the use of neural net-
works to reflect the parameter dependence on the environmental factors. If
Ntij is the concentration in population i under environmental conditions j
at time t, the Gompertz function is

E[Ntij |N0j ,Dj , µj, λj ] = g(tij ,N0j,Dj , µj, λj),(4)

where g(·) is as in (3), for i= 1, . . . , I and j = 1, . . . , J . Now, we model the
growth parameters µ, λ and D as a function of the temperature, the level
of acidity and the salt concentration by a feedforward neural network, that
is,

θs =

M
∑

k=1

βsk ·Ψ(x′γk) for s= 1,2,3,(5)

where θs stands for the parameters D,µ,λ and x= (T,pH,NaCl) is the vec-
tor of explanatory variables and Ψ is the logistic function. Note that this
network does not include an intercept term. In our practical experiments we
have found that the addition of an intercept produces no significant differ-
ences to typical curve fits. The model defined in this section by expressions
(4) and (5) will be referred to as the GNN model.

3.2. A hierarchical neural network model. Here, we generalize the previ-
ous model to a new one which does not assume any underlying parametric
growth function. Instead, we propose a neural network as a primary model.
The output of the network is the instantaneous reproduction rate per mem-
ber of the population and the inputs are the current population size and the
experimental conditions. Formally, we can write the model as

E[Ntij |N(t−1)ij , fj, Tj ,pHj ,NaClj ]
(6)

=N(t−1)ij +N(t−1)ijfj(N(t−1)ij , Tj ,pHj ,NaClj),

fj(N(t−1)ij , Tj,pHj,NaClj)

=

M
∑

k=1

βjk(Ψ(γ1kN(t−1)ij + γ2kTj + γ3kpHj + γ4kNaClj)(7)

−Ψ(γ2kTj + γ3kpHj + γ4kNaClj)),

for i= 1, . . . , I and j = 1, . . . , J , and fj(·) is the growth rate for populations
with environmental condition j. As previously, we could consider adding
an intercept term to the network. However, for the given model, given
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Fig. 3. 15 replications of bacterial growth under T = 42◦C, pH= 7.4 and NaCl= 2.5%.

the addition of an error term as defined in the following subsection, when
N(t−1)ij = 0, then Ntij = 0, so that once the population has died out, then
it remains extinct. Including an intercept would mean that this desirable
property is lost. The model defined in this section by (6) will be referred to
as the NN model.

3.3. Error modeling. In the previous subsections two approaches to mod-
eling the expected population density have been provided. These models are
completed by including an error term. Thus, in the case of the full neural
network model, we assume that

Ntij =N(t−1)ij +N(t−1)ijfj(N(t−1)ij , Tj ,pHj ,NaClj) + εtij ,(8)

where we assume that the error term is

εtij |N(t−1)ij , σ, v ∼N (0, σ2Nv
t−1),(9)

where σ2 ≥ 0 and v = 0.5 so that the possibility that the error variance in-
creases with population density is allowed for. Figure 3 illustrates different
bacterial growth curves from Petri dish experiments under the same condi-
tions. It can be seen that the curves are closer together initially when the
population density is lower and diverge over time as the population density
grows, which suggests that a model of this type is reasonable. Our empirical
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experiments suggest that the value of v = 0.5 is appropriate here, although,
clearly, a prior distribution for v could be considered. Following the same
idea of increasing error variance, we assume for the GNN model that the
error term is

εtij |gtij , σ, v ∼N (0, σ2g(tij)
v),(10)

where g(·) is the Gompertz function evaluated at the current time point.

4. Bayesian inference for the neural network models. Given a set of
observed inputs and outputs from a neural network, say, D = (x1, y1), . . . ,
(xN , yN ), inference can be carried out using a variety of approaches; see, for
example, Neal (1996) and Fine (1999) for reviews. Here, we shall consider
a Bayesian approach. To implement such an approach, we must first define
suitable prior distributions for the neural network parameters β and γ and
for the uncertainty. First, we suppose little prior knowledge concerning the
variance and, hence, we propose a vague inverse-gamma prior distribution
for it, σ−2 ∼ G(a/2, b/2). In neural network models, it is common to use
relative uninformative prior distributions due to the scarcity of prior infor-
mation about the parameters. For simplicity, we choose normal and gamma
distributions with a hierarchical structure, that is,

βik|miβ , σ
2
β ∼N (miβ, σ

2
β),

γk|mγ , σ
2
γ ∼N (mγ , σ

2
γI),

where the subscript i in the GNN model accounts for the growth parameters
and in the NN model for the groups defined by the environmental conditions.
The Bayesian approach is completed by vague, but proper prior distributions
for the remaining hyperparameters as follows:

miβ|σ
2
β ∼N

(

m0β,
σ2
β

cβ

)

,

m0β|σ
2
β ∼N

(

0,
σ2
β

eβ

)

,

1

σ2
β

∼ G

(

dβ1
2

,
dβ2
2

)

,

mγ |σ
2
γ ∼N

(

0,
σ2
γ

cγ
I

)

,

1

σ2
γ

∼ G

(

dγ1
2

,
dγ2
2

)

,

where cβ , eβ , dβ1, dβ2, cγ , dγ1 and dγ2 are assumed known and fixed. Similar
hierarchical prior distributions are typically used in Bayesian inference for
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neural network models; see, for example, Lavine andWest (1992), Müller and
Insua (1998) and Andrieu, de Freitas and Doucet (2001). For alternatives,
see, for example, Lee (2004), Robert and Mengersen (1999) and Roeder and
Wasserman (1997).

Usually, we will have good prior knowledge about the average initial pop-
ulation density, m0 =E[N0i|m0, s0], and the variance, s0, as typically Petri
dishes are seeded with very similar quantities of bacteria close to a known
theoretical level, so we shall typically assume that these are known. Oth-
erwise, a simple noninformative prior distribution f(m0, t0) ∝ 1/t0, where
t0 = 1/s20 can be used when, immediately, we have that given the observed
set of initial densities, N0= (N01, . . . ,N0I),

m0|N0, s0 ∼N

(

N0,
s20
I

)

,

s20|N0∼ IG

(

I − 1,

I
∑

i=1

(N0i −N0)2

)

,

where N0 = 1
I

∑I
i=1N0i is the average initial density and IG means inverse

gamma.
Given the above prior structure, a closed form for the posterior parameter

distributions is not available. However, Markov Chain Monte Carlo (MCMC)
techniques can be employed to allow us to generate an approximate Monte
Carlo sample from the posterior parameter distributions; see, for example,
Gilks, Richardson and Spiegelhalter (1996) for a full review. Various different
MCMC algorithms have been proposed in the neural networks literature,
but in general the efficiency of such samplers depends on the model; see, for
example, Lee (2004).

As an alternative, here, we propose using the generic MCMC sampler,
WinBugs, as developed by Spiegelhalter, Thomas and Best (1999), which is
appropriate for hierarchical modeling situations, programmed in combina-
tion with R, via R2WinBugs.

Figure 4 illustrates the dependence structure of the NN model in WinBugs

style (although code cannot be constructed directly from this diagram). In
the figure, random and logical nodes are represented by ellipses and fixed
nodes (independent variables) are represented by rectangles. The arrows rep-
resent dependence relationships, with the single arrows showing stochastic
dependence and the double arrows representing logical dependence. For more
details see http://www2.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml.

As WinBugs is a generic approach to MCMC sampling, it is important to
check on the convergence of the sampler. Various tools can be used to check
the convergence. In particular, as well as standard graphical techniques such

http://www2.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
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Fig. 4. Dependence structure of the NN model.

as looking at the trace, the evolution of the mean and the autocorrelations
of the sampled output, we also use formal diagnostic techniques such as the
modified Gelman–Rubin statistic, as in Brooks and Gelman (1998).

Note finally that the codes for running both models are available in the
supplemental materials [Palacios et al. (2014a, 2014b)].

4.1. Model selection. Thus far, inference is conditional on the number of
hidden nodes, M , being known. Various approaches to estimating M may
be considered. One possibility is to treat M as a variable and, given a prior
distribution for M , use variable-dimensional MCMC approaches to carry out
inference; see, for example, Müller and Insua (1998) or Neal (1996). Another
approach which we shall use in this article is to use an appropriate model
selection technique to choose the value of M .

A number of criteria have been proposed for model selection in Bayesian
inference. A standard Bayesian selection criterion which is particularly ap-
propriate when inference is carried out using MCMCmethods is the deviance
information criterion (DIC), as proposed in Spiegelhalter et al. (2002). How-
ever, in the context of neural networks, the possible lack of identifiability of
the model or multimodality of the posterior densities make this criterium
unstable. Many variants of the DIC have also been considered and, here, we
prefer to apply the DIC3 criterion of Celeux et al. (2006). For a model M
with parameters θ and observed data y, the DIC3 is defined as follows:

DIC3 =−4Eθ[log f(y|θ)|y] + 2 log
n
∏

i=1

Eθ[f(yi|θ,y)].
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In Celeux et al. (2006) this criterion is recommended in the context of latent
variable models. Furthermore, Watanabe (2010) recommends the use of this
criterion in the case of singular models such as neural networks.

An alternative approach which we also consider when comparing differ-
ent models is the posterior predictive loss performance (PPLP) proposed
by Gelfand and Ghosh (1998). Based on the posterior predictive distribu-
tion, this criterion consists in defining a weight loss function which penalizes
actions for departure from the corresponding observed value as well as for de-
parture from what we expect the replication to be. In this way, the approach
is a compromise between the two types of departures: fit and smoothness.
For squared error loss, the criterion becomes

PPLP=
k

k+ 1

n
∑

i=1

(mi − yi)
2 +

n
∑

i=1

s2i ,

where mi = E[yrepi |y] and s2i = Var[yrepi |y] are, respectively, the mean and
the variance of the predictive distribution of yrepi given the observed data
y and k is the weight we assign to departures from the observed data. The
first term of the PPLP is a plain goodness-of-fit term and the second term
penalizes complexity and rewards parsimony.

5. Application: Listeria monocytogenes. In this section we analyze a
data set taken from Petri dish experiments of one of the authors (EQ)
and consisting of measures of the concentrations of Listeria monocytogenes

bacteria in a Petri dish under several experimental conditions. A strain
of Listeria monocytogenes previously isolated from poultry meat was pro-
vided by the Department of Animal and Food Sciences, School of Veteri-
nary Medicine, Autonomous University of Barcelona, Spain, and used in
the present study. L. monocytogenes growth data was obtained as reported
by Eduardo et al. (2011). Briefly, an automated method (SLT 340 ATTC
microplate reader, SLT Labinstruments, Austria) for the measurements of
the optical density of a L. monocytogenes culture was used. Aliquots of
the microorganism, previously cultured in nutrient broth at 31◦C overnight
and serially diluted, were inoculated into the microplate wells and read at
a wavelength of 595 nm every 15 min. Optical density curves of bacterial
growth were obtained. At the same time, aliquots were also spread onto Petri
plates with nutrient agar and cultured at 31◦C overnight. The environmental
factors taken into account are temperature, level of acidity and salinity. Tem-
peratures range between 22◦C and 42◦C, pH between 4.5 and 7.4 and NaCl
between 2.5% and 5.5%. There are 96 different combinations of environmen-
tal factors (we call groups) and for each group there are several replications.
The number of observations per curve varies between 16 and 24, depend-
ing on the curve. We kept for the analysis 74 groups (excluding the cases
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with extreme values of factors which inhibit growth) and chose randomly
10 replications for each one so that the remaining curves could be used for
cross-validation and prediction purposes and to reduce computational time.
The temperatures selected cover the following situations in food handling:
room temperature in northern countries (22 and 26◦C); room temperature
in warm countries (30 and 34◦C); and inadequate reheating treatments of
ready-to-eat foods previous to consumption (38 and 42◦C). The selected pH
values cover most of the range of the pH values tolerated by Listeria. The
percentages of NaCl selected are well under the limits tolerated by Listeria,
but it is very important to know their possible effects under a hurdle tech-
nology point of view combined with temperature and pH values. A reduced
version of this data set including six groups under the same environmental
conditions as the data illustrated in Figure 2 and each with ten replications
is contained in the supplemental materials [Palacios et al. (2014a)].

Using the DIC3 criterion as outlined earlier, the optimum number of nodes
for both models is 2. Temperature, pH and NaCl as inputs of the neural net-
works were previously scaled onto [0.1, 0.9] as recommended in Valero et al.
(2007). In the implementation of the GNN model we keep the hyperparam-
eters miβ , σβ , mγ and σγ fixed at miβ = 0, σβ = 10, mγ = (0, . . . ,0)′ and
σγ = 10. Regarding the error variance, we choose a= 0.2 and b= 0.2. In the
NN model the highest level of hyperparameters were set to cβ = 10, eβ = 10,
dβ1 = 0.1, dβ2 = 0.01, cγ = 10, dγ1 and dγ2 = 0.01.

For both models, we generated chains with random initial values and
200,000 iterations each, including 100,000 iterations of burn-in. To diminish
autocorrelation between the generated values, we also used a thinning rate
of 1000. Trace plots and autocorrelation functions were used to check con-
vergence in the predictions and in all cases it was found that the burn-in pe-
riod of 100,000 iterations was reasonable. Furthermore, the Gelman–Rubin
statistic was equal or very close to 1 for predictions, being a good indicator
of convergence.

In order to have a benchmark for the comparison of models, we also fit two
different simple models, the independent Gompertz model and the pooled
Gompertz model. The first one implies that each observed curve, including
the replications, is independent and therefore has its own Gompertz growth
parameters. Independent normal prior distributions with mean zero and
variance 100 are assumed for these parameters. In contrast, the pooled model
assumes that the replications under a fixed set of environmental conditions
are samples from a unique underlying growth curve for that set of conditions.
Normal priors are then placed on the parameters of this growth curve as for
the independent model. For both benchmark models the errors are the same
as in the GNN case with a G(0.1,0.1) prior distribution for the error variance.

The DIC3 and the PPLP criteria were computed to compare the different
models under consideration and Table 1 shows the estimated values for all
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Table 1
Model comparison

Model DIC3 PPLP

Independet Gompertz −19,136 781
Pooled Gompertz −39,420 211
Gompertz & NN −40,099 41
Neural Networks −58,492 28

of these models. As is expected, the pooled model performs better than the
independent one since the assumption of independence for all the curves
is somewhat extreme. Therefore, it seems reasonable to assume different
curves under different environmental conditions, but under equal conditions
we assume a common curve and this is the approach we choose for the
proposed models. But the problem with this model is that it does not explain
the effect of the environmental factors and it is needed to estimate one model
for each group of conditions. Then, regarding our proposed models which
incorporate the environmental factors as explanatory variables, the results
show that the hierarchical neural network model outperforms the Gompertz
model with neural networks for the parameters. The DIC3 and the PPLP
values are lowest for the former model.

Figure 5 shows for a particular curve (T = 34◦C, pH = 6.5 and NaCl =
5.5%) the fitting of both models. On the left, the Gompertz model with
neural networks explains the dependence of the growth parameter on the
environmental factor and on the right the fitting of the hierarchical neural

Fig. 5. Fitting of the GNN model (left) and the NN model (right). Points represent real
data, the solid lines represent the posterior means and the dashed lines represent the 95%
credible interval.
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Fig. 6. Posterior mean of the growth rate parameter µ for the GNN model. NaCl= 2.5%
(left) and pH= 6.5 (right).

network model. The observed values are represented by points, the estimated
growth curves are represented by the solid line, and the dashed lines repre-
sents the 95% credible interval computed from the posterior distributions. It
can be observed that the fit is good in both cases and the credible intervals
included all the true observations. Nevertheless, note that the NN model
overestimates the lag period. In the remaining curves (replications and dif-
ferent group conditions), we also found good fits for both models. Similar
results are observed in the fitted plots for all the groups.

Additionally, with the GNN model we can make predictions of the growth
parameter values for a certain level of environmental factors. Based on pre-
vious works, it should be expected that an increase of temperatures and a
decrease in pH values kills a foodborne pathogen. However, predictions from
our model show an interesting behavior of Listeria under several environ-
mental conditions. The impact of temperature on growth is not the same
when considering different pH values, changing even the direction of the
effect. On the other hand, the effects seem to be irregular and interacting,
which emphasizes the utility of a neural network model which does not im-
pose a rigid functional form on the dependencies. To illustrate these effects,
we plot the posterior mean of the growth rate parameter as a function of
the environmental factors (see Figure 6).

For example, when pH values range between 4.5 and 5.5, an increase in
the temperature values is needed to decelerate the growth rate of Listeria. In
contrast, when pH is equal to 6.5 or 7.4, the temperature must be decreased
to diminish the microorganism growth.

Regarding the percentage of NaCl, we found a decrease in the growth rate
when the percentage of NaCl increases. Additionally, the impact grade of
the temperature changes for different values of NaCl. When NaCl is equal to
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Fig. 7. One-step-ahead predictions of the GNN model (left) and the NN model (right).
Points represent real data, the solid lines represent the posterior means and the dashed
lines represent the 95% credible interval.

5.5% the differences among the temperature effects are minimal, but those
differences increase for lower levels of NaCl.

Now, we consider predictions of future values of a growth curve and pre-
dictions of a full curve under an unobserved set of environmental conditions.
For the first case, we computed one-step-ahead predictions. That is, for a
particular curve we observe data until observation t and predict the popu-
lation size at t+1. In the next step, we observe data until t+1 and predict
the population size at t+2 and so on, until the completion of the predictive
curve. Figure 7 shows the one-step-ahead predictive curves for both models
for a particular growth curve (T = 42◦C, pH = 5.5 and NaCl = 2.5%). In
contrast to the fitting results, the Gompertz model shows a slightly better
performance regarding the mean prediction. The mean square error of the
prediction in the Gompertz model is equal to 0.001, while for the NNs model
it is 0.008. But in the second model higher accuracy is reached, as can be
seen from the narrower credible interval.

In the context of model checking, several authors, for example, Gelfand
(1996) and Vehtari and Lampinen (2003), have proposed the use of cross-
validatory predictive densities. Following this approach, the data set is di-
vided in two subsets (y1,y2). The first subset is used to fit the model and
to estimate the posterior distribution of the parameters, while the second
set is used to compute the cross-validatory predictive density: f(y1|y2) =
∫

f(y2|θ)f(θ|y1)dθ. In our case, we computed the predictive density for one
of the groups which was not used in the model fitting. Given the hierarchical
structure of the models, it is possible to make predictions of a growth curve
under an unobserved set of conditions, due to the knowledge learned from
the other observed group of conditions. To illustrate, we make predictions
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Fig. 8. Prediction out of sample of the GNN model (left) and the NN model (right).
Shadings represent the area where real data of all replications lie, the solid lines represent
the posterior means and the dashed lines represent the 95% credible interval.

for a new unobserved group with T = 26◦C, pH = 6.5 and NaCl = 5.5%.
Figure 8 shows the mean prediction (solide line) and the 95% credible in-
terval (dashed line) for both models, GNN on the left and NN on the right.
As there are many replications for this group, we plot only the mean curve
and shade the area between the minimum value and the maximum value ob-
served for each time t among replications. As an input of the neural network
for the NN model we used the mean curve of the replications.

The out-of-sample predictions of both models are fairly good and con-
stitute one of the main contributions of this work. Although the good per-
formance of both models, in the case of the GNN model some observa-
tions lie outside the credible interval—a small shaded area lies outside the
dashed line. Moreover, comparing the mean prediction with the mean ob-
served curve, the NN model yields more accurate predictions.

6. Conclusions and extensions. In this paper we have shown a metho-
dological contribution which can be easily and directly applied for microbi-
ological researchers. Neural networks were used as a secondary model that
explains the dependence on environmental factors and also as a primary
model which, besides time, includes experimental conditions as explanatory
variables. Inference was carried on in a Bayesian approach that avoids the
problems for doing inference in two steps. Both models yield accurate esti-
mations and good predictions which show that NNs can be used to model
bacterial growth, describing accurately the complex interacting effects of en-
vironmental factors without imposing any simplifying assumption. On the
other hand, the modified Gompertz equation was used as the base model
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for the first approach we considered, but other parametric bacteria growth
models such as Baranyi or logistic are equally applicable.

Estimations were implemented in WinBugs via R2WinBugs, showing that
WinBugs can be a powerful and flexible tool that is able to handle very
complex models such as neural networks with great ease. As MacKay (1995)
pointed out, the Gibbs sampling method is not the most efficient of MCMC
methods, but there may be problems of interest where the convenience of
this tool outweighs this drawback.

Previous studies have special interest for the food industry. The conditions
inside a food-processing plant (humidity, temperature, food processing tech-
niques, sanitation procedures, etc.) relate to each other in a very complex
way, creating microenvironments with adequate conditions for the growth
of Listeria, such as hard-to-reach areas (drains, etc.). The use of NNs gives
more flexibility, as they do not impose restrictions to the hurdle technology
effects on microorganisms and can show more freely the variability inher-
ent to any form of life under different environmental conditions. And it is
necessary to take into account that variability does not only appear in a
laboratory assay, but also and most importantly appears in a food indus-
try production chain, in a foodservice company, in a food distributor or at
home before the moment of consumption. Following this reasoning, the ap-
plication of the NNs to quantitative microbial risk assessment seems a very
useful and realistic tool, reflecting with fewer restrictions the behavior of
foodborne pathogens. This flexibility in the model has allowed us to get new
conclusions, different to previous studies.

Food safety conditions and food handling are part of the foodservice in-
dustry, and different conditions of temperature, pH and percentage of NaCl
give a new insight in terms of inhibitory effects of those conditions. Montville
and Matthews (2001), who studied the effect of temperature with different
pH values, concluded that the growth rate increases with temperature, reach-
ing a maximum at 40◦C to decay afterward. The behavior of the growth rate
is similar for different values of pH. Similar conclusions can be found in the
literature, however, in our work the results are fairly different. The effect
of temperature on the growth rate is not as it was shown in previous stud-
ies. Secondary models show a very continuous line of increasing growth rate
values with temperature or pH changes [Montville and Matthews (2001);
McKellar and Lu (2004)]. In contrast, in our work, for a fixed pH value the
effect of temperature is not so smooth, and the growth rate shows oscil-
lations that have not been described in the literature with any secondary
model as far as we know. Moreover, the maximum growth rates are achieved
at different levels of temperature when the pH values vary, differing from
the CAPM models.

Specifically, when pH is about 7.4, the temperature must be diminished to
decrease the growth rate of Listeria, but if pH is about 4.5, then the temper-
ature must be increased to decrease growth rates. Therefore, consequences
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in terms of food conservation vary regarding their respective pH. For ex-
ample, in fruits and vegetables, which present in general low pH values, it
is convenient to increase temperature; on the contrary, in dairy products,
biscuits, chocolate and eggs it is convenient to decrease temperatures.

It is generally accepted that predictions of the response within that range
can be made by interpolation. Usually, a three-dimensional space could be
constructed with the ranges of the three parameters studied. The inter-
polation region of the combinations tested is called the minimum convex
polyhedron [Baranyi et al. (1996)] and it is used to make predictions. How-
ever, Baranyi et al. (1996) noted that this is not always a good approach.
These authors reported a prediction of an optimal growth for Salmonella

under approximately 2% NaCl, which is not correct for that microorganism.
Additionally, Davey (1989) noted that polynomial equations did not have a
consistent form across a range of bacterial growth data and that such models
appeared to lack of universality. That is, the coefficient values of polynomial
models are very data dependent. In this work, we have implemented two
kinds of predictions which were not widely used in the literature but which
are of greater relevance in the context of the microbiology. We have shown
that predictions out of sample are very accurate, being a good alternative
to the use of polynomials of different orders (2nd or 3rd order) and response
surfaces for predictive microbiology.

A restriction in the models, as assumed here, is that we suppose that
data are equally spaced in time. Although this is typically the case in Petri
dish or in optical density experiments, this may not be true with more gen-
eral populations. In the case of irregularly spaced data, differential equation
models with diffusion type approximations with the neural network models
for the growth functions may be considered [see Donnet, Foulley and Samson
(2010)].

Finally, alternative approximations to the hierarchical neural network
models for growth functions may be considered as spline methods from a
classical point of view, functional data analysis or Gaussian process approx-
imations.

SUPPLEMENTARY MATERIAL

Supplement A: Code for the NN and GNN models

(DOI: 10.1214/14-AOAS720SUPPA; .zip). The file contains two programs,
NN model.odc for running the neural network model and GNN model.odc

for running the Gompertz neural network model.

Supplement B: Data sets (DOI: 10.1214/14-AOAS720SUPPB; .xls). The
file data.xls contains 10 replications in 6 groups of bacteria under the
environmental conditions outlined in Figure 2.

http://dx.doi.org/10.1214/14-AOAS720SUPPA
http://dx.doi.org/10.1214/14-AOAS720SUPPB
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