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Abstract
We propose a lattice Boltzmann approach for simulating contact angle phenomena in
multiphase fluid systems. Boundary conditions for partially-wetted walls are
introduced using the moment method. The algorithm with our boundary conditions
allows for a maximum density ratio of 200000 for neutral wetting. The achievable
density ratio decreases as the contact angle departs from 90°, but remains of the order
O(102) for all but extreme contact angles. In all simulations an excellent agreement
between the simulated and nominal contact angles is observed.

Keywords: Lattice Boltzmann Method, Multiphase Flow, Moment-based Boundary
Conditions, Partial Wetting

1. INTRODUCTION
Wetting of solid structures is an interesting phenomenon in nature and also of much importance in
many technical processes. For instance, in condensers it is desirable to have a large angle of contact
between a liquid and solid in order to promote drop-wise, rather than film-wise, condensation [14].
The opposite is true for the case of evaporators, where a closed liquid film flow can be supported
with a small contact angle. The contact angle θ can be observed at the three-phase line where solid,
liquid, and vapour meet. A contact angle of θ = 90° is usually called neutral wetting. Smaller or
larger angles cause mostly wetting or mostly dewetting, respectively [9].

With increasing computational resources, the numerical modelling and simulation of physical
phenomena becomes more and more important. Traditional computational methods for multiphase
flow are discretisations of the macroscopic equations of motion (see Prosperetti and Tryggvason [31]
for a review). A relatively new method based on a mesoscopic description of a fluid, namely the
lattice Boltzmann method (LBM), has been gaining prominence in recent years (for a review, see
Chen and Doolen [8], Yu et al. [42], Aidun and Clausen [1]). The LBM is derived from a velocity-
space truncation of the famous Boltzmann equation with a simplified collision operator [18]. Once
further discretised in space-and-time, the resulting numerical algorithm may be efficiently
implemented on modern parallel computer architectures [2, 10, 40]. The primary variable in the
LBM is the discrete-velocity distribution function. Macroscopic quantities, such as density,
momentum, and stress, are determined by taking discrete moments of the distribution function.

The first generation of multiphase lattice Boltzmann models are often referred to as “colour
gradient” models [13, 33]. The interfacial dynamics are predicted using the gradient of an order
parameter (the “colour”) used to distinguish between the two fluids. Although improvements
have been made to the original model [12, 24, 32], colour-gradient approaches can still suffer
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from numerical instabilities at high density ratios and can be computational expensive due to
the necessary “recolouring” step in the algorithm. The popular pseudo-potential model of Shan
and Chen [35] introduces a long-range interaction force to promote phase segregation. To
improve its numerical stability, Kuzmin et al. [23] extended the Shan-Chen model from a
single- to a multiple-relaxation time algorithm, and Sun et al. [37] have performed an
investigation into the accuracy of the equation of state in the model. Despite further
enhancements to reduce so-called spurious currents and increase the attainable density ratio [11,
34], the model remains thermo-dynamically inconsistent, as has been demonstrated by Swift et
al. [38] and He and Doolen [15]. Motivated by this, Swift et al. [38] introduced their free-
energy lattice Boltzmann equation, which employs a Cahn-Hilliard equation for phase
dynamics. Although the original formulation lacks Galilean invariance, this may be restored by
adding a correction term into the equilibrium distribution function [20]. A major extension of
the model was provided by Inamuro et al. [21], who were the first to present a multiphase lattice
Boltzmann model capable of simulating flows with a density ratio of the order of 103. This was
achieved by forcing exact incompressibility of both phases, but came at the cost of calculating
the pressure iteratively via a separate Poisson equation. Like other models, free-energy LBMs
suffer from parasitic currents in the vicinity of an interface. Wagner [39] argued that these are
due to inconsistent discretisations of the forcing terms and found that using a potential form of
the surface tension term (instead of a pressure form) dramatically reduces these spurious
phenomena. Further progress was made by Jamet et al. [22] before a consistent and isotropic
lattice Boltzmann discretisation was proposed by Lee and Fischer [26]. Despite the novelty and
success of the Lee-Fischer model, it has some difficulty in incorporating macroscopically
consistent boundary conditions [25, 27, 28, 41]. For example, bounce-back conditions must be
applied halfway between nodes in order to achieve second-order accuracy [16]. Furthermore,
numerical slip errors due to the combination of bounce-back and a single relaxation time
collision operator increase with the lattice viscosity, requiring a highly resolved mesh for low
Reynolds number flow. This adds additional complications to multiphase LBMs which usually
impose contact angle conditions at a wall.

In this paper we propose a new approach to model partially-wetted walls with lattice
Boltzmann methods. We combine two approaches, namely moment method [4] and free-energy
boundary conditions for multiphase flow [5, 6]. This new wall boundary condition may be
employed, in principle, for a variety of multiphase or multi-component lattice Boltzmann
models.

2. NUMERICAL MODEL
2.1 Multiphase Lattice Boltzmann equation model
We employ the Lee-Fischer model [26], which has followed from the contributions of He 
et al. [19], Jamet et al. [22], and Wagner [39]. Its most remarkable features are its ability to attain
large density ratios and greatly reduced spurious currents at the liquid-vapour interface.

The Lee-Fischer model is obtained from a Crank-Nicolson discretisation of the discrete-velocity
Boltzmann equation for distribution functions fq = fq(x, eq, t) with an interface forcing term. The
resulting algorithm may be written as [19, 26]:

(1)

where the transformed distribution functions f
-
q are defined in Eq. (2). The collision term Cq, defined

in Eq. (5), relaxes f
-
q to its (transformed) equilibria while the force term Fq (c. f. Eq. (6)) imposes

the surface tension. The left-hand side of the above equation represents a perfect shift of the
distribution function f

-
q in the direction q from node x at time t to a neighbouring node x + eqDt

at the new time step  t + Dt. The stencil is defined by Eq. (12).
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(3)

whereby

(4)

is the equilibrium distribution function from the discrete-velocity Boltzmann equation [17]. Herein,
eq and u are the microscopic and macroscopic velocities, respectively, and the speed of
sound is a lattice constant.

In the model of Lee and Fischer [26], the collision term is defined by:

(5)

utilising a single-relaxation time τ (SRT). The force term Fq can be expressed as [26]:

(6)

and the force vector by

(7)

where μ is the chemical potential (defined in Eq. (22)), and  is the mass density. We follow Lee
and Fischer [26] and discretise the gradient terms in Eqs. (2), (3), and (6) using both central and
upwind schemes. More specifically, the directional derivatives of the form  eq χ for some scalar
χ in Eq. (6) require the mixed difference scheme

(8)

The directional derivatives in Eqs. (2) and (3) are approximated by

(9)

and the remaining first and second order derivatives in Eqs (2), (3), and (6) are computed using the
central differences
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A detailed discussion of the need for compact gradient discretisation can be found in [26, 29].
We consider a 9-point lattice with microscopic velocities

(12)

where T denotes transpose, and weighting factors

(13)

The hydrodynamic quantities are obtained via discrete moments of the transformed distribution
functions. For example, the mass and momentum are computed from

(14)

(15)

By performing a Chapman-Enskog expansion (see, e.g., Chapman and Cowling [7]) it can be
shown that the Lee-Fischer lattice Boltzmann equation approximates the following equations of
motion for mass and momentum in the macroscopic limit:

(16a)

(16b)

where η is the dynamic viscosity and is a function of the relaxation time τ: . The Mach
number is Ma = u/cs<<1.

2.2 Boundary condition model
Boundary conditions are vital for all numerical methods. For the lattice Boltzmann algorithm we
must supply (for a flat boundary) three incoming distributions, f-q (not necessarily fq), where eq
points into the fluid. It is common, and seemingly natural, to impose boundary conditions directly
upon these distribution functions (as is the case for bounce-back, for example). Alternatively, we
may take advantage of the invertible relationship between the velocity basis and the moment basis.
Now we can consider applying boundary conditions to the moments of the velocity distribution
function and then translating these into conditions for the incoming f-q. Imposing constraints upon
the hydrodynamic moments (velocity, pressure, stress) allows for the exact satisfaction of the
required boundary conditions (such as no-slip) precisely at grid points, and may be particularly
convenient for imposing contact angles and Neumann-type boundary conditions.

2.2.1 Partial-wetting condition
The boundary conditions at the wall read (for details see de Gennes et al. [9] and Lee and Liu [27, 28]):
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(17b)

(17c)

where ns denotes the normal to the solid surface. Equations (17b) and (17c) ensure no flux through
the solid surface, whereas Eq. (17a) determines the contact angle. It shall be stressed that Lee and
Liu [27] utilised the density  as a phase index in a single-component two-phase flow. Lee and 
Liu [28], however, proposed the same equation for a binary fluid, but with the phase index ϕ
instead of the density .

The other variables in equations (17) are the surface tension parameters φ1 and κ, which can be
determined with

(18)

(19)

(20)

Herein, 1 and v are the saturation liquid and vapour densities, respectively, σ is the interfacial
tension, ξ is the interfacial width, and β is a compressibility factor. The non-dimensional wetting
potential W can be evaluated with

(21)

and cos a = (sinθeq)
2, θeq being the contact angle at equilibrium. The function sgn returns the sign

of its argument.
Unlike the gradient conditions (17b) and (17c), which have to be applied to all derivatives in the

forces term (7), the condition (17a) is applied in the interface term of the chemical potential only:

(22)

The terms μb, μint, and μA are those of the bulk phases, the interface, and artificial chemical
potential, respectively. The interface term (2nd term in Eq. (22)) is discretised in the same manner
as Lee and Liu [28]. That is, we use the stencil Eq. (11) and for nodes x + eqDt outside of the
computational domain we use the approximation χ(x + eqDt) = χ(x -eqDt). The artificial
chemical potential has been introduced into a binary-fluid model in order to increase the stability
of the numerical scheme and reads [28]:

(23)

wherein ϕ = ( - v)/(1 - v) is the phase index. It shall be stressed that the artificial chemical
potential acts in cases of spuriously low densities only. In order to utilise the stabilising effect of
the artificial chemical potential in the Lee-Fischer model, where β and βA are defined differently,
an alternative form of μA, one with the correct units, is proposed:
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2.2.2 Moment method boundary condition
The moment method is a general methodology for imposing macroscopic boundary conditions within
the lattice Boltzmann framework. As an extension of the work by Noble et al. [30], Bennett [3] suggests
finding appropriate boundary conditions for the unknown (or “incoming”) distribution functions by
imposing hydrodynamic boundary conditions directly upon physically meaningful moments of fq. For
a typical two-dimensional lattice with nine velocity directions (see Fig. 1 for a visualisation at a south
wall), the hydrodynamic moments of density, momentum and momentum flux are given by

(25a)

(25b)

(25c)

(25d)

(25e)

(25f)

where the pressure p is the ideal gas pressure: . The aim is to apply boundary conditions
consistent with the macroscopic equations of motion to a subset of the above equations.
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Figure 1: Two-dimensional lattice stencil with nine velocity directions (D2Q9); unknown
incoming distribution functions (solid lines) at the south boundary of a computational

domain (grey box).



At a flat boundary aligned with grid points, these moments can be grouped together according
to combinations of the incoming (unknown) distribution functions (see Tab. 1 for an example at a
southern boundary). There are three incoming fq at such a boundary, thus we require three linearly
independent equations. Moments in different groups are linearly independent. Therefore, to find the
three unknown distribution functions at a flat boundary, we can pick one moment from each group,
impose a constraint (boundary condition) upon each, and then solve for the incoming variables. We
wish to impose no-slip and no tangential stress conditions at a solid wall (the appropriate tangential
stress boundary conditions for a Newtonian fluid), so it is suggested to select x, y, and TT,
where TT denotes the component tangential to the wall. The no-slip condition dictates x =y = 0 
and the zero tangential momentum flux condition says , by Eq. (25d).

However, the fully discrete lattice Boltzmann algorithm used here, Eq. (1), is in terms of f-q, 
not fq. The aim is to supply boundary conditions for f-q that are consistent with the conditions imposed
upon the hydrodynamic moments, as discussed above. In other words, we have to respect the
variable transformation given by Eq. (2). By taking the first order moment of Eq. (2) and imposing
the zero-velocity conditions on x andy we see that the boundary conditions for and are

(26)

(27)

for α, β  {x,y}. Note that we have used Einstein’s summing convection for repeated indices.
Similarly, taking the second order moment of Eq. (2) and imposing the zero tangential stress 

condition shows, conveniently, that . Solving the system of
equations which result from these three “barred” moments and their constraints at a south wall
leads to:

(28a)

(28b)

(28c)

where  at the wall can be found in terms of known distributions:
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In a similar manner it is possible to derive the corresponding equations for a north wall.
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Table 1. Moment groups for plane horizontal boundary conditions (BC) with
corresponding unknown distribution functions (adopted from [3])
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2.3 Numerical test case
The test case which has been employed here is a liquid drop close to the wall (see Fig. 2). The 

computational domain is rectangular with Ly = 3/5Lx = 5 R0 and discretised with a uniform grid. 

The boundary condition at the north and south no-slip walls are modelled with the moment method
as introduced in Sec. 2.2.2. Periodicity is implemented at the east and west boundaries. The domain
is initialised with a zero-velocity field and with

(29)

representing a circle with a smooth transition from liquid to vapour density of the initial radius R0,
whose mass centre is located at x = (½Lx, R0)

T and whose interface width is ξ. The density
distribution functions have been initialised with the equilibrium distribution function.

The scaling of this system is carried out with the density ratio *, the non-dimensional time and
contact angle t* and θ*, respectively and the ratio of artificial to “normal” compressibility βA/β,
utilising tsc = 11Lsc/σ, θsc = , and Lsc = R0. The initial radius is varied as R0  {20, 50} 
(i. e., grid sizes of 100 ¥ 166 and 250 ¥ 416), the density ratio *  {2, 5, 7,10, 20, 50, 70, ...,
1000000}, the nominal contact angle θ*

n {1/36, 1/12, 1/6, 1/4, 1/3, 1/2, 2/3, 3/4, 5/6, 11/12,
35/36}, and the ratio of compressibilities βA/β {0, 1, 10, 100, 1000, 2000}.

The kinematic viscosity , interfacial tension σ, and interfacial width ξ are set to 1/6, 0.002, 
and 4 in lattice units, respectively.

3. RESULTS AND DISCUSSION
3.1 Grid independence test
The test for grid independence has been carried out for two different initial drop resolutions and
corresponding grid sizes. The results are illustrated in Fig. 3 in terms of actual (measured) versus
nominal non-dimensional contact angle (θ*  {1/36, 1/6, 1/2, 5/6, 35/36} are tested here). 
Sub-figure 3(a) presents the results for * = 10 and (b) for * = 100. It can be observed that the
solution is grid-independent as long as the simulation is numerically stable (missing symbols
indicate numerical instability). A discussion of numerical stability and its influencing factors is
provided below. However, it is already clear that the largest contact angle can be obtained only with
the larger grid.

3.2 Stabilising effects of the artificial chemical potential and the collision operators
In order to study the effect of the artificial chemical potential (through the artificial compressibility βA),
the results of various simulations are plotted in terms of actual versus nominal non-dimensional contact
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Figure 2: Geometrical representation of the computational domain and the initialisation
of the drop close to the wall (indicated by grey circle, not to scale).



angle in Fig. 4.  The density ratios are 10 (a), 200 (b), and 1000 (c). It is stressed that missing symbols
indicate numerically unstable simulations. An excellent agreement is observed in all but the most
extreme contact angles. The range of stable contact angles is certainly sufficient for most industrial
applications. It is worth mentioning that previous works could not even achieve extreme contact angles
[5, 6, 27, 36, 41]. For very large density ratios it can be observed that the range of numerically stable
contact angles becomes smaller, whereby it shall be noted that neutral wetting remains stable for all
artificial compressibilities at larger density ratios.

The stabilising effect of the artificial compressibility is visualised in Fig. 5, which plots the
maximum density ratio versus the nominal non-dimensional contact angle. The parameter is the
artificial compressibility βA. It can be observed that it is possible to employ the boundary condition
proposed here for density ratios up to 200 for all contact angles under investigation. For cases of less
extreme contact angles, the density ratio can exceed 1000, and for neutral wetting this can be
increased to 200000. The latter fact is quite surprising, especially considering such a large density
ratio has not been demonstrated for a multi-phase lattice Boltzmann model with wall boundary
conditions, to the best of the authors’ knowledge. As already learned from Fig. 4, there is a lower limit
for stable simulations with large artificial compressibilities. The stability range for βA/β = 2000 is
illustrated by the grey colour. The lower limit for βA/β = 100 is * = 10, which has not been
illustrated here in order to keep the figure clear. Hence, it is suggested to chose the numerical value
of βA depending upon the density ratio in order to obtain optimal stability conditions. These results
suggest the following heuristic conditions:

.

(30)

3.3 Temporal development of the velocity field
The temporal development of the maximum non-dimensional velocity for test cases with a density
ratio of 100 is visualised in Fig. 6. It can be observed that the velocity decreases and approaches a
finite asymptotic limit. However, for practical flow applications, where the average flow non-
dimensional flow velocity is of the order of 10–2, these numbers are more than eight orders of
magnitude lower. Shih et al. [36] reported non-dimensional spurious currents of the order of
magnitude is of 10–7.
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Figure 3: Grid independence test for * = 10 (a) and * = 100 (b) with βA/β = 100, and
various numbers of grid points within the initial drop radius.
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Figure 4: Actual versus nominal non-dimensional contact angle with various artificial
compressibilities βA/β {0, 100, 2000}: (a) * = 10, (b) * = 200, (c) * = 1000.

4. SUMMARY
A partial wetting boundary condition for the lattice Boltzmann equation method has been proposed
in this contribution. It has been demonstrated that the artificial chemical potential increases the
numerical stability of the system significantly. Moreover, by utilising the moment method for the
unknown (incoming) distribution functions at a boundary allows us to construct consistent
conditions by virtue of the physical hydrodynamic moments of the distribution functions.
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Figure 6: Temporal development of the maximum non-dimensional velocity with 
* = 100, and various contact angles (tsc = 11R0/ ).

Our simulations reveal an initial drop radius to interface width ratio of five is sufficiently large to
obtain accurate and grid-independent, results. However, for large density ratios and low artificial
compressibilities an increase in the grid resolution is required. The artificial chemical potential leads
to a significantly stabilised numerical scheme and allows density ratios of up to 200 for any contact
angle. This ratio can be increased to the order of O(103) for less extreme contact angles. More
surprising still is the maximum density ratio for neutral wetting conditions, which is 200000. The
model does not eliminate spurious currents entirely, but they are reasonably small in magnitude.

ACKNOWLEDGEMENT
The authors would like to thank Dr Paul J. Dellar, and Dr Rodrigo A. Ledesma Aguilar for fruitful
discussions and collaboration. Moreover, the access to the high-performance computing facilities
of the Computing Centre of Technische Universität Bergakademie Freiberg is greatly appreciated.



This paper is based on work supported in part by Award No. KUK-C1-013-04, made by King
Abdullah University of Science and Technology (KAUST). The authors are very thankful for the
valuable comments made by the unknown reviewers.

NOMENCLATURE
Symbol Meaning Unit

Latin symbols
cs speed of sound in LB units lu/ts
Cq collision term
eq microscopic velocity vector in LB units: eq  V lu/ts
f, f

-
density distribution function, modified distribution function kg/m3

F force N
Fq force term
L length m
n unit normal vector
p pressure N/m2

q, Q velocity direction with q  {0, 1, ..., Q - 1}
R radius m
t time s
u velocity vector: u = (ux, uy, uz)

T m/s
wq weighting factors for velocity directions q
x location vector: x = (x, y, z)T m

Greek symbols
β, βA compressibility, artificial compressibility Nm10/kg4

η dynamic viscosity kg/(ms)
θ contact angle rad
κ interfacial tension parameter Nm6/kg2

μ chemical potential J/mol
 kinematic viscosity m2/s
i moment of a distribution function with i  {0, α, β, ...}
ξ interface width m
 density kg/m3

σ interfacial tension N/m
τ relaxation time in LB units ts
ϕ phase index
χ general variable: χ {, μ}

Subscripts
0 initial 
b bulk
l liquid
s solid
sc scaling value 
th theory 
v vapour

Superscripts
* non-dimensional quantity
eq equilibrium
T transpose

Acronyms
LBM lattice Boltzmann method 
SRT single-relaxation time
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