
Chain dynamics in polymer melts at flat 
surfaces 
Article 

Accepted Version 

Kirk, J. and Ilg, P. (2017) Chain dynamics in polymer melts at 
flat surfaces. Macromolecules, 50 (9). pp. 37033718. ISSN 
00249297 doi: https://doi.org/10.1021/acs.macromol.6b01943 
Available at http://centaur.reading.ac.uk/70383/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work. 

To link to this article DOI: http://dx.doi.org/10.1021/acs.macromol.6b01943 

Publisher: American Chemical Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

http://centaur.reading.ac.uk/licence
http://www.reading.ac.uk/centaur


Reading’s research outputs online



Chain dynamics in polymer melts at flat surfaces

Jack Kirk and Patrick Ilg∗

School of Mathematical, Physical and Computational Sciences, University of Reading,

Reading, RG6 6AX, UK

E-mail: p.ilg@reading.ac.uk

Abstract

We investigate, by extensive molecular dynamics simulations as well as a simplified

single-chain model, the influence of steric hindrance on the dynamic properties of non-

entangled chains in polymer melt due to confining surfaces. We extend the Rouse

model to also include wall effects, using an additional potential that results from the

assumption that chain conformations have reflected random-walk statistics, as first

advocated by Silberberg. Results for end-to-end vector and Rouse mode correlation

functions of chains end-tethered to the surface compare well with those obtained from

molecular dynamics simulations of a multi-chain system using the Kremer-Grest bead-

spring model (KG MD). Even though the additional single-chain potential is parameter-

free, we show that the accuracy of the model for surface chains is comparable to that

of the Rouse model for bulk chains. An analytic dumbbell model accurately describes

the longest Rouse mode correlation function of surface-tethered ‘mushroom’ chains

immersed in a polymer melt at low grafting density. In addition, we find that a perfectly

smooth surface enhances the influence of hydrodynamic visco-elastic coupling on the

centre of mass motion near the surface.
∗To whom correspondence should be addressed
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Introduction

Current interest in polymer dynamics at surfaces can be separated into two general system

categories. In the first category, the size of the region in which chains are influenced by

the surface is comparable to a bulk size. Examples of such systems are polymer melts or

solutions in thin films or narrow pores.1 Also, systems with filler particles much larger than

the size of polymer coils, and sufficiently high filler concentration, belong to this category.2,3

The global rheological properties will be strongly influenced by the chain behaviour near to

the filler surfaces. Strong confinement occurs when there is no bulk region and any given

chain may interact with more than one surface simultaneously, leading to different chain

statics and dynamics compared to weak confinement, which is the focus of the current work,

where chains only interact with a single surface and at least the static behaviour of chains

in the surface vicinity coincides with an asymptotically wide channel.

In the second category, the only chain bounding surface lies at the system extremities, and

the boundary layer is small compared to the bulk dimension. Then surface chain behaviour

is relegated to a dynamic boundary condition which can be important for shear flows.4,5

For high molecular weight melts or dense solutions, a likely surface effect will be a change in

the behaviour of entanglements. At the time of writing, investigations into the dynamics of

entangled polymers in interfacial regions have concentrated on using equilibrium molecular

dynamics simulations6–8 to find an ‘entanglement molecular weight’ parameter as a function

of position relative to the surface, which may be inserted into a tube or slip-link model. The-

ories for entangled polymers are typically built upon the Rouse model,9 which in addition to

low molecular weight systems, describes the dynamics of long entangled polymers on short

time-scales before they are aware of the topological constraints formed from neighbouring

chains. It is therefore to some degree fundamentally important to investigate how the non-

entangled dynamics change near to surfaces, in order to identify the corresponding changes

in entangled dynamics and the crossover between the two regimes.

In addition to entanglements, many recent molecular dynamics studies of surface chain dy-
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namics have been motivated by experimental observations that the glass transition tem-

perature can change near to a surface.10–15 Both atomistically detailed10,11,13 and coarse-

grained14,15 simulation models have been used. Methods of investigation include probing

changes in Rouse mode correlation functions or monomer layer occupation survival func-

tions,13,14 and observing rates of diffusion parallel to and normal to the surface.14,15 A quite

comprehensive review of older work was made by Mischler et al.12

In atomistic models, microscopic details not present in the coarse-grained descriptions, such

as torsional potentials, may influence the particular wall interaction. However, even coarse-

grained models, such as the Kremer-Grest Molecular Dynamics (KG MD)16 polymer melt

model that we investigate in this work, may conserve important dynamic mechanisms oc-

curring over the length scale of a single coarse-grained bond, whose strength depends on the

particular choice of surface interaction and the parameters used in the interaction potentials.

One such example which could be important at temperatures approaching the glass tran-

sition is ‘layer-exchange dynamics’,13 occurring between the identifiably ordered monomer

layers induced by smooth surfaces.17 A recurrent issue which we aim to settle is the distinc-

tion between such microscopic surface effects, which depend strongly on chemical detail, and

larger scale dynamics which are universal for all flexible polymers. Chain relaxation at long

time scales is entropic in origin and depends more generally on how global chain orientation

statistics differ near to a surface due to steric hindrance.

It has already been identified that the conformations of chains near a flat confining surface

in a wide channel using the KG MD model are reasonably well described using reflected

random walk statistics.18 In this work we construct a model for the Brownian dynamics of

reflected random walks which reduces to the Rouse model in the bulk. Within this model we

explore the dynamics of chains that are either end-tethered at the surface, or non-tethered

but in the proximity of it, and compare the results with those of the KG MD model.

We also consider how the inaccuracies of the Rouse model crossover to the modified-Rouse

model. In recent years it has become more clear for exactly which observables and to what
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extent the Rouse model gives accurate predictions for general polymer melt systems.19–23

A joint experimental and simulation study of a C100H202 melt revealed deviations from the

Rouse prediction for the dynamic structure factor in the high momentum transfer end of

the considered spectrum,22 corresponding to the first three Rouse modes. In the simulation

portion of the same study, correlation functions of even the longest Rouse modes displayed

stretched exponentials, instead of the single exponential modes predicted by Rouse. Despite

such discrepancies, the Rouse model can reasonably describe the bulk linear stress relaxation

function of a wide variety of non-entangled polymer melts when the effects of glassy modes

are taken account of.19

The Rouse model assumes the validity of Flory’s hypothesis,24 which states that in the melt

chain orientations satisfy random-walk statistics. Wittmer et al25,26 have described theo-

retically how the correlations of bond vectors within melt chains decay more slowly along

the chain contour than predicted by Edwards.27 Resultantly, even in bulk there are non-

negligible deviations from Gaussian statistics up to length scales which may extend into

the entanglement regime, as is the case for the KG MD model. There have been attempts

to understand the relative success of the Rouse model despite this observation.28 In turn,

the accuracy of other key Rouse assumptions have been considered: screening of hydrody-

namic interactions,29,30 and the ‘phantom-chain’ picture in which topological interactions

between neighbouring chains are neglected.31,32 Under strong confinement, approaching the

two-dimensional and one-dimensional limit in polymer films33,34 and nano-tubes35 respec-

tively, the Strasbourg group and co-workers have demonstrated much stronger deviations

from ideality. These papers have shown that for ultra thin films of width comparable to a

chain ‘blob’ length, there is a logarithmic correction to the chain dimension. Correspond-

ingly it may be conjectured that a similar correction may occur in a wide channel for chains

whose centre of mass falls within a single blob length from the surface. In this work we find

that short flexible chains near to the surface are only weakly swollen in the surface parallel

direction, and that this effect also has a contribution from a weak nematic interaction which
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occurs even for the ‘fully-flexible’ KG MD model. Although the ratio of confined radius of

gyration to bulk radius of gyration is an increasing function of chain length,34 in weak con-

finement the distance from the surface to the centre of mass of surface chains scales with the

bulk radius of gyration;18 therefore in wide channels corrections to ideality near the surface

may be of even less importance for longer chains.

Comparison of the Rouse model with a multi-chain ‘soft MD’ model, which allows bond

crossings and therefore explicitly satisfies the phantom-chain picture of the Rouse model,

has been shown to fail to match the Rouse prediction for mid-bead mean square displace-

ment.36 In the same work, the more realistic KG MD model, which does not allow bond

crossings but has very similar conformation statistics to soft MD, showed improved agree-

ment. This suggested that topological interactions play a dynamical role even before the

onset of the entanglement regime, which for certain observables may even improve agree-

ment with the Rouse model. In section 4 we compare results for mid-monomer and centre

of mass mean square displacement near the surface using the soft MD and KG MD models.

This work is organized as follows: in section 2 we review the structure of the Rouse model

and the ideas of Silberberg relating to the conformations of polymer chains in melt at a

surface. These ideas motivate a modification of the Rouse model to include surface effects.

We shall be interested primarily in the behaviour of the resulting model for chains consisting

of a large number of bonds, analogous to the continuous Rouse model, which may be com-

pared with the behaviour of reasonably long but non-entangled KG MD chains. Generally,

the modified-Rouse model is solved numerically, although the longest relaxation behaviour

of a surface-tethered chain is accurately modelled using a dumbbell, tethered by one end to

a reflective surface. We derive an analytic expression for the end-to-end vector correlation

function of the dumbbell in the wall normal direction. We show that the functional form of

the dumbbell end-to-end vector correlation function closely matches the first Rouse mode

auto-correlation function of a chain consisting of many bonds, and that the correspondence

between the two functions matches that of the standard analytic Rouse model, applicable to
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chains without boundary constraints.

In section 3, the modified-Rouse model is compared to KG MD, via the end-to-end vector

and individual Rouse mode (mode numbers p > 0) correlation functions of surface-tethered

chains. We investigate chain lengths spanning the non-entangled regime (comprising 32,

64 or 128 bonds). Whilst we find that the choice of thermostat friction constant has lit-

tle effect on the end-to-end correlation function, which is dominated by the longest Rouse

modes, Farago et al29,30 have shown that the zeroth Rouse mode, i.e the centre of mass

motion, deviates strongly from simple diffusion at times shorter than the Rouse time, and is

strongly dependent on the coupling between chain elasticity and hydrodynamics. In section

4 we show that the surface parallel component of the zeroth mode motion displays enhanced

visco-elastic hydrodynamic coupling in the presence of a perfectly smooth flat surface. Final

conclusions are made in section 5.

The Rouse model with a reflective boundary condition

A simple class of single-chain model assumes that the dynamics of a polymer chain, consisting

of N + 1 connected beads, may be described via a set of N + 1 Langevin equations, which

without external force are of form:27,37

dRi

dt
=

N∑
j=0

Hij

(
− ∂U

∂Rj

+ f rj (t)

)
+
T

2

N∑
j=0

∂

∂Rj

Hij (1)

for i = 0, 1, ..., N . The position vector of bead i is denoted by Ri. In this work we consider

such a model of a single polymer chain in a channel bounded in only one direction such that

yw1 < yi < yw2, where the positions of the channel walls are denoted by yw1 and yw2; we

resolve Ri into surface normal and surface parallel components, Ri = Ri,‖ + yiê⊥, where ê⊥

is the wall normal direction unit vector.

In the case of the Rouse model, the assumption that hydrodynamic interactions are screened
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leads to a simple form for the mobility tensor:

Hij =
δijI

ξ
(2)

where I denotes the three-dimensional unit matrix. This assumption is usually considered

valid for the melt or concentrated solution. f ri (t) is then a Gaussian white-noise random

variable:

〈f ri (t)〉 = 0 ;〈
f ri (t)f rj (t′)

〉
= 2Tξδ(t− t′)δijI

(3)

where ξ is the bead friction constant, and T is the temperature. Throughout this work

temperature is taken in units of the Boltzmann constant, kB. Eqn (1) has the irreversible

characteristic that if we begin with an ensemble of systems with arbitrary bead positions,

as t→∞, the ensemble probability distribution reaches equilibrium, where the equilibrium

probability of a given set of bead positions specifying a system state is related to the potential

U as:27

p({RN+1}) =
exp

(
−U({RN+1})

T

)
Z1

(4)

where Z1 is the ensemble partition function. {RN+1} indicates the set of all bead coordinates.

Assuming that sub-segments of polymer chains satisfy Gaussian statistics on all length scales,

from eqn (4) Rouse found a harmonic potential acting between beads:

URouse =
N∑
i=1

k

2
(Ri −Ri−1)

2 (5)

where k = 3T/b2 is the spring constant. b is the characteristic length of the Gaussian chain

segment. Each chain segment has mean square length b2.

In this work we investigate whether the assumptions of the Rouse model are equally accurate
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near the surface. Namely that:

1. Hydrodynamic interactions are screened: beads experience isotropic friction, eqn (2).

2. Time dependent topological constraints are not considered.

Under these assumptions, eqns (1), (2) and (3) remain valid, but with a modified potential U ,

corresponding to a different probability distribution of segment orientations. We determine

the modified potential by requiring that the equilibrium probability distribution corresponds

to a random walk with a particular boundary condition. Crucially, any such model reduces

to the Rouse model far from surfaces. In 1982 Silberberg advocated that the reflective

boundary condition is appropriate to describe melt statistics at a flat surface.38

Silberberg’s hypothesis - surface chain conformations are reflected

random walks

Silberberg’s hypothesis is an extension of the Flory hypothesis24 for polymer melts at a

flat surface. As a result of the effective incompressibility of the melt state, the monomer

density remains almost uniform up to an interface. Silberberg argued that since monomers

experience an isotropic environment right up to the surface, Flory’s argument should hold

equally well in this region. Then the probability distribution for the orientation of a chain

bond near (but not in direct contact with) a flat impenetrable surface is identical to the bulk

distribution, having no preferred direction.

In the simplified case of a random walk lattice chain model, the hypothesis means that lo-

cally the polymer melt at a flat surface looks the same as the unconfined melt. The only

difference being that steps beginning at the surface are constrained to move away from it,

therefore satisfying reflective boundary conditions. Silberberg showed that a method of im-

ages like conformation swap procedure conserves the unconfined segment partition function

and respects the boundary constraint. Since the random walk uncouples in directions paral-

lel and normal to the surface, the conformation swap only affects the wall normal probability

distribution.
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Sussman et al8 have noted that the conformation swap procedure of Silberberg may be gen-

eralized to the case of chains bounded by two surfaces in a channel of width L. The total

partition function (number of walks) of a chain with fixed start position inside the channel

is conserved irrespective of the channel width, as must be the case under reflective boundary

conditions. If the ith segment is near to one of the surfaces, and we allow the channel width

to go arbitrarily large, L→∞, the probability distribution for the wall normal end position

of the segment, yi, under the conditions of segment start position, yi−1, and wall position,

yw, reduces to the form found by Silberberg, given by a sum of two unbounded walk weights

(in the continuous limit):

P (yi|yi−1, yw) = P (yi|yi−1) + P (ȳi|yi−1) =

1√
2πσ2

1

exp

(
−(yi − yi−1)2

2σ2
1

)

+
1√

2πσ2
1

exp

(
−(ȳi − yi−1)2

2σ2
1

) (6)

where ȳi is the surface reflected end position ȳi = yw − (yi − yw), and σ2
1 = b2/3. In

the supplementary material we find eqn (43) directly by solving the formal boundary value

problem with a pair of reflective boundaries in the limit L→∞.

Modified-Rouse potential

We propose a potential for eqn (1) when a chain segment is close to a flat impenetrable surface

in a wide channel, using eqn (43) and the general relation, eqn (4). The final potential

comprises the Rouse potential, eqn (5), and an additional term due to the surface which

depends on the set, {yN+1}, of bead positions in the wall normal direction, relative to the

surface position:

U({RN+1}) = URouse({RN+1}) +
N∑
i=1

A(yi, yi−1, yw) (7)
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where the additional term is:

A(yi, yi−1, yw) = −T ln

(
1 + exp

(
−2(yi − yw) (yi−1 − yw)

σ2
1

))
(8)

Woo et al39 similarly derived a potential using absorbing boundary conditions. Absorbing

boundaries are considered appropriate for an ideal polymer chain in dilute solution. We refer

the reader to the supplementary material for a derivation of the resulting potential in both

cases.

If the channel width, L, is very large compared to the characteristic chain segment length,

b, the contribution to the partition function corresponding to segment conformations which

are reflected at both surfaces is negligible. This is certainly the case for the weakly confined

simulations that we study in this work; therefore we neglect the finite channel corrections8

to eqn (43) and use a system potential consisting of two wall interaction terms of the form

given in eqn (8), corresponding to the two surfaces.

Single chain (modified-Rouse) model numerical scheme

Using the potential given by eqn (7), adapted to a system with two parallel walls, we solve the

set of equations (1), (2) and (3) numerically, using a two-stage predictor-corrector algorithm

for the conservative force, the simplest Euler scheme for the random force37 and reflective

boundary conditions. The algorithm is:

R̄i(t+ ∆t) = Ri(t) +
∆t

ξ
f ci (R(t)) +

√
2T∆t

ξ
nt

Ri(t+ ∆t) = R̄i(t+ ∆t) +
∆t

2ξ
(f ci (R̄(t+ ∆t))− f ci (R(t)))

(9)

where f ci (R(t)) = −∂U({RN+1})
∂Ri

|t is the conservative force, and nt is a normally distributed

random vector with unit variance in each direction. If the particle crosses a boundary

its position is reflected in the boundary plane. We are aware of numerical errors in this
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scheme and more advanced algorithms have been proposed.40 For the present case, we have

confirmed convergence of the numerical scheme, and validated agreement with static and

dynamic analytic results where available. In the bulk, the natural length unit is b. We find

the natural time unit, τb, from the bead diffusion for very small t:

τb =
ξb2

6T
(10)

Accurate results are found using a time-step ∆t = τb/10. Smaller time-steps yield nearly

identical results.

Mapping to the single-chain (modified-Rouse) model

While a number of detailed studies on coarse-graining interacting many-chain systems ex-

ist,41 much less is known about mapping a many-chain system to an effective single-chain

model.42 In order to investigate the usefulness of the modified-Rouse model for describing

polymer dynamics of non-entangled melts near surfaces, we study two multi-chain bead-

spring ‘fundamental’ models as references; both described in more detail in section 3.

We restrict ourselves to fundamental systems with chains containing an even number, n, of

bonds, such that we can define a mapping ratio m : 1 to the modified-Rouse model compris-

ing N = n/m bonds and N + 1 beads, where m is a divisor of n. The only constraint within

our mapping is that we pick b such that the chain mean square end-to-end distance matches

the fundamental model in the bulk:

b =

√
〈u2

bulk〉
N

(11)

where 〈u2
bulk〉 is the mean square end-to-end distance of bulk chains within the fundamental

model using periodic boundaries. Then the degree to which other system observables, such as

more general internal square distances, are successfully mapped, depends upon the accuracy

of reflected random walk statistics on all length scales. Results presented in section 3 will
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test the extent of this agreement. Within the modified-Rouse model we keep T = 1. This

leaves two unknown parameters in the model: the mapping ratio m which decides N , and

the friction coefficient ξ. These two parameters are chosen from the best simultaneous fit

of the auto-correlation functions of the longest Rouse modes of surface-tethered chains. For

a more systematic derivation of single-chain friction coefficients using projection operator

techniques, see e.g. Akkermans et al43 and Ilg et al.44

Before mapping the fundamental models, we first investigate the general dynamical behaviour

of chains end-tethered at the surface using the modified-Rouse model.

Dynamics of the modified-Rouse model

For a chain connected by harmonic bonds, the dynamic equations of the Rouse normal co-

ordinates (modes) uncouple for all possible chain conformations. However, for such a chain

experiencing confinement, the real space description of dynamics cannot be replaced by un-

coupled Rouse modes, since they are effectively coupled via the boundary conditions. We

are left then with a complicated system of coupled equations and boundary conditions even

without the additional potential, eqn (8). Despite this, the Rouse mode correlation func-

tions remain important general observables, since they describe the decay of chain structure

correlations with characteristic segment number ‘wavelength’ mp ≈ 2N
p
, where p is the mode

number. All correlation functions which depend solely on chain bond orientations can be

written as a function of Rouse mode auto- and cross-correlation functions. Should the

mapped modified-Rouse model predict these correlation functions well, all orientation cor-

relation functions must be well described.

In a different approach to Vladkov et al,14 in which Rouse mode analysis was performed over

a limited time duration on free chains binned from chain positions in the channel at t = 0, we

first investigate the dynamics of chains which have a constraint keeping them in the surface

region for all time. We choose to make the constraint by fixing one of the end beads at the

surface. Surface-adsorbed chains themselves strongly influence rheological properties.45,46
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We analyse the orientational relaxation of the surface-tethered chains in terms of the normal

modes of unbounded Rouse chains with one end fixed. These coordinates differ slightly from

those usually referred to by ‘Rouse modes’ (this term is usually reserved for the normal

modes of Rouse chains with free ends), and are derived for finite N in A. Likhtman’s short

course: ‘Entangled Polymer Dynamics’:47

Xp =
1

N + 1/2

N∑
i=1

Ri sin

(
πi(p− 1/2)

N + 1/2

)
(12)

For simplicity we refer to the set of coordinates, Xp, as ‘Rouse modes’, to emphasize that

they correspond to the normal modes of tethered chains within the Rouse model.

We now show that the functional form of the longest Rouse mode correlation function within

a modified-Rouse model of a surface-tethered chain can be accurately modelled by an analytic

dumbbell model.

End-to-end correlation function of a surface-tethered dumbbell

The dynamics of the modified-Rouse model uncouple in Cartesian coordinates providing

that one axis coincides with the surface normal direction. Since the dynamical equations in

each parallel direction coincide, we define dynamic functions for directions normal, ⊥, and

parallel, ‖, to the surface. In this work, when we label functions using the subscripts ⊥ and

‖, this always refers to functions of surface-tethered chains unless otherwise stated.

The end-to-end vector correlation function is an experimentally accessible observable for

type-A dipolar polymers, being proportional to the correlation function of the chain electric

dipole in this case. For end-tethered chains, in the α direction it may be generally written

in terms of the Rouse coordinates, eqn (12), as:47

〈uα(t)uα(0)〉 = 4
N∑

p,q=1

(−1)p+q cos

(
π(p− 1/2)

2(N + 1/2)

)
cos

(
π(q − 1/2)

2(N + 1/2)

)
〈Xp,α(t)Xq,α(0)〉 (13)
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where uα are components of the end-to-end vector. We define a normalized end-to-end vector

correlation function with respect to the mean in each direction:

Φα(t) =
〈(uα(t)− 〈uα〉) (uα(0)− 〈uα〉)〉

〈u2α〉 − 〈uα〉
2 (14)

For a dumbbell, the normalized end-to-end correlation function, Φdb,α(t), coincides with the

first normalized Rouse mode auto-correlation function, A1,α(t). The Ap,α(t) are:

Ap,α(t) =
〈(Xp,α(t)− 〈Xp,α〉) (Xp,α(0)− 〈Xp,α〉)〉〈

X2
p,α

〉
− 〈Xp,α〉2

(15)

Within the modified-Rouse model for an end-tethered chain, the surface normal component

of the end-to-end vector is described by a half Gaussian distribution where the first two

moments are:

〈u⊥〉 =
√

2 〈u2⊥〉 /π〈
u2⊥
〉

=
〈
u2‖
〉

= Nb2/3

(16)

where u‖ is a component of the end-to-end vector in a surface parallel direction. Resul-

tantly, in the case of a surface-tethered dumbbell, the corresponding potential has a simple

harmonic form and therefore corresponds to an Ornstein-Uhlenbeck process27,37 with a re-

flective boundary at the potential minimum. For details of the analytic solution of the

end-to-end vector correlation function of this dumbbell model, Φdb,⊥(t), we refer the reader

to the supplementary material. The final expression is:

Φdb,⊥(t) =
1

π/2− 1

arctan

e
− t
τdb,‖

1√
1− e

− 2t
τdb,‖

 e
− t
τdb,‖ +

√
1− e

− 2t
τdb,‖ − 1

 (17)

where τdb,‖ is the relaxation time of Φdb,‖(t) which is simply the standard Ornstein-Uhlenbeck

process position correlation function.
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Figure 1: Comparison of Φdb,⊥(t), eqn (63), with its long time asymptotic expansion, eqn
(19), and numerical solution.

Regimes of Φdb,⊥(t)

Expanding the dumbbell end-to-end vector correlation function to leading order around t = 0

gives:

〈(u⊥,db(t)− 〈u⊥,db〉) (u⊥,db(0)− 〈u⊥,db〉)〉 ≈
b2

3
(1− t/τdb,‖)−

2b2

3π

≈
〈
u‖,db(t)u‖,db(0)

〉
− 〈u⊥,db〉2

(18)

so that in the limit t/τdb,‖ → 0 (Φdb,⊥(t) is not analytic at t = 0), the derivative of the

dumbbell end-to-end vector correlation function in the wall normal direction is identical to

the parallel direction. The dumbbell relaxes as if it were in the unbounded direction, since

it has not yet interacted with the surface.

For exp(−2t/τdb,‖)� 1, expanding eqn (63) in ε = exp(−2t/τdb,‖) to leading order gives:

Φdb,⊥(t) ≈ 1

π − 2
exp(−2t/τdb,‖) (19)

In figure 1, eqn (19) is compared to the exact form, eqn (63), revealing that for t & τdb,‖/2,

Φdb,⊥(t) is well approximated by a single exponential with relaxation time τdb,‖/2. In the

intermediate regime between eqn (18) and eqn (19), there is a stronger decay, well described
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by a power-law, Φdb,⊥(t) ∝ 1/
√
t.

In addition, figure 1 compares the analytic and numeric solutions for Φdb,⊥(t). This presents

one validation of our numerical Brownian dynamics method.

Correspondence between Φdb,⊥(t) and A1,⊥(t) (for N →∞)

For the modified-Rouse model the Rouse modes completely uncouple parallel to the surface,

so that the functions Ap,‖(t) remain single exponential irrespective of N .47 Since for a dumb-

bell we have: Φdb,α(t) = A1,α(t), for N → ∞, A1,‖(t) matches Φdb,‖(t) exactly providing we

use the correct correspondence between the bead friction coefficient in each model: ξ → ξdb

(In addition to matching the mean square end-to-end distance of the dumbbell and the chain)

where ξdb is the corresponding free bead dumbbell friction. This correspondence is found

from equating the longest relaxation times of the models: τ1,‖ = τdb,‖. For an unbounded

end-tethered Rouse chain, the expression for the mode relaxation times are:47

τp,‖ =
ξb2

12T sin2
(
π(p−1/2)
2(N+1/2)

) (20)

For N � 1, the longest relaxation time τ1,‖ is well approximated by its limit τR,‖ (N →∞):

τR,‖ =
4ξN2b2

3π2T
(21)

Equating τR,‖ with the corresponding relaxation time for a fixed dumbbell gives the limiting

relation between ξ and ξdb:

ξdb =
4ξN

π2
(22)

Then if the same correspondence applies in the wall normal direction, the asymptotic ratio

of longest relaxation times in directions normal and parallel to the surface, must match the
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Figure 2: Comparison of the analytic solution of Φdb,⊥(t), eqn (63), with A1,⊥(t) using a
chain of 32 bonds within the modified-Rouse model. We assume τ1,⊥ = τ1,‖/2.

dumbbell ratio which we already know:

τR,⊥
τR,‖

=
τdb,⊥
τdb,‖

=
1

2
(23)

Figure 2 compares A1,⊥(t) for a modified-Rouse chain comprising 32 bonds with the analytic

solution of Φdb,⊥(t) (eqn (63)). The time axis is normalized assuming the relationship eqn

(65), where τ1,‖ is given by eqn (64). As for the parallel direction, described by standard

Rouse theory, the large N converged behaviour of A1,⊥(t) is reached by N ≈ 32. In the

supplementary material, we explore the convergence of Φ⊥(t) as more bonds are used to

model a chain.

Figure 2 implies that the asymptotic relation, eqn (22), remains appropriate in the wall

normal direction, and that the form of A1,⊥(t) is very close to being conserved from a

dumbbell to a chain consisting of many bonds. Specifically, we see the same power-law

crossover from the initial decay, eqn (18), to the final single exponential behaviour, eqn (19),

with relaxation time very close to half that of the unbounded case.

For intermediate modes we see the same qualitative behaviour: for modes p = 2, 3, Ap,⊥(t)

(plotted and compared with the KG MD model in section 3) may be fitted to the form of

the dumbbell end-to-end correlation function reasonably well, although at very long times
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there are stronger deviations from the single-exponential form. The faster modes mostly

decay without interacting with the surface, and therefore we see a return to the unbounded

behaviour for Ap,⊥(t); p � 1. Resultantly, the mode relaxation times in the wall normal

direction approach those of the wall parallel direction for p � 1. From eqn (64), taking

N →∞, the relationship between successive mode relaxation times in the parallel direction

becomes:
τp,‖
τp+1,‖

=
(p+ 1/2)2

(p− 1/2)2
(24)

In figure 3 we compare the first six Rouse relaxation times in the wall parallel direction,

τp,‖, found from eqns (21) and (24), with the corresponding relaxation times in the normal

direction, τp,⊥, which are found by fitting the functions Ap,⊥(t) to a single exponential using

the Reptate software.48 The relaxation times, τp,⊥, are found using a modified-Rouse model

consisting of 256 bonds. For this chain bond number and p < 7, τp,‖ has effectively asymptotic

behaviour: eqn (24). Figure 3 shows that already at p = 4, τp,⊥/τp,‖ > 0.9.

1 2 3 4 5 6
0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

τ p,⊥
/τ p,||

m o d e  n u m b e r  p
Figure 3: The ratio, τp,⊥/τp,‖, of relaxation times of the first six Rouse mode correlation
functions for a chain end-tethered to the surface (N = 256), using the modified-Rouse
model.

In the supplementary material, the behaviour of the Rouse mode cross-correlation functions

are investigated. Contrary to the unbounded Rouse model, cross-correlations do not vanish

in the modified normal direction. Although non-negligible, the influence of cross-correlations
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is small. Resultantly A1,⊥(t) still dominates the terminal behaviour of Φ⊥(t).

Comparing the modified-Rouse model to multi-chain mod-

els

The purpose of the following two sections is to compare the modified-Rouse model with

interacting multi-chain models which are coarse-grained descriptions that nevertheless ex-

hibit the most important features of flexible polymer melts at the time and length scales of

interest. The primary model we will use is the well-studied KG MD model.16 This model

has the realistic characteristic that bonds may not cross one another. We also investigate

a second model, soft MD, which comprises soft bonded and non-bonded potentials, with

parameters chosen such that, in the bulk, the mean square internal distances along a chain,〈
(ri − rj)

2〉 /|i− j|, match almost exactly those of KG MD; whilst simultaneously allowing

bond crossing events. Making a comparison between these two models may help to elucidate

the importance of chain topology in dynamics. The soft MD model has previously been used

to examine the effect of entanglements on chain orientation coupling,49 and as a means for

faster equilibration of KG MD systems;50 details of soft MD and the parameters we use are

given in these references. All MD simulations with confinement use periodic boundaries in

the x̂ and ẑ directions and reflective boundaries in the ŷ direction, whereby particle posi-

tions and velocities are reflected if they pass the surface plane. The box dimensions in the

periodic directions were set as Lz, Lx ≈ 2
√
〈u2

bulk〉. In order to test against finite periodic

box dimension effects, some simulations were doubled in size by cloning all polymer chains

and displacing the cloned chains by Lx, then resetting the box dimension in the x̂ direction

to 2Lx. After re-equilibration, the larger systems showed no significant deviations from the

original ones in typical static or dynamic observables. Bulk simulations use periodic bound-

aries in all directions.

The KG MD model consists of Lennard-Jones (LJ) beads connected via a FENE bonded
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potential:

ULJ(r) = 4ε((σ/r)12 − (σ/r)6 + 1/4), r/σ < 21/6

UFENE(r) = −KR
2
0

2
ln(1− (r/R0)

2)

where the FENE parameters are R0 = 1.5σ (corresponding to the maximum bond extension)

and K = 30ε/σ2 (spring constant). σ is the LJ bead radius and ε is the LJ energy. The

shortest natural time unit is set by the Lennard-Jones potential: τLJ =
√
σ2mb/ε, where mb

is the bead mass. The LJ potential we use is purely repulsive, corresponding to a cut-off

at 21/6σ. The temperature is maintained via a Langevin thermostat. In all plots, unless

otherwise stated, we use a thermostat friction constant ξMD = 0.5mb/τLJ at T = ε. This

is the most common value for the friction constant in the literature.16,18,51–53 Under these

parameters the maximum time-step implemented is ∆t = 0.012τLJ using periodic bound-

aries and ∆t = 0.01τLJ using reflecting boundaries. Correlation functions generated using a

smaller time-step produce negligibly different results. We also present some results using a

much weaker friction constant, ξMD = 0.05mb/τLJ, in order to explore the influence of mo-

mentum conservation on the dynamics. For the lower friction constant we use ∆t = 0.002τLJ.

We have verified that a uniform temperature profile is maintained across the channel under

these conditions. Little difference in dynamical behaviour is found if ξMD is reduced be-

yond ξMD = 0.05mb/τLJ for all observables considered. For the chain lengths of interest, the

larger, most standard friction constant, ξMD = 0.5mb/τLJ, is itself an intermediate value for

which there remain non-negligible effects due to inertia. Our comparison between the high

and low friction cases is therefore not a comprehensive study of the influence of momentum

conservation on the chain dynamics near surfaces, but should be sufficient to observe the

main trends. Importantly, for soft MD the dimensionless friction constant we use is close to

the high friction KG MD value.

The equations of motion are solved using the Verlet algorithm.54 We calculate all correlation

functions using the multiple-tau correlator code developed by Ramirez et al.55 For the mean
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square displacement observable the block averaging is not performed, in order to avoid all

systematic error.

Molecular dynamics equilibration procedure

Within this work, all chain lengths (except n = 128) are below the threshold at which

entanglement effects become important in the bulk,16,36 which greatly reduces the time of

equilibration. Free chains are initially placed in the simulation box with random start posi-

tions. The other beads are then grown with mean equilibrium bond length and bond angles

that correspond closely to the equilibrium distribution. Tethered chain orientations are sim-

ilarly generated, but the start beads are ordered into a periodic face-centred cubic lattice in

the (111) plane. An example system snapshot including tethered chains is given in figure 4.

The interaction potentials are gradually turned on (‘push-off’) over a single Lennard-Jones

Figure 4: A typical simulation box snapshot for the surface-tethered system. Left: all chains
included. Right: only surface-tethered chains shown.

time unit.53 The boundary condition leads to a small increase in density at the surface rel-

ative to the channel centre. The initial volume is estimated such that the density in the
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middle of the channel is close to the melt density, ρ = 0.85σ−3, that we use for simulations

with periodic boundaries in all directions. Then, during a second equilibration step, the

simulation box is affinely compressed or extended very slowly until the middle channel den-

sity reaches 0.85 ± 0.001σ−3. This equilibration step is typically quick, since the initially

chosen density is itself very close to the desired value. The simulation then runs for several

longest system relaxation times before any observations are made. The mean square internal

distances are also monitored as a means to check that the systems are well equilibrated.

Mean square internal distances of reflected random walks

Sarabadani et al18 have already compared the static behaviour of an almost identical KG MD

variant to the one we use, with reflected random walks; including the cases of attractive and

repulsive surface interactions. Their results were in agreement with those of Skvortsov et al,56

who compared the Self Consistent Field (SCF) calculations of a wall tethered chain immersed

in a melt at different wall-fluid interaction strengths. The results confirmed that static

properties of a melt at a surface are largely unaffected by changes in boundary interactions.

All cases universally agreed well with a single-chain under critical conditions, of which there

are analytic expressions for bead density profiles.57 The MD simulations did however reveal

some deviations from the Silberberg picture: the entropic surface interaction of chain ends58

is not described, and the mean field description cannot take into account the surface induced

ordering of monomers.17

We now present some additional static results for the multi-chain models, which show that

the dominant deviations from reflected random walk statistics at the surface are similar to

known deviations from random walk statistics in the bulk.25

In figure 5 we plot the wall normal component of the mean square end-to-end distance of

chain sub-segments consisting of m bonds, such that at least one end be a distance y from

the surface, which we refer to as
〈
u2m,⊥(y)

〉
. For reflected random walks, the internal distance
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profile is:38 〈
u2m,⊥(y)

〉〈
u2m,⊥(∞)

〉 = 1− (4/
√
π)ν exp(−ν2) + 4ν2(1− erf(ν)) (25)

where ν = y/
√

2σ2
m is a characteristic dimensionless distance and σ2

m = (mb2)/3. Figure 5 d)

shows that if we map KG MD and soft MD multi-chain models to a reflected random walk,

such that the mean square end-to-end distances match in the bulk, they also match closely

across the whole channel. Agreement between soft MD and KG MD for the chain internal

distances remains good at all points in the channel and at all length scales (
〈
u2m,⊥(y)

〉
for

m = 8, 16, 32 are plotted in figures 5 (a), (b), (c) respectively). The most notable difference

between the two models is that soft MD has smaller wall normal mean square end-to-end

distances for segments with ends very close to the surface.

Across the channel, the mapped reflected random walks tend to predict larger mean square

internal distances than are found for sub-segments of multi-chain models, since segments are

progressively more swollen as the bond number increases. However, at around ν = 1, the

reflected random walk end-to-end distances approach, and actually become slightly smaller

than the corresponding multi-chain model values. That upon approaching the surface the

internal distances of the reflected random walks decrease at a faster rate compared to the real

chain segments they are mapped from, can be understood easily; they are more extended

and therefore more likely to come into contact with the surface, reducing the end-to-end

distance. The oscillations that are apparent for short segments are associated with the wall

ordering phenomenon influenced by our choice of boundary condition.17 We have performed

additional simulations using lattices of Lennard-Jones beads acting as an explicit boundary.

Increasing the roughness of the lattice reduces surface ordering of monomers. At the density

in question, ρ = 0.85σ−3, we find that the degree of bead ordering has no significant effect

on chain dynamics near to the surface for all observables considered here.

Sarabadani et al18 have also shown that surface chains become swollen in the surface parallel

direction. We find that in the surface parallel direction the mean square end-to-end distance

of complete KG MD chains comprising n = 64 bonds is around 10% larger for chains be-
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Figure 5: Comparison of KG MD with the mapped reflected random-walk prediction, eqn
(25), for mean square internal distances,

〈
u2m,⊥(y)

〉
, as a function of the reduced distance

ν = y/
√

2σ2
m, where y is the distance from an end bead to the surface, for sub-chains

consisting of m bonds. a) m = 8, b) m = 16, c) m = 32, d) m = 64. The chains consist of
n = 64 bonds.
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ginning with one end at the surface, compared to bulk chains, as shown in figure 6. The
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Figure 6: Complete chain mean square end-to-end distance in the surface parallel direction
for chains with one end at distance y from the surface. ν = y/

√
2σ2

64. Red: soft MD, black:
KG MD. The chains consist of n = 64 bonds.

chains do not appear swollen in the perpendicular direction (figure 5); in fact, the end-to-

end dimension is slightly shrunk with respect to the reflected random walk prediction. This

suggests that the surface induces a weak nematic chain alignment which we investigate in

the supplementary material. For soft MD chains the corresponding swelling and contraction

effect is slightly more pronounced.

We are also interested in systems with identical chain properties and architecture but which

are subject to constraints. These are our tethered chain systems, whose micro-states coin-

cide with a sub-ensemble of the confined free-chain system; whereby there are chains with

an end-bead fixed at regular lattice sites on the reflective surface. Figure 5 ((a), (b) and (c))

includes a comparison of
〈
u2m,⊥(y)

〉
for free and tethered chains, within a system at surface

grafting density of end-tethered chains, ρg = 0.65ρ∗g, where we define an approximate ‘over-

lap density’, ρ∗g, which gives correct scaling for the grafting density at which neighbouring

tethered chains begin to interact and stretch:

ρ∗g =
1

〈u2
bulk〉

(26)
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The grafting density we use is sufficiently low such that the square internal distances of both

the tethered and free chains almost exactly coincide with the completely free chain system.

We therefore expect very similar dynamical behaviour of tethered chains compared to free

chains with one end bead at the surface.

The free chain system used a smaller channel height of 3
√
〈u2

bulk〉, compared to 4
√
〈u2

bulk〉

for the tethered system. This increases computational speed and only leads to a very small

difference in the mean square end-to-end distance of the complete chain in the middle of the

channel (figure 5 d)). For channel heights smaller than 3
√
〈u2

bulk〉, there is no bulk region

and the surface chain behaviour begins to deviate from weak confinement.

Rouse mode correlation functions of surface-tethered chains - map-

ping from KG MD

We map to the modified-Rouse model from surface-tethered chains immersed in a free chain

matrix using the KG MD system. Both free and tethered chains consist of the same number,

n, of bonds. The two free parameters, m and ξ, are determined by ensuring the best simul-

taneous agreement between the models for the first four Rouse mode correlation functions,

Ap,⊥(t); p = 1, 2, 3, 4, of the tethered chains, which are plotted in figure 7 a). For n = 64,

at grafting density ρg = 0.65ρ∗g, we find m = 2 and ξ/m = 22mb/τLJ, where the mapping

ratio is 1 : m. Using this mapping, A1,⊥(t) is very well matched between the models. As the

mode number increases, the corresponding correlation functions in the KG MD system gain

stronger stretched exponential behaviour, but the dominant contribution is universally well

described by the modified-Rouse model. In figure 7 b) we see the same behaviour for free

chains in periodic boundaries, using correlation functions of the Rouse modes of free chains,

and the same mapping parameters as for the fixed chains. Figure 7 b) includes plots for the

low thermostat friction, ξMD = 0.05mb/τLJ, with the time axis corresponding to these plots

given in reduced units, τreduced = 0.86τLJ, which takes into account the simulation speed-up

resulting from the change in friction constant. With this rescaling of time we see close agree-
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Figure 7: For chains consisting of n = 64 bonds and mode number p = 1, 2, 3, 4 from right to
left. Open symbols and lines correspond to the KG MD model and mapped modified-Rouse
model respectively. a) First four Rouse mode correlation functions, Ap,⊥(t), eqn (15), in
the surface normal direction, for surface-tethered chains at grafting density ρg = 0.65ρ∗g.
b) First four Rouse mode correlation functions of free chains, using periodic boundaries
for the KG MD model, compared to the analytic Rouse model. Filled squares correspond
to KG MD using the reduced friction, ξMD = 0.05mb/τLJ, plotted in reduced time units,
τreduced = 0.86τLJ.
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Figure 8: Surface normal amplitudes (variance) of Rouse modes for surface-tethered KG
MD chains at grafting density ρg = 0.65ρ∗g, compared to the mapped reflected random walk
(modified-Rouse) prediction using mapping ratio 2 : 1. The amplitudes are normalized by
the bulk chain mean square end-to-end distance in one direction. n = 64.

ment for all Rouse modes using both high and low friction constants. However, the zeroth

mode describing the centre of mass diffusion is more strongly dependent on the thermostat

friction30 (see Section 4 for further discussion).

Figure 8 shows that the good agreement with reflected random walk statistics on large scales

corresponds with good agreement for the Rouse mode amplitudes at small p. Resultantly,

since the small p modes (particularly the first mode) dominate Φα(t) (and Rouse mode cross-

correlations are also small for KG MD), we get excellent agreement between the models for

Φ⊥(t). For p� 4 the modified-Rouse model fails to predict Ap,⊥(t) accurately within the KG

MD model using this mapping. We see that Φ⊥(t) (figure 9 a)), described by the modified-

Rouse model, predicts the corresponding KG MD correlation functions as accurately as the

analytic Rouse model does for Φ‖(t) (Figure 9 b)) and the end-to-end vector correlation

function of free chains in the bulk (figure 9 c)) using periodic boundaries. In figure 9 a) and

b), plots corresponding to the low friction system in units of τreduced are given for n = 32,

which match the high friction plots well. We find that Rouse mode correlation functions of

tethered chains are also well matched between the high and low friction cases for n = 32,

upon renormalization of time-scales using τreduced = 0.86 (not plotted). In figure 9 we use a

bond mapping ratio of 2 : 1 up to a maximum of N = 32. The friction coefficients used are:
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for n = 32 : ξ/m = 20mb/τLJ; for n = 64, 100, 128, 200 : ξ/m = 22mb/τLJ. In all cases, the

same friction coefficients and mapping ratios are used in both the periodic and bounded sim-

ulations, meaning that the modified-Rouse model can simultaneously give a good description

of both bulk and surface chains. That we also use the same friction coefficients in parallel

and normal directions means that the theoretical prediction for the ratio of relaxation times,

eqn (65), is valid within the KG MD system.

The plots corresponding to tethered chains consisting of n = 32 or 64 bonds have a grafting

density ρg = 0.65ρ∗g. The plots for n = 128 used a higher grafting density, ρg = 1.3ρ∗g;

however, chain stretching due to ‘brush’ interactions remains minimal. We therefore as-

sociate the deviations from the single-chain model prediction at n = 128 bonds with the

onset of entanglements, which may be compared with the analogous deviations of free chains

comprising n = 100 and 200 bonds, shown in figure 9 c).

Effect of the flat boundary condition on viscoelastic-hydrodynamic

coupling in polymer melts

In simulation, a widely used observable is the mid-bead mean square displacement g1,mid(t).

For a chain consisting of an even number of bonds, g1,mid(t) can be written in a particularly

simple form in terms of the normal coordinates of free Rouse chains:36

g1,mid(t) =
N∑

p,q=0,even

(−1)(p+q)/2 (2− δp0) (2− δq0) 〈(Xp(t)−Xp(0)) (Xq(t)−Xq(0))〉 (27)

g1,mid(t) generally encompasses motion of the chain on all length scales, unlike the end-to-

end vector correlation function, eqn (13). In the Rouse model, cross-correlations do not
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Figure 9: Normalized end-to-end vector correlation function in directions normal to, a), and
parallel to, b), the surface, for surface-tethered KG MD chains mapped to the modified-
Rouse model and analytic Rouse respectively. The tethered chains consist of n = 32, 64,
or 128 bonds. For n = 32, KG MD using reduced friction, ξMD = 0.05mb/τLJ, is plotted
in reduced time units, τreduced = 0.86τLJ. c) End-to-end vector correlation function for free
bulk chain systems consisting of n = 32, 64, 100 or 200 bonds, mapped to the analytic Rouse
prediction.
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contribute, and eqn (27) may be written as:

g1Rouse,mid(t) =
6Tt

(N + 1)ξ
+

b2

(N + 1)

N∑
p=2,even

[
1− exp

(
− t
τp

)]
sin2

(
πp

2(N+1)

) (28)

The first term is the centre of mass mean square displacement:

g3Rouse(t) =
6Tt

(N + 1)ξ
(29)

Eqn (29) results immediately for any stochastic model only comprising bonded forces. Upon

a transformation to the centre of mass coordinate, all forces are pairwise and cancel. This

leaves a sum of uncorrelated Wiener processes acting on the N + 1 beads in the chain. Even

in the bulk, g3(t) of real chains is not diffusive on short time scales. Both experiment and

simulation find a sub-diffusive regime, which for t < τR has characteristic scaling g3(t) ∝ tν3 ,

ν3 ≈ 0.8.32 This sub-diffusive regime has been attributed to hydrodynamic-viscoelastic cou-

plings,29,30 and soft sphere like interactions between nearest neighbour chains.32

In figure 10 we plot the centre of mass diffusion of free chains in both wall parallel, g3,‖(t)/(t/τR),

and normal, g3,⊥(t)/(t/τR), directions, for chains with different start positions relative to the

surface in a channel of width 3
√
〈u2

bulk〉. Chains are assigned to narrow bins of wall normal

width 0.25
√
〈u2

bulk〉 at t = 0, depending on the distance, ycm, from the centre of mass to the

nearest wall at that time. For example, the bin closest to the surface corresponds to chains

that at t = 0 have centre of mass position located within a distance 0.25
√
〈u2

bulk〉 from the

surface. Then the correlation functions are calculated for a duration ≈ 1.7τR. In this time

the chains move a distance normal to the surface of approximately the bin diameter. For

soft MD, the Rouse time is found from the centre of mass mean square displacement in

the diffusive limit, using a simulation box with periodic boundaries, assuming the relation,

eqn (29); whereas for KG MD the Rouse time is found from our previously fitted friction

value, ξ/2 = 22mb/τLJ (this also applies to mid-bead mean square displacement in the next
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sub-section). For each model, the simulation was repeated more than a hundred times.

The resulting statistics are good enough to ensure that in a corresponding simulation of

the modified Rouse model, the relative error in the final correlation point for the mid-bead

mean square displacement observable with respect to the analytic Rouse expression is less

than 1%. Again we use chains consisting of n = 64 bonds within the fundamental models,

and mapping ratio 2 : 1. We also include plots corresponding to systems using periodic

boundaries which are in good agreement with similar simulations from an existing study,30

whose theory predicts an enhanced super-diffusive regime at early time followed by the sub-

diffusive regime until t ≈ τR. We find that for KG MD chains beginning with centre of mass

in the channel centre, for g3,‖/(t/τR), figure 10 a), the results match closely to the periodic

simulations except that the sub-diffusive regime has a weaker slope. Moving closer to the

surface a stronger hydrodynamic interaction (HI) becomes apparent in the parallel direction

through a stronger super-diffusive regime for both high and low thermostat friction cases.

Although in the channel centre it appears that the high and low friction cases tend to the

same diffusive limit, which matches closely to the periodic simulation, it appears that this is

not the case closer to the surface. It is clear that the final diffusion coefficient appears faster

closer to the surface. This is in contrast to the parallel centre of mass diffusion using the soft

MD model, figure 10 b). In this case all regions appear to tend to the same diffusive limit,

although, at early time, the increase in the super-diffusion near to the surface is similar to

KG MD (≈ 10%). However it is only for the two bins closest to the surface that deviations

from the channel centre behaviour become discernible. It is interesting to note that the

sub-diffusive decay of the diffusion constant for Soft MD using periodic boundaries scales

with t−0.12, whereas for KG MD the scaling follows t−0.2: see dashed lines in figure 10.

We have also performed preliminary simulations investigating g3(t) using boundaries formed

from Lennard-Jones beads with varying degrees of roughness. We find that in the limit of

zero roughness the results tend to the flat reflective surface case. Increasing the roughness

reduces the strength of the super-diffusive regime near the surface, and thus appears to
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counteract hydrodynamic effects, such that at sufficiently large surface roughness the early

time parallel centre of mass diffusion is actually reduced near the surface compared to the

channel centre. At an intermediate surface roughness we find that the HI effect is close to

constant across the channel so that g3,‖(t) is almost independent of channel position. We

find that g3,⊥(t) is close to independent of surface roughness.

The comparison of KG MD with Soft MD may suggest that to some degree the increased rate

of diffusion occurring for KG MD surface chains is associated with a decrease in topological

interactions at the surface. However it must be noted that the viscoelastic-hydrodynamic

effect could behave differently for soft MD, and we have not sufficiently investigated this in

order to unambiguously associate the qualitative differences between KG MD and Soft MD

with the topological interaction, independently of hydrodynamics.

In the surface normal direction, figure 10 c), we find that both high and low friction cases

appear to tend to the same diffusive limit and that in contrast to the surface parallel direc-

tion there appears to be little difference in the strength of HI effects closer to the surface.

Interestingly the channel centre diffusion in the normal direction appears to tend to a higher

diffusive limit compared to periodic simulations (We observe the same feature using soft MD

- not plotted).

It is clear that at the surface, as in the bulk, the simple centre of mass diffusion on all time

scales predicted by the Rouse model parallel to the surface, eqn (29), is strongly inaccurate.

Chain mid-monomer mean square displacement

The deviations from Rouse behaviour due to hydrodynamic-viscoelastic couplings are not

expected to be as strong for individual bead diffusion,30 which is instead dominated by the

bonded forces and expected to follow the Rouse scaling more closely. For τN < t < τR,

33



1 E - 4 1 E - 3 0 . 0 1 0 . 1 1 1 0

1 0

1 5

2 0

2 5

3 0
3 5

t - 0 . 2a )
g 3,

||(t)
/(t/

τ R
)

t / τR

1 E - 3 0 . 0 1 0 . 1 1 1 0
7

8

9

1 0

1 1

1 2

1 3
1 4
1 5

t - 0 . 1 2

g 3,
||(t)

/(t/
τ R

)

t / τR

b )

1 E - 4 1 E - 3 0 . 0 1 0 . 1 1 1 0

5

1 0

1 5

2 0

2 5
3 0

t - 0 . 2
c )

t / τR

g 3,
⊥
(t)/

(t/τ
R)

Figure 10: Centre of mass time dependent diffusion rate in the wall parallel direction ( a) KG
MD, b) Soft MD) and wall normal direction (c) KG MD). Black: ycm < 0.25

√
〈u2

bulk〉; blue:
0.25

√
〈u2

bulk〉 < ycm < 0.5
√
〈u2

bulk〉; green: 0.5
√
〈u2

bulk〉 < ycm < 0.75
√
〈u2

bulk〉; magenta:
1.25

√
〈u2

bulk〉 < ycm; orange: periodic boundaries. Filled stars are KG MD using ξMD =
0.5mb/τLJ and open stars are KG MD using ξMD = 0.05mb/τLJ. τR,ξMD=0.05 = 0.86τR,ξMD=0.5.
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g1Rouse,mid(t) is well approximated by:59

g1Rouse,mid(t) ≈ 2b

√
3tT

πξ
≈ 2 〈u2〉

π3/2

√
t

τR
(30)

where the second relation in eqn (30) uses N + 1 ≈ N . The physical origin of the
√
t

scaling in eqn (30) is traced to an increasing effective drag that the bead experiences as

its displacement becomes correlated with other beads along the chain. Here we repeat this

argument as laid out by McLeish.59 Over time-scales in which a bead becomes aware of its

connection to other beads in the chain, the sum of all forces acting along the correlated

section of chain contour must balance on average, so that g1(t) only depends on the sum

of uncorrelated random forces acting on the correlated beads. The mean number of other

beads that a labelled bead is correlated with, Ncorr, can be approximated in terms of its

mean square displacement:

Ncorr(t) =
g1(t)

b2
(31)

Approximating g1(t) with the mean square displacement resulting from a sum of Ncorr un-

correlated forces described by three dimensional Wiener processes with variance 6Tξ gives:

g1(t) =
6Tt

Ncorr(t)ξ
=

√
6Tb2t

ξ
(32)

This matches eqn (30) up to the pre-factor. Since melt chains are not strictly ideal but

experience swelling, if we wish to map the KG MD and soft MD models onto Ncorr(t) in eqn

(31), b2 becomes a time dependent increasing function. For this reason we can expect that

for these models, at least in the bulk, g1(t) ∝ tν1 with ν1 > 0.5 for τN < t < τR.

Likhtman36 has compared the Rouse model prediction of g1,mid(t) to soft MD and KG MD

using periodic boundaries and free chains comprising n = 64 bonds. Here we investigate the

same observable for free chains confined in the channel of width 3
√
〈u2

bulk〉.

Figure 11 includes plots of mid-bead mean square displacement in the wall normal di-
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Figure 11: a) Mid-bead mean square displacement in the wall normal direction normalized to
test the

√
t scaling. Black: ymid < 0.25

√
〈u2

bulk〉; green: 0.5
√
〈u2

bulk〉 < ymid < 0.75
√
〈u2

bulk〉;
magenta: 1.25

√
〈u2

bulk〉 < ymid. Circles are modified-Rouse, crosses are soft MD, and filled
stars are KG MD using ξMD = 0.5mb/τLJ; dashed line is 2/π3/2 and solid black line is
analytic Rouse. b) plots for KG MD using ξMD = 0.5mb/τLJ are compared with KG MD
using ξMD = 0.05mb/τLJ (open stars). τR,ξMD=0.05 = 0.86τR,ξMD=0.5.
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Figure 12: Mid-bead mean square displacement in the wall parallel direction normalized to
test the

√
t scaling. Black: ymid < 0.25

√
〈u2

bulk〉; green: 0.5
√
〈u2

bulk〉 < ymid < 0.75
√
〈u2

bulk〉;
magenta: 1.25

√
〈u2

bulk〉 < ymid. Solid black line is analytic Rouse, crosses are soft MD, filled
stars and open stars are KG MD using ξMD = 0.5mb/τLJ and ξMD = 0.05mb/τLJ respectively.
τR,ξMD=0.05 = 0.86τR,ξMD=0.5.

rection (g1,mid,⊥), for chains with different start positions relative to the surface. For this

observable the chains are assigned to bins at t = 0 depending on the distance, ymid, from

the mid-bead to the nearest wall at that time. Then the correlation functions are again

calculated for a duration ≈ 1.7τR. The data is presented to test the scaling regime of eqn

(30), normalized such that the Rouse model (in the limit N → ∞) gives the value 2/π3/2,

for τN . t . τR. For N = 32 the analytic Rouse solution has not yet met this limit, as

apparent in figure 11 a). The analytic Rouse solution matches the modified-Rouse model in

the centre of the channel, indicating that in this region the modified-Rouse chains are not

influenced by the surface. The KG MD plot in figure 11 a) which represents chains satisfying

1.25
√
〈u2

bulk〉 < ymid, matches closely to the Rouse plot for t & τR.

In figure 11 a) we observe that, before the first Rouse time is reached, t < τN , g1,mid(t) for

the MD models is not captured well by modified-Rouse since Rouse has no super-diffusive

regime. For t & 0.01τR the soft MD chains in the centre of the channel exhibit a scaling

exponent ν1 > 0.5 as expected; however, the KG MD model matches the Rouse scaling more

closely. This difference between KG MD and soft MD appears to suggest36 that adding chain
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topology slows down g1,mid(t) in such a way that the time-dependence of the speed-up due

to the effect of chain swelling is counteracted.

Closer to the surface, for 0.5
√
〈u2

bulk〉 < ymid < 0.75
√
〈u2

bulk〉, all models are still in rea-

sonable agreement at t ≈ τR; However, for chains beginning immediately at the surface,

ymid < 0.25
√
〈u2

bulk〉, the values of the soft MD and modified-Rouse plots in figure 11 a)

are less than KG MD, indicating that the relative drop in mobility from the channel centre

to the surface is less for KG MD compared to the other two models. Analogous behaviour

occurs for the surface parallel mid-bead mean square displacement shown in figure 12; for

soft MD, the surface parallel diffusion is effectively constant across the channel, agreeing

with the simple modified-Rouse model in this regard; whereas the KG MD model displays

a weak increase in parallel mobility, and a slope which matches more closely to the Rouse

plot for t & 0.1τR, for chains near to the surface.

In figure 12 it is apparent that the KG MD model using the low thermostat friction has

progressively faster surface parallel mid-bead diffusion for chains approaching the surface,

with respect to the high friction model. In figure 11 b) the corresponding comparison is

made in the wall normal direction. Here the difference between the high and low friction

cases is very small (this small difference matches closely to the results of periodic boundary

conditions). We conclude that the presence of the perfectly smooth flat surface enhances the

effect of hydrodynamic interactions in the parallel direction.

Conclusion

We have investigated the accuracy of a Brownian dynamics of reflected random walks as

a model to describe the motion of polymer chains in melts near a flat surface. As for the

Rouse model there are only two phenomenological parameters: the number of bonds forming

a chain, and the bead friction coefficient. We map to this single-chain ‘modified-Rouse’ model

from multi-chain MD models which capture the dominant behaviour of flexible chains. The
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same mapping parameters are used across all bulk and surface observables, in order to test

the generality of the modified-Rouse description. Within the MD models, near a flat surface

the deviations of chain orientation statistics from reflected random walks are similar to those

of chains in bulk from unbounded random walks. In turn, we find that modified-Rouse de-

scribes the end-to-end vector correlation function of non-overlapping surface-tethered chains

within KG MD as well as the Rouse model does for unconfined free chains. This success fol-

lows from the fact that the model accurately describes the correlation functions of the longest

Rouse modes, which dominate the end-to-end vector correlation function. The longest Rouse

mode correlation function of a surface-tethered chain at low grafting density is well modelled

by a reflected Ornstein-Uhlenbeck process, and the ratio of longest relaxation times in wall

normal (bounded) and wall parallel (unbounded) directions is τ⊥/τ‖ = 1/2. We have demon-

strated that this good agreement remains when momentum-conservation is approximately

restored, by reducing the thermostat friction coefficient by an order of magnitude.

As has been widely observed with the Rouse model, the modified-Rouse model does not

describe so well the correlation functions of faster modes. Despite this, far from a surface,

the mid-bead mean square displacement of free chains, which depends more strongly on the

faster mode dynamics, is reasonably well described by the Rouse model. Using a perfectly

smooth flat surface, modified-Rouse simultaneously predicts the mid-bead mean square dis-

placement at t ≈ τR for both soft MD chains in the immediate surface vicinity and in the

channel centre. However the KG MD model predicts a weaker relative drop in bead mobility

at the surface compared to the modified-Rouse mapping. These results appear to suggest a

weakened topological interaction at the surface compared to in bulk, even before the onset of

the entanglement regime.60 However, such a clear conclusion cannot be made without more

detailed investigations into the effect of the viscoelastic-hydrodynamic coupling on the Soft

MD system.

We find that the most important deviation from the simple Rouse picture near to the sur-

face is the neglection of hydrodynamic interactions (HI). However the HI effects are only
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very strong for the zeroth mode dynamics, already described theoretically and investigated

with simulation by Farago et al.30 For a smooth flat surface we observe an increase in the

strength of HI closer to the surface in the parallel direction, apparent through the stronger

super-diffusive regime of the centre of mass mean square displacement observable; although

in the wall normal direction the strength of HI shows little channel position dependence.

Preliminary investigations suggest that the perfectly smooth surface represents the limit of

enhanced HI effects at the surface: a roughened surface reduces the super-diffusive centre of

mass motion in the surface parallel direction. However, even in the flat wall case investigated

here, since the simple modified-Rouse picture does a reasonable job of describing the cor-

relation functions of Rouse modes for p > 0, the model is still useful for several interesting

quantities. This suggests that the simple modified-Rouse description of surface dynamics

may be experimentally relevant. The most straightforward test might be to compare the

dynamic structure factor of chains in a thin (but weakly confined) film with the prediction

of modified-Rouse.

As a single-chain model, the modified-Rouse will not necessarily describe stress relaxation

of films, since this generally necessitates a complete description of how contributions to

the stress due to orientation cross-correlations between chains at different relative surface

positions decay; although for bulk blends Cao et al49 have shown that the decay of cross-

correlations between different polymer species may be understood in terms of the decay of

auto-correlations. A similar phenomenological attempt at adapting a single chain model to

include the cross-correlations between surface and bulk chains was recently made by Abber-

ton et al.61 The relevance of the simple modified-Rouse description may be useful to this

end.

Additionally, there is a lot of interest in the dynamics of tethered chains at higher grafting

density.46,62 At higher grafting densities eqns (1), (2), and (3) may give a good description

using an appropriate potential.63–66 However, it is expected that entanglements between

neighbouring grafted chains, and therefore deviations from this simple single chain picture,
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will occur at lower molecular weights in this case.67
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Random walk boundary value problem

The propagator Gn(y1, y0) for a discrete random walk in one of three dimensions, beginning

at position y0, reaching y1 in n steps with step-length l satisfies:

Gn(y1, y0) =
Gn−1(y1 − l, y0)

6
+
Gn−1(y1 + l, y0)

6
+

4Gn−1(y1, y0)

6
(33)

Using the initial condition G0(y1, y0) = δ(y1 − y0), we get Gn(y1, y0) = Ωn(y1, y0)/Ω̃n where

Ωn(y1, y0) is the number of walks (partition function) between y0 and y1 with n steps and

Ω̃n is the total number of walks with n steps and fixed start position in a system whereby at

each step there are six distinct moves with a 100% survival probability. In the limit n→∞,
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l→ 0, from eqn (33) the propagator diffusion equation in the wall normal direction is found:

∂Gn(y1, y0)

∂n
=
l2

6

∂2Gn(y1, y0)

∂y21
(34)

We seek the solution of eqn (34) which satisfies reflective boundary conditions at y1 = 0, L:

∂Gn(y1, y0)

∂y1

∣∣∣∣
y1=0,L

= 0 (35)

in the limit L → ∞. Using this boundary condition, the total number of walks inside the

channel is always conserved and equal to Ω̃n, so that the propagator must be a probability

under the initial condition that the walk began at y0.

The general solution of eqn (34) subject to reflective boundaries at 0 and L is well known,

consisting of 2m solutions with eigenvalues λm:

∑
m

(
Bm cos(

√
λmy1) +Dm sin(

√
λmy1)

)
exp(−σ2

1λm/2) (36)

where σ2
1 = b2/3 = l2n/3. b is the characteristic length scale of the random walk. Applying

the boundary conditions enforce Dm = 0, and λm =
(
πm
L

)2
: m = 0, 1, 2, 3, ...,∞. Now we

apply the initial condition: G0(y1, y0) = δ(y1 − y0):

δ(y1 − y0) =
∑
m

Bm cos(
√
λmy1) (37)

Then the Bm are found as:

Bm =
2

L

∫ L

0

cos(
√
λmy1)δ(y1 − y0)dy1 =

2

L
cos(

√
λmy0) (38)

The complete solution is then:

∞∑
m=0

2

L
cos(

√
λmy0) cos(

√
λmy1) exp(−σ2

1λm/2) =
∞∑
m=0

f(m) (39)
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From eqn (39), f ′(m) → 0 for L → ∞ over the whole range of m. Resultantly, for L → ∞

f(m) is a constant over any finite interval, and the sum, eqn (39), may be equated with the

following integral:

lim
L→∞

2

L

∫ ∞
0

dm cos(
√
λmy0) cos(

√
λmy1) exp(−σ2

1λm/2) =

lim
L→∞

1

L

∫ ∞
0

dm
(

cos(
√
λm(y1 + y0)) + cos(

√
λm(y1 − y0))

)
exp(−σ2

1λm/2)

(40)

Rewriting this integral in the following form:

∫ ∞
0

dU cos(aU) exp(−U2) =

√
π

2
exp

(
−a

2

4

)
(41)

and evaluating, leads to the solution for the propagator (conditional probability):

lim
L→∞

P (y1|y0, L) =
1√

2πσ2
1

exp

(
−(y1 − y0)2

2σ2
1

)
+

1√
2πσ2

1

exp

(
−(y1 + y0)

2

2σ2
1

)
(42)

Translating the coordinates such that the surface position is translated to yw, we find a

general expression in terms of unbounded random walk probability weights:

P (y1|y0, yw) = P (y1|y0) + P (ȳ1|y0) =

1√
2πσ2

1

exp

(
−(y1 − y0)2

2σ2
1

)

+
1√

2πσ2
1

exp

(
−(−ỹ1 − ỹ0)2

2σ2
1

) (43)

where ỹi = yi − yw.

Free energy of a reflected random walk

We now assume that near a flat surface the probability distribution for positions of the

start and end beads of polymer chain sub-segments in the canonical ensemble at arbitrary
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temperature T coincides with a reflected random walk. We give temperature in units of kB.

Then a conformational free energy may be defined for the polymer chain. The partition

function, Ω(Ri,Ri−1, yw), for a three dimensional random walk from Ri−1 to Ri in the

presence of a reflective surface at position yw, can be written in terms of a sum of the

probabilities of unbounded random walks of bond vector Qi = Ri −Ri−1 and bond vector

from Ri−1 to the reflection of Ri in the y = yw plane, Q̄i:

Ω(Ri,Ri−1, yw) = (P (Qi) + P (Q̄i))Ω̃ (44)

where Ω̃ is the total number of walks with fixed start. Therefore the thermodynamic potential

(conformational free energy) may be defined up to a constant as:

U(Qi, Q̄i) = −T ln(P (Qi) + P (Q̄i)) (45)

Identifying the symmetric (bonded) part of the potential as −T ln(P (Qi)) = k
2
Qi ·Qi, where

k = T/σ2
1, eqn (45) can be written as a sum of a bonded and non-bonded potential:

U(Qi, Q̄i) = −T
(

ln(P (Qi)) + ln

(
1 +

P (Q̄i)

P (Qi)

))
(46)

The bond vectors may be resolved into components parallel to and normal to the surface:

Qi = Qi,‖ + (yi − yi−1)ê⊥; Q̄i = Qi,‖ + (−ỹi − ỹi−1)ê⊥. Since Qi and Q̄i only differ in the

wall normal direction, the quotient in eqn (46) is:

P (Q̄i)

P (Qi)
= exp

(
−((−ỹi − ỹi−1)2 − (yi − yi−1)2)

2σ2
1

)
=

exp

(
−2ỹi ỹi−1

σ2
1

) (47)
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Therefore the thermodynamic potential up to a constant is:

U(Qi, Q̄i) =
k

2
Qi ·Qi + A(yi, yi−1, yw) (48)

where the wall contribution is:

A(yi, yi−1, yw) = −T ln

(
1 + exp

(
−2ỹiỹi−1

σ2
1

))
(49)

The additional thermodynamic force on particle i in the wall normal direction can now be

calculated:

−∂A(yi, yi−1, yw)

∂ỹi
= −

exp
(
−2ỹiỹi−1

σ2
1

)
1 + exp

(
−2ỹiỹi−1

σ2
1

)2kỹi−1 (50)

In the case of absorbing boundary condition, the partition function for a chain beginning at

Ri−1 and ending at Ri has to be zero when either bead is at the surface. This is satisfied

with the propagator Gn(y1, y0) = P (Qi)− P (Q̄i):39

Ω(Ri,Ri−1, yw) = (P (Qi)− P (Q̄i))Ω̃ (51)

Resultantly, the corresponding wall potential has a singularity at ỹi, ỹi−1 = 0:

B(yi, yi−1, yw) = −T ln

(
1− exp

(
−2ỹiỹi−1

σ2
1

))
(52)

End-to-end vector correlation function of a dumbbell teth-

ered at a reflective surface

The probability distribution of the end-to-end vector of a reflected walk in the surface normal

direction, eqn (43), becomes a reflected-Gaussian for y0 = yw. Resultantly, when modelling
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the wall grafted chain using a single dumbbell, the potential reduces to the simple har-

monic form, U(y1) = k/2(y1 − yw)2, such that the mean square end-to-end distance of the

whole chain (dumbbell) is related to the spring constant via the equipartition theorem as:

〈(y1 − yw)2〉 = T/k. Setting yw = 0, the first two moments of the half Gaussian end bead

distribution are:

〈y1〉 =
√

2σ2
1/π〈

y21
〉

= σ2
1

(53)

Knowing these moments, we only need to calculate the equilibrium correlation function of

the end bead vector:

〈y1(t)y1(0)〉 =

∫ ∞
0

dy′1y
′
1Ψeq(y

′
1)

∫ ∞
0

dy1 y1Gt(y1, y
′
1) (54)

in order to solve the dumbbell end-to-end vector correlation function Φdb,⊥(t):

Φdb,⊥(t) =
〈y1(t)y1(0)〉 − 〈y1〉2

〈y21〉 − 〈y1〉
2 (55)

Ψeq(y
′
1) is the equilibrium distribution function of the end position and Gt(y1, y

′
1) is the

propagator of an end bead with position y′1 at time 0 and position y1 at time t, corresponding

to the system described by the Langevin dynamics:

dy1
dt

=
1

ξ

(
−∂U
∂y1

+ f r(t)

)
(56)

supplemented with a reflective boundary; where ξ is the free bead friction and f r(t) is a

white-noise random variable with zero mean and variance 2ξT . The propagator satisfies the

Smoluchowski equation:

∂Gt(y1, y
′
1)

∂t
=

1

ξ

∂

∂y1

(
T
∂Gt(y1, y

′
1)

∂y1
+
∂U

∂y1
Gt(y1, y

′
1)

)
(57)
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Using the potential U(y1) = (k/2)y21, eqn (56) becomes the Ornstein-Uhlenbeck process.

Then the solution of eqn (57) over the unbounded domain, (−∞,∞), is27

G̃t(y1, y
′
1) =

1√
2πσ2(t)

exp

(
−
(
y1 − y′1 exp(−t/τdb,‖)

)2
2σ2(t)

)
(58)

where σ(t) = σ1
√

1− exp(−2t/τdb,‖) and τdb,‖ = ξ/k is the relaxation time of the unbounded

system. We seek the solution of the propagator under a reflective boundary condition:

∂Gt(y1, y
′
1)

∂y1

∣∣∣∣
y1=0

= 0 (59)

Due to the symmetry of the harmonic potential, we can construct the solution, Gt(y1, y
′
1), sat-

isfying eqn (57) and the reflective boundary condition, eqn (59), from the solution G̃t(y1, y
′
1),

as:

Gt(y1, y
′
1) = G̃t(y1, y

′
1) + G̃t(−y1, y′1) (60)

Using this propagator, an arbitrary probability distribution becomes the equilibrium half-

Gaussian distribution for t→∞:

Ψeq(y1) = lim
t→∞

∫ ∞
0

dy′1

(
G̃t(y1, y

′
1) + G̃t(−y1, y′1)

)
Ψ0(y

′
1)

= 2

(
1√

2πσ2
1

exp

(
− y21

2σ2
1

)) (61)

Ψ0(y
′
1) is the probability for the particle to be at position y′1 at an initial time when the

distribution may not have reached equilibrium. Now eqn (54) may be written as:

〈y1(t)y1(0)〉 =

∫ ∞
0

dy′1y
′
1Ψeq(y

′
1)

∫ ∞
0

dy1 y1(G̃t(y1, y
′
1) + G̃t(−y1, y′1)) (62)
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Carrying out the integrals in eqn (62) leads after some calculation to Φdb,⊥(t) via eqn (55):

Φdb,⊥(t) =
1

π/2− 1

arctan

e
− t
τdb,‖

1√
1− e

− 2t
τdb,‖

 e
− t
τdb,‖ +

√
1− e

− 2t
τdb,‖ − 1

 (63)

Modified Rouse model - large N limiting behaviour of Φ⊥(t)

As the number of bonds in a chain diverges, N → ∞, the functional form of Φ⊥(t) for

a surface tethered-chain converges at a similar rate as for the surface parallel case, which

is described by standard Rouse theory. In figure 13, Φ⊥(t) and Φ‖(t) are compared for

N = 1, 2, 4, 8, 16, 32. For each plot the time axis is normalized by the corresponding longest

system relaxation time τ1,α, which in the surface parallel direction is:47

τ1,‖ =
ξb2

12T sin2
(

π(1/2)
2(N+1/2)

) (64)

In the surface normal direction τ1,⊥ is found by assuming that the relationship:

τ1,⊥
τ1,‖

=
τdb,⊥
τdb,‖

=
1

2
(65)

is valid for all N . From figure 13 it is apparent that the changes in the form of Φ⊥(t) as

N increases from N = 1 are greater than in the unbounded direction. This can be largely

attributed to a decrease of the relative weight of the longest Rouse mode amplitude which

does not dominate Φ⊥(t) as much as it does Φ‖(t). In general, the amplitudes of the modes

strongly differ from the wall parallel direction. The first five Rouse mode amplitudes of

reflected random walks beginning at the surface are plotted and compared to KG MD in

section 3 of the main letter.
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Figure 13: Comparison of wall normal (symbols) and parallel (lines) components of Φα(t)
for a chain modelled using different numbers of bonds. Both directions give converged
behaviour beyond N ≈ 32. Time axes are normalized by the longest relaxation time in the
corresponding direction.
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Rouse mode cross-correlation functions for a surface tethered chain

Since in a confined system the Rouse coordinates are no longer normal modes, their cross-

correlations are no longer zero. Here we simply present the qualitative behaviour of cross-

correlations within the modified-Rouse model of a surface tethered chain (this qualitative

behaviour is shared by KG MD), and show that the relative importance of cross-correlations

is small compared to auto-correlations.

A general characteristic of the Rouse coordinates of a reflected random walk beginning at

the surface is that the covariances, 〈Xp,⊥Xq,⊥〉 − 〈Xp,⊥〉 〈Xq,⊥〉, are negative. This is an

observation we make for all cases considered and is not generally proven. Since the mode

covariances coincide with the amplitudes of the mode cross-correlation functions:

Cpq,⊥(t) = 〈(Xp,⊥(t)− 〈Xp,⊥〉)(Xq,⊥(0)− 〈Xq,⊥〉)〉 (66)

these functions are increasing. Figure 14 shows that the magnitude of the sum over all first

mode covariances quickly converges to a effectively constant value as N is increased. This

value is more than seven times smaller than the variance of the first mode. The relative

importance of cross-correlations is a decreasing function of p.

Effect of surface nematic interaction

In this section we investigate the weak additional swelling in the chain dimension apparent

in figure 6 of the main letter, where it was found that the mean square end-to-end distance of

complete chains comprising n = 64 bonds is around 10% larger for KG MD chains beginning

with one end at the surface, compared to in the channel centre. We partially attribute

this swelling to the influence of the surface on short range nematic ordering. We consider

a nematic order parameter of chain sub-segments comprising m = 4 bonds. The nematic

50



Figure 14: Negative of the sum over all first mode covariances as a function of the number
of bonds in a chain, normalized by the bulk chain mean square end-to-end distance in one
direction.
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order parameter is:

S4,‖(y) =
〈
P2

(
k̂4,‖(y)

)〉
(67)

where k̂4,‖ is a parallel component of the coarse-grained bond unit vector corresponding to a

chain segment consisting of 4 bonds. P2(x) = 3x2−1
2

is the second Legendre polynomial, and

the averages are performed over bins centred at position y = ∆y(i+ 1/2) for i = 0, 1, 2, 3, ...;

where ∆y is the bin width. Each sub-segment is binned depending on the distance from the

wall of the sub-segment end-bead position.

0 2 4 6 8 1 0 1 2 1 4
0 . 0 0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1 0

0 . 1 2

S 4,
||(y)

 

y / σ

Figure 15: Nematic order parameter for chain sub-segments comprisingm = 4 bonds. Binned
by sub-segment end position. Red stars: KG MD; black crosses: soft MD.

It is necessary to use coarse-grained segments since for m < 4 the wall ordering obscures

the trend near to the surface. In figure 15 we plot the nematic order parameter, S4,‖(y), as

a function of the centre bin position. The decay in S4,‖(y) occurs over a distance ≈ 2σ from

the surface, which is similar to an approximate blob length for the Kremer-Grest chains.

For semi-flexible polymers the nematic ordering persists over a longer interval.68 Since the

density of the centre of mass within a blob length from the surface for such short chains is

non-negligible, it is likely that there are also contributions to the chain swelling due to long

range correlations34 for a non-negligible proportion of the chains near the surface. The short

range nematic order parameter corresponding to soft MD chains, also plotted in figure 15,
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is no greater than KG MD at the surface. The higher density of ends immediately at the

surface58 is also expected to influence the surface normal square internal distance profiles in

some way.
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