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ABSTRACT 24 

The fixed dosed combination of artemether and lumefantrine (AL) is widely used for the 25 

treatment of malaria in adults and children in sub-Sahara Africa, with lumefantrine day 7 26 

concentrations being widely used as a marker for clinical efficacy.  Both are substrates for 27 

CYP3A4 and susceptible to drug-drug interactions (DDIs); indeed, knowledge of the impact 28 

of these factors is currently sparse in paediatric population groups. Confounding malaria 29 

treatment is the co-infection of patients with tuberculosis.  The concomitant treatment of AL 30 

with tuberculosis chemotherapy, which includes the CYP3A4 inducer rifampicin, increases the 31 

risk of parasite recrudescence and malaria treatment failure.  This study developed a 32 

population-based PBPK model for AL in adults capable of predicting the pharmacokinetics of 33 

AL under non-DDI and DDI conditions, as well as predicting AL pharmacokinetics in 34 

paediatrics of 2-12 years of age.  The validated model was utilised to assess the concomitant 35 

treatment of rifampicin and lumefantrine under standard body-weight based treatment 36 

regimens for 2-5 year olds, and demonstrated that no subjects attained the target day 7 37 

concentration (Cd7) of 280 ng/mL, highlighting the importance of this DDI and the potential 38 

risk of malaria-TB based DDIs.  An adapted 7-day treatment regimen was simulated and 39 

resulted in 63 % and 74.5 % of subjects attaining the target Cd7 for 1-tablet and 2-tablet 40 

regimens respectively. 41 
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1. INTRODUCTION 63 

Malaria is a deadly parasitic disease spread by female anopheles mosquitoes infected with 64 

Plasmodium falciparum [1, 2]. The World Health Organisation’s (WHO) target is to eliminate 65 

malaria in 35 countries by 2030 and this has led to several measures being taken over the past 66 

few decades directed towards malaria prevention and treatment in order to reduce its prevalence 67 

and mortality rates [2].  At the turn of the millennium, the global estimate of malaria cases 68 

averaged 262 million which, by 2015, had fallen to 214 million, reflecting a decrease of 18 % 69 

[3].  Furthermore, 88 % of these malaria cases were reported in the sub-Saharan African region.  70 

Alarmingly however, within the paediatric population group 70% of the total malaria related 71 

deaths were attributed to children under five years of age [2].  72 

In 2006, artemisinin or artemisinin derivatives were recommended by the WHO for the first 73 

line treatment of malaria in endemic areas. During every 48 hour P. falciparum replication 74 

period, artemether and its active metabolite dihydroartemisinin (DHA) decreases parasite load 75 

by approximately 10,000 fold [4, 5]. Artemether’s oral absorption and onset of action are both 76 

rapid, with an approximate tmax following oral administration of two hours [6, 7].      77 

Furthermore, oral absorption is improved following a fat-rich meal [8], with bioavailability 78 

increasing by 2-fold compared to a fasted-state in healthy volunteers [9]. Hepatic metabolism 79 

of artemether is rapid and predominantly mediated by CYP3A4, as well as CYP2B6 [5, 10, 80 

11]. Lumefantrine is a racemic fluorine mixture possessing a chemical structure related to the 81 

arylaminoalcohol group of antimalarials such as quinine, halofantrine and mefloquine [12]. 82 

Lumefantrine is well orally absorbed but, as with artemether, demonstrates absorption 83 

pharmacokinetics which are highly variable in malaria patients [9].  As with artemether, the 84 

administration of food increases the bioavailability by 16-fold when compared to the fasted 85 

state in healthy volunteers [9]. CYP3A4 is primarily responsible for the metabolism of 86 

lumefantrine.  As a result of low hepatic intrinsic clearance and negligible renal excretion, 87 

lumefantrine possess a prolonged half-life [8] of up to six days in healthy volunteers [13] [14]. 88 

Artemether is recommend for dosing in conjunction with lumefantrine (AL) as a fixed dose 89 

combination (FDC) of 20mg/120mg respectively, in six doses usually over three days 90 

(commonly at 0, 8, 24, 26, 48 and 60 hours). Typical treatment regimens for children include 91 

a similar 3 day six-dose regimen stratified based on body weight: 5-15 kg 1 tablet per dose; 15-92 

25 kg 2 tablets per dose; 25-35 kg 3 tablets per dose and >35 kg 4 tablets per dose [15], with 93 

the latter dose primarily being the default adult dose. 94 
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Contrary to adults who possess naturally acquired immunity, children often do not, this 95 

puts them at risk of succumbing to the infection [16] and this is further complicated by possible 96 

trans-placental transmission in pregnant women leading to congenital malaria [2]. Whilst 97 

malaria is endemic to many areas of sub-Sahara Africa, other communicable diseases such as 98 

tuberculosis are also commonplace, and particularly impacts upon paediatric population 99 

groups.  In 2015, there were an estimated 10 million new TB cases worldwide of which 10 % 100 

were children [17]. Worryingly, the mainstay treatments for tuberculosis, namely a FDC of 101 

rifampicin (10-20 mg/kg), isoniazid (10-15 mg/kg), pyrazinamide (30-40 mg/kg) and 102 

ethambutol (15-25 mg/kg), can directly affect  CYP3A4 activity through primarily rifampicin 103 

being a strong inducer [18, 19] or isoniazid being a modrate inhibitor [19, 20].  Thus, drug-104 

drug interactions are commonplace in patients who are likely to present with both malaria and 105 

tuberculosis making dosing strategies in paediatrics complex. Although data is sparse and the 106 

connection between malaria and tuberculosis co-infection has not been widely investigated (in 107 

contrast to HIV and tuberculosis coinfection), one study in Angola reported that the presence 108 

of malaria in patients admitted for tuberculosis as 37.5 % [21].  Furthermore, the risk of 109 

rifampicin-mediated induction in CYP3A4 expression/activity would have the potential to 110 

significantly increase the clearance of AL, as has been demonstrated in adult populations [22] 111 

and has further been contraindicated when used with strong inducers such as rifampicin [23]. 112 

  However, the magnitude of this induction effect on AL pharmacokinetics has not been 113 

investigated. DDIs between antimalarials and other drugs in paediatrics are not well studied 114 

and this may impact on the clinical efficacy, and safety of antimalarial drug therapy.  In-lieu 115 

of complex clinical studies, physiologically-based pharmacokinetic (PBPK) modelling has 116 

been used to explore the potential risk of DDIs in adults [24, 25] and paediatric populations 117 

[26-28].    118 

The objective of the current study was to demonstrate the application of PBPK modelling to 119 

the prediction of DDI risks in malaria-tuberculosis co-infection paediatric population groups.  120 

Specifically, the potential for a DDI between the CYP3A4 inducer rifampicin and AL will be 121 

explored over 2-5 year old population groups.  122 

 123 

  124 
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2. METHODS 125 

All population based PBPK modelling was conducted using the virtual clinical trials simulator 126 

Simcyp® (Simcyp® Ltd, a Certara company, Sheffield, UK, Version 16) using either the pre-127 

validated in-built ‘Healthy Volunteer’ or ‘Paediatric’ population groups.  The latter population 128 

group accounts for age-related changes in systems-parameters such as organ volumes, organ 129 

perfusion and ontogeny of drug metabolising enzymes[29] [30] [31] and allows for the 130 

prediction of drug behaviour in paediatric population groups .  In the case of both models, 131 

population variability is accounted for by the inclusion of a variability metric (% coefficient 132 

variability) having been established from public health data bases such as the US National 133 

health and Nutrition Examination Survey (https://www.cdc.gov/nchs/nhanes/).  134 

2.1 Study design 135 

A four stage strategy was employed for model development and validation (Figure 1).  136 

Step 1: this step focussed on the development of Simcyp® compound files and validation of 137 

simulations with published clinical studies.  For artemether and lumefantrine, these included a 138 

study conducted in 120 adult subjects who were orally dosed the branded combination 139 

Coartem® [69], and studies conducted in 16 subjects who were orally dosed the branded 140 

combiantion Riamet® [32].  For lumefantrine an additional study included a 6-dose study 141 

conducted in 17 subjects [33]. 142 

Step 2: this step focussed on the validation of the adult DDI predictions. CYP3A4 inhibition 143 

and induction mechanisms were simulated using ketoconazole and rifampicin respectively.  144 

Clinical studies demonstrating such a DDI were obtained from Lefèvre et al who studied AL 145 

with ketoconazole [32] (single dose of 80/480 mg of AL and 5 day treatment with 146 

ketoconazole) and Lamorde et al [34], who studied AL DDI with rifampicin where rifampicin 147 

was dosed at 10 mg/kg for the duration of the study with AL dosed as six 80/480 mg doses (12 148 

hourly) on days 8, 9 and 10.  149 

Step 3: this step focussed on the validation of artemether and lumefantrine model predictions 150 

in paediatrics.    In these studies, weight bandings were simulated based on dosing strategies 151 

for AL if the clinical study did not use a weight normalised dosing method.  Dosing boundaries 152 

were set at 1 tablet for 5-14.9 kg, 2 tablets for 15-24.9 kg and 3 tablets for 25-34.9 kg and trials 153 

were run to ensure, where possible, an equal proportion of subjects were included into each 154 

distribution banding based on the total number of subjects recruited within each reported trial.  155 

https://www.cdc.gov/nchs/nhanes/
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Simulated profiles were body weight stratified and analysed accordingly.   Clinical studies used 156 

are detailed the results section 3.3 and 3.4. 157 

Step 4: this step focussed on simulations to predict the impact of rifampicin-mediated DDIs on 158 

artemether and lumefantrine pharmacokinetics in children of 2-5 years of age over a weight 159 

boundary of 5-14.9 kg or 15-24.9 kg.  In these simulations, trials of 100 subjects were simulated 160 

and analysed with appropriate weight-based dosing (see above) and under treatment of 161 

rifampicin with AL.   162 

For all validation steps, unless otherwise stated, all observed data sets were obtained from 163 

‘supervised’ administration groups in reported clinical studies and simulated under ‘fed’ 164 

conditions.  Furthermore, unless otherwise stated all simulations included subjects of ≥ 5 years 165 

2.2 Artemether-lumefantrine model development 166 

The physicochemical and pharmacokinetic parameters required to describe the 167 

pharmacokinetic properties of artemether, lumefantrine and isoniazid are detailed in table 1. 168 

For artemether, literature- reported isozyme specific hepatic intrinsic clearances were utilised 169 

for the description of drug metabolism (Table 1).  For lumefantrine, the isozyme specific 170 

hepatic intrinsic clearance (CLint) was back-calculated using the Simcyp® retrograde calculator 171 

from the oral clearance and assuming CYP3A4 was the predominant isozyme for lumefantrine 172 

metabolism[6].  This approach is essential in order to mechanistically model DDIs.  173 

Where necessary, the human jejunal effective permeability (Peff) and Kp scalar were further 174 

optimised for AL using a parameter estimate method within Simcyp® to yield optimal 175 

estimates for the absorption (Peff) and tissue distribution/Vss prediction (Kp scaler). 176 

Furthermore, for artemether, where necessary, the in-vitro metabolic clearance was optimised 177 

through the parameter estimation of the Inter System Extrapolation Factor (ISEF) (Table 1). 178 

Rifampicin and ketoconazole compounds were used in simulations without modification from 179 

the library of pre-validated drug molecules within the Simcyp® simulator, using a 1st-order 180 

absorption model and assuming dosing in solution form.  Where Simcyp® ADAM (Advanced 181 

Dissolution Absorption Model) was used, an immediate release formulation with an applied 182 

diffusion layer model was utilised for modelling with literature-reported solubility parameters 183 

included.  Where simulations were performed in paediatrics, all APIs were assumed to be dosed 184 

in solution form, mimicking the dispersible/crushed application of AL in paediatric subjects 185 

[15]. 186 
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2.2.1 Artemether-lumefantrine DDI model development 187 

The successful development and validation of AL compounds within Simcyp® was followed 188 

by assessing the ability to predict DDIs in adults and paediatrics.  All  adult DDI simulations 189 

were, where possible, run identically to the reported clinical study with which the validation 190 

was conducted against, and primarily included matching age ranges, male-to-female ratios and 191 

identical dose/dosing intervals. In order to validate the capability of the model to predict a 192 

broad range of DDIs, the prevalidated Simcyp® in-built compounds ketoconazole and 193 

rifampicin were directly utilised in simulations as candidates to simulate CYP3A4 inhibition 194 

DDIs (ketoconazole) and CYP3A4 induction DDIs (rifampicin).  195 

A previously validated isoniazid compound file [35] was used for all rifampicin DDI 196 

simulations to account for the impact of isoniazid mediated CYP3A4-inhibition associated with 197 

TB chemotherapy.  All simulations included both rifampicin (as the primary perpetrator) and 198 

isoniazid (as the secondary perpetrators), however results are presented for the key interactions 199 

between AL and rifampicin only, and reflects the clinical net effect of CYP3A4 induction with 200 

the clinical use of the combination of rifampicin and isoniazid in DDI-focussed studies [36-201 

38]. 202 

For paediatric DDI simulations (Step 4), a 100 subject simulation was run in a 10x10 trial (10 203 

subjects per trial with 10 trials) to ensure that reasonable inter-/intra individual variability is 204 

captured within the model simulations.  However, as simulations are not possible with defined 205 

age and weight ranges, pooling and post-processing of output data was conducted to match 206 

individuals to the required age-weight boundary conditions for the study.  207 

208 
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Table 1. Input parameter values and predicted PBPK values for use in the simulation of 209 

artemether, lumefantrine and isoniazid. 210 

Parameters Artemether Lumefantrine Isoniazidd 

Compound type Monoprotic base Diprotic base Monoprotic base 

Molecular weight (g/mol) 298.4[39] 528.94[39] 137.1 

Log P  3.53[40] 8.70[41] -0.7 

fu 0.05[42] 0.003 [42] 0.95 

pKa 1 3.9[39] 14.1[39] 1.82 

pKa 2 - 9.80[39] - 

B/P 0.55a 0.80[43] 0.825 

Vss (L/kg) 1.77b 0.70b 0.63a 

Peff (10-4 cm/s)  3.67a 0.97a 10.23a 

Kp scalar 0.21a 0.10a - 

Solubility (mg/mL) 0.012[44] 0.002[45] - 

CLpo (L/min) - 0.25[7] 12 

CLint3A4 (µL/min/pmol) 1.47[11] 2.61a,c - 

CLint2B6 (µL/min/pmol) 9.31[11] - - 

ISEF CYP 3A4 2.424a - - 

ISEF CYP 2B6 1.697a - - 

Ki (µM) - - 36[20] 

Kinact (min-1) - - 0.08[20] 

Kapp (µM) - - 228[20] 

Absorption model  ADAM ADAM 1st order 

Distribution model Full  Full   Minimal  

a Parameter estimated; b Simcyp® mechanistic prediction; c Simcyp® retrograde calculation 211 
from population estimates of CLpo followed by parameter estimation (final optimised value: 212 
0.85 µL/min/pmol for CYP3A4); d Unless otherwise detailed data was obtained from Gaohua 213 
et al (2015) [46].  MW: Molecular weight; Peff: human effective permeability; B/P: blood-to-214 

plasma ratio; CLint: in vitro intrinsic clearance; Vss: Steady state volume of distribution; ISEF: 215 
Intersystem extrapolation factor for scaling CYP in-vitro kinetic data; Ki: concentration of 216 
inhibitor supporting half-maximal inhibition; Kinact: inactivation rate of the enzyme; Kapp: 217 

concentration of mechanism based inhibitor associated with half-maximal inactivation rate. 218 
 219 
 220 
 221 
 222 

 223 
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2.3 Predictive performance 224 

Whilst no agreed criterion has been suggested for an ‘optimal’ predictive performance range, 225 

it is generally considered that a prediction to within 2-fold of the observed data is acceptable 226 

[47].  Given the wide inter-subject variability in artemether pharmacokinetics, we selected this 227 

2-fold range (0.5-2.0) as our criterion for comparing Cmax and AUC parameters between model 228 

predictions and those clinically reported.  Where a DDI was simulated, the model performance 229 

was primarily dictated by a comparison of the AUC ratio (ratio of AUC in the absence and 230 

presence of the perpetrator agent) (AUCr), with a prediction of AUCr to within 2-fold of the 231 

reported AUCr being considered as acceptable, with an AUCr greater than 1.25 being indicative 232 

of an inhibition reaction whereas an AUCr less than 0.8 indicating an induction reaction whilst 233 

an AUC ratio of between 0.8 – 1.25 indicating no interaction.  234 

2.4 Data analysis 235 

Unless otherwise stated, all simulations of plasma concentration-time profiles were presented 236 

as arithmetic mean and 5-95th percentiles.  In circumstances where reported concentration-time 237 

profiles did not provide corresponding tabulated summary data, the observed data points were 238 

retrieved using the WebPlotDigitizer v3.10 [48] and superimposed onto simulated profiles for 239 

visual predictive checks.    240 

3. RESULTS 241 

3.1 Step 1: Predictive performance for artemether-lumefantrine models for adults 242 

Following optimisation of parameter estimates (Table 1) the predicted population plasma 243 

concentration profile for both artemether and lumefantrine were within the observed trial 244 

means for plasma concentration profiles.  The model predicted Cmax values were within 2-fold 245 

of the reported Cmax for each clinical study for both artemether (139.1 ± 116.2 ng/mL; table 2; 246 

figure 2A) and lumefantrine (single dose: 6.31 ± 3.72 µg/mL; six dose: 9.56 µg/mL; range: 247 

5.67-16.78 µg/mL; table 2; figure 2B and 2C). The 24 h, 48 h, 72 h and day 7 lumefantrine 248 

concentrations were also predicted to within 2-fold of those reported by Ashley                                    249 

et al [33]. 250 

Similarly, the model predicted AUClast for artemether (521.2 ± 254.1 ng/mL.h) (Table 2) and 251 

lumefantrine (single dose: 251.4 ± 1.45 µg/mL; six dose AUC0-∞: 387.4 µg/mL.h (98-1157 252 

µg/mL.h) (Table 2) were within 2-fold of the reported AUClast. 253 
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Table 2: Summary of predicted and observed pharmacokinetic parameters of artemether and lumefantrine in healthy adults 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

Data represent mean ± SD or mean (range).  271 

a Concentrations measured at 24, 48 and 72 hour immediately pre-dose are labelled by the subscript time (hour) nominals, with all concentrations 272 

units express as µg/ml. Cd7 indicates the 7th day concentration. 273 

  Prediction  
Lefevre et al 

2013[49] 

Lefevre et al 

2002[32] 

Ashley et al 

2007[33] 

Artemether 

Dose (mg) 80 80 80  

Population size (n) 100 58 16  

Cmax (ng/ml) 139.1 ± 116.2 113 ± 69.5 104 ± 40  

AUClast (ng/ml.h) 521.2 ± 254.1 408 ± 209 302 ± 135  

      

 Dose (mg) 480 480 480  

Lumefantrine Population size (n) 100 58 16  

Cmax (µg/ml) 6.31 ± 3.72 8.92 ± 3.18 7.91 ± 3.49  

AUClast (µg/ml.h) 251.4 ± 112.3 236 ± 93 195 ± 119  

      

 Dose (mg) 6 dose regimen   6 dose regimen 

Lumefantrinea Population size (n) 100   17 

 Cmax (µg/ml) 9.56 (5.67-16.78)   6.89 (3.69-13.19) 

 C24h (pre-dose) 3.39 (1.98-9.28)   2.53 (0.68-9.8) 

 C48h (pre-dose) 5.81 (1.48-13.14)   3.84 (1.91-6.80) 

 C72h (pre-dose) 5.84 (1.12-12.75)   3.91 (2.15-9.64) 

 Cd7 0.32 (0.11-0.78)   0.35 (0.20-0.87) 

 AUC0-∞ (µg/ml.h) 387.4 (98-1157)   432 (308-991) 
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3.2 Step 2: Simulation of the AL DDIs following exposure to ketoconazole and 274 

rifampicin  275 

The artemether and lumefantrine compound files were further assessed for the ability to 276 

recapitulate the literature reported extent of DDIs on plasma concentration profiles in adults. 277 

Predictions for inhibition-based DDIs with artemether and ketoconazole resulted in predicted 278 

plasma-concentration profiles for the simulated population within the observed range reported 279 

by Lefevre et al 2002 [13] (Figure 3A).  The predicted Cmax ratio was 2.49 ± 0.51 compared 280 

with a reported ratio of 2.24 and predicted AUCr was 2.96 ± 0.80 compared to a reported ratio 281 

of 2.51 (Table 3).   282 

Predictions for inhibition-based DDIs with lumefantrine and ketoconazole, resulted in plasma-283 

concentration profiles for the simulated population within the observed range reported by 284 

Lefevre et al 2002 [13] (Figure 3B).  The predicted Cmax ratio was 1.16 ± 0.89 compared with 285 

a reported ratio of 1.26 and predicted AUCr was 2.10 ± 0.54 compared to a reported ratio of 286 

1.65 (Table 3).   287 
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Table 3: Summary of predicted and observed pharmacokinetic parameters of artemether and lumefantrine in the absence and presence 288 

of ketoconazole in healthy adults 289 

 290 

 291 
a Artemether: AUC(0-∞); lumefantrine: AUC(0-last) 292 

Data represent mean ± SD. 293 

 294 

 
 -Ketoconazole +Ketoconazole Ratio 

 

  

Cmax  

(ng/mL) 

AUCa 

 (ng/mL.h) 

Cmax  

(ng/mL) 

AUCa
 

 (ng/mL.h) Cmax AUC 

Artemether 
Predicted 71.2 ± 62.7 316.2 ± 96.05 171.39 ± 115.21 911.24 ± 324.60 2.49 ± 0.51 2.96 ± 0.80 

Observed 104 ± 40 302 ± 135 225 ± 77 718 ± 279 2.24  2.51 

Lumefantrine Predicted 5476 ± 2168 118211 ± 57079 6305 ± 2432 235041 ± 97260 1.16 ± 0.89 2.10 ± 0.5 

Observed 7910 ± 3490 195000 ± 119000 10100 ± 4740  312000 ± 181000 1.26 1.65 
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For induction based DDI studies, only one clinical study was identified with rifampicin 295 

mediated DDIs reporting the impact on both artemether and lumefantrine in the same subjects 296 

[22]. However, due to the small clinical study size (6 subjects) and narrow age and weight 297 

range used in the study, we simulated a virtual clinical trial of 10 trials consisting of 10 subject 298 

per trial within the weight and age boundaries reported by Lamorde et al [22].  As there was 299 

no direct way to specify an age boundary, the trials containing at least 6 subjects within the 300 

correct weight boundaries were selected for study and subsequent analysis. 301 

Predictions for induction-based DDIs with artemether and rifampicin were validated against a 302 

single study reporting a single time point artemether concentration at 12-hours (C12h) post final 303 

dose [22] in six subjects in the absence and presence to subjects taking a FDC for tuberculosis 304 

which included rifampicin [22].  Predicted C12h was 3.56 ± 3.13 ng/mL which reduced to 0.77 305 

± 1.14 ng/mL in the presence of rifampicin, and was within 2-fold of the reported C12h of 0.5 306 

± 1 ng/mL (Figure 4A). 307 

Predictions for induction-based DDIs with lumefantrine and rifampicin were validated against 308 

a single study reporting a single time point lumefantrine concentration on the 8th day after 309 

initiating lumefantrine dosing (Cd8) (7.3 days’ post first dose).  Using this approach, the 310 

predicted Cd8, 59.83 ± 24.86 ng/mL, was within 2-fold of the observed reported Cd8 of 107.75 311 

± 19.58 ng/mL [22] (Figure 4B). 312 

3.3 Step 3: Predictive performance for artemether in children  313 

The majority of clinical studies assessing AL pharmacokinetics in children often focus on the 314 

longer-half life drug lumefantrine. Existing arthemeter clinical studies are sparse and include 315 

either sampling around the expected Cmax (1-2 hours) [50, 51] or limited large population based 316 

sampling approaches [10], with dosing based on the body weight stratification.    317 

The model predicted mean artemether plasma concentration for the lower doses (221.25 µg/mL 318 

± 104.51 µg/mL) and higher doses (293.51 ± 98.62 µg/mL) were within the 2-fold of the 319 

literature reported plasma concentrations for both lower (150 ± 206 µg/mL) and higher doses 320 

(196 ± 204 µg/mL) (Figure 5A) [50]. 321 

Similarly when using a single lower dose and stratifying further for weight into 5 < 10kg and 322 

10 to < 15 kg, the reported concentrations for the lower and higher weight banding, 295 ± 214 323 

µg/mL and 137 ± 111 µg/mL, were within the 5th and 95th percentiles of the mean prediction 324 

profiles (Figure 5B), with a predicted mean concentration (mean of 1 and 2 hour time points) 325 
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of 225.59 ± 187.27 µg/mL for the lower weight boundary and 238.84 ± 187.12 µg/mL for the 326 

higher weight boundary [51] (Figure 5B). 327 

To confirm a successful model prediction of the distribution and elimination phases of 328 

artemether pharmacokinetics, Figure 5C illustrates model predicted concentration-time profiles 329 

for artemether dosing at the lowest (5-14 kg) and highest (25-34 kg) doses, where observed 330 

sampling points were obtained from a population study reported by Hietala et al (2010) [10] at 331 

2, 4, 8, 16, 24, 36, 48 and 60 hours.  The predicted profile for each dosing band fell within the 332 

range reported by Hietala et al [10]. However, due to the well documented variability in the 333 

absorption phase of artemether, the predicted concentrations during the absorption phases (0-4 334 

hours) were slightly over-predicted.  335 

3.4 Step 3: Predictive performance for lumefantrine in children  336 

Lumefantrine is often studed, in preference to artemether, in clinical trials due its longer half-337 

life [13] [14], and a range of clinical studies are available to support PBPK-based model 338 

development where 7-day post-dosing concentration (~280 ng/mL [7]) is used as a marker of 339 

successful ‘target’ concentration to obtain parasite clearance.  340 

To validate the lumefantrine compound we first assessed the predictive performance against 341 

two studies reporting mean plasma concentration through the study duration period. Based on 342 

a study by Borrman et al (2010) [8] where mean ± SD plasma concentration data was available 343 

for 30, 54, 66, 84 and 168 hours post first dose, the CLint,3A4 was optimsied to 0.71 and Kp 344 

scaler optimised to 0.05 (Vss: 0.53 L/kg). Using this revised lumefantrine compound file, we 345 

are able to capture the 4 time-points reported by Borrmann et al over the 3 doses stratification 346 

used (Figure 6A).   347 

This optimised compound file was then applied to all subsequent simulations, and was 348 

confirmed with a second study reported by Piola et al [52] where 5-14 year olds were simulated 349 

with appropriate weight-based dosing, and where observed mean ± SD plasma concentration 350 

data was available for day 3 and day 7 (Figure 6B).  Day 3 predicted concentration was 7958 351 

± 2381 ng/mL and 8246 ± 5478 ng/mL for the 5-15 kg and 15-25 kg doses, and day 7 predicted 352 

concentrations of 658.5 ± 289 ng/mL and 718.9 ± 554 ng/mL for the 5-15 kg and 15-25 kg 353 

doses. The observed day 3 (7050 ± 3560 ng/mL) and day 7 (376 ± 217 ng/mL) mean plasma 354 

concentration were within 2-fold of the predicted mean concentrations, in addition to being 355 

within the 5th and 95th  percentiles of the mean lumefantrine predicted plasma concentration for 356 

the two weight-based doses (Figure 6B).   357 
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This optimised compound file was further utilised to assess the predictive performance for 358 

median day 3 and day 7 (predominantley) concentrations (Table 5), and was able to capture 359 

day 3 and day 7 concentrations to within 2-fold of those reported in clinical studies.360 



17 
 

Table 4: Summary of simulated and observed median day 3 or day 7 lumefantrine concentrations in children 361 

 362 

Study Notes Observed Simulated 

  Median Concentration [Range] (ng/mL) 

  Day 3 Day 7 Day 3 Day 7a 

Mayxay et al (2004) [53] n=77; 95% CI reported - 520 [390–650] - 1 dose: 374.12 [0.1-2341] 

2 doses: 392.32 [0.1-4719] 

3 doses:   411.12 [0.3-4853] 

Schramm et al (2013) [54] n=139; IQR reported; 

ACRP results 

- 356 [211-547] - 1 dose b: 368.43 [37-885] 

Ngasala et al (2011) [55] n=177; Range reported - 205 [0-1887] - 1 dose: 392.15 [0.12-6785] 

2 doses: 408.29 [0.13-7511] 

Borrmann et al (2011) [56] n=15; Range reported 

from 2005-2006 study 

- 536 [178-3270] - 369.89 c [0.1-5028] 

Checchi et al (2006) [57] n=70; Range reported 

in supervised group in 

under 5 years 

7050 [1876-14985] 367 [0.12-768] 4877 [1678-25285] 1 dose: 389.752 [0.1-7544] 

2 doses: 347.93 [0.3-8641] 

a Simulated day 7 median concentrations were predicted following dosing based on body-weight stratification as a result of the lack of clear age-363 
weight dosing strategies detailed in the observed studies. 364 

b Observed study demographics required single dose of AL based on weight 365 

c Dosed as 12mg/kg  366 

 367 
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3.5 Step 4: Simulating the impact of rifampicin-mediated CYP3A4 induction on 368 

artemether and lumefantrine pharmacokinetics in children  369 

The presence of tuberculosis is thought to occur in at least 37.5 % of subjects infected with 370 

malaria [21], and given the potential for TB treatments to attenuate CYP-mediated drug 371 

metabolism (rifampicin being a CYP3A4 inducer and isoniazid a CYP3A4 inhibitor), the 372 

potential risk in paediatrics patients is important to assess considering the ontogeny CYP3A4 373 

expression during the first 5 years of life [26-28].  Simulations to predict the potential impact 374 

of TB treatment on subjects established on anti-malarial treatment was assessed to quantify the 375 

change in AL plasma concentrations in the absence and presence of dosing with rifampicin 376 

(and isoniazid) for subjects of 2-5 years of age with weight-based dosing (1 tablet: 5-14.9 kg 377 

and 2 tablets 15-24.5 kg) where rifampicin (and isoniazid) was dosed daily for 7 days prior to 378 

the initiation of AL. 379 

3.5.1 Artemether 380 

A DDI initiated with a combination of rifampicin and isoniazid significantly reduces the Cmax 381 

for both one and two table regimens by approximately 80 %, with a calculated Cmax ratio of 382 

0.21 (Table 5) (Figure 7). Similarly a significant reduction in the AUC following the DDI 383 

resulting an AUCr of 0.22 (Table 5) (Figure 7).  No differences in the overall impact of the 384 

DDI between the two dosing groups was reported suggesting the magnitude of the DDI is 385 

similar across the 2-5 years’ age range. 386 

Table 5: Summary of predicted artemether pharmacokinetics in the absence and 387 

presence of a DDI in children aged 2-5 year.  388 

 389 

 No Rifampicin Rifampicin Ratio 

 Cmax (ng/mL) AUC (ng/mL.h) Cmax (ng/mL) AUC (ng/mL.h) Cmax AUC 

One 89.12 ± 78.93 563.60 ± 316.64 18.47 ± 31.18 121.53 ± 143.43 0.21 0.22 

Two 210.95 ± 179.81 1127.21 ± 633.27 39.12 ± 136.37 243.06 ± 290.1 0.18 0.21 

 390 

Cmax data is from the final dose; AUC calculated from final dose to end of study period. 391 

 392 

3.5.2 Lumefantrine  393 

In the absence of a DDI (i.e. malaria only patients), the predicted mean day 7 concentration 394 

was above the minimum therapeutic target of 280 ng/mL (Figure 8) for both the single tablet 395 

per dose (5-14.9 kg) and two tablets per dose (15-24.9 kg) strategies, 300.49 ng/mL (range: 396 

0.1-4442 ng/mL) and 614.37 ng/mL (range: 0.14-6485 ng/mL) respectively (Table 6). 397 
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However, in TB co-infected patients, the predicted day 7 concentration fell significantly below 398 

the therapeutic target of 280 ng/mL (Table 6) for both the single and two tablet regimens, with 399 

a resultant AUCr of 0.41 and AUCr 0.40 respectively (Figure 8) and no subjects presenting with 400 

a simulated day 7 concentration of > 280 ng/mL (Table 6).   The potential risk for failure of 401 

AMT is therefore of significant concern in TB co-infected paediatric patients, particularly those 402 

falling into the lower body-weight stratification who would typically be younger in age and 403 

therefore more prone to treatment failure. 404 

Given that orally administrated AL often shows absorption saturation kinetics, to overcome the 405 

risk of significant treatment failure increasing the dose of AMT administrated in each FDC 406 

would not be appropriate.  We assessed the impact of increasing the duration of treatment from 407 

3 days to 5 or 7 days on the potential impact on day 7 lumefantrine concentrations (Figure 9).   408 

Increasing the duration of treatment to 5 days had a minimal impact on day 7 mean 409 

concentrations, with a modest increase for the single tablet to 63.63 ng/mL leading to a 11.1 % 410 

(n=5/46) increase in the subjects with day 7 target > 280 ng (Table 6) (Figure 9A).  Similarly, 411 

for the two tablet treatment an increase in the mean day 7 concentration was simulated 76.93 412 

ng/mL which resulted in an overall increase in subjects with a target concentration > 280 ng of 413 

11.3 % (n=6/53) (Table 6) (Figure 9B).   414 

However, for a 7-day treatment 63 % (one tablet) and 74.5 % (two tablets) of subjects 415 

demonstrated day 7 concentration in excess of 280 ng/mL (Table 6) (Figure 9A and B: lower 416 

panels). 417 

 418 
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Table 6: Summary of predicted mean day 7 lumefantrine concentrations during a 3, 5 and 7-day treatment schedule in children  419 

 420 

Dosing Mean Cd7 (Range) (ng/mL) Lumefantrine ≥ 280ng/mLa 

 Regimen Regimen 

 3 day  5 day  7 day  3 day 5 day 7 day 

1 tablet/NI 300.49 (0.1-4442) 1451.01 (15.2-8367)  7509.77 (79.67-12438.06) 47.8 (n=22) 86.7 (n=39) 95.6 (n=44) 

1 tablet/I 18.12 (0.01-88.91) 63.63 (0.01-578.12) 329.71 (0.12-4385.12) 0 11.1 (n=5) 63 (n=29) 

2 tablets/NI 614.37 (0.14-6485) 1516.07 (14.9-9656) 9748.96 (28.55-14375.5) 46.6 (n=21) 60.3 (n=32) 85 (n=40) 

2 tablets/I 42.69 (0.01-154.3) 76.93 (0.02-1087.99) 704.25 (0.08-7895.21) 0 11.3 (n=6) 74.5 (n=35) 
 421 

a Percentage (number) of subjects with Cd7  ≥ 280ng/mL.  422 

3 days: 1 tablet (n=53), 2 tablets (n=45); 5 days: 1 tablet (n=46), 2 tablets (n=53); 7 days: 1 tablet (n=46), 2 tablets (n=47).  423 
NI: no interaction; I: interaction. Cd7: mean day 7 concentration. 424 

 425 
 426 

 427 
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4. DISCUSSION 428 

The study of pharmacokinetics in paediatric population groups is often neglected for many 429 

therapeutic agents because of complexities in ethical/legal and recruitment strategies coupled 430 

with the requirement for limited sample collection and often diverse population based data 431 

analysis.    432 

Although allometric scaling remains a useful tool for first predictions of primary 433 

pharmacokinetics parameters such as Vss or clearance [58, 59] it can often fail for example in 434 

the prediction of clearance [60-63]; when assessing dosing-optimisation strategies in 435 

paediatrics [30]; in situations where body weight may be significantly variable based on 436 

geographical locations [64].  Further allometry often does not address the impact of maturation 437 

at early ages of childhood and can often over-predict clearance during the maturation of 438 

metabolic elimination pathways [65].  However PBPK modelling can often be used to support 439 

population modelling approaches with deviations in covariate models can be build and based 440 

upon the mechanistic knowledge for the population to study allowing the rational extrapolation 441 

of a drug pharmacokinetics across age groups.  In light of these facts, PBPK is now gaining 442 

regulatory acceptance [66-70] as one approach to assess pharmacokinetics in paediatric patients 443 

[71] and complex scenarios such DDIs [72, 73]. 444 

Although standard regimens for malaria treatment have shown positive treatment benefits with 445 

a reduction in mortality rates [2], in many developing countries with a high burden of 446 

communicable disease such as HIV/AIDS and tuberculosis, the risk potential of DDIs with co-447 

infected malaria patients is high [21].  Such DDI issues are more apparent in children where 448 

the recruitment and inclusion of children onto antimalarial clinical trials is limited.  449 

Pragmatically assessing the risk of a DDIs in paediatrics is difficult due to CYP-ontogeny 450 

observed in key drug metabolic pathways associated the AMT metabolism, mainly CYP3A4, 451 

during the first 5 years of life [26-28], where maturation of CYP3A4 expression will lead to 452 

both altered plasma concentrations of CYP3A4-subtrates (such as AL) whilst also dynamically 453 

altering the magnitude of any CYP3A4-induction process.   454 

Furthermore, rifampicin is a known potent CYP3A4 inducer, and therefore has the potential to 455 

lead to AMT treatment failure if the AMT metabolic pathway favours CYP3A4-mediated 456 

transformation. 457 

The ultimate goal of this study was to address the potential risk associated with DDIs related 458 

to tuberculosis therapy in children between 2-5 years of age, which accommodate the lowest 459 
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dosing range (age based) for use of both AMT and rifampicin.  Our modelling strategy included 460 

a 4-step approach commencing in prediction AL pharmacokinetics in adult population groups 461 

to develop and optimise compound files (Step 1 and 2) before scaling to paediatrics and 462 

conducting validation with published non-DDI clinical studies (Step 3) before finally making 463 

predictions for potential DDI risks in co-infected malaria-tuberculosis children (Step 4). 464 

In adults, successful AL compound development (Step 1) was achieved through comparison to 465 

3 key clinical studies quantifying both artemether and lumefantrine in each study and all 466 

predictions were within 2-fold of the reported Cmax and AUC from clinical studies (Table 2).  467 

The large variability in the absorption phase of artemether and lumefantrine (Figure 2) was 468 

evident in the observed clinical data and the slight model  over prediction may be a result of 469 

the lower limit of detection for artemether in the studies reported by Lefevre et al [49] [32] 470 

compared to that reported by Bindschedler et al 2002[74].  471 

Following successful compound development, the ability of each compound file to mechanistic 472 

predict a DDI was then assessed through the use of two inbuilt Simcyp® inhibitors, namely 473 

ketoconazole (CYP3A4 inhibitor) and rifampicin (CYP3A4 inducer) (Step 2).   For CYP3A4 474 

inhibition, the model was able to recapitulate the extent of DDIs with reported plasma 475 

concentration within the predicted 5th-95th percentiles for the simulation for artemether and 476 

lumefantrine (Figure 3 and Table 3).  477 

For the induction based interactions of CYP3A4 with AL, very few reports have characterised 478 

rifampicin mediated DDIs and we utilised a study reported AL concentration within the same 479 

subjects [22].  Under these circumstances, the model predicted 12-hour post final dose 480 

concentration (artemether) and day 8 concentration (lumefantrine) was similar (within 2-fold) 481 

to that reported by Lamorde et al [22].  Steps 1 and 2 demonstrate the ability of the development 482 

AL model compounds to capitulate pharmacokinetic parameters reported from a range of non-483 

DDI and DDI studies, confirming successful model development. 484 

To consider the potential impact of DDI on AL pharmacokinetic in 2-5 year olds, it was 485 

important to demonstrate the capability of the developed model to predict AL pharmacokinetics 486 

in children.  To this end step 3 focussed on validation of artemether and lumefantrine in 487 

children.  Artemether model predictions in children were able to capture the difference in 488 

weight based dosing strategies on the outcome pharmacokinetic profiles, both in ‘single’ point 489 

concentrations centred around the Cmax (Figure 5A and B) and population based sampling over 490 

a dosing period (Figure 5C). Lumefantrine model predictions required an optimisation step and 491 
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following this optimisation procedure, observed time-point data for 30, 54, 66, 84 and 168 492 

hours [8] and model predictions and day 3 and day 7 points [52] were within 2-fold of the 493 

simulated profiles and within the 5th and 95th percentiles of the mean predicted profiles (Figure 494 

6).  Lumefantrine model predictions were finally further validated using median concentration 495 

data at day 3 or day 7 (Table 4), which were found to be well predicted and within 2-fold of 496 

the reported concentrations.  The approach described in Step 3 resulted in appropriate model 497 

predictions based on existing published literature detailing either single-time point or multiple-498 

time point concentration data of AL in children. 499 

Having established a working model for AL pharmacokinetics in adults and children, along 500 

with a working model for quantifying AL DDIs in adults, we addressed the major focus of this 501 

study, the prediction of potential AL based DDIs in children between the ages of 2-5 years of 502 

age.  As expected the impact of rifampicin on the pharmacokinetics of artemether was 503 

significant, reducing both the final dose Cmax for both one and two tablet regimens by 504 

approximately 80 % (Cmax ratio: 0.18-0.21) (Table 5) along with an AUCr of 0.21-0.22 for both 505 

dosing regimens.   506 

To infer a clinical consequence of this is difficult, given the shorter half-life of artemether 507 

compared to lumefantrine.  AL is a very efficacious therapy in uncomplicated malaria patients 508 

with the recommend 6-dose treatment show efficacy of 97·6% on day 28 and 96·0% on day 42 509 

[75], however the efficacy of treatment reduces with patients receiving lower doses (an 8% 510 

decrease in patients for every 1 mg/kg decrease in dose received).  However, the overall 511 

determinant of artemether–lumefantrine clinical efficacy is the area under the curve of 512 

lumefantrine [6], with day 7 concentration (~280 ng/mL) being the primary marker for 513 

successful therapy under dosing with 3-day dosing regimen. 514 

The DDI has a detrimental effect on lumefantrine Cd7, significantly reducing this below the 515 

target concentration for both one and two dose treatment (Figure 8).  Although data on such 516 

interactions in paediatric is lacking, Lamorde et al [22] have demonstrated a similar effect in 517 

adults with a significant decrease (3-10 fold) in lumefantrine concentrations during TB 518 

treatment [22]. 519 

Artemether and lumefantrine have been reported to show saturation in the absorption 520 

pharmacokinetics and it would be expected that dose increases would have a limited impact on 521 

resultant pharmacokinetics lumefantrine [33] [76].  Therefore, to overcome the DDI-based 522 

decrease in Cd7, an increase in the dose administrated would not be viable for increasing Cd7.  523 
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We then simulated the impact of a change in dosing frequency would influence the plasma 524 

concentration of AL, and whether an increase in Cd7 would be evident.  525 

Whilst a 3-day treatment is viable for patient compliance, day 7 concentration in malaria-TB 526 

co-infected children are significantly lower than this target concentration.  An increase in 527 

dosing frequency was investigated to assess the impact on the predicted target concentration.  528 

Whilst a 5-day course resulted in some modest increase in the percentage of subjects with a Cd7 529 

> 280ng/mL (~11% increase), this increase was far greater for a 7-day treatment regimen with 530 

~63-75% of subjects demonstrated Cd7 > 280ng/mL across both dosing bandings (Table 6).  A 531 

recent population pharmacokinetic study by Hoglung et al (2015) [77] assessed the potential 532 

for DDI with malaria-HIV co-infected adult patients.  In prospective simulations they 533 

demonstrated a similar beneficial effect of an increase in dosing frequency to counteract the 534 

induction effect of antiretroviral on malaria (AL) treatment regimens.  535 

Whilst the impact of this will require prospective clinical analysis, it is suggested that an 536 

increase in the dosing frequency for children who are co-infected with malaria and TB and 537 

subjected to TB chemotherapy, including rifampicin, may benefit from an increase in treatment 538 

duration to 7 days to full ensure parasite clearance.  Our results have demonstrated that children 539 

aged 2-5 years of age are susceptible to significant DDI when being co-treated with TB 540 

chemotherapy, which directly impacts upon the potential for AL therapy failure.   541 

Challenges remain however, the impact of non-adherence to designated treatment regimens 542 

would render the impact of the induction effect as variable and unpredictable [78]. However, 543 

given the erratic absorption of lumefantrine (and artemether) [79], the extension of a dosing 544 

regimen from 3 to 5 days would not alter the peak concentrations significantly (Figure 9) and 545 

would be within this erratic absorption range absorption range (Figure 6). 546 

Furthermore, it should be noted that simulations were performed in healthy subjects in our 547 

simulations, and therefore we have assumed that any physiological changes associated with 548 

malaria are negligible and does not impact upon the extent of the DDI in our simulation trials.   549 

Malaria patients are susceptible to reduced albumin and α1-acidic glycoprotein, which can 550 

directly impact upon the extent of plasma protein binding and therefore exposure of AL to 551 

metabolic extraction with reports demonstrating a decrease of ≥ 30 % of serum albumin, (≤ 35 552 

g/L) [80-82].  For highly protein bound drugs, such as lumefantrine, any change subsequent 553 

changes in the extent of protein binding (e.g. reduce binding due to reduced serum protein) will 554 
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inevitably increase the unbound drug fraction and potentially enhance both drug tissue 555 

distribution along with metabolic clearance.   556 

The potential impact of such a change was assessed in 2-5 year olds (1 tablet per dose over the 557 

7 day optimised regimen) (Figure 10) and demonstrated that a modest increase in fu,plasma from 558 

0.003 to 0.005, results in all subjects possessing a Cd7 of just below the target < 280 ng/mL 559 

subjects (when considering the range of simulated values).  Furthermore a 10-fold increase in 560 

fu,plasma (0.003 to 0.03) yields Cd7 which would be irreconcilable by dosing adjustments. 561 

In adults, it has been noted that changes in body weight (malnutrition) and potentially changes 562 

which can impact upon absorption, distribution, metabolism and excretion.  Nevertheless, our 563 

dosing range for the age selection (5-15kg and 15-25kg) is broad enough to simulate the impact 564 

on potential underweight children who are within the simulated age range (2-5 years). 565 

Interesting, a clinical trial is on-going [83] to assess the impact of an increased treatment 566 

frequency to 5 days for AL, the outcomes of which may support the requirement for an increase 567 

in dosing frequency for patients subjected to induction-based DDIs. 568 

5. CONCLUSION 569 

The WHO have highlighted the increased risks of mortality children face with malaria infection 570 

[2, 3] and coupled with the innate complications of co-infection with tuberculosis, children are 571 

at significant risk of potential drug-drug interactions in many areas of sub-Sahara Africa which 572 

may inadvertently impact upon parasite clearance.  Whilst clinical studies exploring this risk 573 

of DDI in co-infected paediatric population groups are sparse, mechanistic population-based 574 

PBPK modelling provides a potential approach to assess this risk-potential.  The 575 

pharmacokinetics of artemether and lumefantrine has been simulated for two-body weights in 576 

children ages 2-5 years old, who would be a greater risk of mortality associated with both 577 

malaria and tuberculosis.  We demonstrated that an extension of the current recommend dosing 578 

range for AL, from 3 to 7 days, would counteract the potential rifampicin-mediated induction 579 

on lumefantrine (and artemether) metabolic clearance and yields a significantly greater 580 

proportion of subjects attaining a target lumefantrine concertation thereby preventing 581 

recrudescence and potential mortality.   582 

 583 

 584 
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List of Figures 813 

 814 

Figure 1 815 

Model development strategy. 816 

 817 

Figure 2 818 

The simulated plasma concentration-time profile of artemether and lumefantrine. 819 

Simulation of (A) artemether and (B and C) lumefantrine plasma concentration-time profile 820 

following a single oral dose of 80mg (artemether) (A), a single oral dose of 480 mg 821 

(lumefantrine) (B) and a six-dose three-day regimen (lumefantrine) (C) [29]. For all 822 

simulations a standard population size of 100 individuals was used.  Solid line represents 823 

population mean prediction with dashed lines representing the 5th and 95th percentiles of 824 

prediction. Mean observed plasma concentrations represented by the solid circles [28] and 825 

diamonds [42]. 826 

 827 

Figure 3 828 

The simulated plasma concentration-time profile of artemether and lumefantrine in the 829 

absence and presence of ketoconazole  830 

(A) Artemether was dosed as a single 80 mg oral dose in the absence and presence of 831 

ketoconazole, dosed as a single 400 mg oral dose over a 24-hour period under fed-conditions. 832 
Open circles represent observed mean data points [13].  (B) Lumefantrine was dosed as a single 833 

480 mg oral dose in the absence and presence of ketoconazole, dosed as a single 400 mg oral 834 

dose over a 24-hour period under fed-conditions. Open circles represent observed mean data 835 
points [13].  Solid line represents population mean prediction with shaded regions representing 836 

the 5th and 95th percentiles of prediction (grey: no interaction; red: interaction). 837 

 838 

Figure 4 839 

The simulated plasma concentration-time profile of artemether and lumefantrine in the 840 

absence and presence of rifampicin. 841 

(A) Artemether was dosed as 6 doses (80 mg per dose) over 3 days (on days 8-10) of a 14-day 842 
trial with rifampicin dosed at 10 mg/kg once daily during the duration of the trial.  Isoniazid 843 
was also dosed at 10 mg/kg and used as a secondary perpetrator in light of its inclusion in anti-844 
Tb therapy.  Open circle represents observed mean 12-hour post final dose concentration ± SD 845 

[22].  Solid line represents population mean prediction with shaded regions representing the 5th 846 
and 95th percentiles of prediction (grey: no interaction; red: interaction). (B) Lumefantrine was 847 
dosed as 6 doses (480 mg per dose) over 3 days (on days 8-10) of a 14-day trial with rifampicin 848 
dosed at a dose of 10mg/kg once daily and isoniazid (secondary perpetrator) administered at a 849 
dose of 5mg/kg during the duration of the trial.  Open circles represent observed mean day 8 850 
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concentration (7.3 hours after final dose) ± SD [22]. Solid line represents population mean 851 

prediction with shaded regions representing the 5th and 95th percentiles of prediction (grey: no 852 
interaction; red: interaction). Dashed line represents minimum effective parasite clearance 853 
plasma concentration for lumefantrine (280 ng/mL). 854 

 855 

Figure 5 856 

The simulated plasma concentration-time profile of artemether in paediatrics.  857 

Six doses of artemether were administered at 0, 8, 24, 36, 48 and 60 hours based on patient 858 

weight (20 mg: 5-15 kg or 40 mg: 15-25kg). Shaded regions between 1-2 hours indicates 859 

observed sampling times (1-2 hours). (A) Red circle and black square are observed data from 860 

subjects receiving the lower dose and higher doses respectively [45] with red and black solid 861 

lines indicating mean profiles with 5th and 95th percentiles illustrates by dashed coloured lines. 862 

(B) Circle and triangle symbols are observed data from subjects receiving the lower dose but 863 

stratified for body weight [44] with red solid line indicating mean profile for the lower weight 864 

range and black solid line indicating mean profile for the higher dose range. Dashed lines 865 

indicate 5th and 95th percentiles. (C) Black line represents simulated lower doses (5-14 kg) and 866 

red line represents simulated highest dose (25-34 kg). Observed data points are represented by 867 

solid red circles [10] with red and black solid lines indicating mean profiles with 5th and 95th 868 

percentiles illustrated by dashed coloured lines. 869 

Shaded regions representing the 5th and 95th percentiles range of the prediction 870 

Figure 6 871 

The simulated plasma concentration-time profile of lumefantrine in children.   872 

(A) Blue, green and black solid lines indicate 1 (5-14.9 kg), 2 (15-24.9 kg) or 3 (25-34.9 kg) 873 
tablet dosing regimens respectively.  Upper and lower dashed lines represent the 95th percentile 874 

for the 360 mg (3 tablet) dose and 5th percentile for the 120 mg (1 tablet) dose, respectively.  875 
Red circles represent mean population observed concentrations reported in Borrmann et al 876 

(2010) [8]. (B) Black and green solid lines indicate increasing doses of lumefantrine (1 tablet: 877 
5-14.9 kg); 2 tablets 15-24.9 kg).  Upper and lower dashed lines represent the 95th percentile 878 

for the 240 mg dose and 5th percentile for the 120 mg dose, respectively. Red circles represented 879 
mean population observed concentration reported in reported by Piola et al (2005) [46].  880 

 881 

Figure 7 882 

The simulated mean plasma concentration-time profile of artemether in paediatrics in 883 

the absence and presence of a DDI.   884 

Artemether plasma concentrations following dosing with 1 tablet (5-14.9kg) or 2 tablets (15-885 

24.5kg) to children (2-5 years). Solid lines represent clinical trials with artemether alone. 886 

Dashed lines represented artemether dosing with rifampicin (10mg/kg). One tablet doses are 887 

indicated in black and two tablet doses in blue.  Isoniazid was also dosed at 10 mg/kg and used 888 

as a secondary perpetrator in light of its inclusion in anti-Tb therapy 889 

 890 
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Figure 8 891 

The simulated mean plasma concentration-time profile of lumefantrine in paediatrics in 892 

the absence and presence of a DDI for a standard 3 day regimen. 893 

Lumefantrine plasma concentrations following dosing with 1 tablet (5-14.9 kg) or 2 tablets (15-894 

24.5 kg) to children (2-5 years). Solid lines represent clinical trials with lumefantrine alone. 895 

Dashed lines represented lumefantrine dosing with rifampicin (10 mg/kg).  Isoniazid was also 896 

dosed at 10 mg/kg and used as a secondary perpetrator in light of its inclusion in anti-Tb 897 

therapy. 898 

 899 

Figure 9 900 

The simulated mean plasma concentration-time profile of lumefantrine in paediatrics in 901 

the presence of a DDI for an adapted 5 and 7-day regimen.   902 

Lumefantrine plasma concentrations following dosing with (A) 1 tablet (5-14.9 kg) or (B) 2 903 

tablets (15-24.5 kg) to children (2-5 years) in the presence of rifampicin (10 mg/kg) when dosed 904 

for 5 days (upper panels) or 7 days (lower panels). Solid lines represent mean and dashed line 905 

represents upper and lower ranges of predicted concentrations with shaded regions representing 906 

the range of predictions concentrations.  Isoniazid was also dosed at 10 mg/kg and used as a 907 

secondary perpetrator in light of its inclusion in anti-Tb therapy 908 

  909 

 910 

Figure 10 911 

The impact of alterations in lumefantrine plasma unbound fraction on simulated Cd7 in 912 

paediatrics in the presence of a rifampicin-mediated DDI for a 7-day regimen (one 913 

table/dose) 914 

Day 7 lumefantrine plasma concentrations (Cd7) were simulated for 56 subjects within a weight 915 

range of 5-15 kg (1 tablet/dose) in the presence of rifampicin (10mg/kg) following a treatment 916 

regimen described in section 3.5.2. Solid line represents 280 ng/mL lumefantrine ‘target’ 917 

concentration. Dashed lines represented simulated range (upper and lower) and Cd7 target 918 

concentration when fu,plasma = 0.003.  Dotted lines represented simulated range (upper and 919 

lower) concentrations when fu,plasma = 0.005.  Isoniazid was also dosed at 10 mg/kg and used 920 

as a secondary perpetrator in light of its inclusion in anti-Tb therapy 921 




