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ABSTRACT 

Global warming is predicted to cause substantial habitat rearrangements, with the most severe effects 1 

expected to occur in high-latitude biomes. However, one major uncertainty is whether species will be 2 

able to shift their ranges to keep pace with climate-driven environmental changes. Many recent studies 3 

on mammals have shown that past range contractions have been associated with local extinctions rather 4 

than survival by habitat tracking. Here, we have used an interdisciplinary approach that combines 5 

ancient DNA techniques, coalescent simulations and species distribution modelling, to investigate how 6 

two common cold-adapted bird species, willow and rock ptarmigan (Lagopus lagopus and Lagopus 7 

muta), respond to long-term climate warming. Contrary to previous findings in mammals, we 8 

demonstrate a genetic continuity in Europe over the last 20 millennia. Results from back-casted species 9 

distribution models suggest that this continuity may have been facilitated by uninterrupted habitat 10 

availability and potentially also the greater dispersal ability of birds. However, our predictions show that 11 

in the near future, some isolated regions will have little suitable habitat left, implying a future decrease 12 

in local populations at a scale unprecedented since the last glacial maximum.   13 

 14 

 15 

 16 

 17 
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 28 

 29 
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INTRODUCTION 30 

 31 

How organisms will respond to future global warming is a topic of considerable interest in conservation 32 

management, and much effort is spent to explore different scenarios about the future state of species 33 

distributions. Among the major uncertainties are if, and at what speed, species will be able to shift their 34 

ranges in order to keep pace with changes in available habitat (e.g. Kerr et al. 2015). Thomas et al. 35 

(2004) predicted that 9-32 % of all species will go extinct due to climate induced habitat loss by 2050, 36 

assuming that they are able to colonise new areas as soon as these become climatically suitable. 37 

However, if this assumption is not met, the proportion of predicted species extinctions increases to 34-58 38 

% (Thomas et al. 2004). Successful range shifts could be highly dependent on the geographic 39 

connectivity between suitable habitat patches (Engler et al. 2009; Hodgson et al. 2012), and it has been 40 

suggested that only the populations already inhabiting refugial areas are the ones that survive range 41 

contractions (Bennett et al. 1991). These refugial populations may also obstruct the subsequent arrival of 42 

individuals from more remote areas through intra-specific competition (Hewitt 1996; Hewitt 1999). It 43 

has previously been difficult to evaluate whether range contractions actually do correspond to population 44 

contractions (i.e. habitat tracking), since modern phylogeographic analyses only give information about 45 

the surviving lineages. Lately though, ancient DNA techniques have made it possible to analyse 46 

temporal changes in genetic variation of cold-adapted taxa, from the last Ice Age up until today. 47 

Interestingly, these results have often shown that local extinctions and population turnovers, rather than 48 

survival by habitat tracking, were the dominant processes during past climate warming (e.g. Dalén et al. 49 

2007; Lagerholm et al. 2014; Palkopoulou et al. 2016). This raises concerns from a conservation 50 

perspective, since such local extinctions following habitat loss could lead to ensuing losses of unique 51 

genetic variation. This is especially the case for the future viability of cold-adapted species, since the 52 

effects of on-going climate warming are expected to be most severe in northern biomes (Pithan & 53 

Mauritsen 2014; Serreze & Barry 2011) and their ranges are already in a contracted state since the end 54 

of the last glaciation (Stewart et al. 2010). In order to make reliable predictions of future distributions 55 

and ensure effective conservation planning, it is therefore important to increase the knowledge about 56 

species’ habitat tracking abilities (Kerr et al. 2015; Urban 2015).  57 

Two cold-adapted bird species that co-occurred with the iconic Ice Age mammal fauna are the willow 58 

ptarmigan (Lagopus lagopus) and rock ptarmigan (Lagopus muta). Since ptarmigan are important prey 59 
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in the arctic ecosystem (e.g. Hansen et al. 2013; Nyström et al. 2005), and also have slightly different 60 

environmental preferences, they together provide a good case-study to evaluate how cold-adapted 61 

species are affected by climate-induced habitat shifts. Further, an important feature that distinguishes 62 

them from previously investigated taxa is their flight capability which, although they have a sedentary 63 

lifestyle, potentially could make dispersal to new areas less dependent on habitat connectivity (Pedersen 64 

et al. 2004).  65 

Today, the European ranges of ptarmigan are restricted to high altitude and/or high latitude regions, 66 

with rock ptarmigan occupying the more alpine and sparsely vegetated areas (Fig. 1), but during the last 67 

glacial period both species were widely distributed across the tundra-steppes of midlatitude Europe (e.g. 68 

Tyrberg 1998). Morphological analyses of fossil remains of the two sister species have shown that both 69 

were morphologically distinct and probably had greater body weights than their modern counterparts 70 

(Bochenski 1985; Potapova 1986; Stewart 1999). However, it has not yet been established whether these 71 

populations represented specialised lineages that went extinct during end-Pleistocene climate warming, 72 

approximately 10 thousand years ago, or if the glacial populations in fact are the direct ancestors of 73 

modern European L. lagopus and L. muta (Höglund et al. 2013).  74 

 In this study, we have used an interdisciplinary approach consisting of ancient DNA analyses, 75 

Bayesian inference of coalescent simulations and back-casted species distribution modelling to analyse 76 

temporal changes in genetic variation and available habitat over the last 20 millennia. We evaluate two 77 

contrasting historic scenarios: 1) The glacial fossil remains from midlatitude Europe represent lineages 78 

that went extinct during the rapid warming of the early Holocene, and modern European ptarmigan 79 

populations have thus been established by postglacial immigrants from the Siberian population; or 2) 80 

The widespread glacial populations in Europe managed to track their shifting habitats into alpine and/or 81 

northern regions. In addition to investigating past responses, we also use species distribution modelling 82 

to forecast how global warming will affect ptarmigan distributions in the future, and discuss how 83 

knowledge of the past can influence conservation planning.  84 

 85 

 86 

 87 

 88 

 89 
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MATERIALS AND METHODS 90 

 91 

Genetic analyses 92 

Samples and DNA Extraction  93 

We collected Lagopus spp. bones from 73 Late Pleistocene individuals, ranging in age between ~ 11 to 94 

27 thousand calendar years before present (cal kBP), from 10 paleontological sites across Europe (Table 95 

S1). DNA was extracted from bone powder following Palkopoulou et al. (2013). In order to create a 96 

reference dataset of the modern Holarctic genetic variation within both species, sequences from various 97 

locations (Table S2 and S3) were downloaded from GenBank (see the Supporting Information). This 98 

modern dataset was further complemented with modern samples from 34 willow and 13 rock ptarmigan 99 

samples (Table S2 and S3), from which we extracted DNA following either the Palkopoulou et al. 100 

(2013) protocol or the Qiagen DNeasy tissue kit according to Segelbacher et al. (2002). 101 

 102 

DNA Amplification and Sequencing 103 

A total of 240 bp of the mitochondrial control region was amplified in three partially overlapping 104 

fragments, using genus-specific primers developed for the study (Table S4). Some of the modern 105 

samples were analysed at Uppsala University, Sweden, and polymerase chain reactions (PCRs) were 106 

then made using the primers and protocol developed by Baba et al. (2001). Additional details regarding 107 

DNA extraction, PCR amplification and sequencing are presented in the Supporting Information. 108 

The pre-PCR work on the Late Pleistocene fossil remains were made in the ancient DNA laboratory at 109 

the Swedish Museum of Natural History, which is physically isolated from the facilities for modern 110 

material and post-PCR. All working surfaces and equipment were regularly sterilised with UV light, 111 

bleach or hydrochloric acid, and all extraction and amplification reactions were made with blank 112 

controls in order to monitor possible contamination. Further, at least two independent amplifications 113 

were done in order to allow identification of erroneous bases caused by misincorporation during the 114 

PCR process.  115 

 The obtained sequences were aligned and edited using the software SeqMan in the package Lasergene 116 

v8.1.5 (DNASTAR) or the Muscle alignment algorithm in the package CodonCode Aligner 2.0.6 117 

(CodonCode, USA). BioEdit v1.7.3 (Hall 1999) was then used to align our data with the downloaded 118 

sequences from GenBank and build complete Holarctic datasets for willow and rock ptarmigan, 119 
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respectively. These datasets were subdivided into the following geographic regions: Europe, consisting 120 

of Western Europe (west of the White Sea) and Western Russia (between the White Sea and the Urals); 121 

Siberia (Russia east of the Urals) together with North America; and Iceland, Svalbard and Greenland. 122 

The wide geographic areas of the two latter groups were due to a corresponding labelling of many of the 123 

downloaded GenBank sequences. 124 

 125 

Phylogenetic and Demographic analyses 126 

For each species, a temporal statistical parsimony network was created with the R-script TempNet v1.4 127 

(Prost & Anderson 2011) in order to display the haplotypes found in Late Pleistocene Europe, as well as 128 

in modern populations world-wide. To further investigate the amount of population genetic structure in 129 

the two species and evaluate the similarity between ancient European and modern Eurasian samples, we 130 

used Arlequin v3.5.1.2 (Excoffier & Lischer 2010) to compute analyses of molecular variance 131 

(AMOVA). Based on distance matrices of pairwise differences and 10,000 permutations, we analysed 132 

the following geographic and temporal hierarchical groupings: [modern and ancient Europe vs. modern 133 

Siberia]; [modern Europe and Siberia vs. ancient Europe]; [modern Europe vs. modern Siberia and 134 

ancient Europe]. 135 

 Bayesian Skyline plots were constructed in BEAST v1.8.0 (Drummond et al. 2005; Drummond et al. 136 

2012) to analyse population size changes over time in Western Europe (i.e. only Europe west of the 137 

White Sea) for both species. We used the HKY+G nucleotide substitution model, as suggested by the 138 

hLRT criterion in MrModeltest v2.3 (Nylander 2004), five groups, and a strict molecular clock with 139 

mutation rates estimated from the data. Each analysis was run for 70 million generations, with 140 

parameters logged every 1,000 generation, and the results were checked in TRACER v1.5 (Rambaut & 141 

Drummond 2007) to ensure convergence and effective sampling of all parameters. 142 

  143 

Approximate Bayesian Computation  144 

A model choice analysis by approximate Bayesian computation (ABC) coupled with coalescent 145 

simulations was carried out for both species, in order to evaluate our two proposed hypotheses regarding 146 

the most likely ancestral population to modern European birds. The simulated system was the same for 147 

both species, and was based on the Eurasian dataset (see Table S2 and S3) with three statistical groups. 148 

Modern Europe was set to coalesce with one of the two alternative ancestral populations between 12 and 149 
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30 cal kBP, which in turn subsequently coalesced with the third remaining population between 30 and 150 

120 cal kBP (Fig. 2). 151 

After determining the most likely historic scenario for the origin of the modern European populations, 152 

we carried out another model choice analysis by ABC in order to investigate in more detail the 153 

demographic history of Western European (Europe west of the White Sea: Table S2 and S3) ptarmigan 154 

during the rapid climate warming at the Pleistocene-Holocene transition. Four different demographic 155 

scenarios were evaluated: a constant population size through time, a population increase or decrease, and 156 

a bottleneck (Fig. S1). From the chosen scenario we then estimated the parameters of interest, most 157 

notably effective population sizes at different time periods. 158 

 We performed the approximate Bayesian computation, including coalescent simulations and model 159 

choice analysis (scenario comparison), in the program BaySICS (Sandoval-Castellanos et al. 2014). The 160 

scenario comparison was made using Bayes factors, obtained for every pair of scenarios, using three 161 

different methods: a direct approach, an adjusted method (in which model likelihoods were weighted by 162 

an Epanechnikov kernel), and a logistic regression (Fagundes et al. 2007). 163 

 The analyses also included 50 replicates with increasing acceptance thresholds to assess the 164 

consistency. Pilot simulations and analyses were carried out in order to choose a proper set of summary 165 

statistics and to define optimal prior distributions (see Table S5). One million simulations were run in 166 

the pilot and the final simulations, respectively, and 5,000 of the accepted simulations were retained for 167 

further analysis. For both species, effective population sizes were first simulated from exponential priors 168 

(with λ=250,000) in order to sample homogeneously over a logarithmic scale to track a wide range of 169 

values, before employing uniform priors in the final simulations. The mutation rate had a uniform prior 170 

of 2.5 to 25 % substitutions per million years (Myr
-1

), covering the previously published rate for the two 171 

species of 6.5 % Myr
-1

 (Drovetski 2003) as well as the possibility of elevated rates in ancient DNA data 172 

sets (e.g. Ho et al. 2011). Additionally, in order to study the robustness of the results to parameter 173 

uncertainties, we performed replicates of the entire analysis considering very large mutation rates (up to 174 

90 % Myr
-1

) as well as a genetic differentiation within modern Europe that could have begun at the onset 175 

of the Holocene climate warming. Finally, we cross-validated our results by analysing pseudo-observed 176 

datasets (PODs) in order to estimate the probability of making incorrect model choices. 177 

 178 

 179 
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Species Distribution Modelling 180 

Distribution and climatic data 181 

The modern Eurasian ranges of willow and rock ptarmigan (Fig. 1) were compiled from the IUCN 182 

database (BirdLife BirdLife_International 2012a; BirdLife BirdLife_International 2012b), with a 183 

subsequent correction of the distribution in Russia according to Potapov and Potapov (2011). 184 

Paleontological sites with Lagopus spp. remains were georeferenced from Tyrberg (1998; 2008) and 185 

classified in 1,000 year intervals, to be used as past presence data (Fig. 1). 186 

The climatic variables used in the models were mean temperature and the sum of precipitation, 187 

estimated for the summer (June, July, August and September) and winter (December, January, February 188 

and March) as well as for the whole year (Fig. S2). These were selected due to their well-known ability 189 

to explain plant species distributions, i.e. the main limiting resources for ptarmigan (Espíndola et al. 190 

2012; Maiorano et al. 2013). Past climate data sets were created from a global ocean–atmosphere 191 

climate model from the Hadley Centre (HadCM3) with a temporal resolution of 1,000 years, ranging 192 

from the present and back to 20 cal kBP, and corrected for anomalies such as in Maiorano et al. (2013). 193 

We added a mask on the environmental variable corresponding to the Late Pleistocene ice sheets, with 194 

glacial data downloaded from NOAA’s National Climatic Data Center (http://www.ncdc.noaa.gov/), as 195 

well as digitized from  Darnault et al. (2012). Data on current climate (averaged from 1950 to 2000) and 196 

future climate projections (averaged from 2070 to 2100) were obtained from the Climatic Research Unit 197 

(Mitchell et al. 2004). For future climatic projections, we used data from the HadCM3 climate model in 198 

order to be consistent with past data. Two different IPCC (Intergovernmental Panel on Climate Change) 199 

future climatic scenarios were considered: the B1 scenario and the A2 scenario (IPCC 2001). Past, 200 

present and future environmental data were mapped over the European and Eurasian extent on a 0.5x0.5’ 201 

resolution grid. 202 

 203 

Models 204 

The models were calibrated on current species presence/absence data and climatic conditions, using the 205 

R package BIOMOD (R Core Team 2014; Thuiller et al. 2009). Training data (species presence/absence 206 

and environmental covariates) were sampled randomly within species’ modern distribution ranges. In a 207 

preliminary analysis we compared the predictive performances of different sampling strategies that 208 

differed regarding i) the size of the sample and ii) the spatial extent of the sample (European versus 209 

http://www.ncdc.noaa.gov/
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Eurasian extent). Since the current climatic conditions in Siberia are considered to resemble those in 210 

Europe during the Last Glacial Maximum, training the models on the whole Eurasian continent 211 

(including Siberia) might increase the predictive power of ptarmigan occupancy for European 212 

distributions during the Late Pleistocene period. Further, as an addition to the modern presence/absence 213 

data, we also investigated if we could improve the model predictive performance by adding climate data 214 

from the georeferenced fossil sites to the training data sets.  215 

Different modelling techniques were fitted to the training data sets (see Supporting Information) and 216 

their predictions were evaluated on present and past data sets. For present data, the Area Under the 217 

Curve (AUC) metric was computed on cross-validated test data sets and on a sample of 1,000 test data 218 

points randomly sampled within the European region. Model predictions of the past were evaluated 219 

using fossil records as a test data set, and by computing sensitivity. 220 

The Ensemble method in BIOMOD, that includes the uncertainty in predictions arising from the 221 

choice of model algorithm, was finally selected to predict ptarmigan species probabilities starting from 222 

the present and then for every 1,000 year back to 20 cal kBP. Predictions were also made of the future 223 

ranges of ptarmigan for the years 2070-2100. For each time period, landscape metrics were calculated 224 

for patches of favourable habitats at the 0.5x0.5’ resolution. We estimated the percentage of favourable 225 

pixels in the landscape and the degree of fragmentation, given by the number and the average area of 226 

suitable habitat patches within the region, using the R library SDMtools (McGarigal et al. 2002; 227 

VanDerWal et al. 2012). A pixel was classified as favourable when the probability of presence was 228 

above 0.5. 229 

 230 
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 231 

Figure 1 Present European distribution of willow (L. lagopus) and rock (L. muta) ptarmigan, paleontological sites 232 

with Lagopus fossil remains (filled circles) used in the species distribution model training (obtained from Tyrberg 233 

1998; Tyrberg 2008), and the sites from where successful ancient DNA sequences were retrieved (blue squares). 234 

 235 

 236 

 237 

 238 
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 239 

Figure 2 Models and associated priors used in the coalescent simulations of the origin of European ptarmigan 240 

populations. Scenario 1 corresponds to an extinction of the Late Pleistocene (LP) European population, followed 241 

by a post-glacial colonisation from Siberia. Scenario 2 corresponds to a genetic continuity in Europe over the 242 

Pleistocene-Holocene transition, meaning that ptarmigans were able to follow the geographic shifts in suitable 243 

habitat that was associated with post-glacial climate warming. The same models are used for both willow and rock 244 

ptarmigan. See Tables S2 and S3 for details on the grouping of samples. 245 

 246 

 247 

 248 

RESULTS 249 

 250 

Phylogenetic and Demographic analyses 251 

We successfully retrieved ancient DNA sequences from 42 Late Pleistocene Lagopus spp. bones, 252 

originating from 7 European palaeontological sites (Table S1 to S3). Of these, 27 were found to be 253 

willow ptarmigan (from 6 sites) and 15 rock ptarmigan (from 5 sites). The modern data set included 36 254 

willow and 64 rock ptarmigan sequences sampled from their complete Holarctic distributions (Table S2 255 

and S3).  256 

 In both species, two major haplogroups were found in the modern dataset; a western (Europe) and an 257 

eastern (Russia/Siberia and North America) (Fig. 3). Furthermore, an intermediate group was found for 258 

rock ptarmigan, consisting of birds from Iceland, Svalbard and Greenland. The two major haplogroups 259 
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were also found in the Late Pleistocene dataset, although that only included European samples, and in 260 

both ptarmigan species two haplotypes were shared between the modern and the glacial populations 261 

(Fig. 3). In the modern European populations, we observed a phylogeographic structure in both willow 262 

and rock ptarmigan (Fig. S3, Tables S2 and S3). However, this was not the case for the glacial European 263 

population of the respective species, where haplotypes were instead distributed more or less randomly 264 

among geographic regions (Fig. S3, Tables S2 and S3). 265 

 The analyses of molecular variance showed that, for both species, the structure that maximised the 266 

genetic differentiation among groups (i.e. had the highest FCT value) was with modern and ancient 267 

European samples together in one group, and modern Siberian samples in a separate (willow ptarmigan 268 

FCT = 0.24, p = 0.04; rock ptarmigan FCT = 0.57, p = 0.03). The other hierarchical groupings analysed 269 

produced FCT values below 0.03 (willow ptarmigan) and 0.22 (rock ptarmigan), and were non-270 

significant.  271 

 The Skyline plots constructed in BEAST did not reveal any large temporal changes in effective 272 

population size within Western Europe, for either species. However, a comparison between the two 273 

species’ Skyline plots suggests that willow ptarmigan has always been the more abundant species 274 

throughout the investigated time period (Fig. S4). 275 

  276 

Approximate Bayesian Computation  277 

The scenario comparison yielded a strong support for the second historic scenario, in which modern 278 

European populations descend from the sampled Late Pleistocene European populations, for rock 279 

ptarmigan (Bayes factor, BF, = 5.6 - 7,506), but not for willow ptarmigan (BF = 0.5 - 0.9) (Table S6). 280 

The 50 simulation replicates with different acceptance thresholds also produced similar results for rock 281 

ptarmigan, all supporting the same scenario, while for willow ptarmigan the best supported scenario 282 

shifted among replicates (i.e. with the thresholds used). 283 

 A similar result was obtained from the model choice for demographic scenarios (Table S7), where the 284 

rock ptarmigan analyses gave a modest but consistent support (except with the logistic regression) for a 285 

population growth in Western Europe following the onset of Holocene climate warming (BF = 2.0 - 286 

3.3). For willow ptarmigan, none of the analysed scenarios gained a higher support than the alternatives. 287 

Replicates including population structure during the Holocene and high mutation rates also confirmed 288 

the described pattern (data not shown). The estimation of female effective population size in Western 289 
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Europe prior to the Pleistocene-Holocene transition suggested that willow ptarmigan was more common 290 

than rock ptarmigan (Fig. S5). 291 

 We found a very good fit of the chosen scenarios to the actual data, where the observed values of the 292 

summary statistics frequently fell in the 95% highest density intervals (HDI) of their respective 293 

predictive distributions (the distributions of the summary statistics after rejection; Figs. S6 to S9). 294 

 The pseudo-observed datasets (PODs) analyses showed that the statistical power for choosing the right 295 

scenario was between 0.65 and 0.85, and increased to 0.88-0.94 when the observed Bayes factor was 296 

used as a reference (i.e. only the PODs with values equal to or larger than the observed one were taken 297 

into account). The first estimate reflects the probability of choosing the correct scenario without 298 

considering the obtained results, whereas the latter could be interpreted as the probability that our 299 

scenario choice is correct, given the observed support.  300 

 301 

Species Distribution Modelling 302 

Model calibration and evaluation 303 

Not surprisingly, models performed better in predicting past species distributions when they were 304 

trained on fossil records, regardless of sample size (Fig. S10). Also, the predictive performance of the 305 

past for models trained on fossil records varied with sample size: performance decreased when 306 

increasing sample size. Models trained on the smallest sample size (n = 500) were therefore the best 307 

whatever the geographical extent of the training data set. In contrast, performance to predict the present 308 

was lower for models trained on fossil records, but increased with increasing sample size. However, 309 

since models trained on fossils and on small sample size still performed well to predict in present time, 310 

we chose this strategy to predict ptarmigan distributions for the whole time period. Finally, models 311 

trained on the whole Eurasian distribution did not outperform models trained on Europe, except for the 312 

past predictions of rock ptarmigan (L. muta). In the final analyses for both species, we therefore used 313 

models trained on the European distribution, including fossil sites, with a sample size of 500. Details on 314 

the contribution of each ecological variable to the model, as well as species' response curves along main 315 

gradients are provided in the Supporting Information (Figs. S11 and S12). 316 

Past ptarmigan distributions 317 

For each time period, the proportion of suitable habitat in Europe was four times higher for willow 318 

ptarmigan than for rock ptarmigan (41 % and 10 % in mean over the last 20 thousand years, 319 
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respectively, see Figs. 3 and 4). However, for willow ptarmigan, the projections showed that the 320 

proportion of suitable habitat in the landscape is more restricted today (34 % suitable pixels) than at any 321 

time before. The period with most suitable habitat for this species was between 5 and 13 cal kBP 322 

(although a decrease in availability was observed at 10 cal kBP), and reached the maximum predicted 323 

extent at 13 cal kBP with 45 % suitable pixels.  For rock ptarmigan, the proportion of suitable habitat 324 

was higher today and at 1 cal kBP (11 % and 11.5 %, respectively) than during the period between 2 to 325 

17 cal kBP, with a minimum availability at 14 cal kBP (6 % suitable pixels). Before that, the habitat 326 

availability was higher than today, with a maximum predicted extent occurring at 20 cal kBP with 19 % 327 

suitable pixels. 328 

Regarding the continuity of suitable habitat patches, the predicted range of both ptarmigan species 329 

were found to be less fragmented today than during the last 20 thousand years, although similar values 330 

as today were estimated for the period 18 to 20 cal kBP (Figs. 3 and 4). The maximum predicted 331 

fragmentation occurred at 12 cal kBP and 13 cal kBP for willow and rock ptarmigan, respectively, 332 

corresponding approximately to the warm Bølling-Allerød interstadial. During the whole time period, 333 

rock ptarmigan had a more fragmented available habitat than willow ptarmigan, with a higher number of 334 

suitable patches but a smaller mean patch area.  335 

 336 

Future ptarmigan distributions 337 

For the time period 2070 to 2100, our models (based on climate emission scenario B1 and A2) projected 338 

that the proportion of available habitat for both species will reach the lowest levels observed during the 339 

last 20 thousand years (Figs. 3 and 4). For willow ptarmigan, the proportion of suitable pixels was 340 

predicted to be reduced by at least 1/3 from today, whereas nearly half of the habitat currently available 341 

for rock ptarmigan was predicted to disappear by 2070-2100. Also, future habitats for both species were 342 

predicted to be more fragmented than today (Figs. 3 and 4), with the number of available patches 343 

becoming as many as estimated for 1 cal kBP (i.e. more than today) and the mean patch area being as 344 

small as the minimum observed during the Late Pleistocene (which occurred approximately between 10 345 

to 17 cal kBP).  346 

 347 

 348 

 349 
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 350 

Figure 3 Temporal network of all haplotypes found in modern and Late Pleistocene willow (a) and rock (b) 351 

ptarmigan. Vertical lines connect the haplotypes that are shared between both time periods, while empty circles 352 

indicate a missing haplotype in one time period that is present in the other. Haplotypes separated by one mutation 353 

are connected with a line, while black dots show additional mutations. The number of individuals sharing a 354 

haplotype is reflected by its size, with the largest reflecting ≥10 individuals. See Fig. S3 and Tables S2 and S3 for 355 

haplotype information. Barplots to the right show temporal changes in the proportion of available habitat and the 356 

degree of habitat fragmentation in Europe, illustrated as number of patches and median patch area, as estimated 357 

(a) 

(b) 



16 

 

from the SDM for each species. The future projections, averaged for 2070 to 2100, are shown for both climate 358 

scenario B1 (white bar) and A2 (black bar). 359 

 360 

 361 

 362 

 363 

 364 

 365 
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 366 

 367 

Figure 4 Projected occurrence probabilities (from 0 to 1) for willow ptarmigan (left panel) and rock ptarmigan 368 

(right panel), at present and back to 20 thousand calendar years before present (cal kBP). Fossil site locations of 369 

different ages that have been used in the training and testing data sets are illustrated with filled circles. Also 370 

shown to the right are predictions of future distributions, averaged for the period 2070 to 2100, based on climate 371 

scenario B1 and A2. 372 

373 



18 

 

DISCUSSION 374 

 375 

The modern Holarctic mitochondrial genetic variation in the two ptarmigan species was divided into two 376 

major haplogroups; a western and an eastern, and these were also found in the Late Pleistocene 377 

European data sets. If populations managed to track their habitat across the Pleistocene-Holocene 378 

transition, we would expect that the modal haplotypes in the modern European populations would also 379 

be found in the glacial populations, due to genetic founder effects known to occur during postglacial 380 

colonisations of new areas (e.g. Hewitt 1999). Interestingly, this is what we observed for both willow 381 

(Lagopus lagopus) and rock (Lagopus muta) ptarmigan, where the modal modern European haplotypes 382 

were identical to the most common haplotypes in the two glacial datasets. A genetic continuity in 383 

Europe from the Late Pleistocene up until today was also the best scenario in the analyses of molecular 384 

variance (AMOVA), where the most probable genetic structure was when glacial and modern European 385 

samples were grouped together, while modern Siberian samples made up a separate group. Furthermore, 386 

the Bayesian coalescent simulations also gave support to the scenario of long-term genetic continuity in 387 

European rock ptarmigan. However, no clear support for either of the different analysed scenarios could 388 

be retrieved from the Bayesian coalescent simulations of the willow ptarmigan dataset. 389 

 In congruence with the genetic results, the back-casted species distribution models revealed that 390 

although environmental conditions in Europe have varied substantially over the last 20 millennia, there 391 

have always existed suitable ptarmigan habitats somewhere, which is an important prerequisite for 392 

population survival into the present. Based on the two sister species’ modern habitat preferences, we 393 

could assume that the climate warming at the end of the last Ice Age would have resulted in somewhat 394 

different population responses. However, our genetic results show that both seem to have been able to 395 

track their shifting habitats to high latitude and altitude regions in Europe, keeping pace with the rapidly 396 

changing environment. This continuity is in contrast to the dynamics observed in earlier studies on 397 

mammals (e.g. Dalén et al. 2007; Lagerholm et al. 2014; Palkopoulou et al. 2016) and might be 398 

explained by the ptarmigans’ flight capability, which although they are not strong flyers would have 399 

made them less dependent on the connectivity between suitable habitat patches. On the other hand, the 400 

previously reported body size reduction of both species (Bochenski 1985; Potapova 1986; Stewart 1999) 401 

could suggest that their survival was not just facilitated by successful dispersal, but might also have been 402 

coupled with adaptation, or adjustment by phenotypic plasticity (Gienapp et al. 2008). For example, 403 
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ptarmigan might have changed their diet to match the habitat alterations during post-glacial climate 404 

warming (Stewart 1999; Stewart 2007).  405 

Among the analysed Late Pleistocene Lagopus spp. fossil remains, the majority turned out to be from 406 

willow ptarmigan (L. lagopus). The species was also found to have had approximately 4 times more 407 

available habitat than glacial rock ptarmigan, as well as a higher genetic variation (Fig. 3 and Table S5) 408 

and larger effective population size (Figs. S4 and S5). Our results therefore suggest that willow 409 

ptarmigan was the dominant Lagopus species in the tundra-steppes of midlatitude Europe during the 410 

cold Late Pleistocene, which is also in line with the demographic inferences made from modern 411 

genomes (Kozma et al. 2016). Possibly, rock ptarmigan has a more restricted climatic niche than its 412 

sister species, and by being dependent on rocky, high alpine terrain it thus had access to fewer suitable 413 

areas during the Late Pleistocene, when the major European mountain ranges were glaciated. Consistent 414 

with this, the ABC results also indicated that Western European rock ptarmigans experienced a 415 

population increase after the transition to the warmer Holocene period (Table S7). The niche separation 416 

of the two species into lower and high alpine habitats can also be seen today, where willow ptarmigan is 417 

absent from the high mountains of the Alps and the Pyrenees although the distribution models suggest 418 

the climate in these areas to be favourable (Figs. 1 and 4). The rock ptarmigan’s dependency on rocky 419 

terrain would also imply that the species had a more fragmented range than willow ptarmigan during the 420 

Late Pleistocene. The back-casted species distributions supports this idea, showing that willow 421 

ptarmigan had more continuous patches of available habitat than rock ptarmigan (Figs. 3 and 4).  422 

Although rock ptarmigan appear to have had a more fragmented distribution in Ice Age Europe than 423 

willow ptarmigan, the general lack of phylogeographic structure within the glacial data sets of both 424 

species indicates that there were no major barriers to dispersal between different parts of the range. The 425 

observed differentiation between modern European populations of willow and rock ptarmigan (Fig. S3) 426 

is therefore probably a result of their recent range contractions and isolation in different Holocene 427 

interglacial refugia (Hewitt 1996). Consequently, the modern subspecies red grouse (L. lagopus scotica), 428 

an endemic to the British Isles previously proposed to have diverged from other willow ptarmigan 429 

before the Last Glacial Maximum (Huntley et al. 2013), thus appears to have evolved during the last 11 430 

thousand years.  431 

Our findings of successful range shifts during past climate changes are encouraging for the future 432 

viability of both ptarmigan species, which like many other cold-adapted species are threatened by 433 
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predicted habitat decreases due to global warming (e.g. Sala et al. 2000; Smith et al. 2013; Stewart et al. 434 

2010). However, an ability to respond to climate changes in the past does not necessarily mean that 435 

similar habitat tracking will occur in the future. In many regions, the distributions of these species are 436 

already at the limits of possible areas to colonise, and so they are restricted to Arctic regions or southern 437 

alpine “sky islands” (Hampe & Jump 2011). Our forecasts of ptarmigan distributions in the years 2070-438 

2100 show that global warming will further reduce the amount of available habitat, and also 439 

substantially increase the degree of fragmentation. In parts of the current European distribution, there 440 

might only be very small, if any, areas left that fulfil the environmental requirements of willow or rock 441 

ptarmigan. Populations in these areas, such as in the isolated British Isles, might therefore need to adapt 442 

to a warmer environment in order to survive. Interestingly, the lack of moulting to a white winter 443 

plumage observed in the red grouse (L. lagopus scotica) could possibly be such an ongoing adaptation. 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 
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