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Introduction to the Design and Analysis of
Complex Survey Data
Chris Skinner and Jon Wakefield

Abstract. We give a brief overview of common sampling designs used in a
survey setting, and introduce the principal inferential paradigms under which
data from complex surveys may be analyzed. In particular, we distinguish
between design-based, model-based and model-assisted approaches. Simple
examples highlight the key differences between the approaches. We discuss
the interplay between inferential approaches and targets of inference and the
important issue of variance estimation.

Key words and phrases: Design-based inference, model-assisted inference,
model-based inference, weights, variance estimation.

1. INTRODUCTION

Sampling has proved an essential tool over the last
century to enable society to collect wide ranging ac-
curate information about populations through cost-
efficient survey data collection. Moreover, sample sur-
veys, together with experiments, have provided core
methods of data collection to support the development
and application of modern statistical methods to sci-
entific research. The central roles of surveys and sam-
pling are seeing some challenges in the twenty-first
century and “big data” era (e.g., Japec et al., 2015).
Big data is taken here to refer to data sources which
are generated as secondary outcomes of existing sys-
tems (rather than as a result of designed primary data
collection) and which cover 100% of units to which
the system applies (and thus involve no sampling).
Such sources can be cheap and can provide informa-
tion much more rapidly. Also, since they cover 100%
of units, they may provide more granular estimates.
In addition to competition from such sources, sample
surveys now face threats to their accuracy from in-
creasing nonresponse and major cost pressures. Nev-
ertheless, they continue to have essential roles that
big data sources cannot replace. Survey variables can
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be designed for research questions of interest rather
than these questions having to be adapted to the, often
very limited, sets of variables available from big data
sources. Samples can be designed to represent popula-
tions of interest rather than study populations having
to be adapted to the typically selective coverage of big
data sources. In the light of such essential roles, the
sample survey continues to be the method of choice in
many settings and this special issue seeks to reflect the
continuing vitality of developments in statistical meth-
ods in this field. We also aim to capture some of the
evolution of the field as it advances. In an ideal situ-
ation, survey data can provide an important comple-
ment to alternative data sources. For example, estima-
tion methods which combine carefully collected survey
data and “big” data, have the potential to leverage the
advantages of both.

The design and analysis of surveys are fascinating
enterprises. Unless one is trained in the field, how-
ever, they can be exercises shrouded in mystery. For
instance, the expression, “a weighted analysis is rec-
ommended”, is a standard accompaniment to public re-
lease survey datasets but, unfortunately, weights can be
constructed in many different and subtle ways which
can leave the uninitiated scratching their heads in be-
wilderment. In this special issue, we hope to provide
some enlightenment, beginning in this opening paper
with a gentle introduction to the central themes of com-
plex survey analysis.

The complexity of survey data alluded to in the title
of this paper refers to the complex nature of sampling
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designs, involving, for example, stratification and mul-
tistage sampling, together with associated complica-
tions such as nonresponse. Although we shall provide
a brief outline of complex designs at the end of this
section, we focus in this paper on the methodology of
estimation and analysis and the question of how to ac-
count for the complex sampling design, largely treated
here as given.

A further source of mystery for the many secondary
analysts of complex survey data is that, whereas many
novel developments in the methodology of survey de-
sign and estimation have been introduced by the agen-
cies conducting large surveys, not all the information
relating to these developments is made available when
data are released for general analysis. For example, sur-
vey weights and imputed values may be made avail-
able but some of the complex features of the sampling
frame, design and “raw” data underlying such released
information may remain concealed.

Historically, survey sampling has often been seen as
a rather separate topic to much of the rest of statistics.
Not only have survey design and survey data analysis
typically been undertaken by different people but the
estimation methodology associated with survey design
has often been centered on the design-based (or ran-
domization) approach, quite separate from the model-
based inference featuring in much mainstream applied
statistics. While the former approach has a clear ratio-
nale, it can be confusing to those who have received
a conventional model-based training in statistics. The
slow rate of inclusion of complex survey methods in
much applied statistical software for analysis has also
contributed to this separation. Nevertheless, we have
recently sensed a greater degree of cross-fertilization
of ideas between survey sampling and applied statisti-
cal methods of analysis. A key purpose of this paper
and special issue is to help support the sharing of such
ideas by opening up developments in the survey sam-
pling literature to a broader readership.

Before proceeding to consider inference, however,
we set the scene by outlining some features of com-
plex designs. We only consider probability sampling
in which the design is characterized via a probabil-
ity distribution over the possible samples that may
be collected. In particular, each unit in the popula-
tion of interest has a nonzero probability of being se-
lected. A complex design may be viewed as one de-
viating from the simplest design, simple random sam-
pling (SRS), in which all subsets of n from N units
are equally likely. Here, N denotes the size of the

population which is sampled and n denotes the sam-
ple size. Why would one wish to deviate from SRS
and, in particular, from one of its properties, that each
unit in the population is selected with equal probabil-
ity? One reason is for efficient estimation. Tillé and
Wilhelm (2017) refers to the “false intuition that a
sample must be similar to a population” and explains
how more efficient estimation can often be achieved by
sampling units with unequal probabilities. Other rea-
sons include practical constraints imposed by the na-
ture of frames from which the sample must be drawn
and variable costs of data collection. See Valliant, De-
ver and Kreuter (2013) for a detailed account of a wide
range of designs used in practice.

We now describe some basic designs. We emphasize
that in practice these often act as the building blocks of
more complex designs, because of the characteristics
of the sampling frame or the population. A common
design is stratified simple random sampling in which
a group label is available for each unit in the popu-
lation, and SRSs are taken within each of the groups.
For example, in studies of individuals, the groups may
correspond to demographic strata and geographical re-
gions. Stratified random sampling can provide appre-
ciable gains in efficiency if the variables defining the
strata are associated with the response. The main im-
pediment to its use is the availability of strata informa-
tion on all members of the population. In single-stage
cluster sampling, the population is again partitioned,
but this time into what are called “clusters”, or primary
sampling units (PSUs). The PSUs are often defined ge-
ographically.

The key difference between cluster sampling and
stratified sampling is that only a sample, rather than
all, of the clusters are selected and then informa-
tion is obtained from all individuals within clusters.
Cluster sampling in general reduces efficiency, be-
cause of within-cluster correlation, but logistically it
is very convenient, particularly in nationwide sam-
pling. In two-stage cluster sampling, random samples
are taken within the sampled clusters (PSUs). In large
national surveys, stratified multistage cluster sampling
(in which cluster sampling and stratified SRS is exe-
cuted) is the norm, since it balances efficiency, logis-
tical constraints, and the requirement for estimates of
sufficient precision to be obtained for subgroups of in-
terest.

For the remainder of this paper, we turn to inference,
but see Tillé and Wilhelm (2017) for additional proba-
bility sampling designs, with an emphasis on new de-
velopments. In Section 2, we introduce and compare
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design-based and model-based inference for complex
survey data. Section 3 brings in the role of auxiliary
information and describes model-assisted inference in
which working models are adopted to suggest estima-
tors/designs, but with the design-based approach be-
ing followed for inference. Sections 4 and 5 consid-
ers model parameters (as opposed to finite population
characteristics) and nonprobability sampling. The im-
portant topic of variance estimation is the subject of
Section 6. Final remarks conclude the paper in Sec-
tion 7.

2. INFERENTIAL OVERVIEW

In this section, we provide a brief overview of in-
ferential approaches to the analysis of survey data, as-
suming that probability sampling is used and there is
no nonresponse. First, we define some notation. Let
yk, k = 1, . . . ,N represent the values of a survey vari-
able of interest on all N units in a well-defined finite
population (e.g., all individuals aged 18 or greater in
a particular administrative region); we shall also write
k ∈ U to index this collection. A sample of these units,
denoted S ⊂ U , is taken via some probabilistic mech-
anism, where p(s) denotes the probability of selecting
S = s with

∑
s p(s) = 1, and the values of yk are only

observed for k ∈ S. The probability of unit k being se-
lected is πk = ∑

s:k∈s p(s), and the so-called design-
weight is defined as dk = π−1

k . This weight is often
interpreted loosely as the number of population units
“represented” by the kth sampled unit.

We suppose here that finite population characteris-
tics are the targets of inference. Other targets are con-
sidered in Section 4. It is common in the survey sam-
pling literature to emphasize first the estimation of pop-
ulation totals, before moving on to targets which are
functions of totals. There are a variety of reasons for
this, beyond the obvious one that totals may indeed be
targets of inference. One reason is that issues of bias
can be dealt with more simply with totals than, say,
means, especially when the population size N is un-
known, as it often is. However, to present basic ideas
in this paper we shall treat the finite population mean
yU = 1

N

∑
k∈U yk as our target of inference, since it is a

more natural “unit-level” parameter of interest in much
survey data analysis and includes, for example, a pro-
portion as a special case.

We next contrast two broad paradigms under which
inference based on survey data may be performed: the
design-based and model-based approaches. These re-
fer to two different sources of randomness, either from

the randomization associated with probability sam-
pling or from a model assumed to generate the popu-
lation values yk . Inference based on models is likely to
be familiar to most readers and so we leave it till sec-
ond. First, we discuss design-based inference, some-
times also called randomization-based analysis. Lohr
(2010) is a popular text that is primarily concerned with
design-based inference. The latter is more distinctive to
survey sampling, though inference based on random-
ization is sometimes used in randomized experiments
(Cox, 2006, Chapter 9).

2.1 Design-Based and Model-Based Approaches
to Inference

2.1.1 Design-based. The population values y1, . . . ,

yN , are viewed as fixed constants, with the collection
of units selected, S, treated as random. Assuming N

known, a standard weighted estimator of the popula-
tion mean is

(1) yHT =
∑

k∈S dkyk

N
.

This will be referred to as the HT estimator, since its
numerator was proposed by Horvitz and Thompson
(1952) for estimating the population total

∑
k∈U yk .

The primary motivation for such design weighting is
to remove bias, as discussed in detail in Haziza and
Beaumont (2017). Bias and other moments are evalu-
ated in the design-based framework with respect to re-
peated sampling of units from the finite population U .
We write ES[yHT], with the subscript S on the expecta-
tion emphasizing that we are averaging over possible
subsets that could have been selected. Similarly, the
variance of the estimator will be written as varS(yHT).
We informally define two particular criteria: an estima-
tor is design unbiased if its expectation (over all possi-
ble samples) is equal to the true value, and an estimator
is design consistent if both the design bias and the vari-
ance go to zero as the sample size increases. For the lat-
ter, one must consider a sequence of populations, with
the finite population size and the sample size tending
to infinity.

An alternative estimator of the mean, defined whether
N is known or not, is the Hájek estimator (Hájek,
1971):

(2) yHJ =
∑

k∈S dkyk

N̂
,

where N̂ = ∑
k∈S dk , vindicating dk’s interpretation

earlier as the number of population units represented
by the kth sampled unit. The estimator (2) is biased
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in finite samples, but is design consistent. The Hájek
estimator is often preferred to the HT estimator even
if N is known, and we give some rationale for this
later when we consider models. This estimator illus-
trates another surprising aspect of traditional survey
sampling, its preoccupation with the estimation of ra-
tios. But many functions of interest (the mean, for ex-
ample!) can be expressed as a ratio.

The key to deriving the properties of design-based
estimators is to define binary indicators of selection
Ik , such that ES[Ik] = πk , varS(Ik) = πk(1 − πk),
ES[IkIl] = πkl and covS(Ik, Il) = πkl −πkπl = �kl , for
k, l ∈ U . Here, the πkl are the probabilities that units
k and l are both selected; these are the key quantities
required to determine the variances of estimators, as
we demonstrate below. It is usual for designs to sam-
ple without replacement and for πkl �= πkπl (this is in
stark contrast to the model-based approach in which
values are usually assumed to be independent, since
they are drawn from a hypothetical infinite population).
Desirable criteria from a design-based perspective are
design unbiased (or design consistent) estimators with
low variance.

It is straightforward to show that the design weight-
ing in the HT estimator (1) does indeed remove bias:

ES[yHT] = 1

N
ES

[∑
k∈S

dkyk

]
= 1

N
ES

[∑
k∈U

dkIkyk

]

= 1

N

∑
k∈U

π−1
k ES[Ik]yk = yU .

The trick in the above derivation is to introduce the bi-
nary random variables Ik , and consequently sum over
U ; before that point the sum is over units in the random
set S.

The unbiasedness arises because of the inverse prob-
ability weighting, a technique that is now in common
use beyond survey sampling, particularly to adjust for
nonresponse (Seaman and White, 2013). A key point
is that we require πk > 0 for the estimator to be de-
sign unbiased. This makes complete sense, because we
cannot hope to achieve an unbiased estimator of a fi-
nite population characteristic, if some of the units can
never be sampled.

The form of the variance of the HT estimator also
follows straightforwardly:

varS(yHT) = 1

N2 varS

(∑
k∈S

dkyk

)

= 1

N2 varS

(∑
k∈U

dkIkyk

)
(3)

= 1

N2

∑
k∈U

∑
l∈U

dkdl covS(Ik, Il)ykyl

= 1

N2

∑
k∈U

∑
l∈U

�kl

yk

πk

yl

πl

.

An unbiased estimator of the variance is

(4) v̂arS(yHT) = 1

N2

∑
k∈S

∑
l∈S

�kl

πkl

yk

πk

yl

πl

.

Despite their ease of derivation, the forms of the vari-
ances in (3) and (4) can be quite mysterious to those
raised in the model-based camp, since they do not ap-
pear to depend on the variances of the responses, yk

(but see the end of this subsection for the emergence of
a familiar form). A pivotal requirement in the deriva-
tion of (4) is that πkl > 0, that is, all pairs of units
must have a positive probability of being selected. Al-
though unbiased, the estimator in (4), as well as the
closely related Sen–Yates–Grundy estimator given in
Tillé and Wilhelm (2017), has some undesirable prop-
erties. For example, they can be negative. More impor-
tantly, in practice, the πkl are often not available for all
k, l ∈ S. This is usually the case for multistage, clus-
tered designs, for example. In order to perform design-
based inference, it is usual therefore to adopt alterna-
tive variance estimators. Approximations obtained by
treating the design as “with replacement” are widely
used, since the variance estimator is always nonnega-
tive and it is not necessary to know πkl for all k, l ∈ S

(see, e.g., Lohr, 2010). The use of resampling meth-
ods, such as the jackknife or bootstrap, is also common.
Section 6 provides a fuller discussion.

To illustrate some of the expressions above, consider
SRS for which

p(s) =

⎧⎪⎪⎨⎪⎪⎩
(
N

n

)−1

, if s has n elements,

0, otherwise,

πk = n

N
, dk = N

n
, πkl = n

N

n − 1

N − 1
.

We find N̂ = ∑
k∈S dk = N so that yHT = yHJ =∑

k∈s yk/n and the variance is varS(yHT) = (1 − n
N

)
S2

y

n

where S2
y = 1

N−1
∑

k∈U(yk − yU)2 and 1 − n
N

is the
finite population correction (if sampling from a hy-
pothetical infinite population, this term would be 1).
A design unbiased estimator of S2

y is

(5) s2
y = 1

n − 1

∑
k∈S

(yk − yHT)
2,
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so that we recover a familiar form for the variance of
the estimator, albeit with a finite population correction.

2.1.2 Model-based. Under this, more mainstream,
statistical approach the yk are treated as realized values
of random variables Yk, k = 1, . . . ,N , which follow
some specified model, viewing the population as drawn
from a hypothetical infinite superpopulation. Frequen-
tist evaluation refers now to repeated realizations from
the model.

In conventional statistical modeling methods of data
analysis, model parameters are typically of interest,
rather than finite population characteristics, such as the
finite population mean discussed above. Here, how-
ever, we consider how inference for the latter can
be carried out by reference to the modeling frame-
work. We now write the target of inference as YU =
1
N

∑
k∈U Yk to convey that it is random, but we em-

phasize that it represents the same target of inference
as yU in the design-based framework. Since the tar-
get is a random variable, the standard frequentist esti-
mation rules do not apply and we refer to a predictor,
rather than an estimator of YU . The classic reference
is Valliant, Dorfman and Royall (2000). Chambers and
Clark (2012) provide an introduction. There are two
main criteria considered to evaluate a predictor, de-
noted Ŷ . First, is the bias, EM[Ŷ − YU ], where now
both Ŷ and YU are random. Second, the variance of the
predictor with respect to the model is EM[(Ŷ − YU)2].
These criteria are the same as those used when ran-
dom effects are predicted in a frequentist framework.
The model-based approach can also be formulated in
a Bayesian framework with inference about YU based
on its posterior distribution given the data. We do not
have the space to discuss this here, but the interested
reader can consult, for example, Gelman (2007) and
Little (2013).

As a simple illustration of the prediction approach,
consider a model for which:

(6) μ = EM(Yk), varM(Yk) = σ 2,

with Yk and Yl independent. The predictor Ŷ is taken as
the sample mean Ŷ n = 1

n

∑n
k=1 Yk . Our change of nota-

tion to k = 1, . . . , n acknowledges that the set of units
S selected from N is no longer relevant. The sample
mean is an unbiased predictor since

EM[Ŷ n − YU ] = 1

n

n∑
k=1

EM[Yk] − 1

N

N∑
k=1

EM[Yk] = 0.

The prediction variance is

EM

[
(Ŷ n − YU)2] = EM

[(
1

n

n∑
k=1

Yk − 1

N

N∑
k=1

Yk

)2]

=
(

1 − n

N

)
σ 2

n
.

Substitution of σ 2 by the finite population variance, S2
y ,

gives the same variance as obtained earlier for design-
based inference under SRS.

It may appear that the complex sampling scheme
plays no role in the model-based approach. There are,
in fact, two fundamental ways in which it does. First, a
complex sampling scheme will depend on the structure
of the population through, for example, stratification or
clustering. It is essential that this structure is captured
in the model, for example using fixed effects for strata
and random effects for clusters, if model-based infer-
ence is to be valid.

Second, in conventional model-based inference as
above, it is assumed that the model specified at the
population level also applies to all sample observa-
tions, however, they are sampled. This makes a strong
implicit modelling assumption. Prediction under the
model-based approach conditions on the selection in-
dicators Ik . The assumption that the population model
applies to the sample is therefore equivalent to assum-
ing that the conditional distribution of Yk given Ik = 1
is the same as its conditional distribution given Ik = 0.
Sampling is then said to be noninformative. If this as-
sumption does not hold, that is if EM[Yk|Ik = 1] �=
EM[Yk|Ik = 0], where the subscript M indicates that the
expectations are under a model, there is the potential
for bias to arise, so-called selection bias. A key advan-
tage of probability sampling is that it may be used to
ensure the independence of Ik and Yk , and hence to
protect against selection bias. It is a risky endeavor to
carry out inference from a nonprobability sample with-
out such protection.

2.2 Switching the Paradigms

The two approaches may be compared and con-
trasted by examining design-based estimators using
model-based criteria and vice-versa. Consider first the
model bias of the HT and Hájek estimators under a
model, as in (6), where μ = EM[Yk] and the yk in (1)
and (2) are replaced by Yk . Under this model,

EM[yHT − YU ] =
(

n∑
k=1

dk − N

)
μ

N
,

EM[yHJ − YU ] = 0,
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so that the Hájek estimator is always unbiased under
this model but the HT estimator is only unbiased under
the condition N̂ = ∑n

k=1 dk = N . This condition often
does hold, for example, under SRS when dk = N/n,
but there may be problems in the performance of the
HT estimator for sampling designs where it does not.
An example is a design in which the sample size n is
random and the weights are constant (i.e., dk = d).

We switch now to consider the design bias of the
model-unbiased estimator Ŷ n, where Yk is replaced by
yk . We have

ES[Ŷ n] = ES

[
1

n

N∑
k=1

Ikyk

]
= 1

n

N∑
k=1

πkyk

and so this estimator will generally be design biased.
Haziza and Beaumont (2017), Section 3, show that the
design bias will only disappear if the πk are uncor-
related with the yk , which corresponds to the notion
of noninformative sampling discussed in Section 2.1.2.
This illustrates the (design) bias impact of model mis-
specification. The unweighted estimator Ŷ n is unbiased
for YU under the model μ = EM[Yk] (and the assump-
tion of noninformative sampling) but does not protect
against bias if these assumptions fail, unlike the design
weighted (HT and Hájek) estimators.

So far as the variance is concerned, if we assume
that varM(Yk) = σ 2

k and that Yk and Yl are independent
under the model, then the variance under the model of,
for example, the Hájek estimator may be expressed as

EM

[
(yHJ − YU)2] =

n∑
k=1

(
N̂−1dk − N−1)2

σ 2
k

+
N∑

k=n+1

N−2σ 2
k

(the same expression holds for the HT estimator with
N̂ replaced by N ). This expression will almost cer-
tainly not equal (3).

Studying the model variance of design-based estima-
tors may help in assessing their efficiency. Consider,
for example, the model

(7) Yk = θπk + εk,

where the error terms εk are independent with
EM[εk] = 0 and varM(εk) = π2

k σ 2, k = 1, . . . , n. The
weighted least squares estimator θ̂ , that minimizes

n∑
k=1

(yk − θπk)
2

π2
k σ 2

,

corresponds to yHT, the HT estimator. Model (7) is
not required to be correct for the properties of the
HT estimator to be valid, but it does suggest situa-
tions in which we would expect the estimator to per-
form well (or not). This could be viewed as a model-
assisted approach, which we discuss in more detail
in Section 3. The widely cited Basu elephant exam-
ple (Basu, 1971, Hájek, 1971) provides an extreme ex-
ample in which the HT estimator performs poorly in a
situation in which the responses yk are not related to
the sampling probabilities πk . Briefly, a fictional cir-
cus owner would like to estimate the weight of his 50
strong herd of elephants, based on measuring a sin-
gle elephant. Drawing on 3-year old records, he pro-
poses to measure the weight of Sambo, an elephant
who was previously of average weight, and multiply
this weight by 50. This purposive design traumatizes
the circus statistician, who is obsessed with using a
design-unbiased estimator. To this end, he proposes an
alternative plan in which Sambo is selected with prob-
ability πk = 99

100 , and one of the remaining 49 crea-
tures with probability πk = 1

100 × 1
49 . Letting y de-

note the weight of the selected elephant, the HT esti-
mator is dy where d = 100

99 if Sambo is selected, and
d = 100 × 49 if any of the other elephants is selected.
Clearly, whichever elephant is selected, this estimator
is unsatisfactory. Putting aside the wisdom of an n = 1
design, is it clear here that, by construction, yk is not
proportional to πk . For further discussion, see Brewer
(2002) and Lumley (2010), page 149.

From a modeling perspective, the Hájek estima-
tor (2) arises from the model with EM[Yk] = θ and
varM(Yk) = π2

k σ 2, k = 1, . . . , n, and so one would ex-
pect it to outperform the HT estimator when the re-
sponse is approximately constant (as opposed to be-
ing proportional to the sampling probabilities), which
argues for its use in many instances, regardless of
whether N is known,

To summarize, it is informative to view model-based
estimators from a design-based perspective and vice
versa, since it gives insight into situations in which the
respective estimators will perform well. Conclusions
we have drawn here include that the HT estimator may
be design-unbiased, but biased with respect to particu-
lar models, and the model variance may not correspond
to the design variance.

3. AUXILIARY VARIABLES AND
MODEL-ASSISTED ESTIMATION

In most survey settings, auxiliary information about
the population units will be available to assist both de-
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sign and inference. From a predictive model-based per-
spective, it is very natural and commonplace to include
auxiliary variables as covariates in regression models.
This enables more efficient predictions to be achieved.
Conditioning on auxiliary variables used in the design
also helps to ensure that sampling is noninformative,
that is, that Ik is independent of Yk conditional on these
covariates; hence it helps avoid the kinds of selection
bias mentioned in Section 2.1.2.

From a design-based perspective, it is also possible
to include auxiliary variables to improve inference, in
particular, inference may be “assisted” by considera-
tion of suitable covariates in a regression model for Yk .
The definitive text on model-assisted inference in sur-
veys is Särndal, Swensson and Wretman (1992). For
simplicity, suppose we know the mean xU for a sin-
gle variable xk that we believe is associated with yk .
Consider the “working model”,

(8) Yk = B0 + B1xk + εk,

where the error terms εk are independent with EM[εk] =
0, varM(εk) = σ 2, k = 1, . . . ,N and the intercept and
slope are defined with respect to the finite population:

B1 =
∑N

k=1(xk − xU)(yk − yU)∑N
k=1(xk − xU)2

(9)

= cov(x, y)

var(x)
= RS2

y

S2
x

,

B0 = yU − B1xU ,(10)

where R, Sx and Sy are the correlation, standard devia-
tion of x and standard deviation of y, in the population.

This model motivates B̂0 + B̂1xU as an estimator of
yU , where B̂0 and B̂1 are design-based estimators of
B0 and B1. For simplicity, consider SRS and the esti-
mators:

B̂1 =
∑

k∈S(xk − xS)(yk − yS)∑
k∈S(xk − xS)2 = rs2

y

s2
x

,

B̂0 = yS − B̂1xS,

where r is the sample correlation, and yS, xS and sx, sy
are, respectively, the means and standard deviations of
x and y in the sample. Since ratios are involved, these
estimators are not design unbiased for B0 and B1 but
they are design consistent. The resulting estimator of
yU is

B̂0 + B̂1xU = yS + B̂1(xU − xS).

This is the traditional regression estimator and is de-
sign consistent for yU under SRS since yS and xS are

design consistent for yU and xU , respectively. The ra-
tionale for using the regression estimator rather than
the simple estimator yS is that it improves precision.
It does this because, under (8) with B1 �= 0, the er-
ror yS − yU is correlated with xS − xU . Under SRS,
the large-sample variance of the regression estimator is
given by (

1 − n

N

)
S2

e

n
,

where S2
e = 1

N−1
∑

k∈U e2
k with ek = yk − (B0 + B1xk)

denoting the residual. By comparison with the expres-
sion before (5) we see that the use of auxiliary infor-
mation has reduced the variance by a factor of approx-
imately R2, the squared correlation between the yk and
xk .

For general complex designs, we may use design
weights in the estimators B̂0 and B̂1 and obtain, as dis-
cussed by Breidt and Opsomer (2017), the generalized
regression (GREG) model assisted estimator of yU as

yGREG = B̂0 + B̂1xU = yHT + B̂1(xU − xHT),

so that the HT estimator of the mean of the yk is ad-
justed via the difference between the population mean
of the xk and its sample estimator. The GREG estima-
tor is design consistent with finite sample design bias,
but for large samples its precision will be greater than
that of the HT estimator. The estimators B̂0 and B̂1 can
also include weighting for heteroskedasticity in model
(8) giving, for example, when B0 is taken as zero, the
widely used ratio estimator, as a special case (Breidt
and Opsomer, 2017).

The overall model-assisted approach has a similar
flavor to robust estimation using sandwich variance es-
timators, where a working model is specified, but the
consistency of the estimator is guaranteed, under very
weak assumptions, and in particular consistency does
not depend on strong modeling assumptions. Breidt
and Opsomer (2017) provide a much fuller account of
model-assisted inference, including a wide range of ex-
tensions of the GREG approach.

We note that GREG and related estimators can be
represented as weighted estimators, where the weights
extend the simple idea of design weights introduced
earlier by incorporating auxiliary population informa-
tion. Various adjustments can be made and the con-
struction of weights can be complex; the relevant is-
sues are discussed in this issue by Haziza and Beau-
mont (2017) and Chen et al. (2017).
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4. MODEL PARAMETERS

The previous two sections have focussed on the es-
timation of the finite population mean. Extensions to
other finite population targets of inference can often
be achieved by treating them as explicit functions of
means and by estimating these targets by plugging the
estimators of the means into the function; see, for ex-
ample, Breidt and Opsomer (2017), Section 1. In this
section, we focus instead on inference about model pa-
rameters, which raises additional issues. For a more de-
tailed discussion, see Lumley and Scott (2017).

From a model-based perspective, if the model for
the survey variables incorporates both the parameters
of interest, θ say, and the auxiliary variables used in
the design, as required to ensure the sampling scheme
is noninformative, then it may be possible to treat the
sampling scheme as ignorable for inference about θ

and to employ standard unweighted approaches to in-
ference. In this case, not only the sampling design but
also the finite population may effectively play no role
and the only model requiring consideration is that as-
sumed to generate the sample data. However, a prob-
lem with conditioning on the design variables is that
it may move the model away from that which is of
interest. See, for example, the discussion of Lumley
(2010), page 105, in relation to regression. Skinner,
Holt and Smith (1989) refer to the distinction between
conditioning or not on the design variables as “disag-
gregated” versus “aggregated” analyses, and note that
the two approaches may serve quite different analytic
purposes.

From a design based perspective, one may begin
with the even more fundamental question of how to
define the parameter of interest. A common approach
is again to specify a (superpopulation) model of inter-
est, including a parameter θ say, but where this is only
treated as a “working model” for motivation and where
the model will not be used for inference. With this pur-
pose in mind, a “census parameter”, θU may be de-
fined, which is some estimator of θ , were the whole
finite population to be observed by conducting a hy-
pothetical census. For example, suppose we are inter-
ested in modelling unemployment and that a param-
eter θ of this model represents the probability that a
person in the labour force in a particular population of
people U is unemployed at a particular point of time.
Then we might define θU as the actual proportion of
the labour force in this population who are unemployed
at this time. Under suitable modelling assumptions, it
may be expected that θU will be a close approximation

to θ if the population size is large. Taking θU as the
parameter of interest (rather than θ ) is attractive since
it is a finite population quantity and so one may make
design-based inference about it directly (as we did in
Section 3 in the context of linear regression). This kind
of approach is discussed in Lumley and Scott (2017),
particularly in the context of pseudolikelihood estima-
tion (Binder, 1983) which provides the basis of most
established statistical packages for survey analysis.

The definition of a census parameter in terms of
a specific estimation approach is somewhat arbitrary,
however (Skinner, 2003), and it is often still preferable
to take a model parameter θ as the target. In this case,
it may still be reasonable to take as a point estimator θ̂

the same estimator that would be used for θU but it will
be necessary to modify variance estimation and related
inference procedures by combining design-based and
model-based inference.

For example, suppose we wish to make inference
about μ = EM[Y ], the mean in the (infinite) superpop-
ulation from which the population of size N was sam-
pled. We may treat the finite population mean yU as
the census parameter and, starting from a design based
perspective, take the HT estimator yHT as a point esti-
mator of both yU and μ. Not only is it design unbiased
for yU but it is also unbiased for μ with respect to a
joint design/model-based framework. Thus,

E[yHT] = EM

[
ES[yHT]

] = EM[YU ] = μ

(where we have replaced yU by YU to emphasize that
it is being treated as random). Turning to the variance,
we need to consider the uncertainty due not only to
the selection of a sample of size n but also due to the
selection of the population of size N from the super-
population. For simplicity, suppose the design is SRS.
We obtain

var(yHT) = EM

[
varS(yHT)

] + varM

(
ES[yHT]

)
= EM

[(
1 − n

N

)
σ 2

n

]
+ varM(YU)

=
(

1 − n

N

)
σ 2

n
+ σ 2

N
= σ 2

n
.

In this case, the variance is just as if a random sam-
ple was drawn from the superpopulation. Moreover, if
N is much larger than n then the second term may be
negligible and it may be argued that design-based in-
ference suffices in practice. For discussion of inference
about model parameters in more general settings, see
Graubard and Korn (2002).
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5. NONPROBABILITY SAMPLING
AND NONRESPONSE

So far, we have assumed probability sampling and
no nonresponse. In practice, non-response arises in
most surveys of human populations and response rates
have seen a relentless decline in many countries in re-
cent decades. It thus becomes essential that inferen-
tial methods allow for missing data from nonresponse.
Alongside the decline in response rates have been sig-
nificant changes in survey practice, such as greater
use of nonprobability sampling (Elliott and Valliant,
2017) associated, particularly, with web surveys; see
Schonlau and Couper (2017).

Nonresponse can be with respect to items and/or the
whole unit, and we consider only the latter. Nonre-
sponse and nonprobability sampling share a common
challenge for inference. They both involve forms of
sample selection which are not fully under the con-
trol of the survey designer and to proceed, both require
modeling assumptions. Elliott and Valliant (2017) pro-
vide an in-depth discussion of two broad approaches in
this context, and we here briefly introduce these ideas.

One approach is quasi-randomisation, which seeks
to represent the sample as if it had been obtained from
probability sampling. In the case of nonresponse, this
often involves treating the nonresponse as a second
phase of sampling, as discussed by Haziza and Beau-
mont (2017). Under the resulting quasi-random repre-
sentation of the sample selection, design-based meth-
ods may be employed, for example, in the construction
of survey weights. In the case of non-probability sam-
pling, Elliott and Valliant (2017) give particular atten-
tion to a case where an additional probability sample
from the population is available for use in determining
pseudo-weights for the nonprobability sample.

The second broad method is referred to as a su-
perpopulation model approach by Elliott and Valliant
(2017) and involves the model-based prediction ap-
proach outlined in Section 2.1.2. This depends criti-
cally on the auxiliary information available. The aim is
to find auxiliary information so that, once conditioned
upon, sample selection is noninformative. Moreover,
the auxiliary variables are used to improve precision
via regression-type models. A key concern with both of
these approaches is the potential for bias as a result of
departures from the modeling assumptions employed.

6. VARIANCE ESTIMATION

Interval estimation based on complex survey data is
typically conducted by appealing to asymptotic nor-
mality. Thus, a conventional 100(1 − α)% confidence

interval for YU based on the HT estimator yHT takes
the form (yHT − zα/2

√
v̂ar(yHT), yHT + zα/2

√
v̂ar(yHT)),

where zα/2 is the 1 − α/2 quantile of the standard nor-
mal distribution and v̂ar(yHT) is a consistent estimator
of the variance of yHT. The basic idea is that the sam-
pling distribution of the point estimator can be approx-
imated by a normal distribution for large samples. The
asymptotic theory used to justify the validity of such an
interval needs to take account of the complexity of the
design and is discussed by Breidt and Opsomer (2017).
Given such an approach to interval estimation, the key
tasks are to identify a suitable point estimator for a
specified parameter of interest and a suitable estimator
of the variance of this point estimator.

We have already seen that design consistent point es-
timation is often available using survey weighting for
a range of designs. Given the complexity of weight
construction, as discussed, for example, in Haziza and
Beaumont (2017), it is common to separate this task,
as a single exercise often undertaken by the agency
conducting the survey, from the task of incorporating
weights in estimation, undertaken by a wide range of
analysts. There may be further reasons for such sepa-
ration of tasks. For example, confidentiality considera-
tions may impose restrictions on what information can
be supplied to the analyst.

Given that variance estimation is arguably an even
more complex challenge than weighting, there can be
a similar rationale for task separation: focussing first
on adding design information to the data file which
can be used at a second stage by analysts to estimate
variances for estimators of multiple targets. In prin-
ciple, one could imagine adding to the data file joint
probabilities of selection πkl for all pairs of sample
units so that the variance estimator in (4) could be
computed. This is rarely done, however, in particular
because all πkl may simply be unavailable, as noted
in Section 2.1.1. Indeed, the πkl may not even be
computable for many commonly used methods for se-
lecting clusters in multi-stage sampling. Likewise, for
model-based inference, the full design information re-
lating to sample selection will often also be unavail-
able, perhaps for confidentiality reasons. Instead, there
are certain “standard” kinds of information made avail-
able in survey data files to enable variance estimation
to be conducted.

One approach is to approximate the actual design
by a similar one that samples with replacement, rather
than without. This is a common approach with strat-
ified multistage designs in which the PSUs are se-
lected with unequal probabilities within strata. For this
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design, just the strata identifiers, PSU identifiers and
weights provide sufficient design information for con-
structing consistent variance estimators. Valliant, De-
ver and Kreuter (2013), Chapter 15, describe how this
may be done for linear estimators such as the HT es-
timator. For more complex nonlinear estimators, the
method of linearization (more commonly referred to
as the delta method in mainstream statistics) may be
employed. This approach depends on the nature of the
estimator, but is implemented in most statistical survey
software. Other approximations, free of joint selection
probabilities, and usable for design-based variance es-
timation, are reviewed by Berger and Tillé (2009).

Another broad approach is replication variance esti-
mation. The bootstrap and jackknife methods are per-
haps the most well-known examples; each of these
are standard techniques in statistics; see Shao and
Tu (2012) for a book length treatment. Suppose that
survey weights, denoted wk, k ∈ S, are used to es-
timate a parameter, yU , say, via a weighted estima-
tor ŷ = ∑

k∈S wkyk . These weights may be simple
design weights, or include post-stratification, nonre-
sponse, etc., adjustments. Sets of L replicate weights
w

(l)
k , k ∈ S for l = 1, . . . ,L, are constructed and the

variance estimator takes the form:

L∑
l=1

cl

(
ŷ

(l) − ŷ
)2

,

where ŷ
(l) = ∑

k∈S w
(l)
k yk . For suitable constants cl ,

depending on the replication method, such replication
weights can be constructed for a range of designs to
achieve consistent variance estimation. The data file,
released by the survey agency, now contains an addi-
tional L fields corresponding to the replicate weights,
alongside the basic weights wk .

For both the bootstrap and the jackknife, the replica-
tion weights w

(l)
k , k ∈ S contain zeros, either from sys-

tematic deletion (the jackknife) or as a result of random
subsampling (the bootstrap). The implementation of
each of these techniques requires care since one must
acknowledge the complex design. For example, under
multistage sampling one may remove a complete PSU,
which preserves the dependence structure of responses
in the same cluster, and the weights are adjusted so as
to preserve the sum of the weights. A further replica-
tion technique is balanced repeated replication (BRR).
Under BRR, symmetries within the design are ex-
ploited to produce variance estimates from partially in-
dependent splits of the data. The bootstrap, jackknife

and BRR techniques are discussed more fully in Rust
and Rao (1996).

Another approach to variance estimation in com-
plex designs is to adopt a model-based approach
and to accommodate the population complexity in
the model. For example, the induced dependence be-
tween units in a clustered population may be acknowl-
edged in a model-based approach using mixed mod-
els, an approach that was championed by Scott and
Smith (1969). In general, sandwich estimation is of-
ten utilized when adopting a model-based approach
(Pfeffermann et al., 1998, Rabe-Hesketh and Skrondal,
2006). The underlying idea behind sandwich estima-
tion is the empirical construction of variances under
a (usually) simple working model. Sandwich estima-
tion produces consistent standard error estimates under
reduced assumptions when compared with a model-
based approach, and is robust to the assumed variance
model.

7. CONCLUDING REMARKS

In this short paper, we have given an overview of the
design- and model-based approaches to inference for
complex survey data. There are many important and
emerging topics that we have not touched upon. For
example, combining different sources of data is being
increasingly carried out, and Lohr and Raghunathan
(2017) review this endeavor.

A particular reason for the growing interest in com-
bining data sources is the increased availability of “big
data” sources, as noted in Section 1. There is also
huge current interest in a landslide of associated new
data analysis techniques, which often have their origins
in machine learning. However, while many of these
methods appear intoxicating, they must be carefully as-
sessed to see whether they will provide valid inferences
in the face of multiple sources of noncoverage and se-
lection. If such aspects are ignored, there is a genuine
possibility that big data analyses will produce really
big inferential train wrecks.
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