
Electronic version of an article published as Pavel Zaichenkov et al, Parallel 

Processing Letters, Vol. 26 (3), 2016, 24 pages, DOI: 

http://www.worldscientific.com/doi/abs/10.1142/S0129626416500110 

 

© 2016 World Scientific Publishing Company 

 

http://www.worldscientific.com/worldscinet/ppl 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/82952967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.worldscientific.com/doi/abs/10.1142/S0129626416500110
http://www.worldscientific.com/worldscinet/ppl


January 25, 2016 10:48 WSPC/INSTRUCTION FILE main

Parallel Processing Letters
c© World Scientific Publishing Company

The Cost and Benefits of Coordination Programming:

Two Case Studies in Concurrent Collections and S-Net

Pavel Zaichenkov, Olga Tveretina, Alex Shafarenko

Compiler Technology and Computer Architecture Group

University of Hertfordshire, College Lane (STRI)
Hatfield, AL10 9AB, Herts, United Kingdom

Bert Gijsbers

Department of Applied Mathematics, Computer Science and Statistics

Ghent University, Krijgslaan 281 S9
9000 Ghent, Belgium

Clemens Grelck

Informatics Institute
University of Amsterdam, Science Park 904

1098 XH Amsterdam, Netherlands

Received February 2014

Revised January 2016
Communicated by Kemal Ebcioglu

ABSTRACT

This is an evaluation study of the expressiveness provided and the performance delivered
by the coordination language S-Net in comparison to Intel’s Concurrent Collections

(CnC). An S-Net application is a network of black-box compute components connected
through anonymous data streams, with the standard input and output streams linking
the application to the environment. Our case study is based on two applications: a face
detection algorithm implemented as a pipeline of feature classifiers and a numerical

algorithm from the linear algebra domain, namely Cholesky decomposition. The selected
applications are representative and have been selected by Intel researchers as evaluation

testbeds for CnC in the past. We implement various versions of both algorithms in
S-Net and compare them with equivalent CnC implementations, both with and without
tuning, previously published by the CnC community. Our experiments on a large-scale
server system demonstrate that S-Net delivers very similar scalability and absolute

performance on the studied examples as tuned CnC codes do, even without specific
tuning. At the same time, S-Net does achieve a much more complete separation of
concerns between compute and coordination layers than CnC even intends to.

Keywords: performance measurement, coordination programming, stream processing
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1. Introduction

Parallel programs are known to be hard to maintain and reuse. The reason for this

is that they typically mix up two concerns of the kind that Dijkstra believed best

to be kept separate: concurrency management in the broad and domain-specific

computation in the narrow. This intertwining of code sections that implement the

actual computing (or algorithm) with those that merely organize parallel execution

(decomposition, communication, synchronization, etc.) is well known to significantly

contribute to the challenge of parallel programming. Almost all commonly used par-

allel programming models, such as MPI, OpenMP, etc., share these characteristics.

Intel’s Concurrent Collections (or CnC for short) aim at separating coordination

from computation issues, but in our view does not achieve a complete separation of

concerns in its concrete implementations. Consequently, coordination and compu-

tation code sections are still found next to each other in the source code.

We argue that S-Net [1, 2] achieves a much deeper separation of concerns than

CnC by employing a dedicated coordination language (complete with its formal

semantics and type theory) operating on top of domain-specific components. These

components are written in a conventional language and remain entirely concurrency-

agnostic. They not only dispense with all forms of concurrency internally, but they

are likewise unaware of the provenance of data coming into a component and of

the destination of data sent out of a component. Consequently, individual S-Net

components are agnostic of their relative location within a larger S-Net streaming

network, improving opportunities for code reuse. Components are even agnostic of

the detailed composition of data other than that explicitly needed by a component

to work.

An S-Net component is not allowed to hold an internal state and conse-

quently cannot be used to synchronize messages (it would need to hold on to one

while expecting another). That means that messages come to the component pre-

synchronized by the coordination layer. Furthermore, a component can be transpar-

ently wound down and reinstated between messages. This makes S-Net especially

flexible in a distributed computing context. On the other hand, the coordination

program presents the coordination compiler with structures that can be analyzed to

learn behavior modulo the behavior of the components. All of this offers attractive

benefits for large-scale applications. There is one obstacle though in getting the

coordination approach to work in practice: as it espouses a higher level of abstrac-

tion (which stems from its characteristic separation of concerns), practitioners tend

to be wary of a possible loss of performance, especially in applications of the “no

expense spared” type, where performance is the primary (if not the only) concern.

As the example of C++, where a higher level of abstraction and high perfor-

mance happily co-exist, demonstrates, performance is not necessarily lost by the

separation of concerns. This paper aims to demonstrate on two practical examples

that aggressive structuring imposed by S-Net does not have to negatively affect the

performance. In fact, we show that performance may, if anything, be better when
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synchronization concerns (with their associated data management mechanisms) are

removed from the components. That is the reason that we choose CnC as our basis

for comparison: both systems use dataflow synchronization and single-assignment

semantics for components. However, S-Net is a fully-fledged coordination language

promoting automatic component configuration and reuse, whereas CnC requires a

much deeper integration of component and coordination codes. Notwithstanding,

our experiments demonstrate that we can achieve the similar performance.

For our experiments we chose two applications as testbeds. The first one is a

face detection algorithm that processes images in a pipeline. The pipeline consists

of three stages, each classifying various features of the face. The application is used

to compare various communication patters: processing in a pipeline with traversal

of a data/control flow graph. The second testbed is Cholesky decomposition, a

linear algebra algorithm, which lends itself easily to parallelization for a multi-

core system. It decomposes a Hermitian, positive-definite matrix into the product

of a lower triangular matrix and its conjugate transpose. For such matrices, the

algorithm is roughly twice as efficient as the more general LU decomposition. We

use a tiled version of the algorithm, originally proposed by Buttari et al. [3]. Our

choice is motivated by the fact that the algorithm is well used in computational

linear algebra as well as having a sufficiently complex and varied internal structure

to benefit from component coordination as a method of concurrent implementation.

Contribution. The main contribution of the paper is conceptual comparison

and performance evaluation of two coordination approaches, a type-based coordi-

nation language S-Net and a C++ template library Concurrent Collections (CnC)

from Intel [4]. The choice is justified by the fact that the models provide different

mechanisms for communication of decoupled components. CnC components interact

by sharing access to the memory that holds tuples. On the other hand, communi-

cation in S-Net is based on message passing in a statically defined communication

graph. Furthermore, routing in S-Net heavily relies on types associated with mes-

sages. CnC, in contrast, uses the type system of the implementation language (C++,

in our case) for error checking and does not rely on typing information at runtime.

CnC is quickly gathering momentum in both industrial and academic research [5,

6]. S-Net, in contrast, challenges CnC with an emphasis on rapid parallel program

design. Several industrial use cases have been developed by our partners including

Thales Research, SAP and Philips Healthcare. These include signal processing [7]

and image processing [8] algorithms. Comparative studies of S-Net against other

coordination languages have not yet been conducted; this comparison against CnC

is the first.

The measurements that we present below show that on the chosen applications

both S-Net and CnC show similar performance, even though the design decisions

are different. S-Net provides a cleaner separation of concerns, yet there is a set

of overheads associated with message passing. On the other hand, CnC requires a

tuning mechanism for efficient execution.
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The rest of the paper is structured as follows. In Section 2, we overview exist-

ing coordination technologies that are based on tuple space and streaming models.

In Section 3, we briefly explain CnC and S-Net coordination models. Section 4

presents evaluation of the face detection algorithm, while Section 5 discusses im-

plementations of the Cholesky decomposition algorithm in both CnC and S-Net.

Section 6 discusses advantages and disadvantages of the coordination models based

on the evaluation results obtained. Finally, Section 7 concludes the paper.

2. Related Work

Coordination languages promote separation between computational processes and

their coordination. In particular, coordination is responsible for process synchroniza-

tion and communication. If computation and coordination models are separated, the

application can be developed in a decontextualized manner [9]. The application can

be divided into a set of non-interfering tasks, each of them assigned to a separate

domain expert that does not need to be aware of implementation details in other

parts of the program. Coordination layer provides a glue that connects the compo-

nents in a complete application. CnC uses a tuple space model as a glue and S-Net

connects the components by means of streams. Various coordination languages and

technologies have adopted each of these approaches.

2.1. Tuple space models

Linda is often considered the earliest coordination language [10, 11]. Communication

between independent processes is performed using shared memory referred to as the

tuple space. Occupants of the tuple space are accessed by logical name, therefore, the

only information the processes share is the discipline of occupants’ tag use. However,

the separation of concerns in Linda is not complete, because synchronization has to

be coded in the computational part of the program.

Many further languages adapted Linda’s tuple space model. Lime [12, 13] pro-

vides a framework and middleware for coordination of mobile applications that

spans across multiple volatile devices. Hierarchical tuple spaces is an encapsulation

mechanism that Lime provides [14]. Thus, a Lime application can be developed by

multiple programmers without causing undue interference. NetWorkSpaces [15] has

a similar abstraction mechanism that facilitates modularity. A centralized server

takes control over multiple workspaces that store tuples and provide a scoped com-

munication mechanism for processes that know the name of the workspace. The

purpose of this coordination model is to deliver high performance to languages

that are originally aimed for prototyping and rapid development, such as Matlab,

Python, Perl and R. Similarly, Swift [16] glues programs written in scripting lan-

guages together and executes them in parallel. Instead of tuple spaces, Swift uses

single assignment variables as a glue.
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2.2. Streaming models

Darwin [17, 18] structures components written in various external languages into a

hierarchical statically-defined network. The (sub)networks communicate by sending

typed messages from output ports to input ports. In the strongly-typed coordina-

tion language Manifold [19] components communicate with each other over streams

of data. Communication concerns are moved outside the components and are man-

aged by special communication primitives called manifolds. The manifold declares

an event-driven interaction protocol for the components, which are oblivious to

the environment. As a result, the components can be reused in many applications

without being modified.

A descendant of Manifold is Reo [20] that follows the same approach to coor-

dination. However, instead of manifolds, Reo has a set of channels that are used

as primitive constructs for building communication models in concurrent systems.

The main advantage of the primitives is that they can model other communication

systems (e.g. the ones based on message passing, shared spaces, remote procedure

calls). Furthermore, the channel-based communication model supports anonymous

communication and synchronization, where the components need not be aware of

the destination of any messages. The interaction between channels is statically de-

fined as a formal model. Reo uses this model to argue about its correctness and

properties of communication [21].

3. S-Net and CnC

3.1. The Parallel Component Technology

Decomposition and encapsulation are normally regarded as general software en-

gineering strategies, rather than central concepts of parallel computing. Problem

decomposition results in the representation of an application as a set of black-box

components, whose functionality is defined in terms of the interface description,

with some glue code that holds the components together in a way that ensures the

expected system behavior.

Generally speaking, not only does a component respond to the input messages

by producing and sending its output messages, but it can also have an internal

state. When that is the case, messages on the input stream are generally processed

by different mathematical functions as they arrive at the input. This prevents mes-

sages from being processed out of order and simultaneously with one another. It

also prevents the component from being moved from place to place or cloned in a

multicore system, since the new copy of the component would have to be created

in the same state, which is internal, and hence unavailable. Yet many components

would not have a persistent internal state.

A possible solution is to structure and manage state transitions in the compo-

nent world in the same way as control flow is structured and managed in ordinary

programming. A way to achieve this is to strip user-defined components of all per-
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sistent state, so that they become pure functions that map a tuple of parameters

into a similar collection of results.

As soon as the results are produced, the internal state should effectively be

destroyed. Such components are easy to reason about and debug, they are inherently

mobile, and usable as a black box in a parallel computing environment — but there

is also a price to pay. The gluing environment would have to provide sufficient

scaffolding to support an evolving state (or local states!) of the computation. In

other words, it will need to hold the effective state of one or more components for

them and present it back to the components’ inputs in combination with any data

to be processed. This is similar to thread-safe code where the intermediate state is

held in thread-local memory. Except in this case it is not the intermediate state,

but rather, say, the final state of the current iteration that is held and managed

outside the component.

3.2. The S-Net Language

An S-Net application consists of components connected by anonymous data

streams [2]. The application is represents as a network between an input and an

output, which are two external streams that connect the application with its en-

vironment. In the following we briefly review the most relevant concepts of the

language.

The box concept. A component is instantiated as a Single-Input, Single-

Output (SISO) box. The box has a limited life cycle: it accepts one item from

the input stream, does some processing and yields zero, one or more items to the

output stream, after which it destroys its internal state and waits for the next input

item to arrive. Components are written in a box language; as of today we support

C and the functional array language SaC [22] as box languages. An S-Net box is

associated with C or SaC function. Towards S-Net that box function is character-

ized by a type signature that defines the type of records that the box accepts and,

in a similar way, the types of any output records that the box may produce.

The streaming data concept. All boxes accept records as input. A record

in S-Net is a set of fields and tags. Both fields and tags have names and values.

Field values cannot be examined in S-Net: they are references to data which are

private to the box language. Tags are standardized as integers and their values are

available in both the box language and S-Net. Streams between boxes are sequences

of records. Even though all boxes are SISO, the data relationships between them

are not one-to-one, since streams can be split and merged using combinators.

Synchronization. In S-Net the only component which can store and combine

state is the synchrocell. For example, the expression [|{r}, {s}|] synchronizes pre-

cisely two messages: one whose type contains at least a field r, another with at least

s. All other messages remain untouched and are forwarded further. The semantics

of a synchrocell is sequential and does not involve any computation in the narrow

sense, hence the concurrency and mobility concerns do not apply.
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foo..bar
foo bar

(a)

foo|bar
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(b)
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(d)
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<tag>=2

<tag>=42

foo!<tag>

foo

foo

foo

.
.
.

(e)

Fig. 1. Illustration of network combinators used in the benchmark applications for S-Net: se-

rial combinator (serial composition) (a), parallel combinator (parallel composition) (b), feedback
combinator (feedback loop) (c), star combinator (serial composition) (d), and split combinator

(parallel replication) (e)

Combinators. These are second-order functions that support composition of

SISO networks, as illustrated in Figure 1. Starting with the simple combinators, we

identify serial composition (..), where the output stream of one component becomes

the input stream of another component, and parallel composition (|), where records

are effectively routed through one of two alternative boxes or subnetworks based on

their types.

The feedback combinator (Figure 1(c)) examines the output records of an

operand network and redirects those records which match a pattern back into the

input of that network. E.g. C\z creates a feedback loop around operand network C

for records for as long as they match pattern z. This allows a single operand net-

work C to repeatedly process a record until a different kind of record is produced,

carrying the result.

There exist combinators for dynamic replication of a SISO network. The expres-

sion A∗x will serially replicate the operand network A an unspecified number of

times (Figure 1(d)). Only records that match a pattern x escape this network. I.e.

the expression is equivalent to an unbounded serial expansion A..A..A.. for records

as long as they do not match pattern x. Typically, at some point in time, due to

processing by network A, they no longer match and will then appear on the output

stream of the expression.

Similarly, the expression B!<y> defines a split combinator (Figure 1(e)). It

replicates the SISO network B an unspecified number of times in parallel. For every

unique tag value y one parallel branch of B is created. This can be seen as an

unbounded parallel expansion By0
|By1
|By2
|. . . The branches are persistent in that

records with the same tag value y are sent by the coordinator down the same branch.

Network types affect message routing. When a channel splits using a parallel

combinator (Figure 1(b)), the records are sent to the operand network that matches

its type best [1]. Type specifications of complex networks are inferred automatically

by the S-Net compiler.

Flow inheritance. S-Net supports structural subtyping on the record orga-

nization of data messages. In practice this means that a box only knows about the

fields and tags that it actually expects (and receives) or produces. At the same time
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incoming records may contain any number of further fields and tags. These are

routed around the box and attached to any outgoing record produced by the box in

response to that incoming record. Flow inheritance significantly improves flexibility

in network construction and reuse opportunities for boxes in different network and

application contexts.

3.3. The Concurrent Collections Model

A detailed description of the Concurrent Collections model can be found in [23]. In

the following, we merely present a brief description of the CnC concepts relevant to

our case studies.

Following the coordination approach, the CnC model decouples computation

from the expression of its parallelism. Consequently, a domain expert determines

the design of the algorithm, and a tuning expert can be called upon to deal with

parallelism, communication, scheduling and distribution issues.

The domain expert specifies the computation as a graph with the following types

of nodes.

• item: A collection of instances of a data item of a certain type. Item-

instance collections are used to represent data. Each instance is a unit

of storage, communication, and/or synchronization, which is distinguished

within a collection by a tag, see below.

• step: A collection of instances of a computational step. A step is an indivis-

ible unit of sequential execution specified by the domain expert, which can

be instanced (i.e. cloned and run) on specific item instances. An instance

of a step may read items from statically known item collections and may

place new items in the same or different statically known item collections.

• tag: A collection of tag instances. Each instance of a step has a unique

control-tag instance and each item instance has a unique data-tag instance.

A tag instance is an instance of a tag, which is a tuple of tag components.

The presence of a control tag instance indicates that an instance of a step

will execute at some point in time, but it does not tell when this may hap-

pen. A step may produce tag instances as well. A step-instance collection

is statically associated with exactly one tag-instance collection, which pre-

scribes the step. The tag-instance is an input to the step program alongside

all the item-instances the step-instance may read.

A step has a fixed structure:

• input section: This is the opening part of the step program where the

step reads item-instances from its statically known input collections after

computing the corresponding data-tag instances based on its control-tag

instance and after sending them to the runtime system to gain access to

the actual data.
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• pure function: This represents side-effect-free computations that work

out the step’s results based solely on the control-tag instance and the item-

instances read. No data is written to any collection at this stage.

• output section: The section optionally places the results from the pre-

vious section in the form of newly computed item-instances into the stati-

cally known output collections, and also optionally places new control-tag

instances in statically known control-tag collections.

The first two sections can be intermingled when input requires some tag com-

putation, possibly involving further item-instances.

A step instance begins its life when a control-tag instance is placed in the corre-

sponding control-tag collection by another step-instance. At this point it is said to

be in the prescribed state. As soon as all the input item-instances become available,

the step-instance is in the enabled state. All enabled step-instances will eventually

be executed, but it is up to the runtime system to determine when.

Even though the relations between step, data and tag collections, which define

the communication graph, are available statically, this information is not sufficient

to achieve optimal scheduling and resource management. As a remedy CnC provides

additional tuning mechanisms. The problem here is that an instance of a step may

depend on a-priori unknown item-instances from the statically known collections. In

order to determine which item-instance those are, the runtime system would have

to run the step. If the item-instances are not yet available, the step-instance would

stall and need to be re-launched later. This wastes resources, but does not jeopardize

the semantics thanks to the purity of the middle section of the step. To remedy this

inefficiency, CnC permits the programmer to supply a dependency function which

can be called by the runtime system to determine which item-instances the current

control-tag instance will cause the step to fetch. If those are available from the

corresponding collections, the step-instance is judged to be enabled straight away

and is run whenever appropriate without the risk of a roll-back.

In S-Net, synchronization is performed by synchrocells, occurring in a coor-

dination program. This obviates any external mechanism, such as the dependency

function. In CnC terms, an S-Net step-instance is instantly enabled by an input

message, which always comes pre-synchronized from the coordinator.

4. Case Study: Face Detection

Our first benchmark is a face detection algorithm [24]. It is a small yet very prac-

tical application, which illustrates conceptual and runtime differences between the

coordination languages. A simplified version of the algorithm, which simulates the

detection by abstracting images as strings, has already been implemented in CnC.

Based on the existing prototype, we implemented complete applications for both

platforms.

The application consists of three feature classifiers connected in a pipeline, each

detecting one of: a face outline, eyes and a mouth. If one of the classifiers fails to find
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the corresponding feature, the image is judged to not include a face. The result of

classification is forwarded to an accumulator that collects all processed images and

returns the rate of images that contain a face. The feature detection is performed

by calling cvHaarDetectObjects function from the OpenCV [25] image processing

library.

A pipeline is the most common communication pattern in S-Net. We use this

application to compare S-Net pipelined computations with a CnC computation

model driven by traversal of a data/control flow graph.

4.1. Implementation in Intel Concurrent Collections

The computational graph of the CnC implementation is given in Figure 2. Before

execution, the environment adds images to a item collection image and tags that

represent image indexes to a tag collection classifier1 tags. Once added, the

images are never removed from the item collection. Therefore, the item-instances

are always available, and computations are essentially control-driven and prescribed

solely by the corresponding tag collections. For every tag in classifier1 tags,

the runtime executes a component classifier1, which attempts to find a face

outline in the image. If it succeeds, a relevant tag is added to a tag collection

classifier2 tags, which contains a subset of tags from classifier1 tags. The

classifier classifier2 attempts to find eyes in the image. If the eyes are found, the

classifier adds corresponding tags to a tag collection classifier3 tags. A classifier

classifier3 is the final stage of the pipeline, which detects a mouth in the image.

It stores computation result in a data collection face, which contains indexes of

the images that are judged to contain faces. The collection can be accessed by the

environment after the CnC application terminates.

In this application all item instances in the face collection are available before

step execution. Thus, dependency functions are not required for efficient scheduling.

4.2. Implementation in S-Net

The face detection algorithm in S-Net is implemented as a pipeline that consists of

three classifiers and a subnetwork Collect, which collects classification results from

the classifiers and calculates the number of images that contain faces (Figure 3).

Each classifier receives a record containing an image identifier name and an image

img in an OpenCV format. All classifiers, apart from the last one, have two logical

output streams. If the classifier detects a face feature, it sends the input message to

the next classifier. Otherwise, it sends the classification result <isFound> = false

and the image identifier name to the subnetwork Collect. As a result, the image

bypasses the remaining classifiers if one of the features has not been detected.

The Collect subnetwork receives input messages of two types. Messages of

the type (<isFound>, name) are produced by the classifiers as described above;

messages of the type (<N>, <rate>) store a state of the Collect subnetwork. Tag

<N> is an integer that stores the number of images that has still to be processed
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classifier2

classifier3
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Tag collection
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Fig. 2. A computational graph of the CnC implementation of the face detection algorithm.

(name, img)
  (name, img)
| (<isFound>, name)

Classifier1

(name, img) 
  (name, img)
| (<isFound>, name)

Classifier2

(name, img) 
(<isFound>, name)

Classifier3

  (<isFound>, name)
| (<N>, <rate>)

 (<result>)

Collect

(<N>, <rate>)

Fig. 3. The S-Net network for the face detection algorithm.

and <rate> is the number of images that contain faces. If <N> = 0, then all images

have been processed and a program produces a message (<result>) that stores the

number of images with faces.

In order to gather information about processed images, the Collect subnet-

work contains a synchrocell that combines messages of types (<N>, <rate>) and

(<isFound>, name>) and then generates a state record of type (<N>, <rate>).

Synchronization in CnC and S-Net is implemented in two different ways. The

natural way to perform synchronization in CnC is to gather elements in a data

collection and then process them in a single step instance. In contrast, synchrocells

in S-Net can synchronize only two messages at a time, and, therefore, synchroniza-

tion of multiple messages has to be implemented as a component with reduction

semantics. An advantage of this approach is that it does not require all messages

to have arrived to start synchronization.
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Vendor AMD

Processor Model Opteron 6174

Processor Name Magny-Cours

Clock(GHz) 2.2

# Sockets 4

Cores(Threads)/Socket 12(12)

L1 Data Cache 64 KB/core

L2 (Data and Instruction) Cache 512 KB/core

Shared L3 Cache 12 MB

DRAM Capacity 256 GB

Operating System Scientific Linux 7.1

Kernel Version 3.10.0-229.1.2.el7

Compiler GNU GCC 4.6.3

Fig. 4. Evaluation platform for experiments

4.3. Experimental Evaluation

In addition to implementations in CnC and S-Net, we implemented three versions

of the face detection algorithm. The first one is purely sequential and executes

the detection cascade for each image. The detection cascade is implemented as

classifying functions that are called in a sequence.

The second one is a parallel version obtained by adding OpenMP annotations,

which specify that processing of all images can be run in parallel, to the first version.

The pipeline itself is sequential. In seems that despite the ongoing research on

pipeline parallelism in OpenMP [26], exploiting the parallelism using the standard

OpenMP is currently nearly impossible.

Finally, the third version is implemented using PThreads: images are put in a

job queue and are retrieved by available workers. In these implementations, images

that need to be processed are equally distributed among the cores. Stages of the

pipeline are run sequentially. Although pipeline parallelism can be implemented

in PThreads, this would require a lot of work. We use OpenMP and PThreads

conventional implementations as yardsticks for the CnC and S-Net ones.

The CnC model permits many runtime system designs, including those for dis-

tributed memory using MPI. We use Intel CnC 0.9, which is a shared-memory

implementation that uses Intel Threading Building Blocks as a threading layer.

Step collections are implemented in C++.

Boxes for S-Net are implemented in C. All S-Net experiments make use of the

Front runtime system [27], which combines very low overhead of S-Net network

maintenance with efficient transportation of records throughout the network.

All five implementations are compiled using GNU GCC 4.6.3. Our test machine

is a 4-socket system with 12-core AMD Opteron 6174 processors and a total memory

capacity of 256 GB RAM. Fig. 4 provides further details.

There are two main parameters that affect the performance of the face detection

application: the size of an individual image and the number of processed images.

The former affects the amount of work done by individual components and the

latter influences the total application throughput. Figure 5 and 6 demonstrate the
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performance impact of these parameters. The experiments were performed using 48

parallel threads.

In Figure 5 one image of various sizes is processed. We use this experiment to

measure the overhead in each implementation. The serial version, which is taken

as a baseline, unsurprisingly processes the smallest images faster than other imple-

mentations. The rest of them spend 60–110 ms (36%–50%) on thread management.

When an application processes images of larger sizes, the overhead is dominated by

the image processing time. For our next measurement we decided to use images of

size 500 px× 500 px for which the thread management overhead is negligible.

Figure 6 demonstrates the throughput achieved by each of the five implemen-

tations. When the number of images increases, CnC and S-Net show better per-

formance compared to parallel implementations in PThreads and OpenMP. This is

achieved by using work-stealing execution strategy that dynamically allocates jobs

to workers that are not busy.

In Figure 7 we visualize the runtime execution for an input that consists of 400

images with 500 px×500 px each. In Figures 7(c) and 7(d) there is much white space

on the right, meaning that at the end of the run-time the tasks are not scheduled

in an optimal way. In PThreads and OpenMP implementations tasks are uniformly

distributed between threads before the image processing begins. However, due to

different processing times of individual images, there is load imbalance at the end.

In contrast, scheduling in CnC and S-Net is based on a work-stealing strategy:

when a worker runs out of work, it “steals” tasks from the queues of other workers.

White space on the left of Figure 7(b) illustrates that S-Net spends a fraction

of execution time just warming up: it is either busy scheduling new jobs or the

workers are not being fast enough to fetch jobs from their queues.

The figures also illustrate that stages of the classification cascade in CnC and

S-Net are executed in different orders. A CnC thread executes all stages for a single

image before starting processing the next image. S-Net, in contrast, executes the

first stage of the pipeline for all images and only then executes the second and
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(a) (b)

(c) (d)

Fig. 7. Visualization of the face detection application runtime execution for implementation in
CnC (a), S-Net (b), PThreads (c) and OpenMP (d). The X axis is time, the Y axis is an execution

thread, orange is the first (face outline) classifier, green is the second (eyes) classifier, blue is the

third (mouth) classifier

the third one (visually, the orange color, which represents execution of the first

classifier, dominates on the left of Figure 7(b); the green color, which represents

execution of the second classifier, dominates in the middle; and blue color, which

represents execution of the third classifier, dominates on the right). The Front

runtime system aims to execute box instances that contain the greatest numbers

of messages in their input buffers. Therefore, initially S-Net prioritizes the first

classifier that contains 400 images in the input queue. Then, after the first classifier

has processed the majority of input messages, the runtime system executes the

second and the third stages.

Implementation of the face detection algorithm using various models demon-

strates that applications with non-uniform message processing time require an exe-

cution strategy that monitors load and dynamically reschedules tasks. As a solution,

CnC and S-Net provide the work-stealing execution strategy.

5. Case Study: Cholesky Decomposition

Our second case study is a numerical algorithm from the linear algebra domain:

Cholesky decomposition. It solves the following problem: given a symmetric positive

definite matrix A, find a lower-triangular matrix L, such that A = LLT . We use

the tiled version of the Cholesky decomposition algorithm described by Buttari et

al. [3].

Initially, the input matrix A is decomposed into p × p blocks Aij of size b × b

each. The Cholesky decomposition problem is first solved for all blocks of the 0th

column of the block matrix Ai0 separately. Next, all blocks in the low-triangular

block-submatrix Aij , i ∈ [1, p − 1], j ∈ [1, i], are recomputed and the algorithm
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1: for k = 0, . . . , p− 1 do

2: Lkk ← InitialFactorization(Akk)

3: for all j = k + 1, . . . , p− 1 do

4: Ljk ← TriangularSolve(Lkk, Ajk)

5: end for

6: for all j = k + 1, . . . , p− 1 do

7: for all i = k + 1, . . . , j do

8: Aij ← SymmetricRankUpdate(Ljk, Lik)

9: end for

10: end for

11: end for

Fig. 8. Cholesky decomposition tiled algorithm

recurses into it.

The complete algorithm is given in Figure 8. The computations form a series of

iterations with the iteration index k, each divided into three steps:

Initial Factorization. A scalar Cholesky decomposition algorithm is used to

solve Akk = LkkL
T
kk equation on this stage. The result of computation is a lower-

triangular block Lkk, where Lij is a block-matrix partitioned in the same way as

A.

Triangular Solve. During this phase we apply the result of the previous step

to solve the equation Ajk = LjkL
T
kk. The result is the block Ljk. This step can be

performed for all blocks in the same column concurrently.

Symmetric Rank Update. This step is used to update values of blocks Aij ,

where j ∈ [k + 1, p − 1] and i ∈ [k + 1, j]. This is done using the formula A′
ij =

Aij − LikL
T
jk. Similar to the previous step, this can be done concurrently for all i

and j.

The problem thus boils down to the above component algorithms. Our job is

to glue them together using a coordination program. The Cholesky decomposition

algorithm is particularly challenging for parallel implementation, as it gives rise to

a varying number of parallel threads.

5.1. Implementation in Intel Concurrent Collections

In the following we briefly sketch out the CnC implementation of tiled Cholesky

decomposition published in [28].

Figure 9 presents the data/control flow graph of the Cholesky decomposition

algorithm in CnC. Item collections p and b store the total number of blocks in

the initial matrix and the block size, respectively. The input matrix A and output

matrix L are both stored in the item collection Lkji and are accessed from the

step collections. The component algorithms are implemented as steps in the imple-

mentation: InitialFactorization, TriangularSolve and SymmetricRankUpdate.

Their behavior is defined by the data collections Lkji, b and p that they use as
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singleton

b kji tags

kj tags

k tags

p

InitialFactorization

kji compute

kj compute

Lkji

TriangularSolve

k compute

SymmetricRankUpdate

Data collection

Tag collection

Step collection

Data dependency

Control dependency

Fig. 9. A computational graph of the CnC implementation of the Cholesky decomposition.

input. Tag collections k tags, kj tags and kji tags control the behavior of each

step collection. All of these steps produce the result of the computation and put

it back into the item collection Lkji. Furthermore, there are three auxiliary step

collections (k compute, kj compute and kji compute) that generate tags for tag

collections and prescribe execution of the component algorithms.

Figure 9 contains tags and items that do not have inbound edges. This means

that they are taken from the environment, which is the external code that invokes

the computation. For our example the environment provides item collections Lkji,

b and p and the tag collection singleton.

Dependency functions as a tuning mechanism allows the programmer to provide

information about step data dependencies that is not present in the flow graph.

In order to evaluate the effect of the CnC dependency functions, we provide two

versions of the implementation for CnC. The first one does not rely on the tuning,

whereas the second one uses the dependency functions to improve scheduling. For

a fair comparison of S-Net and CnC scheduling algorithms, the second S-Net

implementation must be preferred, because the S-Net network already contains

the information provided by the CnC dependency functions.

5.2. Direct Implementation in S-Net

We developed two variants of tiled Cholesky decomposition in S-Net. The first one

directly implements the algorithm in Figure 8.
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D

(a) The implementation with barrier synchronization

(b) The data-driven implementation

Trisolve
(Tri_Lkk, Tri_Ajk, <N>, <B>, <k>, <j>)
-> (Sym_Ljk, <N>, <B>, <k>, <j>, <i>)
   | (Sym_Lik, <k>, <j>, <i>)
   | (Out, <N>, <B>, <k>, <j>, <i>)

[| {Tri_Lkk, <N>, <B>, <k>, <j>},
    {Tri_Ajk, <k>, <j>} |]*{Tri_Lkk, TriAjk}

(c) The structure of the TriangularSolve subnetwork in the
data-driven implementation

Fig. 10. The S-Net networks of the Cholesky decomposition algorithm

Unlike CnC, the coordination network in S-Net does not specify a control flow.

Box computations only depend on the availability of input data. Data relations

are completely defined statically. Consequently, the consistency of a coordination

program can be verified at compile time. Again, unlike the CnC graph, the S-Net

network is hierarchically structured.

In Figure 10(a) we illustrate the S-Net network for the Cholesky decompo-

sition algorithm. A (coordination-level) type signature is displayed with each box.

TriangularSolve, SymmetricRankUpdate and Finalize are subnetworks that con-

tain boxes inside.
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The Decompose box receives a message with the input matrix A, its size N and

the block size B from the environment (tag values enclosed in angular brackets are

“analyzable” by the compiler and runtime system). It reallocates the array where

the input matrix is stored and permutes the matrix elements there in order to

improve spatial and temporal locality. In addition we add an index k = 0 to the

output message. As a result, the Decompose box outputs the input matrix with

permuted elements A, the output matrix L filled with zeros (on each iteration of

the feedback loop combinator we add new values to the matrix), the block size B,

the number of blocks P and an additional index k.

Next, we perform recursive computations (the outer loop in Figure 8). The re-

cursion is expressed using a feedback loop combinator. The combinator redirects the

output of the SymmetricRankUpdate box to the input of InitialFactorization

box as long as the message containing a field of type A is produced by the Finalize

box. If so, the feedback loop stops and the message is sent to the output stream.

The InitialFactorization box performs the first step of the algorithm in

Figure 8. Also we compare the loop index k with the number P in order to determine

whether all the blocks have been processed. Depending on the result, messages

of different types are sent. If k is still less than P , we add computed elements

to the matrix L and supply the input record with the additional index j. The

TriangularSolve and SymmetricRankUpdate boxes perform the computations of

the corresponding stages. Lastly, the Finalize box winds up the computation by

converting the result matrix to a format suitable for output and then deallocates

memory.

5.3. Data-Driven Implementation in S-Net

The drawback of the direct S-Net implementation of the tiled Cholesky decompo-

sition algorithm is the barrier synchronization needed after each iteration. This is

not only costly in general, but it also disadvantages S-Net compared with the CnC

implementation sketched out before that carefully avoids these barriers. Therefore,

in the following we devise an entirely data-flow driven S-Net implementation that

eliminates the performance disadvantage of the direct implementation. Figure 10(b)

illustrates our second approach.

The box Start receives the same input, consisting of matrix A, matrix size N

and the block size B. It produces the record containing the matrix Result filled with

zeros and number X — the number of blocks with the result needed to construct

the output matrix. This message is propagated forward to the box Finalize using

the flow inheritance mechanism sketched out in Section 3.2: if the type of a message

is not matched by the box type scheme, the runtime system bypasses this message

forward until it is accepted by a box. In addition, the box Start produces initial

messages containing separate blocks corresponding to a stage in the algorithm.

Thus, it produces messages with diagonal blocks stored in Fac Akk and accepted by

the InitialFactorization box; messages with blocks from the column j stored in
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Tri Ajk and accepted by TriangularSolve; and messages corresponding to column

j and row i stored in Sym Aij and accepted by SymmetricRankUpdate.

Messages are transfered between three boxes mentioned above until the blocks

with the final value are produced and accumulated by the Finalize box. Subnet-

works TriangularSolve and SymmetricRankUpdate contain a synchrocell inside

that gathers data dependencies of boxes before executing them. The synchrocell in

the first subnetwork awaits two messages with Tri Ajk and Tri Lkk, representing

blocks Ajk and Lkk respectively (see Figure 10(c)). Similarly, synchrocells in the

second subnetwork waits for three blocks Ljk, Lik and Aij packed into Sym Ljk,

Sym Lik and Sym Aij, respectively. Once the dependencies are satisfied, the box

begins to execute and will eventually produce output messages (or decide not to).

The block with the final result is packed into the Out field — the message containing

it is delivered directly to the last box Finalize.

Such a network structure avoids global synchronization after each step. Messages

do not block each other and computations start as soon as all local dependencies

are satisfied.

5.4. Experimental Evaluation

Cholesky factorization is a significant example of a computational linear algebra

problem. It is affected by locality (block size), parallelism (the number of cores

used) and data dependencies between blocks. The amount of work and available

parallelism varies during program execution time. This challenges both systems’

abilities to manage the resources of a concurrent platform and exposes their differ-

ences in doing so. For all measurements presented in this section we used the same

evaluation platform as for the face detection case study (see Figure 4 for details).

We provide the evaluation results for two CnC, two S-Net and one OpenMP

implementations, the last one merely intended as a basis for comparison. Figure 11
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shows the speedup referenced to the serial implementation vs the block size. The

serial implementation represents the tiled Cholesky decomposition algorithm for a

single core. It is similar to the implementation in CnC, but lacks the coordination

overhead. The figure shows that the performance depends on the size of a block and

the number of blocks in the partition. The peaks in the figure demonstrate optimal

values for the block size.

The OpenMP implementation illustrates what performance can be achieved if

a domain expert without adequate experience in parallel computing attempts to

parallelize a serial version of the application. We added OpenMP annotations to

the serial implementation that specify independent iterations in loops in lines 3

and 7 of Algorithm 8. The major disadvantage that causes performance loss in this

implementation is global synchronization barrier between any two loop iterations.

In other implementations, each block represents a separate message or a tuple, so

blocks are explicitly independent. This solves the latter issue. However, the direct

S-Net implementation called S-Net (1) still suffers from global barrier synchro-

nization. Both CnC (CnC (untuned) and CnC (tuned)) and the data-driven S-Net

(S-Net (2)) implementations overcome this by specifying computations as a depen-

dency graph. Hence, independent computations are not unnecessarily synchronized

and every block in the tiled Cholesky decomposition algorithm can be computed as

soon as all other blocks it depends on have been completed.

Iterations of the outer loop (line 1 in Algorithm 8) have to be executed in

order. Cyclic dependencies between iterations reduce parallelism in this application.

Figure 13 demonstrates a data dependency graph between iterations (an iteration

is defined by the tuple (k, j, i)) for a 4 × 4 block-matrix as the input. The figure

shows a partial order, with the maximum number of parallel threads dynamically

varying from iteration to iteration. Scheduling must observe the partial order and

should give priority to execution steps that are on the critical path.

The S-Net runtime system Front attempts to process records that have ad-

vanced the furthest in the processing graph. Here, workers generally favor records

that come to a box with an empty output stream. Consider the example in Fig-

ure 13. Assume that a worker needs to select a record for processing from the choice

as defined by tuples (0, 2, 1), (0, 2, 2) and (1, X,X). Front would select the tu-

ple (1, X,X), which represents a critical dependency whose elimination potentially

increases the available parallelism [27].

Threading Building Blocks controls execution of the CnC program. Similarly to

Front, it uses a work-stealing scheduler to schedule tasks [4], which is particularly

efficient in an application with dynamically varying concurrency levels.

The use of dependency functions in CnC (tuned) brings significant improvement

compared to the CnC (untuned) version of the program, especially when there is

much exploitable concurrency. For the best performance range of block size the

improvement caused by dependency functions is about 15%. On the other hand, an

overhead introduced by the dependency functions for cases with a small amount of

concurrency caused a 7% loss in performance.



January 25, 2016 10:48 WSPC/INSTRUCTION FILE main

The Cost and Benefits of Coordination Programming 21

A22

0,X,X

0,1,X 0,2,X 0,3,X

0,1,1 0,2,1 0,2,2 0,3,1 0,3,2 0,3,3

result

1,X,X

1,2,X

1,2,2

1,3,X

1,3,2 1,3,3

2,X,X

2,X,2

2,3,3

3,X,X

Initial Factorization

Initial Factorization

Initial Factorization

Initial Factorization

Triangular Solve

Triangular Solve

Triangular Solve

Symmetric Rank Update

Symmetric Rank Update

Symmetric Rank Update

Input tiles A00 A10 A11 A20 A21 A30 A31 A32 A33

Fig. 13. An example of the data dependency graph for Cholesky decomposition (p = 4). The

data item is defined by a step (each step is represented by a different color) and a tuple (k, j, i).

X specifies that the value is not defined

Figure 12 shows the speedups of S-Net and CnC for varying numbers of thread-

s/cores used. Both CnC implementations as well as the data-driven S-Net (2) im-

plementation demonstrate almost linear speedup. In contrast, the S-Net (1) imple-

mentation as well as OpenMP implementation suffer from an extra overhead caused

by the synchronization barriers.

A complete performance evaluation of the tiled Cholesky decomposition in CnC

can be found in [28]. The measurements illustrate that for efficient execution of

this application a barrier synchronization needs to be avoided and a data-driven

approach is preferred. The runtime must perform dynamic load balancing of tasks

to avoid stalls during execution. The load balancing in S-Net and CnC is based

on work-stealing, which proves quite efficient in practice. S-Net on this example

has a performance similar to CnC and both coordination programming models are

effective instruments for implementing applications for multi-core platforms.

6. Discussion

In terms of expressiveness, all CnC and S-Net implementations are well-structured,

and there is a reasonably low amount of extra code required for coordination. The

coordination code in S-Net includes a description of the topology that connects

processing boxes using a language of combinators. Separation between coordina-

tion and computation is achieved because coordination relies only on components’
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interfaces while box implementation details are left to domain experts.

Strict separation of concerns between coordination and computation in CnC is

not complete. Synchronization of input data takes place inside components, so a do-

main expert needs to be aware of component interaction while designing individual

components.

An extra tuning step in the form of dependency functions is required for efficient

scheduling in CnC. These dependency functions yield a refinement of the depen-

dency graph for the runtime system. The dependency functions allow a runtime

system to predict not only which data collections will be referenced, but exactly

which data items in them will be requested by some component instance so that

those items may be pre-synchronized, i.e. ensured to be available collectively before

running the component. Such kind of tuning mechanism is not needed for S-Net.

S-Net components do not deal with synchronization at all: data always comes in

pre-synchronized and box execution is exclusively triggered by availability of data.

An application designed for S-Net needs to be structured as a stream pro-

cessing program. This is the main challenge since not all applications can be easily

represented in this way. Such an approach, however, provides a good scalability (use

of shared memory is avoided), which is particularly useful for distributed applica-

tions [29]. The Cholesky decomposition case study also shows that the composition

of computational boxes significantly influences the performance.

To summarize, CnC and S-Net are both systems for coordination of compo-

nents. Components in CnC are linked by data and control relations. The execution

strategy and order are determined mainly dynamically. S-Net uses the message-

driven strategy. Components are linked by data relations only. Additionally S-Net

offers a hierarchical structuring mechanism and a compile time analysis that follows

the structure; most of that analysis can be done statically.

7. Summary and Conclusion

We have compared both expressiveness and performance of S-Net and CnC based

on two case studies from the domains of image processing and linear algebra.

Whereas CnC can be characterized as a coordination library/specification model,

S-Net is a fully-fledged coordination language that achieves near-complete separa-

tion of concerns between computing and coordination layers.

We observe that a static network topology and data relations facilitates S-Net

compilation and runtime scheduling and communication. S-Net does not use con-

trol flow, allowing components to be triggered exclusively by the availability of

their input data. Despite the lack of tag collections that determine the sequencing

of processing steps, pure dataflow works quite well. S-Net supports a clean sepa-

ration of concerns between coordination and computation: all data required by a

computational component are delivered to it by the coordinator in a single, pre-

synchronized message. By contrast, in CnC components must be fully aware of the

item collections they access.
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Tuning is a feature of CnC that is clearly separated from application design. By

introducing dependency functions to the application we evaluated the improvement

this may yield. At least in our experiments the improvement was rather small.

We compared the two coordination models with more conventional sequential C

and multithreaded OpenMP implementations. With S-Net we managed to achieve

excellent utilization of the computing resources provided by our test system without

any platform-specific tuning and optimization. The data-driven implementation in

S-Net is based on precisely the same sequence of algorithmic steps as the CnC one.

One would think that further improvements for CnC would necessitate a more

refined tuning mechanism, while for S-Net further improvements would necessitate

better run-time heuristics of stream management.
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