
Chen, Fei and Ou, Hengan and Lu, Bin and Long, Hui 
(2016) A constitutive model of polyether-ether-ketone 
(PEEK). Journal of the Mechanical Behavior of 
Biomedical Materials, 53 . pp. 427-433. ISSN 1878-0180 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/42953/1/A%20constitutivemodel%20of
%20PEEK_JMBBM_2016%20%28Ou1%29.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution licence and may be 
reused according to the conditions of the licence.  For more details see: 
http://creativecommons.org/licenses/by/2.5/

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/82925778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk


Available online at www.sciencedirect.com
www.elsevier.com/locate/jmbbm

j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 5 3 ( 2 0 1 6 ) 4 2 7 – 4 3 3
http://dx.doi.org/10
1751-6161/& 2015 T
(http://creativecomm

nCorresponding a
E-mail address:
Short Communication
A constitutive model of polyether-ether-ketone
(PEEK)
Fei Chena, Hengan Oua,n, Bin Lub,c, Hui Longc

aDepartment of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham NG7
2 RD, UK
bInstitute of Forming Technology and Equipment, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030,
PR China
cDepartment of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD, UK
a r t i c l e i n f o

Article history:

Received 17 July 2015

Received in revised form

28 August 2015

Accepted 30 August 2015

Available online 9 September 2015

Keywords:

PEEK

Flow stress

Modelling

Elevated temperature
.1016/j.jmbbm.2015.08.037
he Authors. Published by
ons.org/licenses/by/4.0/

uthor.
H.Ou@nottingham.ac.uk
a b s t r a c t

A modified Johnson–Cook (JC) model was proposed to describe the flow behaviour of

polyether-ether-ketone (PEEK) with the consideration of coupled effects of strain, strain

rate and temperature. As compared to traditional JC model, the modified one has better

ability to predict the flow behaviour at elevated temperature conditions. In particular, the

yield stress was found to be inversely proportional to temperature from the predictions of

the proposed model.

& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Polyether-ether-ketone (PEEK) is a semi-crystalline polyro-
mantic linear polymer with a good combination of strength,

stiffness, toughness and environmental resistance (Lu et al.,

1996; Jenkins, 2000). In recent years, with the confirmation of

biocompatibility (Rivard et al., 2002), PEEK has been increas-

ingly employed as an effective biomaterial for implantable

medical devices such as orthopaedic, spinal and cranial
implants (Toth et al., 2006; Kurtz and Devine, 2007; EI Halabi

et al., 2011). Compared to stainless steel and titanium, an

implant made of PEEK has clear benefits on temperature

sensitivity, weight reduction and radiology advantage (Green
Elsevier Ltd. This is an o
).

(H. Ou).
and Schlegel, 2001; Wang et al., 2010). As a result, there has

been an increased demand of PEEK for medical applications.

In so doing, it is necessary to understand the mechanical

properties of PEEK not only at room temperature but also

under elevated temperature for favourable processing condi-

tions. In the past two decades, there has been an increasing

interest in mechanical properties of PEEK (Boyce and Arruda,

1990; Dahoun et al., 1995; Hamdan and Swallowe, 1996; Jaekel

et al., 2011). A series of material models were developed to

quantify mechanical behaviours of PEEK (El Halabi et al., 2011;

Jaekel et al., 2011; El-Qoubaa and Othman, 2015; Garcia-

Gonzalez et al., 2015). However, most of these work focused

on the mechanical properties at room temperature. Little
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attention has been paid to develop constitutive models of
PEEK under elevated temperature. In this short communica-
tion, a new phenomenological constitutive, i.e. a modified
Johnson–Cook (JC), model was proposed. The developed
model can not only describe the flow behaviour of PEEK at
room temperature, but also predict the flow stress at elevated
temperatures. Therefore the modified JC model allows
detailed evaluation of the sensitivities of the strain rate and
temperature.
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Fig. 1 – (a) Effect of strain rate on flow stress of PEEK at room
temperature, and (b) effect of temperature on flow stress of
PEEK at 10�3 s�1 (Rae et al., 2007).
2. Constitutive modelling of PEEK

The flow behaviour of PEEK 450G was tested by Rae et al.
(2007) for different temperatures and strain rates with a
constitutive model established based on the experimental
data. In this study, cylindrical compression specimens of
6.375 mm diameter and 6.375 mm height were machined
from a commercial plate of extruded PEEK 450G. MST 880
and MST 810 servohydraulic machines were used for strain
rates lower than 10 s�1 and between 10–100 s�1, respectively.
The machine can be operated with an exponential decay of
actuator speed to give constant strain rate with straining.
True strain and stress data were calculated automatically by
assuming a constant sample volume. In order to reduce the
friction impact, paraffin wax was used to lubricate the speci-
men ends. In order to secure temperature uniformity, the
samples were held at the testing temperature between 30 and
45 min prior to testing.

Fig. 1 shows the flow stress behaviours of PEEK 450G at
room temperature under the strain rates from 10�4 s�1–

102 s�1 (Fig. 1a) and at the temperature range from �85 1C
to 200 1C at a constant strain rate of 10�3 s�1 (Fig. 1b). From
Fig. 1a, it is obvious that the flow stress curves clearly show
that the yield stress increases with the increase of strain
rates at room temperature. From Fig. 1b, it can also be found
that thermal history has a significant effect on the true
stress–strain curves. The yield and flow stresses decrease
with increasing temperature. This is mainly due to the high
dependence of the mechanical properties of semi-crystalline
polymers upon their degree of crystallinity and molecular
weight as well as the size and orientation of the crystalline
regions (Chivers and Moore, 1994; Kurtz and Devine, 2007; Rae
et al., 2007). At the same time, it can be seen that there is little
strain hardening effect over a range of temperature
conditions.
Table 1 – JC model parameters (Garcia-Gonzalez et al.,
2015).

Parameters A (MPa) B (MPa) n C m

Values 132 10 1.2 0.034 0.7
2.1. JC model

The traditional phenomenological JC model may be
expressed as (Johnson and Cook, 1985)

s εp; ε̇p;Tð Þ ¼ Aþ B εpð Þn� �
1þ C ln

ε̇p

ε ̇referencep

� �� �
1�T�m� 	 ð1Þ

where s is the flow stress, A is the yield stress at reference
temperature and reference strain rate, B is the strain hard-
ening coefficient, n is the strain hardening exponent, ɛp is
true strain, _ε is strain rate and _εreference is the reference strain
rate. T* is homologous temperature and is expressed as,
T� ¼ T�Treference

Tmelting�Treference
ð2Þ

where T is temperature. Treference is the reference tempera-
ture. Tmelting is the melting temperature of PEEK at 616 K. In
Eq. (1), C and m are coefficients of strain rate hardening and
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thermal softening exponent, respectively. Therefore, the total

effect of strain hardening, strain rate hardening and thermal

softening on the flow stress can be calculated by multi-

plication of these three terms in Eq. (1).
The temperature increase caused by deformation cannot

be neglected when the strain rate is relatively high. The

deformation-induced temperature increase can be estimated

by assuming a conversion factor of 0.9 from deformation

work into heat from an initial testing temperature T0,

Z T

T0

ρCp dT¼ 0:9
Z εp

0
s dε ð3Þ
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Fig. 2 – Comparisons of stress–strain of PEEK (a) and (b) at differ
temperatures and strain rate of 10�3 s�1.
where ρ is the density, Cp is the heat capacity, and ɛ is the

strain. Assuming ρ and Cp are constants, therefore, Eq. (3) can

be rearranged to,

T¼ T0 þ ΔT¼ T0 þ
Z T

T0

dT¼ T0 þ
0:9
ρCp

Z εp

0
s dε ð4Þ

For PEEK material, ρ¼1.304 g/cm3, Cp¼2.18 Jg�1 K�1. In

this study, 296 K (room temperature) is taken as the reference

temperature and 10�3 s�1 is taken as the reference

strain rate.
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Fig. 3 – Determination of the value of λ.
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At the reference strain rate of 10�3 s�1, Eq. (1) reduces to,

s εp; ε̇p;Tð Þ ¼Aþ B εpð Þn ð5Þ

The value of A is calculated from the yield stress (i.e. the

stress at strain of 2�10�3) of the flow curve at 296 K and

10�3 s�1. Substituting the value of A in Eq. (5) and using the

flow stress data at various strains for the same flow curves, ln

(s�A) vs ln ɛ was plotted. B was calculated from the intercept

of this plot while n was obtained from the slope.
At the reference temperature, there is no flow softening

term, and so Eq. (1) can be expressed as

s εp; ε̇p;Tð Þ ¼ Aþ B εpð Þn� �
1�T�m� 	 ð6Þ

Using the flow stress data for a particular strain at

different temperatures, the graph of ln 1� s
AþB εpð Þn

h i
vs ln T*

was plotted. The material constant m was obtained from the

slope of this graph.
By using the experimental data (Rae et al., 2007), the

parameters of the traditional JC model were obtained by Gar-

cia-Gonzalez et al. (2015), as shown in Table 1.
Fig. 2 shows the comparisons between the predictions of

JC model and experimental data. As can be seen from Fig. 2a

and b, in the range of strain rates from 10�4 s�1 to 102 s�1,

the maximum deviation between the experimental data and

JC model are less than 7%. Thus the developed JC model

by Garcia-Gonzalez et al. (2015) can give an accurate predic-

tion of the flow stress at room temperature. However, at

elevated temperature, as shown in Fig. 2c, the maximum

difference between the experimental data and JC model is

38%. Therefore, the traditional JC model cannot give good

enough predictions under elevated temperatures. Hence it is

highly desirable to develop new constitutive models that can

be used to give improved prediction of the flow behaviour of

PEEK at both room and elevated temperatures.
2.2. Modified JC model

Similar to the case of the traditional JC model, 296 K and

10�3 s�1 are taken as the reference temperature Treference and

strain rate _εreference, respectively, in deriving the modified JC

model. By substituting the modified temperature term in the

traditional JC model, the modified JC model is proposed as

follows:

s εp; ε̇p;Tð Þ ¼ Aþ B εpð Þn� �
1þ C ln

ε̇p

ε ̇referencep

� �� �

� 1�λ
eT=Tmelting �eTroom=Tmelting

e�eTroom=Tmelting

� �
ð7Þ

where A, B, n, C and λ are materials parameters. Troom is the

room temperature, 296 K. Adopting the same method as

mentioned above, the material constants can be obtained

as, A¼132 MPa, B¼1.0797, n¼0. 06,802, C¼0.0207. It is note-

worthy that the values of B, n and C are different from the

values obtained by Garcia-Gonzalez et al. (2015). This is

mainly due to the mathematical treatment of the

experimental data.
From Eq. (7), the following equation can be obtained:

1� s

Aþ B εpð Þn� �
1þ C ln εṗ

ε0̇p


 �h i ¼ λ
eT=Tmelting �eTroom=Tmelting

e�eTroom=Tmelting
ð8Þ

By using the experimental data, the graph of

1� s

AþB εpð Þn½ � 1þC ln _εp

_ε0
p


 �h i
8<
:

9=
; vs e

T=Tmelting � e
Troom=Tmelting

e� e
Troom=Tmelting

was plotted,

as shown in Fig. 3. The material constant is obtained from

the slope of the graph to be 1.5343. Thus, the following

modified JC model is obtained as

s εp; ε̇p;Tð Þ ¼ 132þ 1:0797 εpð Þ0:06802
h i

1þ 0:0207 ln
ε̇p

ε ̇referencep

� �� �
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Fig. 4 – Comparisons of stress–strain of PEEK given by the experimental data and the modified JC model (a) and (b) at different
strain rates and room temperature and (c) at different temperatures and strain rate of 10�3 s�1.
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� 1�1:5343
eT=Tmelting �eTroom=Tmelting

e�eTroom=Tmelting

� �
ð9Þ

Fig. 4 shows the comparisons between the predictions of

the modified JC model and experimental data. As can be seen

from Fig. 4a and b, in the range of strain rates from 10�4 s�1

to 102 s�1, the differences between the experimental data and

the modified JC model are less than 5% when the strain is

about 0.4. The maximum difference is 12% when the strain is

relative small, less than 0.1. However, the main advantage of
the modified JC model is that it gives a better prediction at
elevated temperatures with a maximum deviation of 13%, as
shown in Fig. 4c.
3. Strain rate and temperature sensitivity

Fig. 5 shows the strain rate and the temperature sensitivity of
PEEK 450G material. From Fig. 5a, it is obvious that the yield
stress is sensitive to the strain rate. In general, the yield
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stress increases with the increase of the strain rate. It can be
found that PEEK 450G shows a largely constant strain rate
dependence when the strain rate is less than 102 s�1 at room
temperature. The strain rate sensitivity becomes non-linear
when the strain rate is higher than 102 s�1. A good agreement
is obtained between the experimental data and the modified
JC model with a maximum deviation less than 4%. The yield
stress is plotted in Fig. 5b as a function of temperature. As can
be seen from the figure, the yield stress is inversely propor-
tional to temperature. The differences between the experi-
mental data and predictions by using the modified JC model
are less than 6% showing a linear relationship between the
yield stress and temperature.
4. Summary

The traditional JC model proposed by Garcia-Gonzalez et al.

(2015) gives a reasonable prediction of the flow behaviour of

PEEK at room temperature but this is not in the case of

elevated temperatures. A modified JC model is proposed to

describe the flow behaviour of PEEK not only at room

temperature but also at elevated temperatures. The modified

JC model correlates well with the experimental data in the

entire range of strain rates and temperatures. The yield stress

was found to be inversely proportional to the temperature.
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