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Abstract: A series of novel furoxan-based NO-donating β-elemene hybrids were designed and 

synthesized to improve the anticancer efficacy of natural β-elemene. The bioassay results indicated 

that all of the target compounds exhibited significantly improved antiproliferative activities against 

three cancer cell lines (SGC-7901, HeLa and U87) compared to parent compound β-elemene. 

Interestingly, these compounds displayed excellent sensitivity to U87 cells with IC50 values ranging 

from 173 to 2 nM. Moreover, most compounds produced high levels of NO in vitro, and the 

antitumor activity of 11a in U87 cells was markedly attenuated by an NO scavenger (hemoglobin 

or carboxy-PTIO). Further mechanism studies revealed that 11a caused the G2 phase arrest of the 

cell cycle and induced apoptosis of U87 cells by preventing the activation of the PI3K/Akt pathway. 

Moreover, 11a significantly suppressed the tumor growth in H22 liver cancer xenograft mouse 

model with a tumor inhibitory ratio (TIR) of 64.8%, which was superior to that of β-elemene (TIR, 

49.6%) at the same dose of 60 mg/kg. Together, the remarkable biological profiles of these novel 

NO-donating β-elemene derivatives may make them promising candidates for the intervention of 

human cancers. 
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1. Introduction 

Over past centuries, natural products have played a key role in drug discovery and development. 

They provided the basis and inspiration for developing effective therapeutics for human diseases 

[1,2]. Review of natural products (NPs) over the 34 years from 1981 to 2014 revealed that 

approximately 51% of the developed therapeutic agents approved by the Food and Drug 

Administration were NPs, their derivatives, and synthetic mimetics related to NPs. Especially in the 

antitumor area, the percentage has risen to ca. 65% [3].  

β-Elemene (7, Scheme 1), a sesquiterpene compound isolated from the traditional Chinese 

medicinal herb Curcuma aromatica Salisb. [4], has been used as an anticancer drug in China for 

many years [5]. Numerous reports have demonstrated that β-elemene exhibited its antineoplastic 

activity in vivo against various human tumors such as glioblastoma [6], liver [7] and breast [8] 

cancers. It inhibited tumor cell growth via diverse mechanisms including induction of apoptosis, 

autophagy and cell cycle arrest, and inhibition of cell proliferation and migration [6-9]. No severe 

side effects were observed in the clinical studies, and on the contrary, patient immunity was 

improved during the therapy with β-elemene [10,11]. Despite these attractive anticancer properties, 

the moderate antitumor potency and poor bioavailability of β-elemene hampers its wide application 

in clinic. In particular, high concentrations of β-elemene were frequently required in order to reach 

the therapeutic effects [11,12]. 

Nitric oxide (NO) is an important signaling and/or effector molecule involved in various 

physiological and pathophysiological processes [13]. High levels of NO exert its antitumor activity 

by inducing cell apoptosis, inhibiting tumor metastasis as well as sensitizing drug-resistant tumor 

cells to chemotherapy, radiation and immunotherapy in vitro and in vivo [14-16]. However, due to 

its short half-life and chemical instability, NO donors are usually employed as surrogates for NO in 

anticancer studies [17]. As an important class of NO donors, furoxans are able to produce high levels 

of NO in vitro and inhibit the growth of tumors in vivo [18]. In recent decade, numerous efforts were 

directed towards the construction of hybrids incorporating furoxan subunits to advance the 

pharmacological profile of the parent drug. Many studies have shown that (phenylsulfonyl)furoxan-

based NO-releasing natural products possessed greater antitumor activity than corresponding parent 

compounds, furoxan precursors and/or their combinations in vitro and in vivo [19-22].  

In order to improve the anticancer efficacy of natural β-elemene, based on the above findings, we 

hypothesized that hybridization of (phenylsulfonyl)furoxan and β-elemene might release high levels 

of NO to exert synergistic antitumor effects with β-elemene. Therefore, a series of hybrids (11a-f, 

14, 18a-f) from such furoxan and β-elemene were designed and synthesized. Their antitumor 

activity in vitro and in vivo, NO-releasing ability and mechanism of anticancer action were 

biologically evaluated.  

 

2. Results and discussions 

2.1. Chemistry 

The synthesis of compounds 11a-f was illustrated in Scheme 1. The substituted furoxans 6a-f 

were synthesized in a five-step sequence. The starting material benzenethiol 1 was treated with 

NaOH and chloroacetic acid under reflux to give 2-(phenylthio)acetic acid 2, which was oxidized 

with 30% H2O2 to generate 2-(phenylsulfonyl)acetic acid 3, followed by treatment with fuming 
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HNO3 to produce di(phenylsulfonyl)furoxan 4. Then, reaction of 4 with different diols gave 

mono(phenylsulfonyl)furoxans 5a-e, which were converted to 6a-f by treatment with corresponding 

anhydrides in the presence of DMAP/Et3N. Chlorination of β-elemene (7) with NaClO produced 

the chlorinated mixture of 8a and 8b, followed by treatment with NaOAc to give the acylated 

compounds 9a and 9b. The resulting products were subjected to alkaline hydrolysis to give a 

mixture of 13-β-elemol (10a) and 14-β-elemol (10b), which was separated by HPLC to provide the 

main component 10a. Subsequent condensation of 10a and 6a-f afforded the target compounds 11a-

f. 

The preparation of compounds 14 and 18a-f was depicted in Scheme 2. Reaction of 10a with 

Boc-L-Asp in the presence of DCC and DMAP using dry DMF as the solvent generated intermediate 

12 [23], followed by esterification with 5b to give intermediate 13, which was deprotected using 

trifluoroacetic acid (TFA) to provide compound 14. Similarly, condensation of 10a and varying Boc-

amino acids in dichloromethane produced intermediates 15a-f, followed by N-Boc deprotection to 

give intermediates 16a-f. Treatment of 6b with oxalyl chloride formed intermediate 17, which 

reacted with 16a-f in the presence of DMAP/Et3N to yield the title compounds 18a-f. 

 

 

Scheme 1. Synthetic routes of the title compounds 11a-f. Reaction conditions and reagents: (a) 

chloroacetic acid, 5M NaOH, reflux, 2 h, 91%; (b) 30% H2O2, AcOH, rt, 2 h; (c) fuming HNO3, 

AcOH, 100 °C, 3 h, 75%; (d) diols, 5M NaOH, 0.5 h, 78-86%; (e) anhydride, DMAP, Et3N, CH2Cl2, 

rt, 2 h, 84-93%; (f) NaClO, HOAc/CH2Cl2, 0-5 oC, 6 h, 55%; (g) NaOAc, DMF, 120 oC, 8 h, 75%; 

(h) MeOH/CHCl3, KOH, reflux, 2 h, 85%; (i) Separated by HPLC, Hexane/EtOH = 98/2 (V/V), UV 

= 214 nm; (j) 6a-f, EDCI, DMAP, rt, 4-8 h, 82-88%. 
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Scheme 2. Synthetic routes of the title compounds 14 and 18a-f. Reaction conditions and reagents: 

(a) Boc-L-Asp, DCC, DMAP, dry DMF, rt, 16 h, 62%; (b) 5b, DCC, DMAP, rt, 8 h, 85%; (c) TFA, 

CH2Cl2, rt, 1 h, 78%; (d) Boc-amino acids, DCC, DMAP, rt, 4-10 h, 82-91%; (e) TFA, CH2Cl2, rt, 

0.5-1.5 h, 77-84%; (f) oxalyl chloride, Cat. DMF, CH2Cl2, rt, 1.5 h; (g) DMAP, Et3N, CH2Cl2, rt, 1-

2 h, 45-67%. 

 

2.2. In vitro antiproliferative activity 

Initially, compounds 11a-f were first prepared and tested for their antiproliferative effects on 

three cancer cell lines (SGC-7901: human gastric carcinoma; HeLa: human cervical 

adenocarcinoma; U87: human glioblastoma). The results were presented in Table 1. As expected, 

all of the synthesized compounds showed much more potent antiproliferative activities than β-

elemene, and most of them were comparable or even superior to positive control cisplatin. 

Interestingly, these compounds exhibited excellent sensitivity to U87 cells with IC50 values ranging 

from 0.154 to 0.002 μM. It was found that improvement of the activity was acquired by decreasing 

the length of the diol chain from C6 to C2 (e.g. 11c < 11b < 11a). Replacement of butane-1,4-diol 

(11b) with 2-butine-1,4-diol (11d) or diethylene glycol (11e) resulted in slightly increased activity 

in SGC-7901 and HeLa cells, whereas the activity markedly decreased in U87 cells. Surprisingly, 

change of succinic anhydride (11b) to o-phthalic anhydride (11f) led to dramatically decreased 

activity in all the three cell lines.  

Considering that the poor oral bioavailability of β-elemene is one of the main factors that lead to 

its moderate antitumor activity, some amino acids were introduced into the linker to improve the 

druggability of β-elemene [23-26] and further investigated for the structure-activity relationships. 

As a result, compounds 14 and 18a-f were synthesized and evaluated for their antiproliferative 

activities against SGC-7901, HeLa and U87 cells. As depicted in Table 1, these compounds 

exhibited significantly improved activities compared to β-elemene, which were comparable or even 

superior to positive control cisplatin. Replacement of succinic anhydride (11b) with L-aspartic acid 

(14) strengthened the activity against SGC-7901 and HeLa cells, whereas the activity in U87 cells 

sharply decreased, suggesting that introduction of a polar amino group (-NH2) into the linker was 

much detrimental for the cytotoxicity against U87 cells. Incorporating several other amino acids, 

such as glycine (18a), β-alanine (18b), L-alanine (18c), etc. into 11b had no significant effects on 

SGC-7901 and HeLa cells compared to 11b, while the activity in U87 cells remarkably diminished 

except 18d containing L-isoleucine. Extending the chain length from glycine (18a) to β-alanine (18b) 

resulted in 3 times increased activity in U87 cells. It was observed that substitution of varying 

lipophilic groups at α-position of glycine (e.g. 18c-f) enhanced the activity at different levels, in 

particular, 18d showed over 17 times more potent activity than 18a in U87 cells, which was 
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comparable to 11b, but still 5 times less than 11a. 

Among all target compounds, 11a exhibited the strongest antiproliferative activity against 

SGC-7901, HeLa, and U87 cells with IC50 values of 3.18, 4.94, and 0.002 μM, respectively, which 

were significantly superior to that of positive control cisplatin (IC50, 9.09, 16.28, and 21.39 μM, 

respectively). Moreover, 11a was further assayed with lower cytotoxicity in normal liver LO-2 cells 

(IC50, 30.42 μM). Thus, compound 11a was selected for subsequent anticancer mechanism and in 

vivo cancer xenograft mouse model studies. 

 

Table 1 

Antiproliferative activity (IC50, μM) of β-elemene derivatives against three cancer cell lines 

Compd. 
Cell lines (IC50

a, μM) 

SGC-7901 HeLa U87 

β-Elemene 236.27 ± 18.41 213.51 ± 15.23 179.72 ± 15.37 

11a 3.18 ± 0.22 4.94 ± 0.34 0.002 ± 0.0005 

11b 8.76 ± 0.53 10.92 ± 0.79 0.007 ± 0.0013 

11c 22.86 ± 1.64 23.16 ± 0.93 0.154 ± 0.0172 

11d 4.97 ± 0.72 3.78 ± 0.16 0.085 ± 0.0057 

11e 4.66 ± 0.25 5.78 ± 0.55 0.024 ± 0.0046 

11f 27.81 ± 2.08 21.86 ± 1.91 0.081± 0.0062 

14 2.92 ± 0.21 3.64 ± 0.27 0.124 ± 0.0089 

18a 15.31 ± 1.36 10.20 ± 0.58 0.173 ± 0.0203 

18b 7.78 ± 0.49 8.86 ± 0.74 0.058 ± 0.0038 

18c 11.81 ± 0.97 10.92 ± 0.66 0.114 ± 0.0092 

18d 3.66 ± 0.26 4.25 ± 0.55 0.010 ± 0.0018 

18e 9.97 ± 0.85 10.76 ± 0.88 0.061 ± 0.0071 

18f 9.49 ± 0.77 11.24 ± 0.95 0.055 ± 0.0034 

Cisplatin 9.09 ± 0.83 16.28 ± 1.06 21.39 ± 1.91 

a IC50: concentration of the test compound that inhibits 50% of cell growth. Data are expressed  

as the mean ± SD (n = 3). 

 

2.3. Effects of NO on the antitumor activity 

To examine whether NO contributes to the antitumor activity, the levels of NO released by the 

test compounds in vitro were first detected and presented as that of nitrite by Griess assay. As shown 

in Figure 1A, all of the compounds produced high levels of NO with time. It was observed that the 

concentrations of released NO gradually decreased with the extension of the diol chain length (e.g. 

11a > 11b > 11c), which was consist with the antiproliferative activity. Among these compounds, 

11a, 14, 18d released higher NO levels than other compounds, while 11c and 11f exhibited the 

lowest NO-releasing ability, which might, at least in part, result in their relatively poor 

antiproliferative activities.  

Subsequently, 11a was investigated for its inhibitory activity against U87 cells in the presence or 

absence of an NO scavenger, hemoglobin (Hb) or carboxy-PTIO (PTIO). U87 cells were pretreated 

with varying concentrations of Hb or PTIO for 2 h and then treated with 0.01 μM 11a for another 

72 h. The effects of different treatments on the growth of U87 cells were determined by the MTT 

assay (Figure 1B). Treatment with 11a alone significantly inhibited the proliferation of U87 cells 
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and this inhibitory effect was reduced dose-dependently by pretreatment with Hb or PTIO. These 

results demonstrated that NO generated by 11a enhanced its inhibition effect on U87 cell 

proliferation in vitro. 

Furthermore, 10a, 6a as the two moieties of 11a and their equimolar combination were also 

examined for their antiproliferative activitities against U87 cells. As shown in Figure 2, the 

inhibitory effects of 10a (IC50 = 197.65 μM), 6a (IC50 = 32.24 μM) and their combination (IC50 = 

22.53 μM) were much less potent than 11a (IC50 = 0.002 μM), respectively. These results suggested 

that the excellent antitumor activity of 11a resulted from a synergic effect of β-elemene and NO 

donor moieties. 

 

 

Figure 1. Effects of NO produced by the title compounds on the antitumor activity. (A) The levels 

of released NO for the test compounds were measured at 100 μM over duration of 120 min by 

Griess assay. (B) Effect of hemoglobin (Hb) or carboxy-PTIO (PTIO) on the antiproliferative 

activity of 11a. U87 cells were pretreated with the indicated concentrations of Hb or PTIO for 2 h 

and then treated with 0.01 μM of 11a for another 72 h. Data are expressed as the mean ± SD (n=3). 

*P < 0.05, **P < 0.01, ***P < 0.001 vs. the group without Hb or PTIO. 

 

 

Figure 2. Antiproliferative activity of 11a in comparison with that of 10a, 6a and their equimolar 

combination in U87 cells. 

 

2.4. Effect of 11a on cell cycle 

To investigate whether 11a suppressed the cell growth by a cell-cycle arrest, the cell cycle 
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distribution was analyzed by flow cytometry after staining of the DNA with propidium iodide (PI). 

As shown in Figure 3, 11a influenced cell cycle progression at low nanomolar concentrations. 

Treatment of U87 cells with 11a at concentrations of 0.5-2.0 nM increased the percentage of cells 

at the G2 phase from 18.86% to 47.99% accompanying by a decrease in G1-phase cells from 54.11% 

to 26.96% in a dose-dependent manner, respectively. The results indicated that 11a caused the G2 

phase arrest of the cell cycle in 11a-induced cell growth inhibition. 

 

 

Figure 3. Effect of 11a on cell cycle progression of U87 cells. Treatment of U87 cells with 11a (0, 

0.5, 1.0, 2.0 nM) for 72 h, intracellular DNA was stained with propidium iodide (PI). Cell cycle 

distribution was analyzed by flow cytometry. 

 

2.5. Effect of 11a on cell apoptosis 

To determine the possible role of 11a in cell apoptosis, U87 cells were treated with different 

concentrations of 11a for 72 h and stained with Annexin V-APC/7-AAD. The percentages of 

apoptotic U87 cells were measured by flow cytometry. As depicted in Figure 4, 11a significantly 

induced apoptosis of U87 cells in a concentration-dependent manner. Treatment of U87 cells with 

11a at concentrations of 0.5, 1.0 and 2.0 nM for 72 h resulted in 18.32%, 34.94% and 53.70% 

apoptotic cells (Q2 + Q4), respectively, as compared with 6.84% in an untreated group. The results 

indicated that 11a exerted its antitumor activity potentially via the induction of cell apoptosis. 
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Figure 4. Effect of 11a on apoptosis of U87 cells. Treatment with 11a at the indicated concentrations 

for 72 h, U87 cells were collected and stained with Annexin V-APC/7-AAD, followed by flow 

cytometric analysis. 

 

2.6. Effect of 11a on apoptosis-related proteins 

Akt plays a key role in regulating a diversity of cellular functions, such as protein synthesis, cell 

cycle, cell survival and apoptosis [27,28]. It has been reported that apoptosis might be prevented 

through the activation of the PI3K/Akt pathway in several cancer cells [29-32]. Activated Akt 

phosphorylates the intracellular protein Bad, resulting in the release of the anti-apoptotic protein 

Bcl-2, which contributes to cancer cell survival. Bax, a dominant-negative inhibitor of Bcl-2, 

induces a mitochondrial permeability transition and promotes apoptosis [33]. Caspase-3 acts as a 

final executor in apoptosis and can be irreversibly activated through cleavage of pro-caspase-3 [34]. 

As shown in Figure 5, 11a significantly inhibited p-Akt activation, Bcl-2 expression and promoted 

Bax expression, caspase-3 activation in concentration-dependent manners, while the total protein 

level of Akt was not altered. The results indicated that 11a induced apoptosis of U87 cells possibly 

through suppressing the activation of the PI3K/Akt pathway. 
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Figure 5. Effects of 11a on apoptosis-related proteins in U87 cells. U87 cells were treated with 

varying concentrations of 11a for 72 h. (A) The expressions of p-Akt, Akt, Bcl-2, Bax, pro-caspase-

3 and caspase-3 were determined by Western Blotting using specific antibodies. GAPDH was used 

as internal control; (B) The density ratios of proteins to GAPDH are shown as relative expression. 

Data are expressed as the mean ± SD (n = 3). **P < 0.01 vs. control group. 

 

2.7. In vivo antitumor activity of 11a  

To further evaluate the in vivo antitumor activity of 11a, human liver cancer xenograft was 

established by subcutaneous inoculation of H22 cells into the right flank of mice. 32 mice were then 

divided into four groups at random and administered intravenously with 60 mg/kg β-elemene, 30 or 

60 mg/kg 11a in a vehicle of 10% DMF/2% Tween 80/88% saline once a day, respectively. All the 

mice were sacrificed after three weeks, and the tumors were excised and weighed. As presented in 

Table 2, 11a markedly inhibited the tumor growth in a dose-dependent manner. At a dose of 60 

mg/kg, 11a possessed a tumor inhibitory rate (TIR) of 64.8%, which was significantly superior to 

β-elemene with a TIR of 49.6%. Thus, 11a may deserve further investigation as a potential anti-

cancer drug candidate. 

 

Table 2. In vivo antitumor activity of 11a in H22 liver cancer xenograft mouse model  

Drugs 
Dose 

mg/kg 

Number of 

mice  
Weight of mice (g) 

 

Weight of 

tumor X ± SD 

(g) 

 

Ratio of 

inhibition 

(%) Start End Start End 

Controla - 8 8  18.0 ± 0.2 22.9 ± 0.4  5.68 ± 0.49   

β-Elemene 60 8 8  18.1 ± 0.1 20.0 ± 0.3  2.86 ± 0.27**  49.6% 

11a 
30 8 8  18.2 ± 0.2 21.6 ± 0.4  2.83 ± 0.19**  50.2% 

60 8 8  18.0 ± 0.2 20.9 ± 0.6  2.00 ± 0.16**  64.8% 

a Control: vehicle of 10% DMF/2% Tween 80/88% saline. **P < 0.01 vs. control group. 

3. Conclusion 

In summary, thirteen novel furoxan-based NO-donating β-elemene derivatives were synthesized 

and displayed much more potent antiproliferative activities than parent compound β-elemene 

against SGC-7901, HeLa and U87 cell lines, which are comparable or even superior to that of 

positive control cisplatin. Moreover, most compounds released high levels of NO in vitro, and the 

antitumor activity of 11a in U87 cells was remarkably diminished by an NO scavenger in a dose-

app:ds:superior
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dependent manner. Further mechanism studies showed that 11a blocked the G2 phase of the cell 

cycle and induced apoptosis through inhibiting the activation of the PI3K/Akt pathway. Finally, the 

in vivo antitumor activity of 11a was verified in H22 liver cancer xenograft mouse model. 

Collectively, the current finding may provide a new insight for the design of natural product-based 

drugs to enhance the efficacy of chemotherapy. 

4. Experimental section 

4.1. Chemistry 

4.1.1. General 

Most chemicals and solvents were purchased from commercial sources. Further purification and 

drying by standard methods were employed when necessary. 1H NMR and 13C NMR spectra were 

recorded on Bruker-300 spectrometers in the indicated solvents (TMS as internal standard). Data 

are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, 

q = quartet, brs = broad singlet, m = multiplet), coupling constant (Hz), and integration. High 

Resolution Mass measurement was performed on Agilent QTOF 6520 mass spectrometer with 

electron spray ionization (ESI) as the ion source. Purity of all tested compounds was ≥ 95%, as 

estimated by HPLC analysis. Flash column chromatography was carried out using commercially 

available silica gel (200-300 mesh) under pressure. Intermediates 6a-f [35] and 10a [36] were 

synthesized according to our reported procedures.  

4.1.2. General procedure for synthesis of the title compound 11a-f 

To a solution of 10a (44 mg, 0.2 mmol) in CH2Cl2 (5 mL) was added 6 (0.24 mmol), EDCI (58 

mg, 0.3 mmol), DMAP (3 mg, 0.02 mmol), the mixture was stirred for 4-8 h at room temperature. 

The reaction mixture was then diluted with CH2Cl2, washed with 10% HCl, water, and brine 

successively, dried over anhydrous Na2SO4, and concentrated. The residue was purified by flash 

column chromatography using petroleum ether/ethyl acetate (4/1, V/V) as an eluent to afford the 

title compounds. 

4.1.2.1. Compound 11a 

Colorless liquid, yield 84%. 1H NMR (300 MHz, CDCl3) δ 8.13 – 8.01 (m, 2H), 7.77 (t, J = 7.5 

Hz, 1H), 7.64 (t, J = 7.7 Hz, 2H), 5.81 (dd, J = 17.8, 10.5 Hz, 1H), 5.05 (s, 1H), 5.01 (s, 1H), 4.93 

(d, J = 3.3 Hz, 1H), 4.88 (d, J = 1.2 Hz, 1H), 4.82 (s, 1H), 4.66 – 4.57 (m, 5H), 4.56 – 4.50 (m, 2H), 

2.72 (s, 4H), 2.10 – 1.95 (m, 2H), 1.71 (s, 3H), 1.69 – 1.55 (m, 3H), 1.53 – 1.40 (m, 3H), 1.00 (s, 

3H); 13C NMR (75 MHz, CDCl3) δ 171.53, 171.38, 158.18, 149.50, 147.70, 146.88, 137.51, 135.19, 

129.20, 128.14, 111.77, 110.43, 109.56, 68.35, 65.93, 60.92, 52.10, 41.21, 39.28(2), 32.48, 28.49, 

28.40, 26.51, 24.33, 16.07; HRMS (ESI) calculated for C29H36N2NaO9S [M + Na]+ 611.2034, found 

611.2038. 

4.1.2.2. Compound 11b 

Colorless liquid, yield 87%. 1H NMR (300 MHz, CDCl3) δ 8.12 – 8.01 (m, 2H), 7.77 (dd, J = 

10.7, 4.3 Hz, 1H), 7.63 (t, J = 7.7 Hz, 2H), 5.81 (dd, J = 17.8, 10.5 Hz, 1H), 5.05 (s, 1H), 5.01 (s, 

1H), 4.93 (d, J = 3.4 Hz, 1H), 4.88 (d, J = 1.0 Hz, 1H), 4.82 (s, 1H), 4.61 (s, 2H), 4.58 (s, 1H), 4.46 

(t, J = 6.2 Hz, 2H), 4.20 (t, J = 6.2 Hz, 2H), 2.76 – 2.62 (m, 4H), 2.08 – 1.91 (m, 4H), 1.90 – 1.75 

(m, 2H), 1.71 (s, 3H), 1.69 – 1.55 (m, 3H), 1.53 – 1.41 (m, 3H), 1.00 (s, 3H); 13C NMR (75 MHz, 

CDCl3) δ 171.77, 171.52, 158.42, 149.50, 147.72, 146.88, 137.52, 135.16, 129.20, 128.05, 111.77, 

110.41, 109.56, 70.44, 65.88, 63.41, 52.10, 41.21, 39.28(2), 32.50, 28.61, 28.53, 26.52, 24.69, 24.49, 

24.34, 16.07; HRMS (ESI) calculated for C31H40N2NaO9S [M + Na]+ 639.2347, found 639.2347. 
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4.1.2.3. Compound 11c 

Colorless liquid, yield 85%. 1H NMR (300 MHz, CDCl3) δ 8.06 (d, J = 7.5 Hz, 2H), 7.76 (t, J = 

7.5 Hz, 1H), 7.62 (t, J = 7.9 Hz, 2H), 5.81 (dd, J = 17.7, 10.5 Hz, 1H), 5.05 (s, 1H), 5.01 (s, 1H), 

4.93 (d, J = 4.5 Hz, 1H), 4.88 (s, 1H), 4.82 (s, 1H), 4.60 (s, 2H), 4.58 (s, 1H), 4.42 (t, J = 6.5 Hz, 

2H), 4.12 (t, J = 6.5 Hz, 2H), 2.72 – 2.61 (m, 4H), 2.09 – 1.96 (m, 2H), 1.94 – 1.82 (m, 2H), 1.71 

(s, 3H), 1.69 – 1.57 (m, 6H), 1.51 – 1.42 (m, 6H), 1.00 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 172.19, 

171.92, 158.93, 149.90, 148.17, 147.26, 138.07, 135.50, 129.55, 128.42, 112.17, 110.86, 109.94, 

71.33, 66.26, 64.45, 52.57, 41.67, 39.71, 39.64, 32.94, 29.09, 29.01, 28.37, 28.23, 26.95, 25.36, 

25.18, 24.70, 16.51; HRMS (ESI) calculated for C33H44N2NaO9S [M + Na]+ 667.2660, found 

667.2676. 

4.1.2.4. Compound 11d 

Colorless liquid, yield 78%. 1H NMR (300 MHz, CDCl3) δ 8.08 (d, J = 7.9 Hz, 2H), 7.77 (t, J = 

6.8 Hz, 1H), 7.64 (t, J = 7.1 Hz, 2H), 5.82 (dd, J = 17.2, 10.7 Hz, 1H), 5.10 (s, 2H), 5.05 (s, 1H), 

5.02 (s, 1H), 4.93 (d, J = 3.8 Hz, 1H), 4.88 (s, 1H), 4.83 (s, 1H), 4.77 (s, 2H), 4.62 (s, 2H), 4.59 (s, 

1H), 2.71 (s, 4H), 2.09 – 1.95 (m, 2H), 1.71 (s, 3H), 1.64 – 1.54 (m, 3H), 1.53 – 1.41 (m, 3H), 1.01 

(s, 3H); 13C NMR (75 MHz, CDCl3) δ 171.65, 171.35, 157.86, 149.91, 148.14, 147.27, 137.81, 

135.64, 129.64, 128.57, 112.20, 110.95, 109.97, 83.74, 78.61, 66.39, 58.52, 52.59, 52.04, 41.70, 

39.73, 39.66, 32.96, 28.90, 28.74, 26.97, 24.70, 16.53; HRMS (ESI) calculated for C31H36N2NaO9S 

[M + Na]+ 635.2034, found 635.2049. 

4.1.2.5. Compound 11e 

Colorless liquid, yield 80%. 1H NMR (300 MHz, CDCl3) δ 8.14 – 8.03 (m, 2H), 7.77 (t, J = 7.5 

Hz, 1H), 7.63 (t, J = 7.7 Hz, 2H), 5.81 (dd, J = 17.8, 10.5 Hz, 1H), 5.04 (s, 1H), 5.00 (s, 1H), 4.93 

(d, J = 3.6 Hz, 1H), 4.88 (s, 1H), 4.82 (s, 1H), 4.65 – 4.52 (m, 5H), 4.30 (t, J = 4.7 Hz, 2H), 3.92 (t, 

J = 4.4 Hz, 2H), 3.80 (t, J = 4.7 Hz, 2H), 2.69 (s, 4H), 2.08 – 1.96 (m, 2H), 1.71 (s, 3H), 1.69 – 1.56 

(m, 3H), 1.54 – 1.41 (m, 3H), 1.00 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 171.79, 171.48, 158.41, 

149.51, 147.72, 146.87, 137.51, 135.18, 129.19, 128.08, 111.76, 110.38, 109.55, 70.03, 68.86, 67.84, 

65.83, 63.19, 52.08, 41.17, 39.27(2), 32.48, 28.55, 28.43, 26.50, 24.35, 16.06; HRMS (ESI) 

calculated for C31H40N2NaO10S [M + Na]+ 655.2296, found 655.2299. 

4.1.2.6. Compound 11f 

Colorless liquid, yield 81%. 1H NMR (300 MHz, CDCl3) δ 8.16 – 7.99 (m, 2H), 7.86 – 7.77 (m, 

1H), 7.77 – 7.65 (m, 2H), 7.67 – 7.53 (m, 4H), 5.82 (dd, J = 17.8, 10.5 Hz, 1H), 5.15 (s, 1H), 5.07 

(s, 1H), 4.94 (d, J = 3.4 Hz, 1H), 4.89 (d, J = 1.0 Hz, 1H), 4.84 (s, 3H), 4.59 (s, 1H), 4.48 (t, J = 5.9 

Hz, 2H), 4.41 (t, J = 5.9 Hz, 2H), 2.16 – 1.88 (m, 6H), 1.71 (s, 3H), 1.70 – 1.56 (m, 3H), 1.55 – 1.42 

(m, 3H), 1.01 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 167.23, 166.53, 158.42, 149.47, 147.52, 146.87, 

137.53, 135.15, 131.96, 131.10, 130.87, 130.58, 129.20, 128.55, 128.28, 128.03, 111.78, 110.79, 

109.59, 70.43, 66.77, 64.39, 52.10, 41.22, 39.26(2), 32.53, 26.52, 24.80, 24.43, 24.35, 16.07; HRMS 

(ESI) calculated for C35H40N2NaO9S [M + Na]+ 687.2347, found 687.2345. 

4.1.3. Synthesis of the title compound 14 

To a solution of 10a (88 mg, 0.4 mmol) in anhydrous DMF (8 mL) was added Boc-L-aspartic acid 

(280 mg, 1.2 mmol), DCC (91 mg, 0.44 mmol), DMAP (0.04 mmol, 5 mg), the mixture was stirred 

for 16 h at room temperature. The reaction mixture was added 8 mL H2O and extracted with ethyl 

acetate (15 mL× 3). The combined organic extracts were washed with water (10 mL × 2), dried over 

anhydrous Na2SO4 and concentrated to give the crude intermediate 12 in 62% yield without further 

purification [23]. 



12 
 

12 (87 mg, 0.2 mmol), 5b (76 mg, 0.24 mmol), DCC (46 mg, 0.22 mmol) and DMAP (3 mg, 0.02 

mmol) were added in CH2Cl2 (5 mL) and stirred for 6 h at room temperature. The reaction mixture 

was then diluted with CH2Cl2, washed with 10% HCl, water, dried over anhydrous Na2SO4, and 

concentrated. The residue was purified by flash column chromatography using petroleum 

ether/ethyl acetate (10/1, V/V) as an eluent to obtain intermediate 13 as yellowish liquid, yield 85%. 

1H NMR (300 MHz, CDCl3) δ 8.07 (d, J = 7.4 Hz, 2H), 7.77 (t, J = 7.5 Hz, 1H), 7.63 (t, J = 7.7 Hz, 

2H), 5.81 (dd, J = 17.8, 10.5 Hz, 1H), 5.52 (d, J = 8.6 Hz, 1H), 5.05 (s, 1H), 5.02 (s, 1H), 4.93 (d, J 

= 2.7 Hz, 1H), 4.88 (d, J = 1.9 Hz, 1H), 4.82 (s, 1H), 4.73 – 4.54 (m, 4H), 4.45 (t, J = 6.1 Hz, 2H), 

4.19 (t, J = 6.2 Hz, 2H), 3.10 – 2.80 (m, 4H), 2.10 – 1.91 (m, 2H), 1.90 – 1.75 (m, 2H), 1.70 (s, 3H), 

1.68 – 1.52 (m, 3H), 1.45 (s, 12H), 1.00 (s, 3H); MS (ESI) m/z: 732.0 [M + H]+; 749.2 [M + NH4]+; 

766.0 [M + Cl]-. 

To a solution of 13 (125 mg, 0.17 mmol) in 5 mL CH2Cl2, 0.5 mL trifluoroacetic acid was 

dropwise added and stirred at room temperature for 1 h. The reaction solution was concentrated, 

and the residue was purified by flash column chromatography using CH2Cl2/MeOH (50/1, V/V) as 

an eluent to afford the title compound 14 as yellowish liquid, yield 78%. 1H NMR (300 MHz, CDCl3) 

δ 8.12 – 8.00 (m, 2H), 7.77 (t, J = 7.5 Hz, 1H), 7.63 (t, J = 7.7 Hz, 2H), 5.81 (dd, J = 17.8, 10.5 Hz, 

1H), 5.05 (s, 1H), 5.03 (s, 1H), 4.93 (d, J = 3.1 Hz, 1H), 4.88 (d, J = 1.4 Hz, 1H), 4.83 (s, 1H), 4.64 

(s, 2H), 4.58 (s, 1H), 4.46 (t, J = 6.1 Hz, 2H), 4.21 (t, J = 6.2 Hz, 2H), 3.95 – 3.85 (m, 1H), 2.92 – 

2.71 (m, 2H), 2.05 (s, 2H), 2.03 – 1.90 (m, 4H), 1.89 – 1.77 (m, 2H), 1.71 (s, 3H), 1.68 – 1.56 (m, 

3H), 1.54 – 1.42 (m, 3H), 1.00 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 173.28, 170.63, 158.42, 149.41, 

147.46, 146.83, 137.50, 135.16, 129.20, 128.04, 111.79, 110.77, 109.61, 70.41, 66.43, 63.55, 52.10, 

50.77, 41.25, 39.24(2), 38.25, 32.50, 26.51, 24.69, 24.47, 24.34, 16.07; HRMS (ESI) calculated for 

C31H42N3NaO9S [M + H]+ 632.2636, found 632.2639. 

4.1.4. General procedure for synthesis of the title compounds 18a-f 

4.1.4.1. Synthesis of intermediates 15a-f 

To a solution of 10a (88 mg, 0.4 mmol) in CH2Cl2 (5 mL) was added corresponding Boc-amino 

acid (0.48 mmol), DCC (58 mg, 0.44 mmol), DMAP (5 mg, 0.04 mmol), the mixture was stirred for 

4-10 h at room temperature. The reaction mixture was then diluted with CH2Cl2, washed with 10% 

HCl, water, dried over anhydrous Na2SO4, and concentrated. The residue was purified by flash 

column chromatography using petroleum ether/ethyl acetate (10/1, V/V) as an eluent to give 

intermediates 15a-f as yellowish liquid, yield 82-91%. 

4.1.4.2. Synthesis of intermediates 16a-f 

To a solution of 15 (0.3 mmol) in CH2Cl2 (5 mL), 0.5 mL trifluoroacetic acid was dropwise added 

and stirred at room temperature for 0.5-1.5 h. The reaction solution was concentrated, and the 

residue was purified by flash column chromatography using CH2Cl2/MeOH (40/1, V/V) as an eluent 

to give intermediates 16a-f as yellowish liquid, yield 77-84%. 

4.1.4.3. Synthesis of intermediate 17 

To a solution of 6b (124 mg, 0.3 mmol) in CH2Cl2 (5 mL) were added oxalyl chloride (37 μL, 

0.45 mmol) and a catalytic amount of DMF, the mixture was stirred at room temperature for 1.5 h 

and then concentrated to yield intermediate 17 as yellowish liquid without further purification. 

4.1.4.4. Synthesis of compounds 18a-f 

A mixture of 16 (0.2 mmol), DMAP (3 mg, 0.02 mmol), triethylamine (83 μL, 0.6 mmol) in 

CH2Cl2 (5 mL) were dropwise added a 2 mL CH2Cl2 solution of 17 (0.3 mmol) and stirred at room 

temperature for 1-2 h. The reaction mixture was then diluted with CH2Cl2, washed with 10% HCl, 
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water, dried over anhydrous Na2SO4, and concentrated. The residue was purified by flash column 

chromatography using petroleum ether/ethyl acetate (2/1, V/V) as an eluent to afford the title 

compounds. 

4.1.4.4.1. Compound 18a 

Yellowish liquid, yield 49%. 1H NMR (300 MHz, CDCl3) δ 8.06 (d, J = 7.3 Hz, 2H), 7.76 (t, J = 

7.4 Hz, 1H), 7.63 (t, J = 7.6 Hz, 2H), 6.19 (s, 1H), 5.81 (dd, J = 17.8, 10.6 Hz, 1H), 5.05 (s, 1H), 

5.03 (s, 1H), 4.93 (d, J = 3.3 Hz, 1H), 4.88 (s, 1H), 4.83 (s, 1H), 4.65 (s, 2H), 4.58 (s, 1H), 4.46 (t, 

J = 6.1 Hz, 2H), 4.19 (t, J = 6.2 Hz, 2H), 4.08 (d, J = 5.0 Hz, 2H), 2.70 (t, J = 6.4 Hz, 2H), 2.58 (t, 

J = 6.5 Hz, 2H), 2.06 – 1.91 (m, 4H), 1.87 – 1.81 (m, 2H), 1.71 (s, 3H), 1.68 – 1.55 (m, 3H), 1.53 – 

1.40 (s, 3H), 1.00 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 172.68, 171.46, 169.60, 158.86, 149.84, 

147.69, 147.22, 138.01, 135.55, 129.60, 128.45, 112.22, 111.54, 110.00, 70.91, 66.95, 63.81, 52.56, 

41.61, 41.37, 39.69, 39.63, 32.96, 30.51, 29.26, 26.97, 25.14, 24.89, 24.71, 16.52; HRMS (ESI) 

calculated for C33H43N3NaO10S [M + Na]+ 696.2561, found 696.2576. 

4.1.4.4.2. Compound 18b 

Yellowish liquid, yield 53%. 1H NMR (300 MHz, CDCl3) δ 8.14 – 7.99 (m, 2H), 7.77 (t, J = 7.5 

Hz, 1H), 7.64 (t, J = 7.7 Hz, 2H), 6.24 (s, 1H), 5.81 (dd, J = 17.8, 10.5 Hz, 1H), 5.04 (s, 1H), 5.02 

(s, 1H), 4.93 (d, J = 3.1 Hz, 1H), 4.88 (d, J = 1.4 Hz, 1H), 4.83 (s, 1H), 4.61 (s, 2H), 4.58 (s, 1H), 

4.46 (t, J = 6.2 Hz, 2H), 4.18 (t, J = 6.2 Hz, 2H), 3.54 (dd, J = 11.9, 6.0 Hz, 2H), 2.68 (t, J = 6.7 Hz, 

2H), 2.59 (t, J = 5.9 Hz, 2H), 2.48 (t, J = 6.7 Hz, 2H), 2.06 – 1.91 (m, 4H), 1.90 – 1.78 (m, 2H), 

1.71 (s, 3H), 1.70 – 1.54 (m, 3H), 1.53 – 1.40 (m, 3H), 1.01 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 

172.33, 171.85, 170.76, 158.43, 149.43, 147.62, 146.85, 137.52, 135.16, 129.20, 128.04, 111.79, 

110.63, 109.60, 70.46, 65.87, 63.32, 52.11, 41.23, 39.26(2), 34.39, 33.52, 32.51, 30.34, 28.87, 26.52, 

24.72, 24.47, 24.33, 16.07; HRMS (ESI) calculated for C34H46N3NaO10S [M + H]+ 688.2898, found 

688.2908. 

4.1.4.4.3. Compound 18c 

Yellowish liquid, yield 64%. 1H NMR (300 MHz, CDCl3) δ 8.06 (d, J = 7.6 Hz, 2H), 7.76 (t, J = 

7.4 Hz, 1H), 7.63 (t, J = 7.7 Hz, 2H), 6.28 (d, J = 6.9 Hz, 1H), 5.81 (dd, J = 17.7, 10.6 Hz, 1H), 5.05 

(s, 1H), 5.02 (s, 1H), 4.93 (d, J = 3.6 Hz, 1H), 4.88 (s, 1H), 4.82 (s, 1H), 4.70 – 4.57 (m, 4H), 4.46 

(t, J = 6.1 Hz, 2H), 4.19 (t, J = 6.0 Hz, 2H), 2.73 – 2.63 (m, 2H), 2.55 (t, J = 6.5 Hz, 2H), 2.03 – 

1.93 (m, 4H), 1.86 – 1.80 (m, 2H), 1.70 (s, 3H), 1.67 – 1.52 (m, 3H), 1.49 – 1.41 (m, 6H), 1.00 (s, 

3H); 13C NMR (75 MHz, CDCl3) δ 172.59, 172.53, 170.85, 158.74, 149.72, 147.67, 147.09, 137.88, 

135.47, 129.51, 128.31, 112.10, 111.16, 109.88, 70.81, 66.76, 63.67, 52.47, 48.03, 41.55, 39.58, 

39.51, 32.84, 30.47, 29.16, 26.87, 25.01, 24.77, 24.60, 18.15, 16.42; HRMS (ESI) calculated for 

C34H45N3NaO10S [M + Na]+ 710.2718, found 710.2734. 

4.1.4.4.4. Compound 18d 

Yellowish liquid, yield 67%. 1H NMR (300 MHz, CDCl3) δ 8.13 – 7.99 (m, 2H), 7.77 (t, J = 7.5 

Hz, 1H), 7.64 (t, J = 7.7 Hz, 2H), 6.25 (d, J = 8.6 Hz, 1H), 5.81 (dd, J = 17.8, 10.5 Hz, 1H), 5.07 (s, 

1H), 5.03 (s, 1H), 4.93 (d, J = 3.4 Hz, 1H), 4.88 (d, J = 0.9 Hz, 1H), 4.83 (s, 1H), 4.72 – 4.61 (m, 

3H), 4.58 (s, 1H), 4.45 (t, J = 6.2 Hz, 2H), 4.19 (t, J = 6.2 Hz, 2H), 2.81 – 2.64 (m, 2H), 2.64 – 2.54 

(m, 2H), 2.11 – 1.78 (m, 7H), 1.71 (s, 3H), 1.67 – 1.53 (m, 3H), 1.53 – 1.37 (m, 4H), 1.28 – 1.11 

(m, 1H), 1.01 (s, 3H), 0.96 – 0.88 (m, 6H); 13C NMR (75 MHz, CDCl3) δ 172.31, 171.26, 170.62, 

158.42, 149.43, 147.27, 146.81, 137.51, 135.17, 129.20, 128.03, 111.79, 111.27, 109.60, 70.46, 

66.45, 63.37, 56.01, 52.15, 41.00, 39.26(2), 37.51, 32.45, 30.34, 28.90, 26.46, 24.70, 24.57, 24.46, 

24.34, 16.06, 14.98, 11.18; HRMS (ESI) calculated for C37H52N3O10S [M + H]+ 730.3368, found 
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730.3371. 

4.1.4.4.5. Compound 18e 

Yellowish liquid, yield 61%. 1H NMR (300 MHz, CDCl3) δ 8.09 – 7.98 (m, 2H), 7.76 (t, J = 7.5 

Hz, 1H), 7.62 (t, J = 7.7 Hz, 2H), 7.35 – 7.18 (m, 3H), 7.16 – 7.07 (m, 2H), 6.17 (d, J = 7.7 Hz, 1H), 

5.81 (dd, J = 17.8, 10.5 Hz, 1H), 5.03 (s, 2H), 4.96 – 4.87 (m, 3H), 4.84 (s, 1H), 4.71 – 4.52 (m, 

3H), 4.45 (t, J = 6.2 Hz, 2H), 4.17 (t, J = 6.2 Hz, 2H), 3.22 – 3.06 (m, 2H), 2.70 – 2.60 (m, 2H), 

2.51 (t, J = 6.6 Hz, 2H), 2.05 – 1.91 (m, 4H), 1.88 – 1.72 (m, 2H), 1.71 (s, 3H), 1.69 – 1.55 (m, 3H), 

1.54 – 1.39 (m, 3H), 1.00 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 172.21, 170.78, 170.35, 158.43, 

149.44, 147.09, 146.83, 137.53, 135.29, 135.17, 129.21, 128.82, 128.08, 128.04, 126.64, 111.84, 

111.42, 109.62, 70.47, 66.65, 63.38, 52.75, 52.06, 41.02, 39.23(2), 37.41, 32.47, 30.18, 28.73, 26.47, 

24.71, 24.46, 24.36, 16.07; HRMS (ESI) calculated for C40H50N3O10S [M + H]+ 764.3211, found 

764.3207. 

4.1.4.4.6. Compound 18f 

Yellowish liquid, yield 45%. 1H NMR (300 MHz, CDCl3) δ 8.06 (d, J = 7.4 Hz, 2H), 7.76 (t, J = 

7.2 Hz, 1H), 7.63 (t, J = 7.7 Hz, 2H), 5.81 (dd, J = 17.7, 10.5 Hz, 1H), 5.04 (s, 1H), 4.99 (s, 1H), 

4.92 (d, J = 4.0 Hz, 1H), 4.88 (s, 1H), 4.82 (s, 1H), 4.69 – 4.63 (m, 1H), 4.61 – 4.52 (m, 3H), 4.45 

(t, J = 6.1 Hz, 2H), 4.18 (t, J = 6.0 Hz, 2H), 3.68 – 3.54 (m, 2H), 2.83 – 2.54 (m, 4H), 2.26 – 2.14 

(s, 1H), 2.07 – 1.90 (m, 7H), 1.85 – 1.79 (m, 2H), 1.70 (s, 3H), 1.67 – 1.53 (m, 3H), 1.52 – 1.39 (m, 

3H), 1.00 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 172.85, 171.84, 169.95, 158.82, 149.90, 148.05, 

147.25, 138.03, 135.53, 129.59, 128.41, 112.15, 110.80, 109.90, 70.92, 66.52, 63.60, 58.72, 52.60, 

46.78, 41.66, 39.71, 39.66, 32.96, 29.13, 29.05, 28.76, 26.99, 25.11, 24.87, 24.66, 24.58, 16.51; 

HRMS (ESI) calculated for C36H47N3NaO10S [M + Na]+ 736.2874, found 736.2868. 

4.2. Pharmacology 

4.2.1. In vitro antiproliferative assay 

SGC-7901, HeLa and U87 cells were purchased from Nanjing Key Gen Biotech Co. Ltd. 

(Nanjing, China). The cytotoxicity of the compounds was determined using MTT assay. Briefly, 

test cell lines were plated on 96-well plates at the density of 5×104/well and incubated for 24 h at 

37 oC under an atomosphere of 5% CO2. The test compounds were dissolved in the culture medium 

with 0.5% DMSO at different concentrations and treated to the cells for another 72 h. The MTT (5 

mg/mL in PBS) was added and incubated for another 4 h, the optical density was detected with a 

microplate reader at 490 nm. The IC50 values were calculated according to the dose-dependent 

curves. All the tests were repeated in at least three independent experiments [38-40]. 

4.2.2. Griess assay 

The levels of NO generated by individual compounds in the lysates are presented as that of nitrite. 

Briefly, a mixture of 100 μM test compound and 5.0 mM L-cysteine was incubated at 37 °C for 120 

min, and sampled every 15 min. The collected samples (2 mL) were mixed with 0.5 mL of Griess 

reagent and incubated at 37 °C for another 15 min, followed to be determined at 540 nm using a 

Microplate Reader (Tecan, Männedorf, Switzerland). Each compound was measured in triplicate. 

Standard sodium nitrite solutions at different concentrations were used to construct the calibration 

curve, from which the amount of NO release was calculated [35,37]. 

4.2.3. Cell cycle analysis 
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U87 cells were treated with 11a at concentrations of 0, 0.5, 1.0 and 2.0 nM for 72 h, respectively. 

The cells were trypsinized, washed with PBS and centrifuged. The collected cells were fixed by 

adding 70% ethanol at 4 oC overnight and incubated for 30 min in PBS containing 100 μL RNase 

A and 400 μL of propidium iodide. Analysis of the cell DNA content was performed with the system 

software (Cell Quest, BD Biosciences, USA) [38-40]. 

4.2.4. Cellular apoptosis analysis 

U87 cells were seeded into 6-well plates and incubated at 37 oC for 24 h, and then treated different 

concentrations of 11a (0, 0.5, 1.0 and 2.0 nM) for another 72 h. Cells were washed twice in PBS 

and resuspended in 500 μL Annexin V binding buffer. Then 5 μL Annexin V-APC and 5 μL 7-AAD 

were added successively and the mixture was incubated for 15 min under dark conditions at 25 C. 

Apoptosis was analyzed using a FACS Calibur flow cytometer (BectoneDickinson, San Jose, CA, 

USA) [38-40]. 

4.2.5. Western blotting analysis 

U87 cells were incubated with 11a at the indicated concentrations for 72 h. The cells were 

harvested and lysed using lysis buffer, and the solution was centrifuged at 14,000 g for 10 min at 

4 °C. Then the protein concentrations were determined, and individual cell lysates (25 μg per lane) 

were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (10% gel, SDS-PAGE) 

and transferred onto nitrocellulose membranes. After being blocked with 5% fat-free milk, the target 

proteins in the membranes were probed with monoclonal antibodies against p-Akt, Akt, Bcl-2, Bax, 

caspase-3, pro-caspase-3, GAPDH (KeyGEN Biotech, Nanjing, China) at 4 °C overnight, 

respectively. The bound antibodies were detected by horseradish peroxidase (HRP) conjugated 

second antibodies and visualized using an enhanced chemiluminescent reagent. The relative levels 

of each signaling event to control GAPDH were determined by densimetric scanning [20,29,40]. 

4.2.6. In vivo antitumor assay  

Five-week-old male Institute of Cancer Research (ICR) mice were purchased from Shanghai 

SLAC Laboratory Animals Co. Ltd. A total of 1×106 H22 cells were subcutaneously inoculated into 

the right flank of ICR mice according to protocols of tumor transplant research, to initiate tumor 

growth. Incubated after one day, mice were weighted and at random divided into 4 groups (8 

mice/group). The groups were treated with β-elemene (60 mg/kg) and 11a (30, 60 mg/kg) in a 

vehicle of 10% DMF/2% Tween 80/88% saline, respectively. Vehicle was used as negative control. 

Treatments were done at a frequency of intravenous injection one dose per day for three weeks. The 

mice were sacrificed, and the tumors were excised and weighed. The inhibition rate was calculated 

as follows: Tumor inhibitory ratio (%) = (1-average tumor weight of treated group/average tumor 

weight of control group) × 100% [40,41]. 
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