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Abstract: Changes in the extent of woody vegetation represent a major conservation question in
many savannah systems around the globe. To address the problem of the current lack of broad-scale
cost-effective tools for land cover monitoring in complex savannah environments, we use a multi-scale
approach to quantifying vegetation change in Kruger National Park (KNP), South Africa. We test
whether medium spatial resolution satellite data (Landsat, existing back to the 1970s), which have
pixel sizes larger than typical vegetation patches, can nevertheless capture the thematic detail required
to detect woody encroachment in savannahs. We quantify vegetation change over a 13-year period
in KNP, examine the changes that have occurred, assess the drivers of these changes, and compare
appropriate remote sensing data sources for monitoring change. We generate land cover maps for
three areas of southern KNP using very high resolution (VHR) and medium resolution satellite
sensor imagery from February 2001 to 2014. Considerable land cover change has occurred, with
large increases in shrubs replacing both trees and grassland. Examination of exclosure areas and
potential environmental driver data suggests two mechanisms: elephant herbivory removing trees
and at least one separate mechanism responsible for conversion of grassland to shrubs, theorised
to be increasing atmospheric CO2. Thus, the combination of these mechanisms causes the novel
two-directional shrub encroachment that we observe (tree loss and grassland conversion). Multi-scale
comparison of classifications indicates that although spatial detail is lost when using medium
resolution rather than VHR imagery for land cover classification (e.g., Landsat imagery cannot readily
distinguish between tree and shrub classes, while VHR imagery can), the thematic detail contained
within both VHR and medium resolution classifications is remarkably congruent. This suggests
that medium resolution imagery contains sufficient thematic information for most broad-scale land
cover monitoring requirements in heterogeneous savannahs, while having the benefits of being
cost-free and providing a longer historical archive of data than VHR sources. We conclude that
monitoring of broad-scale land cover change using remote sensing has considerable potential as a
cost-effective tool for both better informing land management practitioners, and for monitoring the
future landscape-scale impacts of management policies in savannahs.

Keywords: Savannah; woody encroachment; land cover change; multi-scale; elephant
herbivory; shrubs
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1. Introduction

Savannah extends over approximately 20% of the Earth’s land surface, making it the largest
terrestrial biome [1,2]. In Africa, savannahs still support extensive large mammal communities (at least
within some protected areas), which are of substantial conservation interest and economic importance
via their key role in tourism. They are dynamic systems, with the potential for considerable change
over time, at scales that cannot be easily covered by conventional fieldwork techniques. Here we take a
remote sensing approach to monitoring change, investigating spatial, temporal and thematic aspects of
classification in a mixed and dynamic savannah environment in the southern part of Kruger National
Park (KNP) in South Africa, over a decadal time scale.

Savannahs are characterised by the co-occurrence of a grass layer with an overstorey tree layer
of variable density [2–4], and savannah tree cover levels strongly affect ecosystem function [4,5].
The tree–grass mix of savannahs exists in a dynamic state, with changes in the balance of these
vegetation types potentially resulting in switches between alternate states of forest or grassland [6–8].
A range of variables are suggested as potential drivers of change in the tree-grass balance, falling
broadly into local and global categories [9], with the mechanisms of change in the tree–grass balance
dependent on whether the savanna is a wet or dry system [9]. One such driver is precipitation [10,11],
with mean annual precipitation determining a potential maximum cover for woody plants [12–15]
although this level is rarely reached due to other local and regional influences such as fire and
herbivory [9]. Savannahs with mean annual precipitation levels of around 650mm or below are
reasonably stable, but tend to change towards forest above this level (unless other disturbance processes
allow a mix of grass and trees to be maintained) [1,14]. Other potential drivers include fire [16–23],
disturbance by megaherbivores, particularly elephant (Loxodonta africana) [4,19,24–27], grazing by
domestic herbivores [28], scale-dependent interactions between climate, fire and herbivory [17,29–32],
and increasing CO2 fertilization [5,9,10,17,33–43]. The vulnerability of a region to changes in the
tree-grass balance of savannas will likely depend on the prevailing land use history, the environmental
setting, and the functional traits of woody plants that govern their responsiveness to both local and
global drivers [12].

Within savannah environments, the relative dominance of herbs and grasses versus woody
plants is important for biodiversity [4]. This impacts on the abundance and distribution of animal
populations [44,45], including trophic interactions, by modulating the degree of concealment versus
visibility for predators and prey [4,46,47], spatial patterns of soil fertility [32] and soil moisture via
shading and evapotranspiration [48]. The tree–grass mix also has consequences for ecosystem services
including carbon sequestration [49], along with regional-scale feedbacks to the Earth system due
to changes in gas exchange and albedo [50]. Understanding changes in the tree–grass balance of
savannah communities is therefore of wide interest, and with African savannahs coming under
increasing anthropogenic pressures more emphasis is being placed on the preservation of ecologically
important areas.

Woody encroachment within savannahs is recognised as a global phenomenon [5,9,50], and is
of increasing concern because of its potential impacts on biodiversity and ecosystem processes [4].
Such changes have been extensive in both farmed and protected savannahs globally over the last
century [50], and have knock-on effects for conservation efforts. In Africa, woody encroachment
occurs across multiple land uses, and is accelerating over time [12]. Woody encroachment also has
potential economic impacts for African national parks, with decreases in tourism possible if the iconic
African savannah mammal species become more difficult to observe because of reduced visibility.
Mega-herbivores and carnivores are especially popular with overseas and first-time visitors [51], and
habitat changes increasing the difficulty of viewing these species may mean tourists are less likely to
visit [50]. Most important in reduced visibility is encroachment of shrubs (rather than increases in
tree cover). Therefore, the ability to monitor woody cover is fundamental to understanding savanna
dynamics [13].
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Monitoring woody encroachment in savannahs, especially by shrubs, is difficult due to the
large areas involved and the relatively slow nature of this process occurring within a temporally
dynamic environment. Therefore, to evaluate the change that is occurring, land cover monitoring
is increasingly used for better informing environmental management and conservation practices.
In KNP, changes to vegetation such as large tree removal by elephants, and the recently hypothesized
‘scrubbing-up’ of the Skukuza thorn thickets (dominated by acacias such as delagoa (Acacia welwitschii),
knob-thorn (Acacia nigrescens), scented-pod (Acacia nilotica), umbrella (Acacia tortilis) and brack thorn
(Acacia robusta), plus sickle-bush (Dichrostachys cinerea), magic guarri (Euclea divinorum) and buffalo
thorn (Ziziphus mucronata)), are of particular interest, with implications for animal distributions,
food resource and habitat availability for key species. Management practices within KNP take
a strategic adaptive management approach which aims to maintain biodiversity and vegetation
heterogeneity [13,25], and monitoring the spatio-temporal variability in woody cover is helpful for
park managers when supporting management priorities relating to the maintenance of this structural
and biotic heterogeneity [52]. Ground-based monitoring of complex ecosystem responses to these
management actions is costly, time consuming and limited in temporal and spatial coverage [53].
Although valuable for providing localised insights, this costly activity cannot monitor changes at a
regional scale, nor be extended back in time beyond the start of the monitoring. There is currently a
need for a cost-effective mechanism to monitor landscape change, to better understand past changes,
and inform future land management practices. Remote sensing offers a valuable, efficient tool
for vegetation monitoring at broad geographical scales, which is complementary to ground-based
monitoring [53]. In particular, if freely available satellite imagery such as the Landsat archive, which
dates back to the 1970s, can be used for this purpose, then there are great potential benefits.

Savannahs are often highly heterogeneous habitats [54], with mosaics of tree, shrub and
grassland patches occurring at various levels of spatial complexity, which, along with the spectral
similarity of compositionally different vegetation types, makes land cover classification of these areas
challenging [55,56]. Very high resolution (VHR) satellite imagery and airborne photographic and
LiDAR (light detection and ranging) surveys can identify and discriminate between features such
as individual trees (e.g., [26]), large shrubs and patches of grassland. However, they typically have
high data collection and subsequent processing costs when applied over large areas, preventing their
use by many land managers. Also, VHR and aerial datasets almost always have limited historical
data coverage, creating difficulties in studying historical landscape changes over relatively long
time-periods. In the case of multispectral satellite data, VHR imagery has been available for a much
shorter time period than medium resolution imagery, with IKONOS, the first commercially available
VHR satellite, only launched in 1999 [57].

Medium spatial resolution imagery, such as from Landsat Operational Land Imager (OLI) or
Sentinel-2, although of lower spatial and thematic detail than VHR imagery, is available cost-free and
is well established for broad-scale land cover monitoring. Landsat has an extensive imagery archive
dating back to 1972, enabling assessment of longer-term landscape change over greater spatial extents,
than VHR imagery. However, although it offers improved spatial detail over coarse resolution datasets,
the capability of medium-resolution imagery to discriminate small habitat patches is much lower than
VHR imagery, typically because pixels are mixed, constituting multiple land cover types. Previous
studies have also successfully mapped woody cover in the KNP using a combination of Landsat ETM+
optical and JERS-1 L-band synthetic aperture radar data [13,52], and applied data fusion techniques
using Landsat TM and LiDAR imagery to estimate sub-pixel Juniper cover [58]. The latter study
noted that the LiDAR and Landsat TM-LiDAR fused datasets generated stronger correlations between
remote sensing derived and field measurements than was achieved using Landsat TM data alone.
It is, therefore, important to quantitatively compare the capabilities of differing spatial resolution
data sources in monitoring changes in savannahs, and establish whether medium-resolution imagery
(particularly Landsat OLI) can provide useful information on phenomena that reflect the aggregation
of patches smaller than the pixels, such as woody encroachment. If so, then cost-effective monitoring
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of land cover change via freely available medium-resolution imagery could become standard practice
for informing land management decisions in many parts of the world.

Vegetation in African savannahs exhibits highly seasonal trends in growth and senescence, with
huge contrasts in vegetation states during wet and dry seasons [55]. These trends are principally
driven by water availability, however phenological patterns can differ for woody and herbaceous
vegetation. For example, whereas herbaceous plants are generally only green during the rainy season
with senescence occurring shortly afterwards, most woody plants remain photosynthetically active
over large parts of the year [59]. The deeper root systems of trees and shrubs enables access to
soil moisture at greater depths below ground, where moisture is more consistently available and
seasonal fluctuations are dampened [60]. Outside of the wet season, herbaceous vegetation will wilt
and die, and remain photosynthetically inactive until new germination with the onset of the rainy
season [59]. Several studies investigating savanna change have used coarse resolution time-series
satellite imagery such as from Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced
Very High Resolution Radiometer (AVHRR) and SPOT-Vegetation (VGT) to characterize woody and
herbaceous vegetation based on these differing phenological characteristics [53,59–64]. These methods
are typically based on the differences in the phenophases of woody vegetation compared to that of
herbaceous plants. For example [59], illustrated that in the Sahel, annual herbaceous plants are green
during the rainy season from June to October, with senescence occurring after flowering in September
towards the last rain events of the season. Conversely, the leafing of most trees and shrubs is longer
with many woody species greening-up ahead of the rains in the last month of the dry season. By using
a time series of Absorbed Photosynthetically Active Radiation (FAPAR) from MODIS and SPOT-VGT,
a series of phenological metrics were generated which were in turn used to model the total canopy of
woody plants. Although these methods have successfully used dry season green foliage density as a
proxy for woody cover [61], these datasets are ultimately limited in the level of spatial detail that they
can provide due to the coarse imagery resolution (typically 250 m–1 km).

To monitor woody cover at a higher level of spatial detail via satellite remote sensing, medium or
VHR imagery is required. However, image acquisition opportunities are often more limited due to
satellite repeat cycle (16 days for Landsat) and cloud cover. This can limit analysis to using a single-date
image, with timing of this image acquisition influential in its ability to discriminate between woody
and herbaceous vegetation at different times of year. The wet season represents the peak of the growing
season, with well-developed vegetation conditions and high photosynthesis rates in leaf-on conditions
potentially confusing the spectral differences between vegetation types [55]. Dry season imagery,
in contrast, is more often cloud-free, and as previously been used for studies of woody cover change
to maximize discrimination of woody vegetation which is still photosynthetically active, from the
herbaceous vegetation which is dormant [52,55,61].

While phenology-based studies have successfully estimated woody plant cover, here we utilize
an alternative approach using medium resolution and VHR imagery to monitor woody cover and
woody cover change at a higher level of spatial detail. Our methods also look not just to discriminate
between woody and herbaceous material, but also to separate the woody classes of tree and shrub. We
assess land cover change in the Skukuza area of KNP from February 2001 to 2014, using a combination
of medium-resolution (Landsat Enhanced Thematic Mapper ETM+ and OLI) and VHR (QuickBird,
IKONOS and WorldView-2) imagery, coupled with field survey data. VHR imagery has the potential
to provide better spatiotemporal sampling of the complex vegetation structure in the KNP to improve
upscaling of remote sensing models [13], and here we use multi-scale observation of the landscape
to examine vegetation change with a particular focus on grassland and woodland mosaic areas and
the theorised woody and shrub encroachment. We address three specific research questions: (1) How
has land cover in southern KNP changed over the last decade, and can shrub encroachment be
observed? (2) What are the drivers of the observed changes? (3) What thematic information is lost
when using medium rather than high spatial resolution imagery for land cover classification as a
monitoring tool? Our research findings are likely to contribute towards the ongoing savannah woody
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encroachment debate (e.g., [4,65,66]), while our multi-scale comparison of land cover change data,
derived from both medium-resolution and VHR imagery, will be of value for identifying appropriate
cost-effective datasets for development of woody encroachment monitoring protocols. We conduct a
detailed thematic inter-comparison between medium resolution and VHR imagery, showing how the
necessarily different thematic classes relate across varying spatial scales.

2. Materials and Methods

2.1. Study Area

Kruger National Park (KNP) is a globally important site in terms of its diverse ecology and the
application of advanced environmental management techniques. Covering 20,000 km2, KNP was
declared a National Park in 1926. It has at least 147 mammal and 1980 plant species [67], and is a
globally significant site for studying the role of heterogeneity in ecosystems [68]. KNP has also been
shown to have experienced a trebling of woody cover over a 60 years period [5]). Three study sites
were used, located in the Skukuza region of southern KNP, and one of these includes the Nkhulu
exclosure (Figure 1). This exclosure was established in 2002 [26], and designed to exclude mammalian
herbivores: part of the exclosure excludes all herbivores larger than hares while the remainder excludes
only elephants (Loxodonta africana) and giraffes (Giraffa camelopardalis). Therefore, this exclosure offers
a controlled area over an equivalent timescale to the image acquisition periods enabling assessment of
the impact of large herbivores, especially elephants, on vegetation. Skukuza has an underlying granite
geology and with an average annual rainfall of 572 mm, is considered to be ‘dry’ savannah [1], below
the 650 mm precipitation threshold suggested as being important for savannah transition [14].
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2.2. Land Cover Field Survey

Field surveys were conducted in November 2002 and July 2014. A total of 285 points were
surveyed during the 2002 fieldwork, with 188 surveyed in 2014 including revisits to 66 of the 2002
points. These points were selected to be representative of the range of vegetation types, eco-zones and
land cover types across the study areas. The location of each point was recorded using a GPS, with
cardinal photographs (north, east, south, west) taken from the survey point. A land cover class was
also assigned, with woody canopy cover estimated visually. Site descriptions and other surrounding
land cover patches of interest were also noted, including compass bearings to the patches in question,
enabling further reference points to be identified within the satellite imagery.

2.3. Classification Nomenclature

Separate classification nomenclatures were employed for the VHR and medium spatial resolution
imagery (details below) due to their respective abilities to discriminate particular land cover features
(Table 1). For example, individual trees and grass patches are identifiable in VHR imagery; however
the same location observed using medium resolution imagery would often constitute a mixed
pixel. Therefore, while separate tree and grass classes were appropriate for the VHR classifications,
alternative class labels representing the gradient from woody to herbaceous vegetation were used
for the medium resolution classification nomenclature. These are closed woodland (canopy cover
>75%), open woodland (50–75% canopy cover), discontinuous grassland (25–50% canopy cover)
and continuous grassland (<25% canopy cover), where the canopy may be trees or shrubs (not
distinguishable at medium resolution) and ‘grassland’ includes all herbaceous vegetation. This best
represented the mixed pixels resulting from the sub-pixel habitat heterogeneity present at the study
sites. The classification nomenclatures employed were based on a modified version of the Global Land
Cover 2000 Land Cover Map of Africa classification system [69]. It also follows a previous approach
which stratifies the woody-herbaceous gradient into five woodland to grassland categories at 25%
intervals, with the final interval being grassland with 0–5% woody canopy cover [3], although here
this 0–5% woody cover class is merged within a 0–25% canopy cover class. The VHR tree and shrub
classes were separated in the field on the basis of their trunk being >7 cm diameter (tree) or <7 cm
(shrub) [70], with examples shown in Figure 2.
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Table 1. Classification nomenclatures for medium and VHR imagery derived land cover maps.

General Habitat Medium Resolution Land Cover Classes VHR Land Cover Classes

Woodland
1. Closed woodland (75–100% canopy cover) 1. Trees (main trunk >7 cm diameter)
2. Open woodland (50–75% canopy cover) 2. Shrubs (main trunk <7 cm diameter)

Grassland
3. Discontinuous grassland (25–50% canopy cover) 3. Long grass
4. Continuous grassland (0–25% canopy cover) 4. Sparse grass

Anthropogenic classes 5. Agriculture 5. Agriculture
6. Built-up 6. Built-up

Bare 7. Bare 7. Bare

Water
8. Water 8. Water
9. Swamp 9. Swamp

2.4. Image Analysis

Dry season VHR and medium spatial resolution images were acquired (Table 2), with the
WorldView-2 image resampled to 2.8 m resolution for consistency with the earlier QuickBird imagery
for site 1. Dry season images have previously been used for studies of woody cover change [52,61]
to maximize discrimination of woody vegetation, which is still photosynthetically active, from the
senescent herbaceous vegetation which is dormant [13,52,59] (see also Figure 2). This is also consistent
with field data collection, which was conducted during the dry season.

Image pre-processing steps included cloud and cloud shadow masking and image geometric
correction. Cloud was present only in the 2002 site 1 and 2 images, with band thresholding used to
delineate cloud-covered areas. A cloud shadow mask was created through replication of the cloud
mask, and application of a geographical offset to this mask to cover areas of cloud shadow. Any areas
of cloud or cloud shadow not captured in these masks were digitized manually. These masks were
then merged to create a combined cloud and cloud shadow mask to enable exclusion of these areas
from further analysis. Landsat ETM+ and OLI images (path 168, row 77) were acquired from the
EarthExplorer data access portal as atmospherically corrected surface reflectance products. Areas of
no data, cloud, cloud shadow and burn scar were excluded from further study prior to land cover
change analysis.

Table 2. Satellite sensor imagery used for generation of land cover maps (spectral band B = blue,
C = cirrus, CA = coastal aerosol, CB = coastal blue, G = green, NIR = near infra-red, R = red, RE = red
edge, SWIR = short-wave infrared, Y = yellow), land cover classification accuracy, and number of
accuracy assessment locations used.

Sensor Image Acquisition
Date Sites Spatial Resolution

(m) Spectral Bands
Overall

Classification
Accuracy (%)

QuickBird 9 December 2002 1 2.8 B, G, R, NIR 91.0
IKONOS 7 March 2002 2 4 B, G, R, NIR 90.6
IKONOS 28 April 2001 3 4 B, G, R, NIR 87.7

WorldView-2 14 October 2014 1 Resampled to 2.8 CB, B, G, Y, R, RE, NIR1, NIR2 90.2
IKONOS 27 September 2014 2 4 B, G, R, NIR 92.5
IKONOS 27 September 2014 3 4 B, G, R, NIR 90.6

Landsat ETM+ 18 June 2002 1, 2 and 3 30 B, G, R, NIR, SWIR1, SWIR2 75.2
Landsat OLI 27 June 2014 1, 2 and 3 30 CA, B, G, R, NIR, SWIR1, SWIR2, C 75.2

The highly heterogeneous nature of the study area, and scarcity of suitable spectrally pure
training areas made supervised land cover classification approaches challenging. Instead, we adopted
an unsupervised approach, where image pixels were grouped into spectrally similar classes, with
these classes then assigned a land cover class based on the reference data. For both the VHR and
medium resolution imagery, land cover maps were generated using 150 unsupervised classes using
the ISODATA technique [71], with subsequent grouping and labelling of classes, post-classification
refinement and accuracy assessment. Unsupervised classification methods are well established for
land cover mapping applications [72,73], and this large number of classes was used to minimise the



Remote Sens. 2017, 9, 419 8 of 24

problem of split land cover class spectral clusters [74]. Indeed, many-class unsupervised classification
followed by land cover class grouping has been demonstrated as effective for mapping semi-natural
environments [75,76].

Reference locations of known land cover types were used for assigning specific land cover
class labels and accuracy assessment respectively. These data were generated from four sources;
(1) field-collected land cover survey locations; (2) reference locations derived from field photos;
(3) reference locations derived from Google Street View imagery (2014 images only); and (4) expert
knowledge and direct interpretation of reference locations of obvious VHR imagery features
(for example, water). For each land cover class, these data points were then allocated on an
alternating basis as reference training or validation locations, creating two equal sized reference
training and validation datasets with, for each location, land cover class labels for both medium
and VHR classification nomenclatures (Table 1) assigned. At the study sites visited, the shrub class
consisted of species such as Acacia spp. and Albizia cf. petersiana. while the larger trees included
Sclerocarya birrea, Combretum apiculatum subsp apiculatum, Diospyrus mespiliformis, Terminalia sericea and
Philenoptera violacea.

The reference training locations were used to generate reference polygons where spectral
homogeneity allowed. Each of the 150 unsupervised spectral classes were examined in relation
to the pixels contained within the reference polygons, with the land cover class comprising the
majority of pixels being assigned to that unsupervised class. On occasions, where no reference
pixels corresponded to an unsupervised class, visual assessment and expert knowledge were used
to assign a land cover class to the unsupervised class in question. For areas of obvious error in the
classifications, manual knowledge-based refinements were performed post-classification to split these
classes into single-category sub-classes [72], with subsequent re-labelling of misclassified land cover
patches. The labelled unsupervised classes (150 classes plus those split during post-classification
refinement) were then aggregated until a single merged class existed for each land cover class [77].
Accuracy assessment for each land cover classification was conducted using the reference validation
data. Summary results are presented in Table 2, with error matrices contained in the supplementary
information. Error tolerances associated with probability estimates of overall classification accuracies
were also calculated [78] and are presented in the supplementary information.

To determine the level of land cover change between February 2001 and 2014, the total area of
each land cover class was calculated for both the VHR and medium resolution imagery. Then, the
change in areal coverage (as a percentage change of the respective study site total area–excluding areas
of cloud, shadow and burn scar) was calculated for each individual site, and for all sites combined.
Sites 1 and 2 contained some overlap, so when calculating combined values for all three sites, the site 2
classification was used in the overlap area as this was least cloud affected. An additional land cover
change analysis was conducted specifically for the Nkhulu exclosure within site 3.

2.5. Multi-Scale Comparison

To assess the degree of thematic information lost when using medium resolution rather than VHR
imagery for land cover monitoring, the thematic consistency between medium and VHR classifications
was determined. A randomly selected sample of 100 pixels was selected for each of the four medium
resolution woodland/grassland classes (closed woodland, open woodland, discontinuous grassland,
continuous grassland). Then, within these medium resolution pixel samples, class distributions of the
classified VHR pixels falling within the footprints of medium resolution pixels were calculated. This
analysis was used to indicate the proportional composition of VHR classes within each of the medium
resolution woodland/grassland classes.

2.6. Environmental Drivers of Land Cover Change

To explore the causes of land cover change, we used data relating to a series of hypothesised
drivers of change. These included annual average maximum and minimum temperatures and total
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rainfall at Skukuza (1985–2014); total burnt area per year (1985–2014); and total elephant population
(1985–2012) for the full KNP. These datasets have been kindly provided by South African National
Parks Scientific Services. Also, mean annual atmospheric CO2 records were acquired from the National
Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory sampling
site on Mahe Island, Seychelles (1986–2014) [79], which is the nearest sampling site to our study
areas with continual records for the time period of interest. These data sets are compared to the
classification results as an indication of their respective potential influence on the observed land cover
change patterns.

3. Results

3.1. Land Cover Change

The land cover classifications generated for the three study areas (both VHR and medium
resolution images for February 2001 and 2014 respectively) are presented in Figures 3–5, with accuracy
values are presented in Table 2. Land cover change between February 2001 and 2014 was calculated
separately for the VHR (Table 3) and medium resolution classifications (Table 4).
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Figure 3. Land cover classifications of site 1 generated from: (A) VHR QuickBird imagery (2.8 m
resolution) in 2002; (B) VHR WorldView-2 imagery (resampled to 2.8 m) in 2014; (C) medium resolution
Landsat ETM+ imagery (30 m) in 2002; and (D) medium resolution Landsat OLI imagery (30 m) in
2014. Areas of ‘No Data’ correspond to areas of cloud cover and cloud shadow. Note the woodland
and grassland class definitions differ between the fine and medium resolution classifications (Table 2).
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Figure 4. Land cover classifications of site 2 generated from: (A) VHR IKONOS imagery (4 m resolution)
in 2002; (B) VHR IKONOS imagery (4 m resolution) in 2014; (C) medium resolution Landsat ETM+
imagery (30 m) in 2002; and (D) medium resolution Landsat OLI imagery (30 m) in 2014. Areas of ‘No
Data’ correspond to areas of cloud cover and cloud shadow. Note the woodland and grassland class
definitions differ between the fine and medium resolution classifications (Table 2).

Table 3. Land cover change between February 2001 and 2014 calculated using VHR imagery. To ensure
that the overlap between sites 1 and 2 was not double-counted in the ‘total’ area calculations, the part
of site 1 in the overlap area (more affected by cloud) was excluded when the ‘total’ columns were
calculated. Cover change % corresponds to percentage of the full site area.

Class Site 1 Site 2 Site 3 Sites 1–3 Total

2002
cover
(Ha)

2014
cover
(Ha)

Cover
change
(%)

2002
cover
(Ha)

2014
cover
(Ha)

Cover
change
(%)

2001
cover
(Ha)

2014
cover
(Ha)

Cover
change
(%)

February
2001 cover

(Ha)

2014
cover
(Ha)

Cover
change

(%)

Trees 814.3 550.4 −5.3 1801.5 502.6 −17.1 1864.3 482.3 −11.8 4421.8 1299.3 −13.5

Shrubs 1440.8 2238.7 +16.1 1380.0 2652.0 +16.7 1436.6 3609.6 +18.6 4029.7 8222.7 +18.1

Long grass 2272.4 1637.4 −12.8 3629.1 3585.0 −0.6 7496.9 6751.2 −6.4 12,738.1 11,556.8 −5.1

Sparse grass 164.7 215.1 +1.0 424.7 466.9 +0.6 400.3 426.2 +0.2 955.9 1057.1 +0.4

Bare 127.3 174.7 +1.0 170.2 240.8 +0.9 172.2 221.4 +0.4 440.7 600.0 +0.7

Swamp 29.4 21.7 −0.2 79.9 19.2 −0.8 142.2 106.5 −0.3 249.2 148.4 −0.4

Built up 37.6 60.8 +0.5 17.5 18.4 0.0 7.8 6.4 0.0 62.2 85.2 +0.1

Water 68.6 56.4 −0.3 77.3 41.5 −0.5 153.0 69.6 −0.7 287.0 160.0 −0.5

Agriculture - - - 29.1 84.3 +0.7 - - - 29.1 84.3 +0.2
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in 2001; (B) VHR IKONOS imagery (4 m resolution) in 2014; (C) medium resolution Landsat ETM+
imagery (30 m) in 2002; and (D) medium resolution Landsat OLI imagery (30 m) in 2014. Areas of ‘No
Data’ correspond to areas of cloud cover and cloud shadow. Note the woodland and grassland class
definitions differ between the fine and medium resolution classifications (Table 2).

Table 4. Land cover change between 2002 and 2014 calculated using medium spatial resolution imagery.
Note there is some overlap between sites 1 and 2. To ensure that the overlap between sites 1 and 2 was
not double-counted in the ‘total’ area calculations, the part of site 1 in the overlap area (more affected
by cloud) was excluded when the ‘total’ columns were calculated. Cover change % corresponds to
percentage of the full site areas.

Class Site 1 Site 2 Site 3 Sites 1–3 Total

2002
cover
(Ha)

2014
cover
(Ha)

Cover
change
(%)

2002
cover
(Ha)

2014
cover
(Ha)

Cover
change
(%)

2002
cover
(Ha)

2014
cover
(Ha)

Cover
change
(%)

2002 cover
(Ha)

2014
cover
(Ha)

Cover
change

(%)

Closed
woodland 370.3 1250.7 +13.6 300.1 918.0 +4.9 114.2 979.6 +7.0 730.4 2960.9 +7.4

Open woodland 2713.0 2477.4 −3.6 2446.2 2605.5 +1.3 3107.2 3684.3 +4.6 7820.4 8301.7 +1.6

Discontinuous
grassland 2065.8 1696.4 −5.7 4331.7 4275.2 −0.4 5249.2 3961.8 −10.4 11,106.5 9390.9 −5.7

Continuous
grassland 1044.2 651.5 −6.0 4794.9 4327.7 −3.7 3299.2 3335.2 +0.3 8720.6 8074.2 −2.1

Bare 107.6 154.0 +0.7 390.1 273.8 −0.9 244.3 216.3 −0.2 705.2 608.7 −0.3

Swamp 56.8 99.8 +0.7 86.8 72.1 −0.1 328.6 142.0 −1.5 466.6 292.5 −0.6

Built up 50.2 78.3 0.4 10.7 21.8 +0.1 0.1 1.1 0.0 61.1 101.3 +0.1

Water 85.0 84.3 0.0 67.5 67.6 0.0 85.9 108.3 +0.2 226.3 245.9 +0.1

Agriculture - - - 228.2 94.3 −1.1 - - - 234.5 95.0 −0.5
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According to the VHR classifications the most common land cover class in February 2001 across
all three sites was long grass (12,738.1 ha), followed by trees (4421.8 ha) and shrubs (4029.7 ha)
(Table 3). In 2014, long grass was again commonest (11,556.8 ha) but by a much smaller margin,
while the shrubs area had doubled (to 8222.7 ha) and that of trees reduced by more than two thirds
(to 1299.3 ha). All other land cover types exhibited much lower coverage levels, with the agriculture
at site 2 corresponding to an area where the imagery extended beyond the KNP boundary. Clear
patterns in land cover change emerge, with shrubs consistently experiencing large and geographically
widespread increases across all sites (increasing by 18.1% of the full study area; Table 3, See also
Figure 6). This is coupled with a general decrease in long grass (−5.1%) and a widespread reduction in
trees of −13.5% (Figure 7), indicating that the shrub increase is coming from two sources: replacement
of trees by shrubs and conversion of grass to shrubs. All other land cover classes exhibited lower levels
of change, with further details relating to the directions and level of the various land cover changes
observed in the VHR classifications are available in supplementary information (Table S9).

According to the medium resolution classifications, the commonest land cover classes in 2002
across all three sites were discontinuous grassland (11,106.5 ha), continuous grassland (8720.6 ha) and
open woodland (7820.4 ha), with much lower coverage of the other land cover classes (Table 4). The
same classes were the three most common in 2014, but the grassland classes had reduced in coverage
and the two ‘woodland’ categories (i.e., that represent shrubs, and also trees) had increased—the
fourfold increase in ‘closed woodland’ being by far the larger of the two. The other land cover classes all
experienced smaller scale changes (Table 4). This is consistent with the general increase in shrub cover
observed in the VHR classifications, though as described above this medium resolution classification
does not explicitly distinguish between trees and shrubs. Further details relating to the directions and
level of the various land cover changes observed in the medium resolution classifications are available
in supplementary information (Table S10).

3.2. Nkhulu Exclosure Area

To examine elephant herbivory impacts, land cover change both within and outside the Nkhulu
exclosure was examined using the VHR imagery. The results are clear. Land cover change within the
exclosure differs strongly from that outside the exclosure where grazing is unrestricted (Table 5). While
outside the exclosure trees decreased by more than two thirds between 2001 and 2014 (from 1839.7 to
465.4 ha), within the exclosure tree cover actually increased (from 21.6 to 24.8 ha). Shrub encroachment
occurred both within and outside the exclosure, with the area covered by shrubs trebling within the
exclosure, a slightly greater proportional increase than outside; while the area covered by grass nearly
halved, a much larger reduction than outside. It should be noted that South African National Parks
Scientific Services retain annual records of the spatial extent of fires and burnt areas within KNP (see
further discussion of fire as a potential driver of land cover change below). Importantly, in the case of
the Nkhulu exclosure, these records confirm that there have been no fires in the exclosure area between
2000 and 2014, the time-period of interest in this study.

3.3. Multi-Scale Comparison

To examine the relative information content of the VHR and medium spatial resolution
classifications, as relevant to shrub and woody encroachment, we directly compare the two. Given
that medium resolution imagery is most likely to be used by practitioners (see Introduction),
this comparison focused on the four medium resolution land cover classes representing the
woody–grassland transition (Table 1). To determine the VHR class composition of the classified
Landsat sample pixels, boxplots showing the proportion of VHR class coverage present in each of the
four Landsat woodland/grassland classes were generated (Figure 8).
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Table 5. Land cover change between 2001 and 2014 within and outside the Nkhulu exclosure area.
Cover change % corresponds to the percentage of the full exclosure area, or site 3 image footprint
excluding the exclosure area correspondingly.

Class

Nkhulu Exclosure Site 3 Excluding Nkhulu Exclosure

2001 Cover
(Ha)

2014 Cover
(Ha)

Cover
Change (%)

2001 Cover
(Ha)

2014 Cover
(Ha)

Cover
Change (%)

Trees 21.6 24.8 +2.8 1839.7 465.4 −11.9
Shrubs 16.7 48.2 +27.4 1420.3 3552.7 +18.4

Long grass 61.1 36.7 −21.2 7438.2 6715.1 −6.3
Sparse grass 10.5 4.4 −5.3 389.9 421.9 +0.3

Bare 3.0 0.6 −2.2 169.2 220.8 +0.4
Swamp 1.5 0.0 −1.3 140.7 106.5 −0.3
Built up 0.0 0.0 0.0 7.8 6.4 0.0
Water 0.3 0.0 −0.3 152.7 69.6 −0.7

The Landsat classification thematic classes, which do not distinguish trees from shrubs, correspond
well nevertheless with the land cover observed at finer spatial resolution in the VHR classification,
which does distinguish trees and shrubs. Using fine resolution pixels as a proxy for percent cover
within the coarser-resolution classification, closed woodland would be expected to have 75–100%
of the VHR pixels classified as woody (either trees or shrubs), most likely somewhere towards the
middle of that range. Indeed the distributions of values in the boxplots (Figure 8) indicate 80–85%
of pixels classified as either trees or shrubs. Similarly, one would expect the corresponding totals
for open woodland, discontinuous grassland and continuous grassland to be near the middle of the
ranges 50–75%, 25–50% and 0–25%, and indeed we get values of approximately 60%, 35% and 15%,
respectively (Figure 8). Furthermore, the proportion of VHR pixels classified as trees drops from
around 20% in closed woodland to 5%, 2% and <1% in open woodland, discontinuous grassland
and continuous grassland, respectively. Thus, the medium resolution classification, which does
not directly distinguish between trees and shrubs, nevertheless contains proxy information about
the relative proportions of trees and shrubs through its representation of woody cover in the four
woodland/grassland transition classes.

The medium resolution classification also contains considerable information about the abundance
of shrubs and grasses within the pixel. The proportions of finer resolution pixels classified as shrubs
decline consistently from woodland, through discontinuous grassland to continuous grassland, and
the proportions of grass (mainly long grass) increase as almost a mirror image of the shrubs.

Therefore, although spatial detail is lost in the medium resolution classification, the classifications
at the two resolutions can be considered congruent, even with respect to some distinctions that cannot
be made using the coarser resolution pixels. In other words, even though we cannot tell trees and
shrubs apart in the Landsat imagery, classification of that imagery gives us reasonably accurate proxies
of the coverage of trees, shrubs and grass.

3.4. Environmental Drivers of Land Cover Change

Time-series data for postulated drivers of vegetation change in African savannahs (see
Introduction) are plotted in Figure 9. Mean maximum and minimum annual temperatures, total
burnt area and total rainfall fluctuate across the duration of the time-series, and illustrate no obvious
trend to explain the observed directional land cover changes. Elephant population and atmospheric
CO2 have, however, both increased substantially over the last few decades. Elephant populations
across KNP increased from 6881 in 1985 to 16,573 in 2012, while atmospheric CO2 has increased from
346.5 ppm in 1986 to 396.8 ppm in 2014, increasing potential levels of CO2 fertilisation.
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site [79]. 
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general at the expense of herbaceous vegetation, and increase specifically of shrubs (rather than 
trees). Each presents problems for monitoring and understanding change, and our research makes a 
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savannahs tend to be characterised by patches smaller than the pixel size of medium spatial 
resolution imagery, yet this is the imagery that is freely available with a 40+ years archive. Our multi-
scale analysis suggests that the land cover classes that can be derived from medium resolution 
imagery are highly congruent, with respect to woody plant cover, with classes derived from very 
high-resolution (VHR) imagery with pixel sizes smaller than individual patches. If these findings 
hold in other areas, then quantifying woody encroachment over large areas and relatively long time-
periods may be more achievable than previously thought. We also found increases of shrubs at the 
cost of both trees and grassland, and the control provided by the exclosure strongly implicates 
different causes for these two changes. We now discuss these key findings in more detail, in the 
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Figure 9. Potential environmental drivers of land cover change and woody encroachment: (a) mean
annual maximum and minimum temperature; (b) total rainfall and total burnt area; (c) elephant
population; and (d) mean annual atmospheric CO2 (ppm) from the Mahe Island (Seychelles) recording
site [79].

4. Discussion

There are two key aspects of woody encroachment in savannahs: increase in woody plants in
general at the expense of herbaceous vegetation, and increase specifically of shrubs (rather than
trees). Each presents problems for monitoring and understanding change, and our research makes a
contribution with respect to both. A key problem for monitoring general woody encroachment is that
savannahs tend to be characterised by patches smaller than the pixel size of medium spatial resolution
imagery, yet this is the imagery that is freely available with a 40+ years archive. Our multi-scale
analysis suggests that the land cover classes that can be derived from medium resolution imagery are
highly congruent, with respect to woody plant cover, with classes derived from very high-resolution
(VHR) imagery with pixel sizes smaller than individual patches. If these findings hold in other areas,
then quantifying woody encroachment over large areas and relatively long time-periods may be more
achievable than previously thought. We also found increases of shrubs at the cost of both trees and
grassland, and the control provided by the exclosure strongly implicates different causes for these two
changes. We now discuss these key findings in more detail, in the context of the research questions
outlined in the Introduction.

Our first research question was how has land cover in southern KNP changed over the last
decade; can woody encroachment be observed? Across the three study sites in the period February
2001 to 2014, we found widespread woody encroachment, with considerable increases in shrub cover
levels alongside smaller reductions in tree cover and grassland. Although there is localised variability
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(Figures 6 and 7), the overall trend is consistent across all three study areas, with shrub increase
occurring from two directions: loss of trees and conversion from grass (refer to supplementary
information, Tables S9 and S10). To our knowledge, this dual-directional change is a wholly
novel finding.

Our second research question was what are the drivers of the land cover change? Although
we cannot provide a definitive answer, the exclosure results are key to understanding the potential
mechanisms of change impacting the vegetation structure in the study area. The Nhkulu exclosure,
created around the time of our first survey and excluding large herbivores such as elephants, allows
us to move beyond mere description and correlations, harnessing this experimental setup to make
progress towards understanding mechanism. The strongly contrasting vegetational changes inside
and outside the exclosure (Table 5) are evidence that large-scale tree removal is linked to elephant
activity [65]. While the increases in shrub, and reduction in grassland occur both inside and outside
the exclosure, the loss of trees across the whole study area outside the exclosure contrasts strongly
with the increase in tree cover within. Coupled with the large increase in elephant population between
1985 and 2014, this suggests that conversion of tree cover to shrub is being caused by elephant activity.

The pattern of increasing tree cover within the Nkhulu exclosure area is consistent with previous
findings where airborne LiDAR surveys determined that the 3D structure of woody vegetation differed
significantly between protected and accessible landscapes, with up to 11-fold greater woody canopy
cover in areas without herbivores after more than 20 years [25]. This also found that, in KNP, areas
excluding herbivores over the short term (6 years) contained 38–80% less bare ground compared
to with sites exposed to mammalian herbivory. Previous studies also concluded that elephants are
reducing tree numbers in KNP based on data from exclosures [26], with elephants suggested to be
a major woody vegetation change driver throughout the KNP in the second half of the twentieth
century [19]. In addition [80], determined that elephant number, alongside interactions with fire, were
the principal drivers of decreases in large trees in sampled transects between 1940 and 1988 in the
KNP. This is also supported by other studies identifying increases in tree cover following the exclusion
of large mammalian herbivores (for example [46,81]). A reduction of large mammalian herbivores
was also shown to be associated with a large increase (+34%) in tree cover in the Gorongosa National
Park, Mozambique, following the near-extirpation of large herbivores during the Mozambican Civil
War (1977–1992) [4], with elephant activities also been shown to be the dominant driver of over-storey
tree mortality across gradients of rainfall and fire frequency in the Serengeti [27]. However these
effects of mega-herbivores are context-dependent, as interactions with geology, fire and climate are
also influential [26,65,66].

Elephants can also be expected to have a negative effect on shrubs in many situations by damaging
them when feeding [65], although there is evidence for complex interactions with rainfall. In our
data, shrubs expanding more inside the exclosure than outside (Table 5) suggest a negative role for
elephants on shrubs in this system. That is, we suggest that elephants may cause net loss of shrubs,
not gain. This is supported by previous studies which found that elephant numbers were positively
associated with increased treefall rates across all woody canopy height classes, with their greatest
impact in canopies taller than 5 m [26].

Given that shrubs are increasing strongly despite the negative effect of elephants, there must also
be other factors driving shrub encroachment, most likely causing conversion of grassland to shrubs.
Various hypotheses have been proposed (see Introduction), and while we do not have the replication
or control to firmly support them, the clear lack of correspondence between trends in several of the
putative drivers and the large increase in shrub suggests that they are unlikely to be the cause in our
study area. Considering both the secondary environmental data and previous research, we speculate
that increases in atmospheric CO2 are having a positive effect on woody vegetation. We suggest that
while larger trees are being killed by elephants, overall woody vegetation (comprising both tree and
shrub classes) is increasing, with the larger increases in shrub coverage as a result of increasing carbon
fertilisation from higher levels of atmospheric CO2, more than offsetting this loss of trees. This is
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consistent with previous evidence for CO2 fertilisation contributing to woody thickening [5,9,10,35–43]
over the past few decades, and growing evidence that elevated CO2 may promote conversion of
savannahs to closed forests [34]. Increasing atmospheric CO2 concentrations are thought to increase
the woody biomass in savannahs through the enhancement of the physiological advantage of C3 trees
relative to C4 grasses [17], and through accelerating the escape of woody saplings from fire [4]. It is
acknowledged, however, that drivers of woody cover change in tropical savannahs are often difficult
to isolate because of the complex and dynamic interactions involved [27].

4.1. Multi-Scale Monitoring of Land Cover Change

Our third research question investigated the relative merits of land cover maps derived from
VHR and medium spatial resolution imagery as monitoring tools for land cover change, focusing
on what thematic information is lost when using medium resolution imagery. Results indicate that
land cover maps generated from VHR imagery are remarkably congruent with those generated from
Landsat imagery. Although we cannot discriminate between trees and shrubs using medium resolution
imagery, and therefore cannot detect replacement of trees by shrubs, we can say that only pixels classed
as closed woodland are likely to contain many trees in our study area. Thus, while the Landsat imagery
is unlikely to be helpful in determining whether trees are converting to shrubs, it is a potentially
very useful management tool with respect not only to woody encroachment generally, but also shrub
encroachment into grassland specifically. Given our results for the exclosure area, we suggest that
conversion of trees to shrubland is most likely to occur where elephants are increasing; in such areas,
finer resolution imagery or field surveys will be needed to determine whether shrub encroachment is
occurring at the expense of both trees and grassland, or only grassland.

Overall, we suggest that woody encroachment can be successfully observed and monitored using
both VHR and medium resolution imagery. This has major implications for conducting land cover
monitoring at broad geographical scales, because although LiDAR (for example [26]) and VHR data
are well suited to studies of this nature, they are not widely available and often prohibitively expensive,
whereas medium resolution imagery is freely available. Unlike VHR imagery, there is also a large
historical archive of Landsat imagery.

4.2. Land Management and Ecological Impacts of Land Cover Change

In terms of practical land management applications, monitoring land cover change via remote
sensing can better inform land managers about potential ecological consequences and impacts
for particular species of conservation interest [82]. Large overstorey trees play disproportionately
important roles in the long-term dynamics and functioning of savannahs [27], and their removal
will have a knock-on effect which could be negative or positive depending on the species in
question. The removal of trees by elephants affects habitat availability for other species, creating
and maintaining open savannah landscapes [4,24], and influencing the species composition and
structure of the herbaceous layer affecting other grazing species [83]. This greater canopy structural
diversity enhances the habitat available for a wide range of organisms [25]. Species such as steenbok
(Raphicerus campestris) and impala (Aepyceros melampus), have been shown to modify their microhabitat
selection to utilise preferentially elephant-damaged areas [84]. Equally, woody encroachment will
reduce spatial heterogeneity in vegetation structure, which will impact on species assemblages,
distributions and densities, with the direction of change depending on the feeding preferences of the
species concerned [50]. By quantifying the spatial patterns of this change over time using remote
sensing, the ecological consequences can be better observed over larger geographical areas than would
be possible using ground-based monitoring. As shown here, this has considerable potential for land
managers as a means of informing environmental conservation practices. Different study areas will
have different management histories and environmental settings, and different relationships may
apply between scales in a multi-scale approach. However, the consistency of our results between
sites suggests that, for a relatively modest outlay (perhaps acquisition of just one or a few recent
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VHR images to verify recent medium resolution classes, or targeted field surveys), large areas can be
monitored for both woody encroachment generally and shrub encroachment more specifically.

5. Conclusions

We have three main conclusions. First, we find large increases in shrubs across all our sites over
a period of little more than a decade. Importantly, this clear case of shrub encroachment in Kruger
National Park has been at the cost of both trees and grass, and is therefore to the detriment of key
tourist activities such as game viewing. Second, the exclosure data allow us to conclude that elephant
activity is the main driver of tree loss, with trees increasing where large herbivores are excluded and
decreasing strongly where they are not excluded. Shrubs also increase at a higher rate within the
exclosure, indicating a negative effect of elephants on shrubs. Thus, at least one additional mechanism
is causing shrub increase, the most likely single driver being an increase in atmospheric CO2. In such a
complex system, however, the observed changes are unlikely to result from a single mechanism. Third,
although medium spatial resolution imagery gives us little information about conversion of trees to
shrubs, in other respects the thematic information (regarding land cover classification) captured by
the medium-resolution is remarkably congruent with that derived from the VHR imagery. Therefore,
despite the (medium resolution) sub-pixel scale of typical patch sizes in savannahs, we conclude that
medium resolution imagery is nonetheless useful for examining land cover change in heterogeneous
African savannahs across large areas, with the advantages of being cost-free and having a longer
historical archive of data than is available for VHR sources.
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