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Summary 2 
 3 

1. Sex ratio theory predicts that developmental mortality can affect sex ratio optima under 4 

Local Mate Competition and also lead to ‘virgin’ broods containing only females with 5 

no sibling-mating opportunities on maturity. 6 

2. Estimates of developmental mortality and its sex ratio effects have been laboratory 7 

based and both models and laboratory studies have treated mortality as a phenomenon 8 

without identifying its biological causes. 9 

3. We contribute a large set of field data on Metaphycus luteolus Timberlake 10 

(Hymenoptera: Encyrtidae), an endoparasitoid of soft scale insects (Hemiptera: 11 

Coccidae), which has sex allocation conditional on host quality and female biased 12 

brood sex ratios. Developmental mortality within broods can be both assessed and 13 

attributed to distinct causes, including encapsulation by the host and larval-larval 14 

competition. 15 

4. Thirty percent of Metaphycus luteolus offspring die during development with 65% of 16 

this mortality due to encapsulation and 28% due to larval competition. The 17 

distributions of mortality overall and for each cause of mortality separately were 18 

overdispersed. 19 

5. The probability of an individual being encapsulated increased with clutch size while 20 

the probability of being killed by a brood mate declined with increasing clutch size and 21 

with increasing per capita availability of resources. 22 

6. The sexual compositions of broods at emergence were influenced by both the degree 23 

and the type of mortality operating. At higher levels of mortality, single sex broods 24 

were more common and sex ratios were less precise. Overall, virginity was more 25 

prevalent than predicted and was more greatly affected by the occurrence of 26 

competition than by other sources of mortality, almost certainly because competition 27 

tended to eliminate males. 28 

7. The reproductive and developmental biology of Metaphycus luteolus appears to be 29 

influenced by a complex interplay of maternal clutch size and sex allocation strategies, 30 

offspring-offspring developmental interactions, host defence mechanisms and post-31 

emergence mating behaviour. Despite the great sophistication of sex ratio theory, it has 32 

not yet evolved to the point where it is capable of considering all of these influences 33 

simultaneously. 34 

 35 

Key-words: Developmental mortality, encapsulation, facultative siblicide, facultatively 36 

gregarious parasitoid, field study, local mate competition 37 
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Introduction 1 

 2 

Historically, sex ratio theory is one of the more thoroughly researched and important areas in 3 

behavioural and evolutionary ecology (e.g. Seger & Stubblefield 2002; West 2009). A major 4 

step was Fisher’s (1930) development of a frequency-dependent selection explanation for the 5 

sex ratio equality observed in many outbreeding species. Subsequently Hamilton (1967) 6 

applied game-theoretic reasoning to explain the strongly biased sex ratios observed in many 7 

inbreeding species. In Hamilton’s model of local mate competition (LMC), offspring are 8 

assumed to develop in groups in reproductively isolated and ephemeral patches, from which 9 

mated daughters subsequently disperse. Under these assumptions, the optimal sex ratio 10 

allocated by a ‘foundress’ to a patch depends on the number of contributing foundresses and 11 

it is the best response in the presence of competing strategies, i.e., an evolutionarily stable 12 

strategy (ESS) (e.g. Freedberg 2002; West 2009); when small numbers of mothers contribute 13 

offspring in a patch, sex ratio optima are strongly female biased. Extensions to Hamilton’s 14 

model under partial local mating (when mating occurs between, as well as within, offspring 15 

groups) yield sex ratio optima that are less female biased for a given number of foundresses 16 

(e.g. Nunney & Luck 1988; West 2009). When resource quality varies within a group and 17 

fitness effects associated with resource quality are sexually differential, sex ratios are 18 

predicted to be less female biased than under invariant resource quality conditions (Werren 19 

1984). This prediction also holds when resources within an offspring group are uniformly 20 

poor, provided there is inter-group variation in resource quality and partial local mating (e.g. 21 

Ikawa et al. 1993). These latter predictions combine LMC theory with the third most 22 

historically important development of sex ratio theory: sex allocation conditional on 23 

environmental conditions such as resource quality (Trivers & Willard 1973; West 2009). 24 

Responses to a combination of LMC and environmental quality are termed a ‘mixed sex 25 

allocation strategy’ (Mayhew & Godfray 1997). 26 

 27 

When just one foundress reproduces in a strictly isolated patch, Hamilton’s (1967) 28 

LMC model, which heuristically assumes that offspring group sizes are infinite (continuous 29 

non-integer values), predicts an optimal sex ratio of 0.0 (proportion of offspring that are 30 

male). This implies that a minimum number of sons are required to mate with the daughters. 31 

With a single foundress, and under strictly local mating, a game-theoretic approach is not, 32 

however, required to predict sex ratio optima because no competing foundress strategists are 33 

present. A number of static optimality models have developed LMC theory for such cases, 34 



 4 

assuming strictly local mating. Realistically, the offspring group sizes are relatively small 1 

integers, and thus constrain the set of possible sex ratios. Models for a ‘discrete’ number of 2 

offspring predict that sex ratios should be the reciprocal of group size, if a single male is 3 

sufficient to mate all of his sisters (Green, Gordh & Hawkins 1982; Griffiths & Godfray 4 

1988), and the sex ratios distributed across offspring groups manifest low (ideally zero) 5 

variance, i.e., precise sex ratios (Green et al. 1982; Nagelkerke 1996). Limited mating 6 

capacity of males or imperfect sex allocation control by foundresses each lead to greater 7 

numbers of males expected in larger groups of offspring (Green et al. 1982, Nagelkerke 8 

1996; Nagelkerke & Hardy 1994; Hardy et al. 1998; 2000). 9 

 10 

A further consideration incorporated into static optimality models of single foundress 11 

sex ratio optima has been that offspring may die between sex allocation and subsequent 12 

maturity and mating. Foundresses are predicted to adjust their sex allocation decisions 13 

according to the probability of developmental mortality and the offspring group size by 14 

increasing the number of sons, as insurance against the production of unmated daughters, if 15 

mortality (risk) and/or group size (value) increases (Green et al. 1982). A consequence of 16 

such optimal sex allocation is that, at maturation, some offspring groups will contain no 17 

males and the maturing females within these groups will remain virgin, with zero fitness if 18 

mating is strictly local. Under a given mortality risk, the proportion of virgin broods is 19 

expected to decrease with increasing offspring in a group (Heimpel 1994). Also, increasing 20 

developmental mortality is expected to lead to increases in group sex ratio variance at 21 

offspring maturity (Hardy et al. 1998). Optimal sex allocation is further predicted to be 22 

influenced by the probability of male developmental mortality and its distribution across 23 

offspring groups: under strict local mating, sex ratio optima are more greatly affected when 24 

mortality variance is low and complete mortality of offspring in these groups has no effect 25 

(Nagelkerke & Hardy 1994). In contrast, under partial local mating, complete mortality 26 

influences sex allocation optima via its influence on the probability of non-local mating 27 

(Freedberg 2002). 28 

 29 

Much of the above sex ratio theory has been developed in conjunction with 30 

experimental and comparative studies on parasitoid Hymenoptera. These have a haplo-31 

diploid sex determination system which allows maternal control of sex allocation, and a suite 32 

of variations around a relatively simple core life-history (e.g. Godfray 1994). Locally mating 33 

parasitoids manifest female biased sex ratios, approximating the reciprocal of group size and 34 
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low variance (Green et al. 1982; Griffiths & Godfray 1988; Hardy et al. 1998). 1 

Developmental mortality also correlates with sex ratio variance and the proportion of virgin 2 

broods across and within species (Hardy et al. 1998). The proportion of virgin broods within 3 

species generally declines as offspring group size increases (Hardy & Cook 1995; Hardy et 4 

al. 1998; Kapranas et al. 2009b). 5 

 6 

Such studies of relationships between developmental mortality and sex ratios have, 7 

however, had several limitations. First, most estimates of the sexual composition in 8 

parasitoid offspring groups and their developmental mortality are laboratory-based whereas 9 

those in the field may differ, thus limiting the degree to which laboratory evidence is relevant 10 

(e.g. Kapranas et al. 2009b). More fundamentally, the static optimality models developed by 11 

Green et al. (1982), Heimpel (1994) and Nagelkerke and Hardy (1994) do not consider 12 

effects of environmental (host) quality, multiple-foundress cases or the possibility of partial 13 

local mating; incorporating the latter two would require a game-theoretic approach (e.g. 14 

Nagelkerke 1996; Freedberg 2002). Further, these models treat mortality in a 15 

phenomenological manner, considering given means and distributions as fixed assumptions, 16 

and predict a foundress’ optimal sex allocation response to these conditions. This approach 17 

may be appropriate for externally feeding (ectoparasitoid) species with scramble-type 18 

competition between developing siblings, such as the members of the aculeate family 19 

Bethylidae with which these models have been hitherto most tested (Hardy & Cook 1995; 20 

Hardy et al. 1998). However, many parasitoid species develop inside their hosts 21 

(endoparasitoids) and manifest contest-type inter-sibling interactions (e.g. Godfray 1987; 22 

1994; Pexton et al. 2003; Tena et al. 2008; 2009; Segoli et al. 2010). The probability of 23 

mortality due to encapsulation or within-host contests may not be independent of the initial 24 

size and sexual composition of the offspring group (Godfray 1987; Rosenheim 1993; 25 

Mayhew & Hardy 1998; Ode & Rosenheim 1998; Pexton et al. 2003; Tena et al. 2009). 26 

Models exploring sex ratios under developmental mortality may thus require a more dynamic 27 

interplay between sex allocation strategies and the subsequent offspring mortality. 28 

 29 

Here we address some of the above limitations via a field-based evaluation of sex 30 

ratio and developmental mortality in an endoparasitoid species, Metaphycus luteolus 31 

Timberlake (Hymenoptera: Encyrtidae), in which the causes of developmental mortality that 32 

operate within each offspring group can be identified. We show that mortality falls into at 33 

least three biologically different classes; encapsulation by the host, larval-larval competition 34 
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and natural (intrinsic) causes, each occurring with a different frequency. Lastly, the sexual 1 

compositions of broods are affected by both the degree and type of mortality operating. 2 

 3 

Biology of Metaphycus luteolus 4 

 5 

Metaphycus luteolus is a facultatively gregarious endoparasitoid of soft scale insects in the 6 

genera Coccus, Lecanium and Saissetia (Hemiptera: Coccidae) and is considered native to 7 

California (Bartlett 1978). The focal host of the current study, the brown soft scale, Coccus 8 

hesperidum L., may have an African origin but is cosmopolitan and has been associated with 9 

M. luteolus, one of its most important natural enemies in northern America, for at least a 10 

century (Timberlake, 1913) and the host-parasitoid association is thus likely to be coevolved. 11 

Metaphycus species account for ca.75% of brown soft scale parasitism and around 20% of 12 

this is due to M. luteolus (Kapranas et al. 2007). 13 

 Metaphycus luteolus females are synovigenic, emerging from their hosts as adults 14 

without mature eggs and then maturing eggs upon feeding on natural carbohydrate sources or 15 

the haemolymph of their hosts (Kapranas & Luck 2008). This species is facultatively 16 

gregarious and lays its eggs as clutches that range from one to nine eggs depending on host 17 

size. Each deposited egg has a stalk-like structure that protrudes from the host’s integument 18 

and is thought to facilitate respiration of the egg and early instar larvae (Maple 1947). The 19 

host’s development is arrested upon parasitisation, as with other Metaphycus species 20 

(Lampson, Morse & Luck 1996; Bernal, Luck & Morse 1998; 1999). Some M. luteolus eggs 21 

are encapsulated by brown soft scale (Bartlett & Ball 1964; 1966; Kapranas et al. 2009a), as 22 

is commonly observed in other encyrtid-soft scale associations (Blumberg 1997). The larvae 23 

that hatch may then compete with conspecifics, including siblings, within a host and such 24 

aggressive larval interactions result in the elimination and consumption of brood mates 25 

(Bartlett & Ball 1964). Development from egg to adult takes 2-3 weeks. Adults of both sexes 26 

are winged. Under laboratory conditions, females live 4–8 weeks when fed carbohydrate 27 

(honey) and hosts whereas male longevity is 3-4 weeks, if fed carbohydrates only (Kapranas 28 

& Luck 2008). Longevity and the possession of wings are likely to promote non-local and 29 

non-sibling mating in the field while gregarious development is likely to promote local 30 

mating (Kapranas et al. 2008). 31 

 32 

Materials and methods 33 

 34 
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Pre-exposure rearing of hosts  1 

 2 

We maintained a culture of brown soft scale on excised Yucca recurvifolia Salisbury 3 

(Liliaceae) leaves grown hydroponically in the University of California, Riverside (UCR) 4 

insectary. The leaves for the culture were obtained from plants grown in a plot at 5 

Agricultural Operations, UCR. 6 

 7 

Field exposure of hosts 8 

 9 

Field experiments were carried out from February 2004 to March 2006 in eleven citrus 10 

groves scattered throughout southern California, USA, generally following methods 11 

described in Kapranas et al. (2007; 2008). We used yucca leaves infested with 20-28 day-old 12 

brown soft scales; each leaf typically bore 200-300 individuals of variable size and 13 

developmental stage. Because there were always substantially more soft scales present on 14 

each of the yucca leaves than the numbers that were eventually parasitized (usually 15-20% 15 

of hosts on any one leaf) our design minimises, rather than excludes, potential 16 

superparasitism (see also Mackauer & Völkl 2002). Each leaf was placed in a water-filled 17 

vial fixed on top of a one metre high stake, beneath the canopy of a citrus tree. Ants were 18 

excluded from the yucca leaves by an insecticidal tape (chlorpyrifos) wrapped around the 19 

stake mid-height above the ground. We placed three leaves in each citrus grove and replaced 20 

them approximately biweekly. 21 

 22 

Post-exposure laboratory rearings 23 

 24 

Upon return to the laboratory, each yucca leaf was inspected for foraging adult wasps, which 25 

were removed with an aspirator and killed. This precluded oviposition in the laboratory 26 

environment. The leaves were maintained at ~25-28˚C with naturally determined 27 

photoperiod. The leaves were then inspected for the presence of parasitized scales, which can 28 

be recognized by their mummification, i.e., their light yellow to golden colour and convex 29 

shape. Also, the developing parasitoids are easily recognized and visible through the dead 30 

scale’s translucent cuticle. Each parasitized scale was isolated in a 3.0 × 0.8 mm glass vial 31 

streaked with honey on the inside wall and stoppered with a cotton plug. Each sample leaf 32 

was re-inspected for parasitized scales two to three times during the subsequent 15 days; the 33 
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period between inspections allowed immature parasitoids to develop to a stage that was 1 

clearly visible. 2 

  3 

Parasitoid emergence 4 

 5 

We inspected vials with the developing parasitoids every 1-2 days for emergence and 6 

emerged adult parasitoids were killed by freezing. The wasps (= brood) emerging from each 7 

host was cold-stored separately in 95% alcohol. We verified that we had all of the emerged 8 

brood, as each emerging parasitoid constructs a separate exit hole through the scale 9 

integument. The number of exit holes always equalled the number of adults collected from 10 

each host. 11 

The species and sex of each emerged wasp was identified and recorded along with 12 

the host scale’s length and width to the nearest 0.01 mm, measured using an ocular 13 

micrometer mounted in the eyepiece of a dissecting microscope. As scales are much more 14 

closely discoid than spherical and because it was impractical to measure scale height, the 15 

index of host size used was scale surface area, calculated as an ellipsoid (π×width×length/4).  16 

 17 

Parasitoid developmental mortality 18 

 19 

Estimates of developmental mortality exclude cases of complete mortality of a clutch 20 

because it is not possible to identify, to species level, dead immatures within a host. Each 21 

host issuing M. luteolus adults was immersed in warm water for 5-10s to remove the 22 

honeydew traces and other field debris from their cuticle and then inspected at 23 

70×magnification. The number of stalks protruding through the integument indicated the 24 

number of eggs that had been laid in the host (= clutch size) (Fig. 1). Visual inspection of the 25 

integument of each host, followed by dissection, allowed us to determine the number of 26 

encapsulated eggs (melanized capsules) per host (Fig. 1). A small proportion of dead larvae 27 

was observed to have a melanotic appearance and these larvae were considered to have died 28 

from probably ‘intrinsic causes’. Cases in which the clutch size was greater than the sum of 29 

the encapsulated eggs plus larvae dying of intrinsic causes plus the number of emerged 30 

wasps (brood size) indicated direct physical competition between brood mates resulting in 31 

the defeat and consumption of larvae (according to laboratory investigations on M. luteolus 32 

and its congeners, larvae that lose fights are always consumed by the winners, Bartlett & 33 
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Ball 1964; Tena et al. 2008; 2009). We also recorded ‘mixed mortality’ when several causes 1 

operated within a particular clutch.  2 

 3 

Statistical analysis 4 

 5 

Our general approach was to use Generalized Linear Models in which the assumed 6 

distribution of residuals is matched, via initial assumptions and empirically estimated scale 7 

parameters (which correct for over- or under-dispersion), to the structure of the data rather 8 

than the ‘traditional’ approach of transforming data to fit standard Gaussian assumptions 9 

(e.g. Crawley 1993; Wilson & Hardy 2002). Influences on clutch size, brood size and 10 

numbers of males in a clutch were identified using log-linear analyses, which are appropriate 11 

for small count data. Influences on sex ratios, the prevalence of all-female broods, and 12 

developmental mortalities were explored using logistic analyses, which are appropriate for 13 

proportional data. We report the percentage of deviance explained (%Dev) as an approximate 14 

analogue of r2 for log-linear and logistic models. We used backward stepwise procedures and 15 

aggregation of factor levels to obtain the parsimonious ‘minimal adequate model’ by model 16 

simplification (e.g. Crawley 1993; Wilson & Hardy 2002). 17 

We used the variance ratio, R, as a descriptive statistic to quantify the variance of 18 

brood sex ratios and developmental mortality across broods: R = 1 indicates a binomial 19 

distribution while R<1 and R>1 indicate under- and over-dispersion, respectively (Krackow 20 

et al. 2002). The Meelis test statistic, U, was used to assess the significance of any deviations 21 

from binomiality (Krackow et al. 2002). 22 

 23 

Results 24 

 25 

Overall, we collected 2,758 parasitized scales; 494 of these scales were parasitized by M. 26 

luteolus. The remaining scales were parasitized by other Metaphycus species or by species 27 

belonging to other genera (Kapranas et al. 2007). A few scales yielded both M. luteolus and 28 

another parasitoid species but this occurred rarely (n = 7). In some cases, scale size and/or 29 

parasitoid mortality factors could not be assessed (see below) but each part of the analysis 30 

was conducted using all suitable data available. There was a total data set of 395 clutches for 31 

assessing mortality, of which 371 were gregarious (clutch size > 1). 32 

 33 

Pre-mortality clutch composition 34 



 10 

 1 

The number of eggs laid in each host (= clutch size) ranged between one and nine, although 2 

95% of clutches contained 1-6 eggs, and clutch size increased with host size (log-linear 3 

analysis corrected for underdispersion; F1,403 = 289.72, P < 0.001, %Dev = 41.9, Fig. 2). For 4 

clutches of one egg (solitary clutches) and without developmental mortality (N = 24) the 5 

probability of the offspring being a male (sex ratio) decreased as host size increased (simple 6 

logistic regression; G1 = 11.20, P < 0.001, %Dev = 51.8, Fig. 3). For clutches of more than 7 

one egg (gregarious clutches) and with no developmental mortality (N = 127), the proportion 8 

of offspring that were male (sex ratio) decreased significantly with clutch size (logistic 9 

regression corrected for underdispersion: F1,125 = 18.87, P < 0.001, %Dev = 13.0) whereas 10 

the number of males laid in each clutch increased (log-linear regression corrected for 11 

underdispersion: F1,125 = 12.25, P < 0.001, %Dev = 9.0). These analyses were carried out 12 

with the caveat that subsets of broods lacking developmental mortality may not be 13 

representative of the overall primary sex ratio (Fiala 1980). 14 

 15 

Developmental mortality 16 

 17 

Thirty percent (428/1,449) of M. luteolus offspring developing in gregarious clutches died 18 

before adulthood. Of these, 64% died due to egg encapsulation by the host, 27.6% died due 19 

to intra-brood competition between larvae and 8.4% of other intrinsic causes. 20 

In 34.23% (127/371) of gregarious broods all offspring survived (brood size at 21 

emergence = initial clutch size), in 35.84% of clutches there was mortality solely due to 22 

encapsulation (mean mortality within these clutches was 46.60%; in 57.14% [76/133] of 23 

these clutches just one egg was encapsulated), in 16.98% of clutches there was mortality 24 

solely due to larval competition (mean mortality within these clutches = 34%; in 73% 25 

[46/63] cases just one larva was eliminated) and in 5.39% mortality was solely due to 26 

intrinsic causes (mean mortality within these clutches = 41.55%; in 70% [14/20] of these 27 

broods just one larva died of intrinsic causes). In some clutches (7.5%) two mortality sources 28 

were evident, with encapsulation and competition co-occurring in about 71.4% of these cases 29 

(mean mortality within these clutches = 53.1%). (All estimates of developmental mortality 30 

necessarily excluded cases of complete mortality, see Methods, and are therefore likely to be 31 

underestimates). 32 

 The overall distribution of mortality across clutches was significantly overdispersed 33 

(R = 1.569, U = 5.29, P < 0.001) suggesting a tendency that broods members survived or 34 
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died collectively. Analyses of the distributions of each mortality source across all 371 1 

clutches further showed consistent overdispersion (encapsulation mortality, R = 2.351, U = 2 

15.5, P < 0.001; competition mortality, R =1.532, U = 6.12, P < 0.001; intrinsic mortality, R 3 

= 1.71, U = 8.87, P < 0.001). Inclusion of broods with complete mortality would strengthen 4 

all of these conclusions. 5 

The probability of mortality affecting a brood was positively related to the initial 6 

clutch size (logistic regression: G1 = 8.63, P = 0.003, %Dev = 1.8): this overall relationship 7 

was due to an increase in the probability of competition mortality (G1 = 13.74, P < 0.001, 8 

%Dev = 3.4) while there were no significant relationships for either encapsulation (G1 = 9 

3.43, P = 0.06 [note marginal non-significance: the trend was higher encapsulation 10 

probabilities in larger clutches], %Dev = 0.7) or for intrinsic mortality (G1 = 0.19, P = 0.77, 11 

%Dev = 0.001) (Fig. 4). We calculated an approximate index for resources available per 12 

offspring within each host by dividing host size by clutch size (resource availability 13 

correlated negatively with clutch size, Spearman’ rank test: rs = -0.52, P < 0.001) and then 14 

repeated these analyses with resource availability as the explanatory variable. Overall, the 15 

proportion of broods suffering mortality declined as resource availability increased (G1 = 16 

6.51, P = 0.011, %Dev = 1.37). Again, the overall relationship was due solely to a decrease 17 

in the proportion of broods manifesting competition mortality (G1 = 22.39, P < 0.001, %Dev 18 

= 5.62; encapsulation, G1 = 0.06, P = 0.81, %Dev = 0.011, intrinsic mortality, G1 = 0.20, P = 19 

0.65, %Dev = 0.10, Fig. 4). Because physical competition only occurs during the larval 20 

stage, we explored the probability of competition mortality using host size divided by the 21 

number of eggs that issued larvae. The result was similar but stronger (G1 = 63.38, P < 0.001, 22 

%Dev = 15.9). Across all broods with some mortality, the number of larvae that died 23 

declined as resource availability increased (log-linear regression corrected for 24 

underdispersion: F1,241 = 43.37, P < 0.001, %Dev = 16.4). 25 

The likelihood of individuals dying increased weakly as the initial clutch size 26 

increased (logistic regression corrected for overdispersion; F1,369 = 4.78, P = 0.029, %Dev = 27 

1.27) but it differed depending on the cause of death within a clutch: encapsulation was 28 

slightly more common among offspring in larger clutches whereas the proportion of 29 

immature parasitoids dying from other sources declined with increasing clutch size (logistic 30 

ANCOVA corrected for underdispersion: clutch size × mortality category interaction: F3,243 = 31 

3.24, P = 0.023, %Dev = 3.5, Fig. 5). The increase in encapsulation as clutch size increased 32 

was not due to larger hosts, which generally contained larger clutches, encapsulating a higher 33 
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proportion of parasitoids within broods (logistic regression corrected for underdispersion: 1 

F1,367 = 1.48, P = 0.228). 2 

 3 

Developmental mortality and sex ratio 4 

 5 

Data from all gregarious clutches were used to explore effects of brood size and the 6 

prevalence and type of developmental mortality on the brood sex ratio at adult emergence 7 

(secondary sex ratio). Mortality type was assigned as a factor with five categorical levels 8 

(none, intrinsic causes, encapsulation, competition or mixed) and the prevalence of mortality 9 

was fitted as the proportion of eggs in a clutch that died (these analyses are unaffected by the 10 

necessary exclusion of broods with complete mortality as such broods also have no 11 

secondary sex ratios). Overall, the mean brood sex ratio was 0.262 (S.E. ± 0.01), but sex 12 

ratios decreased weakly as brood size and the prevalence of mortality increased (logistic 13 

analysis of covariance corrected for underdispersion: brood size F1,355 = 22.19, P < 0.001, 14 

%Dev = 5.55; mortality prevalence F1,355 = 18.10, P < 0.001, %Dev = 4.52, Fig. 6), 15 

indicating that, overall, males have slightly higher developmental mortality than females. 16 

The type of mortality affecting a clutch did not influence the brood’s sex ratio significantly 17 

(F4,355 = 0.29, P = 0.88, %Dev = 0.28). Also there were no significant interactions between 18 

any of the fitted explanatory variables. 19 

 20 

Developmental mortality and sex ratio variance 21 

 22 

Metaphycus luteolus shows sex ratio precision: the sex ratios of gregarious broods were 23 

significantly underdispersed (Table 1). Calculating variances for groups of broods separately 24 

suggested that broods with no mortality had lower sex ratio variances than those affected by 25 

any of the four types of mortality (Table 1). With the caveat that analysis of relationships 26 

between variance ratios and other measured variables may not always be valid (Krackow et 27 

al. 2002), we explored the effect of mortality on sex ratio variance in three ways. First we 28 

correlated the variance ratio obtained within each mortality type with the mean mortality 29 

experienced within that class (Table 1): these estimates were positively correlated 30 

(Spearman’s rank test: rs = 0.900, P = 0.004). Second, we grouped broods by the degree of 31 

mortality they experienced (0%, 0.1-10%, 10.1-20%, etc.), irrespective of mortality type. For 32 

each group we calculated the variance ratio and regressed it against the mean mortality of the 33 

group, initially including a quadratic term to allow for potential curvilinearity and weighting 34 
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each variance ratio according to the number of broods from which it was calculated (a proxy 1 

for reliability). Variance ratios increased significantly and linearly with an increase in mean 2 

mortality (F1,5 = 70.26, P < 0.001, r2 = 0.92; quadratic term, F1,4 = 2.03, P = 0.227, r2 = 0.02, 3 

Fig. 7). We also observed that a weighted analysis gave a better fit to the assumptions of a 4 

Gaussian distribution and constant errors variances compared with the equivalent un-5 

weighted regression. Both of these analyses lead to the same conclusion. Third, because a 6 

high sex ratio variance may be associated with a preponderance of single-sex broods, we 7 

carried out a logistic ANCOVA on whether or not broods contained just one sex of offspring 8 

in relation to i) the proportion of offspring dying within those broods and ii) the category of 9 

mortality operating (broods without mortality were excluded). Single sex broods were 10 

significantly more common when mortality was prevalent (G1 = 79.34, P < 0.001, %Dev = 11 

24) and this depended on the category of mortality operating via a significant interaction 12 

between proportion and category of mortality (G3 = 10.73, P < 0.013, %Dev = 3.2). For 13 

encapsulation and competition, sex ratio variances were less sensitive to the prevalence of 14 

mortality than they were with intrinsic or mixed mortality. When overall mortality rates were 15 

low, competition tended to generate single sex broods most frequently. Collectively, these 16 

analyses show that sex ratio variance is affected both by the degree and the cause of 17 

mortality operating. 18 

 19 

Developmental mortality and the optimal number of male eggs 20 

 21 

We calculated the maternal optimal number of male eggs at clutch oviposition assuming 22 

single foundress clutches, strict local (within brood) mating and also that one adult male is 23 

able to inseminate all emerging females (Green et al. 1982; Heimpel 1994). The optimal 24 

number of male eggs, s, is predicted to depend on both the clutch size, c, and the probability 25 

of mortality, m, and is the number that maximises the mean number of mated daughters, Dm, 26 

according to Heimpel’s (1994) equation Dm = (1-ms)(c-s)(1-m). Calculations first used the 27 

probability of developmental mortality estimated across all clutches and then, used clutch 28 

size specific mortality estimates because we found a relationship between mortality and 29 

clutch size (see above). 30 

 The mortality estimates derive from male and female mortality combined, although 31 

only male mortality, which is likely to be higher in M. luteolus (see above), is predicted to 32 

influence maternal optima (Nagelkerke & Hardy 1994). Further, Heimpel’s (1994) equation 33 

assumes a binomial distribution of individual mortality across clutches, while in M. luteolus, 34 
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mortality is overdispersed (see above), which is predicted to reduce the influence of 1 

mortality on maternal sex ratio decisions (Nagelkerke & Hardy 1994). Our optimality 2 

calculations are therefore approximate but these two ways in which M. luteolus mortality 3 

does not match assumptions are expected to have opposing influences and thus may 4 

effectively cancel. Using the estimate of overall mortality, the optimal number of male eggs 5 

in clutches of 1 to 5 eggs was one, and in clutches of 6 to 9 was two. A similar result was 6 

obtained using clutch size specific mortalities but the switch to laying two male eggs 7 

occurred at clutch sizes of 7. 8 

 9 

Developmental mortality and the prevalence of virgin broods 10 

 11 

For each clutch size we calculated the expected proportions of ‘virgin broods’, containing 12 

only females at emergence, using the optimal number of male eggs and the mortality 13 

estimates as above (this proportion is equal to ms, Heimpel 1994; Hardy & Cook 1995). The 14 

expected proportion of virgin broods was 0.295 for clutches of 1-5 eggs, and 0.087 for 15 

clutches of 6-9 using the overall mortality estimate. Predictions were similar when using 16 

clutch size specific mortality estimates, except that virginity was predicted to be more 17 

prevalent in broods developing from larger clutches (Fig. 8a). There was no relationship 18 

between the probability of virginity and clutch size (simple logistic regression, with each 19 

brood entered as virgin or non-virgin; G1 = 1.57, P = 0.211, %Dev = 0.33, overall proportion 20 

of virginity = 0.334, Fig. 7a). Observed virginity was significantly more prevalent than 21 

expected (χ2-test: Using overall mortality, χ2 = 43.2, d.f. = 7, P<0.001; Using clutch size 22 

specific mortality, χ2 = 33.3, d.f. = 7, P < 0.001). 23 

We next explored whether there was an effect of mortality category (see above) on 24 

the proportion of broods that were virgin, using logistic ANCOVA, initially including 25 

mortality as a factor with five levels and clutch size as a variate. The type of mortality 26 

experienced had a significant effect on the probability of virgin broods (G4 = 32.10, P < 27 

0.001, %Dev = 27.1) and there was a significant interaction with clutch size (G4 = 12.4, P = 28 

0.042, %Dev = 2.1). Attempts at model simplification by progressively aggregating factor 29 

levels showed that the ‘encapsulation’, ‘intrinsic’ and ‘mixed’ categories of mortality did not 30 

differ significantly in their effects on virginity, but ‘competition’ and ‘no mortality’ could 31 

not be merged with other categories. Virginity decreased as clutch size increased for 32 

competition and other sources of mortality, but among broods without mortality, virginity 33 

was almost absent irrespective of the clutch size (Fig. 8b). 34 
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Finally, using logistic ANCOVA, we explored the relationship between the 1 

proportion of virgin broods and the proportion of offspring in those broods that died.  Broods 2 

were also classified by the type of mortality that was observed (i.e., intrinsic mortality, 3 

encapsulation, competition, and mixed mortality; broods lacking mortality were excluded). 4 

Virginity increased significantly with the prevalence of mortality (G1 = 32.81 P < 0.001, 5 

%Dev = 10.0) and aggregation of factor levels showed that virginity in broods with mortality 6 

due to encapsulation, competition and intrinsic causes did not differ significantly in their 7 

relationships with increasing mortality, but broods with ‘mixed’ causes of mortality were 8 

significantly more sensitive to the prevalence of mortality (interaction term: G1 = 7.19, P < 9 

0.007), indicating a synergistic effect of mortality causes (Fig. 9). 10 

 11 

Discussion 12 

 13 

The observed reproductive biology of M. luteolus is typical of facultatively gregarious 14 

endoparasitoids of soft scale insects. Their offspring generally develop in small broods, the 15 

size of which depends on host size (e.g. Kapranas et al. 2008). In single egg clutches, sex 16 

allocation was host size dependent, as has been observed in many solitary parasitoids, 17 

including Metaphycus species (e.g. Lampson et al. 1996; Bernal et al. 1999; Godfray 1994; 18 

West & Sheldon 2002; Kapranas et al. 2008; West 2009). However, this relationship was not 19 

detected in a previous field study of M. luteolus sex allocation (Kapranas et al. 2008). The 20 

sex ratios of larger broods lacking developmental mortality decreased with brood size, as 21 

observed within and across other parasitoid species (e.g. Griffiths & Godfray 1988; Hardy et 22 

al. 1998; Smart & Mayhew 2009; see Abe et al. 2009 for a recent exception) and also 23 

showed low variance. Sex ratio precision is achieved by non-random sequences of sex 24 

allocation, with one or two male eggs usually laid at the end of an oviposition sequence 25 

(Kapranas et al. 2009b), again in common with many other species of parasitoids 26 

experiencing LMC (e.g. Hardy 1992). Thus, M. luteolus females control clutch size and sex 27 

allocation, with sex ratio optima apparently influenced by a combination of host-size 28 

dependence and some degree of LMC, i.e., a ‘mixed sex allocation strategy’ (Mayhew & 29 

Godfray 1997). 30 

 31 

Developmental mortality 32 

 33 
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At least thirty percent of M. luteolus offspring died before maturity under field conditions. 1 

This concurs with laboratory based-estimates for M. luteolus mortality (≈40%, including 2 

broods with complete mortality, Kapranas et al. 2009b) and alleviates concerns that 3 

laboratory estimates of parasitoid mortality may be generally inaccurate (e.g. Hardy et al. 4 

1998; Kapranas et al. 2009b). In particular, the relatively minor difference in these estimates 5 

suggests that the complete mortality of broods is not extremely common in M. luteolus and 6 

thus, that the exclusion of field data from such broods will not greatly affect our major 7 

conclusions (note also that estimates of virginity and secondary sex ratio are unaffected by 8 

exclusion of broods in which both males and females have all died).  9 

 Encapsulation was the most common cause of mortality (≈70% of all mortality) and 10 

its rate increased slightly with increasing clutch size, although there was no significant 11 

relationship. This might be due to the fact that larger clutches tend to be laid in larger hosts 12 

but larger hosts are generally more resistant to parasitism via encapsulation (Blumberg 13 

1997). The absence of any significant relationship between encapsulation rates and either 14 

host size or clutch size could also be because data from broods with complete encapsulation 15 

could not be included. Complete encapsulation was less frequent when clutch sizes were 16 

larger in the solitary encyrtid Comperiella bifasciata Howard (Rosenheim & Hongkham 17 

1996; Ode & Rosenheim 1998) and when clutch sizes were increased by superparasitism in 18 

Metaphycus flavus (Howard) (Tena et al. 2008). From the host’s perspective, complete 19 

encapsulation is the only successful outcome of the post-parasitism host-parasitoid 20 

interaction. 21 

 The second most common cause of mortality (≈22%) was intra-brood larval 22 

competition and intrinsic causes accounted for ≈8%. In contrast to trends for encapsulation, 23 

mortality due to competition and intrinsic causes was less prevalent overall among offspring 24 

developing from larger clutches. Although the likelihood that at least some competition 25 

mortality occurred was greater among larger clutches, the number of larvae that were killed 26 

was smaller. Competition mortality was clearly dependent upon the availability of resources 27 

to developing offspring, only commonly occurring when resources were relatively scarce 28 

(see also Tena et al. 2009). Intrinsic mortality showed no such pattern, suggesting that this 29 

category of mortality was not due to a relatively cryptic form of inter-larval resource 30 

competition such as physiological suppression. 31 

 Mortality was not randomly distributed across broods. Members of broods tended to 32 

survive or die collectively, as observed in other parasitoid species and across a range of other 33 

taxa (Hardy et al. 1998; Freedberg 2002). Although statistical overdispersion is commonly 34 
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caused by probability variation across categories within a data set (e.g. Krackow et al. 2002; 1 

Wilson & Hardy 2002) and identified causes of M. luteolus mortality each had different 2 

means, separate analyses for each mortality type showed that mortality was overdispersed 3 

regardless of whether it was due to encapsulation, competition or intrinsic causes. This was 4 

true even though the modal number of offspring dying was just one when mortality occurred. 5 

These estimates further suggest that prior reports of overdispersed parasitoid mortality 6 

represent biologically-based overdispersion rather than statistical mixtures of binomially or 7 

sub-binomially distributed biological effects. 8 

 9 

Sex ratio consequences of developmental mortality 10 

Developmental mortality had a weak effect on mean brood sex ratio, indicating that mortality 11 

is slightly more common among males than among female offspring. Candidate explanations 12 

for sexually differential mortality include intrinsic differences between the sexes (e.g. the 13 

expression of deleterious mutations in male haploids, Smith & Shaw 1980) and sexually-14 

asymmetric susceptibility to extrinsic factors such as competition or encapsulation (discussed 15 

below). 16 

Previous field-based estimates of parasitoid brood sex ratio variances have variously 17 

reported under-dispersion, binomiality and over-dispersion but were either unable to provide 18 

associated estimates of developmental mortality (Mackauer & Völkl 2002) or were 19 

constrained to laboratory estimates of the mortality of broods collected in the field (Hardy et 20 

al. 1998). Laboratory estimates, within and across species of gregarious parasitoids, indicate 21 

that sex ratio variances are increased by mortality, as would be expected if mortality has a 22 

random component (Hardy et al. 1998). In M. luteolus, mortality clearly affected sex ratio 23 

variance in the field; despite sex ratio precision (R values were consistently < 1), variances 24 

generally increased with increasing mortality. The occurrence of single-sex broods (which 25 

were mostly all-female broods, as also found by Kapranas et al. 2008) further suggests that 26 

variance was not solely affected by random mortality because, for a given proportion of 27 

developmental mortality, brood compositions at emergence were differentially affected by 28 

the cause of mortality. In particular, when the overall proportion of mortality was low, 29 

single-sex broods were observed with relatively high frequency when the mortality was due 30 

to competition. This suggests that small numbers of male M. luteolus were eliminated by 31 

females in these broods. 32 

 33 

Virginity consequences of developmental mortality 34 
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 1 

Virginity (broods containing no males at emergence) is an aspect of variation in brood sex 2 

ratio for which optimality theory provides explicit predictions (Heimpel 1994). Virginity was 3 

virtually absent among those gregarious broods in which developmental mortality did not 4 

occur. Among broods with some mortality, the probability of virginity was higher when the 5 

proportion of mortality was higher (tallying with findings for the occurrence of single-sex 6 

broods). These findings indicate that mortality, rather than factors such as limited maternal 7 

control of sex allocation, is the predominant cause of virginity in M. luteolus, matching the 8 

conclusions of other recent studies (Kapranas et al. 2008; 2009b). 9 

Under strict LMC and optimal sex allocation, the overall degree of developmental 10 

mortality observed in M. luteolus is predicted to lead to a lower proportion of virginity when 11 

offspring develop from larger clutches. In fact, the prevalence of virginity was independent 12 

of clutch size; this contrasts with laboratory data on M. luteolus, in which virginity declined 13 

with clutch size (explaining only 6.5% of the deviance) but not with results for two other 14 

Metaphycus species (Kapranas et al. 2009b). The prevalence of M. luteolus virginity was 15 

also greater than expected overall. The latter observation could be explained by a higher 16 

incidence of mortality among males than is assumed in our calculations. 17 

Prior laboratory studies on species in other parasitoid families have, in contrast, 18 

generally found a qualitative fit to the expected overall prevalence of virginity and the 19 

predicted relationship with clutch size. However, in those species, sexually differential 20 

mortality appears to be absent (Hardy et al. 1998; 2000). Prior studies have not been able to 21 

explore the effects of different sources of mortality on the prevalence of virginity; doing this 22 

showed that in M. luteolus, virginity declined with increasing clutch size, provided some 23 

mortality occurred. The relationship was strongest for mortality due to larval competition; as 24 

above, this suggests that in small broods, initially containing high proportions, and small 25 

numbers, of males, these males tended to be eliminated when competition occurred (as found 26 

in Metaphycus flavus and other parasitoid species, Tena et al. 2009). 27 

 28 

Conclusions and implications 29 

 30 

Our findings indicate that M. luteolus foundresses laid larger clutches into larger hosts; this 31 

response to host size results in less resource per offspring in larger clutches and 32 

consequently, a higher probability of competition occurring between larvae within larger 33 

broods. The probabilities of other causes of mortality operating within a brood are unrelated 34 
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to clutch size or resource availability. Within broods with competition, the proportion of 1 

offspring dying averaged ca. 0.3-0.4 and declined with increasing clutch size. Sex ratios 2 

were initially female biased and precise but developmental mortality lead to a high 3 

proportion of single-sex (including ‘virgin’) broods at offspring maturity. Virginity was more 4 

prevalent than predicted from the overall mean mortality but this is at least partially 5 

explained by higher male versus female mortality. Virginity did not decline with increasing 6 

clutch size overall, but declined among broods experiencing some mortality and according to 7 

the cause of mortality. When competition mortality occurred in small clutches, virginity 8 

frequently resulted; in larger clutches all males initially present were rarely eliminated by 9 

competition. 10 

Our data, along with results from recent studies of M. luteolus and its congeners 11 

(Kapranas et al. 2008; Tena et al. 2009), indicate that competition mortality is higher among 12 

males than among females. Two candidate, and mutually non-exclusive, explanations for 13 

sexually asymmetric competitive outcomes within small clutches are that: i) male larvae are 14 

physically less able competitors than females or even that females are more aggressive than 15 

males (Tena et al. 2009) and ii) females benefit more from siblicide than do males, due to the 16 

genetic relatedness asymmetries between male haploids and female diploids (e.g. Godfray 17 

1987; 1994; Mayhew & Hardy 1998; Ode & Rosenheim 1998; Giron et al. 2004; Gardner et 18 

al. 2007). The latter requires the ability of immatures to assess relatedness within a host, 19 

which has been demonstrated in other endoparasitic encyrtids (Giron & Strand 2004; Giron 20 

et al. 2004) and seems likely in M. flavus (Tena et al. 2008; 2009). Eliminating brood mates 21 

via competition increases the per capita resources available to survivors but carries inclusive 22 

fitness costs which are higher when eliminated competitors are more closely related and 23 

more numerous (e.g. Mayhew & Hardy 1998). The incidence of competition mortality is thus 24 

expected to be brood-size dependent; in particular, siblicide should be rare when clutch sizes 25 

are greater than ca. 3-4 eggs, especially when sex ratios are female biased (Godfray 1987; 26 

Segoli et al. 2010). The vast majority of M. luteolus broods showed these characteristics and 27 

while the occurrence of at least one contest per brood is greater among larger broods, the 28 

proportion of individuals killed declines. The incidence of siblicide may also be reduced in 29 

single sex broods with high intra-brood relatedness (Rosenheim 1993; Ode & Rosenheim 30 

1998). In M. luteolus, single sex broods are common, but only as a result of (usually male) 31 

mortality, as very few broods are single sex at oviposition (Kapranas et al. 2009b). Models 32 

of siblicide, however, assume that offspring within a host are full siblings but 33 

superparasitism may not be entirely absent in M. luteolus (see also Tena et al. 2008 for M. 34 
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flavus), which could explain a high incidence of competitive elimination in M. luteolus 1 

(Godfray 1987) while attachment of early instar larvae to the hosts integument (Maple 1947) 2 

could help to explain why several (usually female) members of a brood often survived when 3 

competitive elimination of (usually male) brood mates occurred (Pexton et al. 2003; Tena et 4 

al. 2009). 5 

A further aspect of M. luteolus’ life history that could promote within-host inter-6 

sexual competition is non-local mating (e.g. Gardner et al. 2007).  Little is known about the 7 

mating structure of M. luteolus: males are winged and long-lived so they are likely able to 8 

disperse from the host from which they emerged and mate with females from other broods, 9 

favouring less biased sex ratios than would be observed under strictly local (within brood) 10 

mating (Nunney & Luck 1988; Hardy 1994; Gardner et al. 2007; West 2009). In our study, 11 

developmental mortality resulted in 32.8% of gregarious broods being all-female. Under 12 

strict LMC, 30.6% of the females developing from all gregarious broods would remain 13 

unmated and would consequently be constrained to produce only male offspring. However, 14 

production of all-male M. luteolus clutches is rare (4% of all gregarious clutches, see also 15 

Kapranas et al. 2008), indicating that most ovipositing females are mated and thus, that 16 

females from all-female broods mate non-locally. Non-local mating would reduce the cost of 17 

all-female brood production, but would also decrease the advantage of female-biased sex 18 

ratios and consequently the selective advantage of sex ratio precision (Nunney & Luck 1988; 19 

Hardy 1994; Kapranas et al. 2008; West 2009). 20 

The reproductive and developmental biology of Metaphycus luteolus appears to be 21 

influenced by a complex interplay of maternal clutch size and sex allocation strategies, 22 

offspring-offspring interactions and host defence. Despite considerable developmental 23 

mortality and probable partial local mating, brood sex ratios have low variance yet, because 24 

of considerable mortality, virgin broods are common, particularly due to sexually 25 

asymmetric resource competition. Despite the great sophistication of sex ratio theory (e.g. 26 

Godfray 1994; West 2009) it has yet to be developed sufficiently to consider all of these 27 

influences simultaneously. A tangible next step might be to develop predictive models of sex 28 

ratio strategies that take into account differences in the causes of mortality as well as its sex 29 

specific means and distributions. 30 
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Table 1. Variance of brood sex ratios among clutches with different classes of mortality 1 
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Clutch types 
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number of 

gregarious 
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Mean egg 

to adult 

mortality 

(%) 

Number of 
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broods 

(≥ 2) for 

variance 

analysis 

 

 

 

 

Sex ratio variance 

 

R U p 

All clutches 371 28.7 293 0.387 -7.4 < 0.001 

Without mortality 127 0 127 0.090 -7.91 < 0.001 

With some mortality 244 43.7 167 0.619 -3.42 < 0.001 

Intrinsic mortality 20 41.6 12 0.373 -1.43 NS 

Competition mortality 63 34.0 56 0.549 -2.65 < 0.01 

Encapsulation mortality  133 46.6 78 0.640 -2.39 < 0.05 
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Figures legends 1 

 2 

Fig. 1. A brown soft scale parasitized by Metaphycus luteolus. The scale host has had 7 3 

parasitoid eggs laid into it. Four eggs have been encapsulated (black arrows). Three eggs 4 

have hatched and larval intestines are visible (light yellowish areas, white arrows). 5 

protruding white-coloured stalks of parasitoid eggs are also visible. 6 

 7 

Fig. 2. Influence of host size on clutch size. 8 

 9 

Fig. 3. Influence of host size on the sex of offspring emerging from solitary clutches. 10 

 11 

Fig. 4. Influence of clutch size and resource availability on the probabilities of different 12 

types of mortality. Each fitted line is the parsimonious description of the relationship derived 13 

from a separate logistic regression of the probability of a particular source of mortality 14 

occurring in a brood (non-significant relationships are plotted as means). Data are binary and 15 

not shown. 16 

 17 

Fig. 5. Influence of clutch size on the prevalence of different types of mortality. Regression 18 

lines for each cause of mortality are shown separately; the categories ‘Intrinsic’ and 19 

‘competition’ did not, however, differ significantly (F2,243 = 0.80, P = 0.45). Data points are 20 

shown slightly vertically displaced to indicate sample sizes. The fan shape of the data is due 21 

to necessary exclusion of broods with complete survival and complete mortality, and the 22 

limited range of proportions possible from small integer data. 23 

 24 

Fig. 6. Influences of brood size (panel a) and developmental mortality (panel b) on brood sex 25 

ratio. Data points are shown slightly vertically displaced to indicate sample sizes. 26 



 28 

 1 

Fig. 7. Relationship between brood sex ratio variance and developmental mortality. Numbers 2 

above data points indicate the number of broods from which each variance ratio is estimated.  3 

 4 

Fig. 8. Relationships between the prevalence of virgin broods and clutch size. Panel a shows 5 

the proportion of virginity predicted using both the overall mean mortality and the clutch size 6 

specific estimates. Observed proportions are illustrated by the proportions of virginity at 7 

each clutch size (data points) and the overall mean (line with slope of zero, which is the 8 

minimal adequate regression model). Panel b shows relationships between the proportion of 9 

virginity (data are binary as individual broods either were or were not virgin, but are shown 10 

slightly vertically displaced to indicate sample sizes) and clutch size according to the class of 11 

mortality experienced by members of the brood. 12 

 13 

Fig 9. Relationships between the probability of a brood being virgin and the degree and 14 

source of developmental mortality experienced by brood members. 15 

 16 
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FIGURE 2 1 
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FIGURE 3 1 
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FIGURE 4 1 
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FIGURE 5 1 
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FIGURE 6 1 
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FIGURE 7 1 
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FIGURE 8 1 
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