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Arylative Intramolecular Allylation of Ketones with 1,3-Enynes
Enabled by Catalytic Alkenyl-to-Allyl 1,4-Rhodium(I) Migration
Benjamin M. Partridge, Michael Callingham, William Lewis, and Hon Wai Lam*

Abstract: Alkenyl-to-allyl 1,4-rhodium(I) migration enables
the generation of nucleophilic allylrhodium(I) species by
remote C@H activation. This new mode of reactivity was
employed in the diastereoselective reaction of arylboron
reagents with substrates containing a 1,3-enyne tethered to
a ketone, to give products containing three contiguous
stereocenters. The products can be obtained in high enantio-
selectivities using a chiral sulfur-alkene ligand.

Catalytic C@H functionalizations have revolutionized chem-
ical synthesis by providing powerful new tools for bond
construction.[1] However, a critical objective for the advance-
ment of this field is its application to a more diverse range of
transformations. Nucleophilic allylations[2] are important
reactions that could benefit from C@H functionalization
principles. Most typically, these processes have employed
allylmetal(loid) reagents such as allyltin, allylboron, or
allylsilicon compounds.[2] The generation of nucleophilic
allylmetal species by the activation of allylic C@H bonds
would bypass the need to prepare such reagents and
potentially increase efficiency by streamlining synthetic
sequences. This strategy would also be a valuable complement
to nucleophilic allylations involving migratory insertions of
allenes,[3, 4] the use of simple p-unsaturated compounds in
hydrogenative or redox-triggered additions,[5, 6] hetero-ene
reactions,[7] and Prins reactions.[8]

Although generating electrophilic allylmetal species by
allylic C@H activation is well-known,[9, 10] there is, to our
knowledge, limited precedent for corresponding processes
that provide nucleophilic allylmetals.[11] Very recently, the

groups of Schneider,[11a] Kanai,[11b] and Mita and Sato[11c]

described the formation and trapping of nucleophilic allyl-
metal species from simple hydrocarbons. In view of the
nucleophilic character of allylrhodium(I) species,[4a,12] we
envisaged that activation of a remote C@H bond by 1,4-
rhodium(I) migration[12d, 13,14] could also achieve this goal.
Specifically, rhodium(I)-catalyzed reaction of an arylboron
reagent with the alkyne of a 1,3-enyne would provide the
alkenylrhodium species A (Scheme 1). This intermediate

could then undergo a 1,4-rhodium(I) shift to the cis-allylic
substituent to give the allylrhodium(I) species B, which could
be trapped by an electrophile. This approach was expected to
be challenging, given that there is only very limited precedent
for rhodium(I) to migrate to C(sp3) centers.[12d, 14k,m] Never-
theless, the generation of electrophilic allylrhodium(III)
species by a similar strategy in our rhodium(III)-catalyzed
oxidative annulations of 1,3-enynes provided some encour-
agement.[10] Herein, we describe the implementation of this
strategy in arylative intramolecular allylations of ketones to
give stereochemically complex fused bicycles with high
diastereoselectivities. Preliminary results of enantioselective
reactions are also provided.

This study began with the reaction of the enynone 1a with
3,5-dimethylphenyl pinacol boronate (1.3 equiv), [{Rh-
(cod)Cl}2] (1.5 mol%), and K3PO4 (0.3 equiv) at 65 88C for
16 hours in various solvents (Table 1). A 3,5-disubstituted
arylboron reagent was used to minimize 1,4-rhodium(I)
migration onto the aryl group as described previously,[15] as
it is well-known that migration onto an aryl ring ortho to
a substituent is unfavorable.[14a,i, 15a] Pinacol boronates were
used because 3,5-disubstituted variants are easily accessed
through iridium-catalyzed C@H borylation.[16] The reaction
conducted in THF/MeOH (10:1) gave diastereomeric bicycles
2aa[17] and 2ab[18] in a 13:87 ratio (entry 1). After purification,
2aa and 2ab were isolated in 11 and 46 % yield, respectively.
Traces of the diketone 3a were also formed, and resulted from
arylrhodation of the alkyne of 1a with the regioselectivity
opposite to that seen in the formation of 2aa/2ab, followed by
a cyclization-fragmentation pathway.[15a, 19] Notably, switching

Scheme 1. Proposed alkenyl-to-allyl 1,4-rhodium(I) migration.
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the solvent to MeCN/MeOH (10:1) reversed the sense of
diastereoselectivity and gave 2aa and 2ab in 66 and 5% yield,
respectively (entry 2). Using TBME/tBuCN/MeOH
(10:1.2:1) gave a further increase in diastereoselectivity
(entry 3).

In the proposed catalytic cycle (Scheme 2), transmetala-
tion of the arylboronate with the rhodium methoxide 4
provides the arylrhodium species 5, which undergoes migra-
tory insertion with the alkyne of 1a to give alkenylrhodium
species 6. 1,4-Rhodium migration gives the allylrhodium
species (Z)-7, which cyclizes onto a ketone to provide the
rhodium alkoxide 8. Methanolysis of 8 liberates the product
2aa or 2ab and regenerates 4.

Scheme 3 presents the reactions of 1a with various
arylboronic acid pinacol esters. Products analogous to 3a

were generally formed in up to 20% yield (by 1H NMR
analysis of the crude reaction mixtures) but were not isolated.
The reaction is tolerant of halide (2ba, 2ea, and 2ha),
methoxy (2ca and 2 fa), trifluoromethyl (2 da), and carbo-
methoxy groups (2ea) on the arylboronate. In addition, 3,5-
disubstituted (2 aa–2 ea), 3,4,5-trisubstituted (2 fa), and 2,5-
disubstituted arylboronates (2ga and 2ha) are tolerated. 2,5-
Disubstituted arylboronates gave lower yields (2ga and 2ha),
which is presumably a consequence of the steric hindrance of
the ortho-substituent. Finally, a heteroarylboronate is also
tolerated (2 ia).

Next, variation of the enynone was explored, and the
substrates 1b–f, containing methyl groups cis to the alkyne, all
reacted successfully with 3,5-dimethylphenyl pinacol boro-
nate (Table 2). Substrates containing hydrogen, phenyl, or
alkyl groups trans to the alkyne are tolerated (entries 1–3).
With the phenyl-containing substrate 1c, however, applica-
tion of the standard reaction conditions gave no diastereose-
lectivity (1:1 d.r.).[20] Fortunately, switching the solvent to 2-
MeTHF/MeOH (10:1) gave the syn,syn-diastereomer 9cb in
greater than 95:5 d.r. and 62 % yield (entry 2).[17] In contrast
to our findings using rhodium(III) catalysis,[10] substrates
containing methylene groups (as opposed to methyl groups)
cis to the alkyne are unreactive. Variation of the 1,3-diketone
is also possible. For example, the indane-1,3-dione 1e gave
9ea in 74% yield and > 95:5 d.r. (entry 4).[17] Under the
standard reaction conditions, the six-membered cyclic 1,3-
diketone 1 f underwent decomposition in competition with
arylative allylation. However, by changing the arylboronate
to the more reactive neopentyl glycol ester, and using K2CO3

and tAmOH in place of K3PO4 and MeOH, respectively, 9 fa

Table 1: Evaluation of solvents.[a]

Entry Solvent d.r. Yield [%][c]

2aa/2ab[b] 2aa 2ab 3a

1 THF/MeOH (10:1) 17:83 11 46 n.d.[d]

2 MeCN/MeOH (10:1) 91:9 66 5 9
3 TBME/tBuCN/MeOH (10:1.2:1) 94:6 73 4 14

[a] Reactions employed 0.50 mmol of 1a. [b] Determined by 1H NMR
analysis of the crude reaction mixtures. [c] Yield of the isolated product.
[d] n.d. =not determined. cod = 1,5-cyclooctadiene, TBME= tert-butyl
methyl ether, THF = tetrahydrofuran.

Scheme 3. [a] Reaction of 1a with various arylboronates. Reactions
employed 0.50 mmol of 1a. Diastereomeric ratios were determined by
1H NMR analysis of the crude reaction mixtures. Yields are of isolated,
diastereomerically pure products. [b] Reaction performed with
2.5 mol% [{Rh(cod)Cl}2] . [c] Reaction employed 0.45 mmol of 1a.

Scheme 2. Proposed catalytic cycle.
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was formed in 67 % yield (entry 5).[17] The process is not
limited to cyclic 1,3-diketones as the b-ketoester 10 reacted
smoothly using 2.5 mol% of [{Rh(cod)Cl}2] to give 11 in 62%
yield and 95:5 d.r. [Eq. (1)].

Furthermore, the fully acyclic substrates 12a and 12 b also
underwent successful arylative intramolecular allylation

[Eq. (2) and (3)], although the diastereoselectivities were
lower compared with substrates containing cyclic ketones. For
acceptable yields, it was important to use neopentyl glycol
boronate, K2CO3, and tAmOH. Under these reaction con-
ditions, 12a reacted with 3,5-dimethylphenyl neopentyl glycol
boronate to give the diastereomeric products 13 aa and 13ab
in 28 and 27% yield, respectively [Eq. (2)].[21] Improved
results were obtained with 12b, which contains a geminal
dimethyl group in the tether, and 13 ba and 13bb were
obtained in 51 and 12% yield, respectively [Eq. (3)].[21] The
same reactions conducted in 2-MeTHF instead of TBME/
tBuCN gave 13 ab and 13 bb as the major products, but were
lower yielding.

The substrate 14, which contains an E-1,3-enyne, did not
undergo the reaction, and only starting materials were
recovered [Eq. (4)]. This result confirms the requirement
for cis-allylic hydrogen atoms to be present in the enyne to
allow 1,4-rhodium(I) migration to occur (compare with
Table 2, entry 1 using the Z-isomer 1b). In addition, reaction
of hexadeuterated enynone [D]6-1a with 3,5-dimethylphenyl-
boronic acid pinacol ester gave [D]6-2aa with greater than
95% deuterium transfer to the alkene of the cyclohexene
[Eq. (5)]. This outcome is consistent with 1,4-rhodium(I)
migration occurring by a C@H oxidative addition/reductive
elimination through a rhodium(III) hydride intermediate as
hypothesized previously for alkenyl-to-aryl 1,4-rhodium(I)
migration.[14j]

Table 2: Arylative allylation of various enynones.[a]

Entry Enynone Product (Ar =3,5-Me2C6H3) d.r.[b] Yield [%][c]

1[d] 1b 9ba n.d.[e] 50 (+7)[f ]

2[g] 1c 9cb >95:5 62

3 1d 9da 84:16 52

4 1e 9ea >95:5 74

5[h] 1 f 9 fa 84:16 67

[a] Reactions employed 0.50 mmol of 1b–f. [b] Determined by 1H NMR
analysis of the crude reaction mixtures. [c] Yield of isolated, diastereo-
merically pure products. [d] Using 2.5 mol% of [{Rh(cod)Cl}2] . [e] The
d.r. value could not be determined by 1H NMR analysis. [f ] Yield of the
isolated minor syn-syn diastereomer 9bb. [g] Using 2-MeTHF/MeOH
(10:1) in place of TBME/tBuCN/MeOH (10:1.2:1). [h] Using 3,5-
Me2C6H3B(neo) (1.3 equiv), K2CO3 (1.3 equiv), and tAmOH (1.5 equiv)
as the reagents in TBME/tBuCN (8.3:1). neo =neopentyl glycol.
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Up until this point, all of the arylboronates evaluated
possess substitution patterns that disfavor 1,4-rhodium(I)
migration of intermediates such as 6 onto the aryl group. To
assess whether alkenyl-to-allyl 1,4-rhodium(I) migration
would still be favored when a sterically more accessible site
is available, 1a was reacted with phenylboronic acid
(Scheme 4). The reaction in TBME/tBuCN (8:1) in the

presence of t-amyl alcohol (1.5 equiv) gave a 95:5 mixture
of inseparable products, 15 and 2ja. The product 15 results
from 1,4-rhodium(I) migration onto the phenyl group fol-
lowed by intramolecular ketone arylation,[15] whereas 2ja is
the arylative allylation product. When the solvent was
changed to 2-MeTHF, the allylation product 2jb was
formed preferentially (36:64 ratio of 15/2jb) in 89:11 d.r.,
and was isolated as a single diastereomer in 45 % yield. The
reasons for this switch in chemoselectivity are not currently
known.

Consistent with models proposed in prior rhodium-
catalyzed nucleophilic allylations,[4a, 12b–e] we suggest that
allylation occurs through cyclic six-membered transition
states (Scheme 5). In the absence of a nitrile in the reaction
medium (Table 1, entry 1), we assume that (Z)-7, formed

from 1,4-rhodium(I) migration of 6, cyclizes through a chair-
like arrangement (TS1) to give 2aa (Scheme 5). The boatlike
structure TS2 should be disfavored. However, when a coordi-
nating nitrile is present (Table 1, entries 2 and 3), the rate of
cyclization could be decreased, allowing isomerization of (Z)-
7 into (E)-7.[22] Thereafter, we assume that cyclization of (E)-7
occurs through the chairlike conformation TS5 to give 2ab
(Scheme 5). The alternative conformation TS3 is likely to be
disfavored because of 1,3-diaxial interactions and allylic 1,3-
strain. The boatlike structure TS4 is also likely to be
unfavorable. However, we do not exclude the possibility
that when a nitrile is present, 2aa is formed by cyclization of
(E)-7 through an open transition state because of preferential
coordination of rhodium to the nitrile rather than the ketone.

Similar chairlike transition states can be used to explain
the outcomes of the reactions 12a and 12b [Eqs. (2) and (3)],
and the diastereomeric ratios observed may be a consequence
of their more flexible nature (see the Supporting Informa-
tion).

Finally, preliminary efforts at developing enantioselective
reactions were conducted (Table 3).[23] Only modest results
were obtained with chiral diene ligands[24] (see Supporting
Information), while no reaction occurred when chiral bisphos-
phines were used. However, the reaction of 1a with 3,5-
dimethylphenylboronic acid (1.3 equiv) in the presence of
[{Rh(C2H4)2Cl}2] (2.5 mol%), the sulfur-alkene L1[25]

(5.0 mol%), and KF (1.5 equiv) in TBME/tBuCN/MeOH
(40:5:1) gave (++)-2aa[17] in 61% yield and 91% ee (entry 1).
The diastereomeric product (++)-2ab was obtained in 11%
yield and 88 % ee. Similar results were obtained with 3-chloro-
5-methylphenylboronic acid (entry 2).

Scheme 4. Reaction of 1a with PhB(OH)2.

Scheme 5. Possible stereochemical models.
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In summary, we have reported the rhodium-catalyzed
arylative allylation of enynones with arylboron reagents. The
key step of the reaction is the alkenyl-to-allyl 1,4-rhodium(I)
migration, a new mode of reactivity which enables the
generation of nucleophilic allylrhodium(I) species without
prefunctionalization of the allylic position. Cyclization of the
allylrhodium species onto a pendant ketone leads to bicyclic
products containing three contiguous stereocenters with high
diastereoselectivities. The products can be obtained in high
enantioselectivities using a chiral sulfur-alkene ligand. Fur-
ther applications of this promising platform for generating
allylmetal species are in progress.
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