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Highlights 

• Automotive order-to-delivery system configuration should be tailored to the market 

• Two key customer characteristics are willingness to compromise and to wait for a 

vehicle 

• Marginal cost of fulfillment depends greatly on the two customer characteristics 

• Nine factors in the order-delivery system alter fulfilment performance 
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The order-to-delivery (OTD) process in the volume automotive sector is important for automakers, 

dealers and customers. It affects the customer's experience with regard to receiving a vehicle that matches 

their requested specification in a reasonable time and the costs of the automaker in serving the market.  

OTD processes share similarities across major volume automakers. They are substantial in scale with 

typically a very large number of vehicle variants and involve interactions between customers, dealers and 

the automaker. Additionally, automotive markets are heterogeneous. Some customers have little tolerance 

to compromising on specification and/or waiting for a vehicle whilst others are more tolerant on one or 

both attributes. This study examines how the OTD process should be configured for different markets. A 

representative simulation model is used with designed experiments and an innovative statistical analysis 

method to study the impact of nine OTD configuration factors in three different markets. The study 

shows that market attributes have a substantial bearing on the dominant modes of fulfillment, on 

customer-centric performance metrics and on automaker costs. The findings have strong implications for 

automakers regarding how they configure their OTD processes for different markets and whether they 

focus on upstream, pre-assembly factors and/or downstream post-assembly factors. This is the first study 

to use a comprehensive and detailed OTD process model, incorporating a wide range of configuration 

factors, and assess a full range of performance metrics in a designed simulation study.   

Keywords: supply chain management, order fulfillment, simulation, NOLH, CHAID 

1. Introduction 

The automotive sector accounts for over 7% of world trade (WTO, 2014). Given its importance, it is not 

surprising that an extensive literature exists relating to its operations. Order-to-Delivery (OTD) is the 

process that begins with an auto retailer (a dealer) taking a customer order and ends with the customer 

receiving a vehicle. OTD processes have received less research attention, comparatively, than other areas 

of auto-industry operations such as new product development (Wynstra et al. 2010), the relationships and 

interactions with first tier suppliers (Lockstroem et al. 2010), lean initiatives (Jayaram et al. 2008), and 

supply chain management (González-Benito et al. 2013). In particular, modeling studies that seek to 

capture the OTD process in an integrated manner are scarce (Volling et al. 2013). This is surprising given 

the effect of the OTD process on the customer‟s experience in purchasing a vehicle and the continuing 

industrial and media interest on issues such as inventory levels in distribution channels and at dealerships, 

waiting times experienced by customers, and purchase incentives offered by automakers(e.g. Bennett & 

Rogers 2014; Wernle 2014; Kessler 2015; Tobin 2014). The lack of modeling studies may be partly 

explained by the complexity of the OTD process and the modeling challenges that arise in seeking to 

capture its essential elements.   

The review by González-Benito et al. (2013) on supply chain management in the automotive sector 

and the detailed review by Volling et al. (2013) specifically on planning models in the auto-industry, show 

a dearth of integrated OTD models reported in the literature. The literature review presented below 

corroborates this scarcity and highlights important gaps in understanding about how large-scale OTD 
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processes should be configured.  This study focuses on the OTD configuration problem. We use a 

detailed, industry-representative simulation model to investigate the impact of different OTD process 

configurations and different operating policies in three different market types. We undertake an extensive 

simulation study with a Near Orthogonal Latin Hypercube (NOLH) experimental design to determine the 

dominant factors affecting performance in each market. A robust statistical interaction detector, CHAID 

(Chi-Square Automatic Interaction Detector) is used to analyze the results.  

The work makes five contributions to the study and understanding of OTD processes in the volume 

automotive sector. Firstly, we provide the first reported study that investigates statistically a large number 

of factors influencing performance of the OTD processes using a large-scale simulation model with a 

realistic level of variety.  Secondly, we examine and compare OTD behavior and performance for 

different market contexts, characterized by diversity in customer characteristics within and between 

markets. The study finds the three markets have different dominant modes of fulfillment, have different 

marginal costs of fulfilment, and different customer service metrics with respect to the waiting times and 

the degree of compromise experienced by customers. Thirdly, the study identifies the dominant factors 

affecting OTD performance and behavior with respect to each market. Consequently, different markets 

need different the OTD process configurations. Fourthly, the study highlights the tension between OTD 

configurations that minimize cost and those that are best for the customer experience, which makes it 

challenging for automakers to decide an appropriate configuration.  Fifthly, the study provides guidance 

for automakers in how to configure their OTD processes for different markets.  

We organize the paper as follows. Section 2 reviews current understanding of OTD processes in order 

to identify gaps and define the research objective. Section 3 describes the simulation model and its 

validation, the design of experiments and the statistical analysis procedures used. Section 4 presents the 

results, followed in Section 5 by a discussion of findings, research contributions, and their managerial 

implications. Section 6 concludes with a summary, noting limitations of the study and the potential for 

similar studies in other complex fulfillment scenarios. 

2. Literature review  

The literature review begins by defining the term „Order-to-Delivery‟ (OTD) process as typically used in 

the volume automotive sector. This first section also identifies similarities and differences in how the 

OTD process is implemented by automakers. The second section identifies major challenges faced by 

automakers in operating their OTD processes. The third section reviews previous OTD modeling studies 

and analyses and compares them in detail. The gaps in the existing studies are identified and the research 

objective for this study is set.   

2.1. Defining the Order-to-Delivery process  

„Order-to-Delivery‟ is a common term in the automotive sector (e.g. Zhang et al. 2007; Meyr 2004; 

Holweg 2003) but „order fulfillment‟ is also used (e.g. Staeblein et al. 2014) and other terms arise, such as 
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„Market Flexible Customizing System‟ (Tomino et al. 2009). The objective of the Order-to-Delivery 

(OTD) process is to provide each customer with the vehicle of his or her chosen specification. A richer 

explanation, based on Stauntner (2001, cited in Meyr2004), highlights the aims of the process - OTD 

should achieve short delivery times for customer-specified vehicles, be reliable in keeping to promised 

delivery dates, and allow customers to change their specification until the last moment.  

Sources including Holweg and Jones (2001, cited in Zhang, 2007), Tomino et al. (2009), Aoki et al. 

(2014) Staeblein et al. (2014) describe the constituents of the contemporary OTD process in different 

levels of detail, but they are generally consistent. The most detailed is the first source where OTD is 

described as having seven stages - order entry, order bank, order scheduling, order sequencing, 

manufacturing, distribution to distribution center (DC) and transportation from DC to dealer. 

Researchers report that European and Japanese automakers have similar OTD processes (Staeblein et 

al. 2014; Aoki et al 2014; Tomino et al. 2009; Lim et al 2014). Most customers purchase vehicles through 

dealers, and the physical flow from suppliers to assembly plant and to customers, which may be via a 

vehicle holding compound (VHC), is similar. These automakers allow orders in the production plan that 

are destined for stock to be allocated to customers. They also allow the specification of such vehicles in 

the production plan to be amended for customers, unless they have reached a point in time when their 

specifications cannot be altered because of production constraints, i.e. the planned vehicle specification is 

„frozen‟ close to production (Lim et al. 2014, Aoki et al. 2014, Brabazon et al. 2010, Tomino et al. 2009). 

There are limits to this flexibility, as noted by Lim et al. (2014) who state that Renault constrain the 

cumulative amendments permitted in the production plan and Toyota restrict changes to +/-10% from 

the plan agreed at 10 days prior to assembly. 

There are differences between automakers. Many, but not all, allow dealers to fulfill a customer with 

an unsold vehicle or replenishment order in the pipeline taken from another dealer (Williams & Bozon, 

2006). Another potentially significant difference relates to the latest opportunity that is offered to dealers 

to amend a planned vehicle before its specification is frozen ahead of production. German automakers 

freeze the specification 7 days before production (Staeblein et al. 2014). At Renault it is also 7 days for 

most assembly plants but for those with distant suppliers it is 4 weeks (Lim et al. 2014). For Toyota, 

Mitsubishi and Nissan it is 3, 5, and 4 to 6 days, respectively (Tomino et al. 2014).  

2.2. Challenges in the design and management of the OTD process 

Evidence and insights about customer expectations and how well automakers are meeting them is 

relatively scarce in the research literature. A survey in Germany concluded that the order lead time desired 

by customers is normally distributed with a mean of 4 to 6 weeks (Stauntner, 2001 cited in Meyr, 2004). 

In contrast, according to Elias (2002) only 6% of UK car buyers were happy to wait over 4 weeks, with 1 

to 2 weeks being the most desired lead time. Most US customers are not prepared to wait beyond 3 weeks 

as found in a survey by Gartner (cited by Holweg & Pil, 2004). In respect of compromising on vehicle 

specification, Barbacki & Whitelock (2004) compared the attitude of Turkish and UK customers and 
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found differences between these markets and within each market.  Taken together, the conclusion is that 

customer attitudes toward lead time and compromise on specification differ between customers within a 

national market and between markets.  

Evidence shows that automakers are not matching customer expectations on lead time. Aoki et al. 

(2014) present data for different German and Japanese makes and models and they vary greatly, from 2 to 

over 30 weeks.  An independent website gathering data from UK dealers reported the average lead time 

for a factory supplied new car (as opposed to a vehicle from finished stock) in April 2016 was 13 weeks, 

with the quickest being the Toyota Auris at 2 weeks, and the longest being the Mercedes GL at 52 weeks 

(New Car Delivery Times, 2016).  

There is very little data on customer compromise in respect of expectations or experience.  Elias 

(2002) reports almost a quarter of UK buyers compromised on at least one feature. Furthermore, nearly 

half of customers who compromised received compensation in the form of a price discount, an upgrade, 

a better finance arrangement or a better price for a traded-in vehicle.  The scale of compensation is not 

reported, but it is clear that compromise has a cost to the automaker and/or dealer. Although not in the 

specific context of the automotive market, Franke et al (2010) provide an explanation as to why 

customers who configure a product the way they desire may be averse to compromise. 

Staeblein et al. (2011) present data showing the number of vehicle configurations manufactured is 

greatest in the North American region and comment that because “North America is particularly known 

for its selling from the dealer lot” it is unlikely customers happen to find their preferred specification 

among the tiny fraction of all variants available at a dealer. They note that “European customers 

habitually prefer to choose the product they want and to wait for it to be produced” but the evidence 

from elsewhere is that about half of customers in Europe buy from stock.  Volling et al. (2013) state that 

across Europe as a whole over 50% buy from finished stock with Germany being lower but still above 

30%. At an industry event in 2012 it was stated that about 55% of sales in Europe were from stock in 

2004, reducing to 45% in 2009 (European vehicle inventory, 2012). 

Considering the lead time performance described above, it can be assumed that the phenomenon 

observed by Fredriksson & Gadde (2005) of customers weighing up lead time against compromise, is 

widespread.  Even though automakers have introduced the ability to amend and sell orders in the 

production plan, a consequence of the restrictions on amendments described by Tomino et al. (2009) and 

Lim et al. (2014) could be that a planned vehicle that can be amended to match the customer‟s preference 

will have to wait some time before being assembled. 

The volume of finished stock has a significant impact on cost. Automakers have aimed historically at 

having inventory to cover 60 days of sales, which Holweg & Pil (2004) argued to be excessive. According 

to press articles automakers want to reduce stock to below 50 days but are some way off with reports of 

levels in Europe and North America being 64 and 94 days, respectively, in early 2014 (Young 2014, 

Williams 2014).  This oversupply led to retail discounts of 18% in a number of European markets 

(Williams, 2014). 
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In summary, the evidence indicates that achieving short and reliable delivery times, avoiding customers 

compromising on their desired specification, and doing both without incurring excessive costs, are 

significant challenges faced by automakers.   

2.3. Modeling of the OTD process  

An exhaustive search has identified seven studies that model the automotive OTD process and comply to   

some degree with the recommendations of Holweg et al. (2005) and Aoki et al. (2014) to take a holistic 

approach to study interactions between elements of the process. The nature of each study including the 

aims, the experimental factors investigated and the findings are summarized in Table 1. Details of the 

model used in each study are presented in Table 2. Importantly, it is clear that simulation is the modeling 

approach used in each case. This reflects the need to capture the complexity of real-world OTD systems. 

Six of the studies use discrete event simulation and the other a system dynamics model. 

The studies can be divided into those that model upstream supply processes (Volling & Spengler 2011, 

Lim et al. 2014), downstream distribution processes (Brabazon & MacCarthy 2012, Brabazon et al. 2010, 

Turner & Williams 2005, Brabazon & MacCarthy 2004), or both (Holweg et al. 2005). All seven include in 

their model an aspect of the production planning process. With the exception of Holweg et al (2005) the 

models generate sequences of individual vehicle orders that are allocated to production periods of days 

(Brabazon & MaCarthy 2012, Brabazon et al. 2010, Turner & Williams 2005), weeks (Lim et al. 2014) or 

unspecified (Volling & Spengler 2011, Brabazon & MacCarthy 2004). No study goes to the level of 

modeling the sequence of vehicles on the assembly production line.  The studies differ in the level of 

product variety captured. Only three studies (Williams 2005, Brabazon et al. 2010, Brabazon & 

MacCarthy 2012) use a realistic level of variety.  

There are commonalities but notable differences in how customers are modeled.  Apart from Lim et 

al. (2014) who study a single component, all studies assume customers are seeking a preferred vehicle 

variant. Only Brabazon & MacCarthy (2012) and Turner & Williams (2005) allow customers to 

compromise.  There are differences in how customer attitude to lead time is modeled. Lim et al. (2014) 

and Turner & Williams (2005) assume customers are content to wait up to a maximum and these studies 

use probability distributions to specify each customer‟s upper limit on waiting time. Brabazon et al. (2010) 

and Holweg et al. (2005) assume customers will wait any length of time but prefer a vehicle as soon as 

possible.  These two assumptions are also made in the two studies of Brabazon & MacCarthy (2004, 

2012) but they also assume customers differ in their dislike of waiting. Volling & Spengler (2011) is the 

only study that assumes customers have a target lead time and are unhappy with early as well as late 

delivery.  

In summary, there is no standard approach to modeling customers. It is clear that it is unrealistic to 

assume a customer will not compromise, or to model a customer as having a rigid maximum waiting time. 

Modeling a customer as being able to trade-off lead time and compromise is preferable.  Close 

examination finds the approach of Brabazon & MacCarthy (2012) is the only one with this capability.  
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They hypothesized that national populations differ in the relative strengths of their aversions to waiting 

and to compromise, and recreated the markedly different patterns in real automotive datasets from two 

markets. Their study set out to examine long tail effects observed in automotive sales in some markets 

but not in others and demonstrated that market characteristics strongly influence the observed sales 

patterns.  Their approach is selected as the foundation for how customers and markets are modeled in 

this study.  

2.4. Conclusions and gaps 

The OTD process in the volume auto-industry comprises a set of inter-connected planning, supply and 

distribution processes, which aims to deliver an appropriate product to the customer in an acceptable 

time. Across the automotive sector, the OTD processes of major manufacturers are broadly similar with 

respect to their structure and the main processes. They differ in terms of their detailed configuration and 

implementation. Thus, it is valuable to investigate and analyze the impact of different factors on OTD 

performance.   

Previous simulation studies have been identified that examine how to improve customer service and 

reduce the cost of fulfillment. These studies are exploratory in nature but limited in scope, intended to 

demonstrate the effect of perhaps a couple of factors or to compare the performance of the OTD 

process with and without a feature (Table 1). Most are restricted to demonstrating an effect in a limited 

set of operational conditions and have not used realistic levels of variety (Table 1) and they differ in how 

many features of the OTD process they model (Table 2). The studies of Turner & Williams (2005) and 

Brabazon et al. (2010) are the most useful in providing managerial insights as they compare alternative 

OTD configurations under realistic levels of variety and hence their results can inform choices on detailed 

OTD configuration. Brabazon et al. (2010) compared the impact on fulfilment performance of two 

different types of system flexibility, trading between dealers and amendment of vehicles in the production 

plan, showing the latter to have a more pronounced beneficial effect. However, there is evidence in the 

literature that national markets and market segments are different with respect to customer expectations 

and preferences. The implications of these customer differences have not been investigated previously in 

the literature. Thus, the conclusion is that the existing set of studies provides an incomplete 

understanding of the OTD process. Lacking in the literature is a study focusing on how to configure the 

OTD process for different markets. There is value therefore in undertaking a simulation study using 

experimental design with a model that combines upstream, downstream and customer factors. 

Consequently, a systematic experimental study that uses a detailed model of the OTD process to evaluate 

the relative contributions of a large number of OTD design factors to system performance in 

representative markets is the next logical step in progressing our understanding of this complex process. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.5. Research objective 

The objective of this study is to extend the understanding of the OTD process by using a comprehensive 

and representative simulation model to investigate the impact of OTD design and control factors on 

performance. The approach taken is to examine the effects of these factors in different types of market 

where customer populations are heterogeneous both in terms of their tolerances to waiting and to 

specification compromise. The research question posed for this study is - what are the factors that affect 

OTD performance in different markets? 
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Table 1 Summary of research aims, findings, factors, and metrics in previous studies of the automotive Order-to-Delivery process 

Article Brabazon & MacCarthy 
(2004) 

Holweg et al (2005) Turner & Williams (2005) Brabazon et al (2010) Volling & Spengler (2011) Brabazon & MacCarthy 
(2012) 

Lim et al (2014) 

Aim(s) Illustrate how cost and 
amount of amendment of 
vehicles in the production 
plan depends on customer 
willingness to wait  

Demonstrate how the 
length of planning cycles 
typically found in OTD 
systems severely hamper a 
shift toward built-to-order 
(BTO) production 

Compare fulfilment with 
and without compound & 
trading between dealers.  
Assess additional benefit 
of reducing vehicle variety 

Compare impact on 
fulfilment of: (a) trading 
between dealers, (b) 
amendment of vehicles in 
the production plan 

Demonstrate a two stage 
fulfilment process, 
involving (1) immediate 
lead time promise and (2) 
subsequent batch 
allocation to production 
plan.  

Demonstrate fulfilment 
metrics and sales pattern 
are dependent on relative 
strengths of customer 
aversions to waiting and 
compromise  

Demonstrate how policies 
on component supply can 
alter trade-offs between 
logistics costs and 
fulfilment metrics 

Summary of 
Findings 

Cost of fulfilment 
increases when more 
customers are averse to 
waiting 

Current systems are not 
capable of supporting 
BTO due to insufficient 
feedback between supply 
and demand and reliance 
on forecasting 

The combined compound 
& trading reduces lost 
sales and compromise. 
Reducing variety brings 
small extra benefit 

Both (a) and (b) reduce 
lead time, but (b) 
dominates when 
implemented jointly. 
Extent of benefit depends 
greatly on vehicle variety 

Achieving compliance 
with initial lead time 
promise will incur 
automaker costs. The two 
stage process can be 
tuned to alter the trade-
off.  

Strength of customer 
aversions has significant 
impact on fulfilment and 
sales pattern 

Best compromise between 
logistics costs and 
fulfilment is when have 
small emergency supply 
margin and small safety 
stock margin  

Key demand 
features 

Customers prefer delivery 
ASAPa, split into two 
types (a) weakly, (b) 
strongly averse to waiting. 
Each customer has a 
target specificationb and 
does not compromise 

Customers are modelled 
in aggregate. Customers 
prefer delivery ASAPa. 
Two vehicle models (A & 
B) are demanded by the 
market, with a 20% step 
increase in demand for 
model A during the 
simulated period 

Each customer has max 
waiting timeb. Each 
customer has a target 
specificationb and a max. 
willingness to 
compromiseb 

 

Customers prefer delivery 
ASAPa. Each customer 
has a target specificationb 

and does not compromise 

Each customer has a 
preferred lead timeb and a 
target specificationb. 
Customers do not 
compromise  

Customers prefer delivery 
ASAPa. Each customer 
has an aversion to 
waitingb.  Each customer 
has a target specificationb 
and an aversion to 
compromiseb 

 

Each customer requests a 
lead time between 4 and 8 
weeksb and has a 
probability of rejectingb if 
lead time will be longer 
(i.e. delay) 

Product Variety 256 vehicle variants 2 variants Two levels of variety: 
4,680 and 57,905 

Multiple levels of variety: 
32 to 1,048,576 

256 variants 7776 variants Single variant 

Key fulfilment 
featuresc 

Three fulfilment modes 
(stock, pipeline and BTO); 
Amending pipeline orders 
incurs cost  

All customers are fulfilled 
from stock 

Multiple fulfilment modes 
(dealer stock, compound, 
pipeline, BTO) 

Multiple fulfilment modes 
(dealer stock, compound, 
pipeline, BTO) 

Fulfilment from pipeline 
only (no stock of finished 
vehicles) 

Multiple fulfilment modes 
(dealer stock, compound, 
pipeline, BTO) 

Fulfilment from pipeline 
only (no stock of finished 
vehicles); Shortest lead 
time is 4 weeks 

Performance 
measures 
(Dependent 
variables) 

Lead time; Cost to 
automaker of amending 
vehicles in the production 
plan  

Costs to automaker and 
supplier of (a) wrong 
stock levels (b) changing 
production capacity  

Stock level; Lost sales;  
Compromise 

Lead time; Stock level; 
No. of trades; No. of 
amended vehicles 

Factory utilization; 
component utilization; 
on-time delivery to 
customer 

Lead time; Proportion 
compromising; Degree of 
compromise 

Proportion delayed; 
Proportion lost sales; 
Component holding cost; 
Emergency supply cost  

Experimental 
Factors  

Proportion of the two 
types of customer; Upper 
limit on cost of amending 
a vehicle 

Delays in implementing 
decisions, strength of 
feedback, scheduling 
frequency and period, 
component stock buffer 
level  

Combined compound and 
trading between dealers 
(yes/no);  
Vehicle variety  

Number of amendable 
vehicle features; Trading 
between dealers (on/off); 
Vehicle variety  

Weights given to each 
objective: factory 
utilization, component 
utilization, on-time 
delivery to customer  

Customer populations 
(defined by relative 
strength of two 
aversions); Method of 
selecting vehicle variants 
for the production plan 

Component safety stock 
margin over forecast; 
Emergency supply margin 
over forecast 

Notes: 
a: ASAP stands for „as soon as possible‟ 
b: Parameter is stochastic and is sampled from a distribution 
c: BTO - a customer order joins at the extreme of the production planning horizon; Pipeline – the customer order is allocated to a replenishment order in the production plan, which may involve amendment; 
Stock – a suitable finished vehicle is found for the customer  
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Table 2 Characteristics of the simulation models used in previous studies of the automotive Order-to-Delivery process 

 
Brabazon & MacCarthy 
(2004) 

Holweg et al (2005) 
Turner & Williams 
(2005) 

Brabazon et al (2010) 
Volling & Spengler 
(2011) 

Brabazon & MacCarthy 
(2012) 

Lim et al (2014) 

Type of simulation model and 
study approach 

Discrete Event 
Simulation, illustrative 
scenarios analyzed 

System Dynamics 
Simulation, three 
scenarios analyzed 
(current state, BTO, 
balanced) 

Discrete Event 
Simulation, factor levels 
compared 

Discrete Event 
Simulation, factor levels 
compared 

Discrete Event 
Simulation, factorial 
experiment and 
scenarios analyzed 

Discrete Event 
Simulation, range of 
customer populations 
analyzed 

Discrete Event 
Simulation, illustrative 
scenarios analyzed 

Basis of model design  Not specified 
Based on six 
automakers operating in 
Europe 

Based on practices in 
Europe, US, Japan and 
Brazil 

Based on Ford Europe Generica 
Similar to Brabazon et 
al (2010) 

Based on Renault 

OTD features in the model:        

Material / component supply - Yes - - Yes - Yes 

Production planning (e.g. 
scheduling, sequencing) 

Yes Yes Yes Yes Yes Yes Yes 

Ability to amend a pipeline 
order on behalf of a customer 

Yes - Yes Yes - Yes Yes 

Vehicle manufacture and 
assembly  

- - - - - - - 

Outbound logistics  Yes - Yes Yes - Yes - 

Stock  Compound Yes Yes Yes Yes - Yes - 

 Dealers have stock Yes - Yes Yes - Yes - 

Ability to search all stock 
locations on behalf of a 
customer 

Yes - Yes Yes - Yes - 

Dealer processes (e.g. ordering 
replenishment stock) 

- - Yes Yes - Yes - 

Notes: 
a: Data used to test the model is from a German automaker according to Volling et al (2013) 
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3. Study Methodology 

A three-stage methodology is followed. The first stage is to construct a detailed and realistic discrete event 

simulation model with embedded experimental factors. The selection of experimental factors is motivated 

by the review of current practice (sections 2.1 and 2.2, and Table 1), the review of past modeling studies 

(section 2.3 and Table 2), factors identified by OTD practitioners, and the identified gaps in knowledge 

on the configuration of the OTD process (Section 2.4).  The model described below was developed in 

collaboration with a major volume automaker. The second stage is to validate the model and calibrate two 

customer aversion factors by comparing model output against actual data for a mainstream vehicle. The 

third stage is to specify an experimental design that can cope with a large number of factors and answer 

the research question. 

3.1. Model description 

The model recreates the lifecycle of a vehicle from appearing in the automaker‟s production plan up to 

the point of delivery to the customer. The simulation model, developed in consultation with a major 

automaker is summarized in Figure 1. The main constituents of the model are the automaker, three 

dealers, customers, the order bank, the production plan, and a vehicle holding compound (VHC). It 

incorporates all eight of the OTD features that have been modelled in other studies (Table 2). Like all the 

earlier studies, the model captures the delay for the assembly process but the fine details of vehicle 

assembly are omitted. Component suppliers are not modeled explicitly but upstream supply constraints 

and their resultant delays are modelled.  The number of dealers and volume of customers is scaled to be 

similar to a region or city, with just under 6,000 customers being fulfilled per year. 

 

Pipeline (production plan) 

Automaker 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 

At start of month 
orders are 

scheduled into 
weeks 5 to 8 

BTO requests from dealers (each 
allocated to a specific customer) 

Replenishment orders – these are 
vehicles to replenish each dealer Unscheduled 

vehicle orders Customer 

Local Stock 

Dealer 1 

Customer 

Customer 

Order 
Bank 

VHC 

Local Stock 

Dealer 2 

Local Stock 

Dealer 3 

Delivery direct to 
customer (via dealer) 

Assembly 

plant 

 

Figure 1 Schematic of the simulated processes. Adapted from Brabazon & MacCarthy (2012) 

As time passes, orders for vehicles flow from left to right: along the production plan, through the 

assembly plant and toward the customer. A customer comes to a dealer, states their wishes and the dealer 

searches for a vehicle that best matches the customer‟s preferences in terms of specification and lead 
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time. The remainder of this section explains the mechanics of the model and the experimental factors 

incorporated in it. 

3.1.1 Vehicle Architecture 

A vehicle is modeled with five features that capture body shape, engine size, transmission type, interior 

trim and vehicle color. A customer has a choice of 6 options per feature, giving a total of 7,776 variants in 

the product range.  The variants are horizontally differentiated, i.e. they differ in terms of specification 

but not price. This number of variants is appropriate for two reasons.  Firstly, it is realistic in terms of the 

main decision features of a vehicle (body shape, engine size, transmission, interior trim, and color). 

Secondly, although the theoretical variety of some vehicles is very high, the actual variety produced is 

much less. The level used in the study is of the same order of magnitude as the two datasets reported and 

analyzed by Brabazon & MacCarthy (2012) which was 7,127 variants in 58,799 sales, and 12,838 in 15,805 

sales. 

3.1.2 Stock and the stock replenishment process 

Stock volume is constant due to monthly production being in balance with monthly customer numbers. 

The volume of stock in the system, which is the sum of unsold finished vehicles in the Vehicle Holding 

Compound (VHC) and held locally by the dealers, is preset by the stock factor.  

Every item in stock is owned by one of the three dealers (see Figure 1). On leaving assembly, stock 

vehicles are transported to the VHC from where they will be, sooner or later, shipped to replenish the 

owning dealer‟s local stock, or shipped to the dealer who has sold them. The proportions of a dealer‟s 

stock held in the VHC or at the dealership are controlled by a compound factor.  

The process of ordering replenishment stock by dealers from the automaker is performed on a 

monthly cycle and starts with each dealer submitting a list of the vehicles they want. The three lists are 

combined in the order bank with Build-to-Order (BTO) requests from earlier in the month (explained 

below). The automaker schedules these orders into weeks 5, 6, 7 and 8 of the eight-week production plan 

(see Figure 1).   

A dealer must choose which of the 7,776 variants to order each month. It does this by considering the 

mix it is targeting – does it want to have a very narrow selection of the most frequently requested variants 

only, or a wider selection from across the range? Four target mixes are tested in the experimental study, 

controlled by a shape factor (see Appendix 1 for parameter values): 

1. Very narrow. Only the highest sellers are ordered.  

2. Narrow. The selection is weighted toward the popular variants. 

3. Balanced. The selection matches the pattern of customer demand. 

4. Broad. A wide selection of variants is included. 

A method factor controls how the variants for the monthly replenishment list are selected. Two 

approaches are tested. The first is a systematic method in which the current combined holding is 
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compared to the target mix (as defined by the shape factor).  The resulting list will return the mix to be as 

close as possible to the target mix.  This is labeled the targeted method and its logic is given in appendix 2. 

The second approach is to randomly choose a variant using the probability distribution defined by the shape 

factor, with each selection being independent. This is a less rigorous approach as it does not take into 

account the current holding, nor which variants have been selected already.  The two methods provide 

reasonable bounds on likely replenishment behavior.  

The simulation model has a who factor, which controls whether the monthly replenishment list is 

created by the dealers or by the automaker. When dealers make the selection, they each create a list having 

considered their own current stock holding. When the automaker does it, one list is created taking into 

account all current dealer holdings. The automaker‟s list will be different to the dealer lists when the 

targeted method is used due to the pooling effect, but similar when the random method is used. 

The process of transporting vehicles from the factory to customers is not studied in the experimental 

design. Each leg in the logistics network has been given a fixed but representative transfer time.  

3.1.3 The customer fulfillment process 

When a customer arrives at a dealership, they communicate to the dealer the vehicle specification they are 

seeking and the dealer establishes the values of the customer‟s two aversion parameters (see section 3.1.4).  

The dealer then searches for a vehicle. The two aversion parameters are used to score every vehicle and 

the one with the lowest combined score is allocated to the customer. 

The weeks in the production plan that are searchable by a dealer is controlled by an openness factor. 

When this is set to zero the planned pipeline is not searchable.  The factor ranges from zero to 8.  

With regard to trading between dealers, the model implements one version of this, termed 

unconsensed trading (Brabazon et al 2010) in which it is not necessary for a vehicle or order exchange to 

take place. Vehicles in the holding compound can always be traded but never those in a dealer‟s local 

stock.  The model has a pipeline trading factor that enables or disables the ability to trade orders in the 

production plan.   

If, after a search, two or more vehicles have the same lowest score for a customer, the order of 

preference is: oldest vehicle in the dealer‟s local stock, oldest in the dealer‟s compound stock, oldest in the 

compound from another dealer, the dealer‟s own replenishment orders in the pipeline, and finally other 

dealers‟ replenishment orders.  However, it is possible the best option for a customer is to have a BTO 

vehicle, i.e. a vehicle with the exact specification requested but the order for which must await the next 

monthly cycle to be planned into the pipeline.  The lead time for BTO vehicles is estimated and a score is 

calculated and compared to the scores for vehicles in stock and in the production plan. Once the best 

vehicle is allocated, the customer awaits its delivery, which can take some weeks depending from where in 

the system the customer is fulfilled. 

Orders allocated to customers, including BTO vehicles, cannot be amended or traded in the pipeline 

to satisfy another customer. They are ignored when creating the monthly replenishment list. When they 
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exit the pipeline, they are shipped to the customer through the requesting dealer without being recorded 

as stock items. 

3.1.4 Order amendment and emulation of upstream supply constraints 

The simulation recreates the ability of the automaker to amend an order in the production plan so as to 

better match a customer‟s requested specification. The ability to amend a feature is controlled by the 

flexibility factor, which emulates real world phenomena such as component supply constraints (as studied 

by Lim et al 2014) and assembly plant line balancing limitations.  The factor is used as a randomized 

yes/no test of whether or not a vehicle‟s feature can be amended.  

As a result, of the model calibration exercise (see later) the flexibility factor has a value between 0 and 

100%.  When it is 100%, a feature of a vehicle in the production plan can always be amended to match 

the customer‟s specification for that feature.  The lower the percentage, the less likely the feature can be 

amended.  When the Dealer searches backwards through the pipeline on behalf of a customer, every  

unsold vehicle is inspected to identify how many features need to be amended and if, say, three features 

need altering, a random number is drawn for each of the three features to determine whether each is 

permitted to be changed.  Therefore, it could be that one of the three features can be but two cannot.  

Consequently, the flexibility factor has an influence over customer waiting times. The lower the 

percentage, the further back in the pipeline the search will need to go before a vehicle is permitted to be 

amended to the customer‟s specification. 

The simulation model allows amendments in weeks 2 to 8 of the pipeline, but it additionally includes a 

week one factor to control whether orders can be amended in the final week of the pipeline. The who and 

the shape factors are not directly linked to literature but are selected as factors as a result of discussions 

with OTD practitioners to reflect different approaches adopted in automotive fulfilment systems. The 

nine experimental factors are summarized in Table 3. 

 

Table 3  Nine experimental OTD factors 

Factor Description Levels Settings 

Pipeline trading  Trading between dealers 2 On, Off 

Method 
The logic used each month for selecting the 

mix of the replenishment orders  
2 

Random Method, Targeted 

method 

Who  
Either the Automaker or the Dealers select 

the mix of replenishment orders 
2 

Automaker selects, Dealers 

select 

Week one  
When on, a product can be amended within 

one week prior to production  
2 On, Off 

Stock volume Amount of finished stock (across all dealers) 33 From 1 to 1500  

Compound 

The fraction of dealer stock held in the VHC 

and the remainder is at dealerships.  Stock in 

the VHC can be traded between dealers 

33 From 1% to 100% 
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Shape  

Shape of replenishment distribution which 

controls the mix of products planned for 

production 

4 

1=Very Narrow; 

2=Narrow; 3=Balanced; 

4=Broad 

Flexibility  

Emulation of constraints in the pipeline.  

When set to 10% there are is a 0.1 probability 

that a vehicle‟s feature can be amended.   

11 From 0% to 100%   

Openness  

Defines the length of the production plan 

that is visible to the dealers.  A dealer can 

offer a vehicle to a customer from the open 

segment only. 

9 

0 = pipeline is closed; 1= 

week 1 is open;  2 = weeks 

1 & 2 are open; etc. up to 8 

= all weeks are open  

    

3.1.5 Modeling the Customer 

A customer has three attributes. The first is their preferred vehicle specification, i.e. which one of the 

7,776 variants they seek.  We follow Brabazon & MacCarthy (2012) and assume the demand for variants 

follows a power law as proposed by Clemons & Gao (2008), which means the shape of demand has a 

long tail (Anderson 2006) and the likelihood of a variant being sought by a customer is proportional to its 

popularity rank.  This is implemented in the model using a Beta distribution which takes the form of a 

power function when the second shape parameter, β, is set to 1 (Gupta & Nadarajah, 2004).  We ensure 

there is no correlation between popularity rank and vehicle specification, i.e. it is not the case that vehicles 

of similar rank have similar specification.   

In common with previous studies, (see section 2.3), we assume customers would prefer a vehicle as 

soon as possible. Furthermore, we assume a customer must be incentivized to wait, incurring a cost to the 

automaker. This is labeled as their aversion to waiting parameter, w, which gauges their dislike of waiting.  

Again, we follow Brabazon & MacCarthy (2012) and assume the strength of aversion differs within a 

customer population. We assume log(w) follows a Normal distribution with 95% of the population having 

w in a range of four orders of magnitude (e.g. from 0.01 to 100).   

As is evidenced in literature, we assume a customer must be incentivized to wait for their vehicle, 

which incurs a cost to the automaker (Williams, 2014). This is termed the waiting incentive cost, Cwait, and it is 

equal to the number of days to wait (n days) multiplied by the customer‟s aversion (w): 

 Cwait = wn Eq.(1) 

A similar approach is used to represent each customer‟s aversion to compromise, s, which is the third 

attribute.  As with aversion to waiting, we assume log(s) is Normally distributed with 95% of the 

population in a range of four orders of magnitude. In a similar way to Matzke et al (2016) who assume 

customers need a price discount in order to buy an option not in their initial specification, we assume 

customers have to be incentivized to compromise on their specification, again incurring a cost to the 

automaker, which we term the compromise incentive cost, Ccomp. In equation (2) f is the number of product 

features that are different from the customer‟s preferred specification.  When no features are different, 

the cost is zero. The largest value of f is 5 as there are five features modeled in a vehicle.   
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 Ccomp= sf Eq.(2) 

In the simulation model the means of the two aversion distributions,  and  , are used as parameters 

to create different customer populations representing different market types.  For example, the market 

illustrated schematically in Figure 2 is one in which the average customer is less concerned about 

specification than they are about waiting. The values of   and   used in the experiments are based on the 

results of calibrating the model as described later. 

 

Aversion to 
waiting 
distribution 

Aversion to 
compromise 
distribution 

w s 

 

Figure 2 Schematic of customer aversion distributions 

3.1.6 Order Fulfilment Cost Index 

Although we have insufficient information to estimate the cost of fulfilment in monetary terms, we use 

the output from the simulation to calculate an Order Fulfilment Cost index. This index combines the two 

customer related costs of compromise and waiting as described above, with the key factor that drives the 

cost of holding stock – the number of days a vehicle has been in stock when sold to a customer. This is S 

in equation (3): 

 OFCindex = Cwait + Ccomp+ S Eq.(3) 

Equation (3) is an index of the marginal cost of fulfilment per customer.  Should a customer purchase 

a vehicle that is available straight from assembly with exactly the specification wanted by the customer, 

the value of their OFCindex will be zero.  Making a customer wait for a vehicle, or selling a vehicle that has 

been sitting in stock, and/or requiring the customer to compromise, each incurs cost to the automaker. 

Cwait and Ccomp are weighted by each customer's individual aversion factors, the means of the distributions 

of which vary by market (as discussed in section 3.1.5). The number of days a vehicle assigned to a 

customer has been in stock, S, has no weighting factor, or equivalently a normalized weighting of 1, as it 

is assumed the cost of holding stock does not vary significantly across markets. Although the literature 

indicates the significance of these costs, information on their relative magnitudes is scarce. In our 

experimentation following calibration of the model (see 3.2 below), we observed the cost components to 

be of similar order of magnitude, as will be shown in the results section (see Table 4).  This outcome is 

consistent with the limited insights about these three costs in the literature (section 2.2). Clearly, an 

automaker will wish to keep the order fulfilment index small.  
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Two activities that could be considered to also add marginal costs are amendments and inter-dealer 

trades. We assume the operational costs per amendment and per trade are insignificant compared to the 

three costs above. With regard to trades, in the simulation these involve the redirection of vehicles but do 

not require additional transportation. 

3.2. Model validation and calibration of factors 

Validation of the simulation model is a methodological aspect that is either not mentioned in the studies 

reviewed in Tables 1 & 2 or is achieved by having industry executives review a model (Holweg et al. 2005, 

Lim et al. 2014). As noted, this model was developed in collaboration with a major automaker who 

provided detailed information on the business processes involved in OTD and its operation in different 

markets. In this study we have compared the output of the model to real historical data, which is a 

stronger approach to validating assumptions than used in any of the studies listed in Tables 1 &2.  This 

has enabled us also to calibrate three of the factors. 

For most of the factors it is straightforward to define the levels and range of values with which to 

experiment, but this is not so for the flexibility factor nor for the customer aversion parameters,   and  .  

By comparing the model output to historical data we have determined the base settings for these factors: 

flexibility set to 20%, the average waiting aversion,  , set at 3 and average compromise aversion,  , set at 30. 

In this calibration process the eight other factors are configured to resemble the OTD process of a 

vehicle model for which we have one year‟s sales data from a major automaker and the model is run at 

different values of the two aversions and flexibility.  The calibration metric is the histogram of vehicles 

sold at a particular age (in days), shown in Figure 3.  The age at sale is a function of several metrics 

including the mechanism of sale (from stock, from the pipeline, and by BTO) and age of stock, which 

makes it a succinct indicator for calibration purposes. A negative age occurs if a vehicle is sold while it is 

in the pipeline (or as a BTO).  A positive age occurs if a vehicle is sold from finished stock and reflects 

the number of days it has been in stock.   

 

Figure 3 Age of vehicle at sale. Actual data (left) and simulation output (right) 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

The two plots are not identical but do resemble each other in key respects.  As in the real data set, the 

simulation output has a low level of sales at the most negative age, and sales rise as age approaches zero.  

Both data sets show a drop in sales before age reaches zero.  This is explained by the simulation model 

and the real world system not being able to amend pipeline orders in the final days before assembly (i.e. 

the week one factor is set to off).   

In both data sets, from the age of zero the sales grow quickly to a peak and then decline.  The real data 

has a high peak close to zero, which does not occur in the simulation output, and fewer vehicles are sold 

beyond 150 days old than in the simulation.  Two points can be made about these differences.  Firstly, in 

the simulation model the process of searching for a vehicle on behalf of a customer gives preference to 

older vehicles.  Therefore, the simulation assumes customers are insensitive to age.  The higher peak in 

the actual data for the days just greater than zero may be an indication that at least some customers prefer 

vehicles straight from assembly. Secondly, vehicle obsolescence is not a factor considered in the 

simulation and it has no mechanism for offering an age-related discount, which could be an explanation 

for why the real data records fewer very old vehicle sales. 

The base, or calibration, values for flexibility, average waiting aversion,  , and average compromise aversion,   

inform the experimental range.  In regard to the flexibility factor, had the calibration exercise pointed to a 

suitable value of, say, 0.2% we would have set an experimental range from 0 to perhaps 1%. With the 

result being 20%, the chosen range is 0 to 100%.  

The two aversion parameters,   and  , are used to specify a particular market. We have assigned the 

label „Calibration Market‟ to a customer population with waiting and compromise aversions set to their 

base values (3 and 30 respectively). In order to investigate the sensitivity of OTD performance to these 

two parameters, we have specified two additional markets, one labelled the „Specification-Focused 

Market‟ and the other the „Demanding Market‟. The choice of values for the two aversion factors in these 

markets are speculative but are motivated by previous work and the experience gained in the calibration 

exercise. The „Specification-Focused Market‟, which is inspired by the findings of Brabazon & MacCarthy 

(2012), is a market in which customers are much more averse to compromise than to waiting time. The 

aversion to waiting is adjusted to be significantly weaker than in the calibration market ( = 0.1) and the 

aversion to compromise is adjusted to be somewhat stronger than in the calibration market ( = 100), 

creating a difference of three orders of magnitude between the parameters. In the „Demanding Market‟ 

customers are averse to both waiting and compromise and the two average aversions have equal value (  

= 30,  = 30).  The motivation for considering this market is to see how the OTD process copes in a 

tough operating environment.  

3.3. Experimental design 

The use of experimental design is one of the aspects that distinguishes this study from the studies 

reviewed in Tables 1 and 2. Selecting an experimental design to conduct a systematic simulation study of 

the OTD process is challenging because of the number of factors and the number of values/levels at 
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which some of the factors can be set, as summarized in Table 3.  Appropriate in these circumstances is a 

Near Orthogonal Latin Hypercube (NOLH) design, which can accommodate many factors at many levels 

in relatively few trials compared to other designs (Sanchez 2008).  It is a strong design for experiments 

with a complex simulation model and for identifying key factors influencing system behavior. The 

sacrifice made for the compactness of the NOLH design is that factor interactions are not assessed 

systematically, as would occur in a full or fractional factorial design.  However, by repeating the design to 

increase the data set, the results can be analyzed using data mining techniques.  In this study we build 

classification trees using the Chi-Square Automatic Interaction Detector (CHAID) technique, which 

produces a clear depiction of the relationships between the input data and the target outputs, is robust 

with regard to how inputs are distributed, and is well suited for high-dimensional applications (Berry and 

Browne, 2006).  

 The NOLH selected is a 12 column by 33 trials design (Sanchez 2005).  As illustrated in Figure 4, 

each column holds a factor that can take a unique value in each trial. Hence the design reveals the 

relationship between a factor and an output metric as it varies over up to 33 levels.  The nine OTD 

factors are each assigned to a column.  To increase the results set, the design is stacked 5 times, and in 

each set of 33 trials the factors are assigned to different columns, which improves orthogonality. This 

gives a total of 165 unique trials. The customer aversions are not included in the NOLH array.  Instead, 

for each market we run all 165 trials to assess whether the importance of a factor changes with market 

conditions.  

 

Figure 4 Illustration of how 165 unique trials are specified using the 12x33 NOLH 

The model is analyzed as a non-terminating system. At the start of each run, vehicle stock is primed and 

the pipeline is filled before the first customer arrives. Four system performance aspects are captured and 

analyzed in the study – the proportion of customers fulfilled by each fulfilment mechanism (from stock, 

from the pipeline and by BTO); the average lead time experienced by customers (in days); the proportion 

of customers that compromise on their desired specification and the average number of features on 
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which they compromise; the order fulfilment cost index and its components (the waiting cost index and 

the compromise cost index). A warm-up period of 1 year allows the model to reach steady-state and then 

the method of batch-means is used (Law and Kelton 2000). The statistics from 15 batches of 1 month 

each are combined to estimate the performance metrics. The variance reduction method of common 

random numbers (CRN) has been employed for the unique pseudo random sequences, such as the 

preferred vehicle specification selected by customers. By keeping the same sequence for each random 

variable in all trials, the CRN approach raises confidence that observed differences in the dependent 

parameters are due to alterations to the experimental factors rather than to statistical noise (Law and 

Kelton, 2000). CRN is a widely used and studied technique in the literature (e.g. Glasserman & Yao, 1992; 

Nakayama 2007; Utterbeeck, Wong, Oudheusden and Cattrysse, 2009).  

4. Results 

First we use the combined NOLH/CHAID approach to investigate and compare OTD system behavior 

in each of the three markets. We look at how the OTD factors impact on the critical system performance 

metrics – the producer‟s cost of fulfillment and the customer‟s experience in terms of waiting time and 

the degree of compromise suffered. We then use the approach to identify how the OTD process should 

be configured for each metric and each market. 

4.1. Market conditions and fulfillment 

Comparing the results across the three markets shows that the two aversions have substantial impacts on 

the fulfillment mechanisms used, the degree of specification compromise experienced by customers and 

on the cost of fulfillment (Table 4). Moving from the specification-focused market („A‟) to the calibration 

market („B‟) and on to the demanding market („C‟) results in an increase in the average proportion of 

customers fulfilled from stock with corresponding falls in the use of the other two fulfillment 

mechanisms.  From over 30% in market „A‟, BTO fulfillment drops to almost zero in market „C‟. As a 

consequence, average lead times drop by over 85% in moving from market „A‟ to „C‟.  

The change in the level of specification compromise experienced by customers is also substantial.  In 

market „A‟ where customers are willing to wait but are averse to compromise, few of them accept a 

product with compromise (1.3 %), and for those customers who do, the average number of features 

compromised is very small (0.016 from a maximum of 5).  In the other markets the respective figures are 

much higher. 

The specification-focused market („A‟) has the lowest incentive costs. These customers need only a 

small incentive to wait, and because nearly all customers are fulfilled with the variant requested, very little 

incentive to compromise is required. The calibration market („B‟) has higher incentive costs, and the 

demanding market („C‟), in which the two aversions are equal and strong, has the highest incentive costs. 

When stock cost is added, the results across the 165 trials show the Demanding market („C‟) to have, 

on average, approximately double the cost of the Calibration market („B‟), which in turn has 
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approximately double the cost of the Specification market („A‟). In the next section, we drill down into 

the experimental results and find that the Specification market costs can be as low as one tenth of the 

costs of the Calibration market. 

 

 

Table 4 Fulfillment metrics for the three markets  

  Market  

 
‘A’ 

Specification-

Focused 

‘B’  

Calibration  

‘C’  

Demanding 

Fulfillment mechanisms:    

Stock 19% 62% 92% 

Pipeline 50% 32% 3% 

BTO proportion 31% 6% 1% 

Average Lead Time (days) 36 13 4 

Percentage of customers compromising 1.3% 47.5% 79.3% 

Average number of features compromised 

(max 5)  

0.016 1.082 2.113 

Average waiting incentive cost index (Cwait) 8 40 120 

Average compromise incentive cost index 

(Ccomp) 

1 27 86 

Average days in stock (S) 44 42 46 

Average order fulfillment cost index 

(OFCindex) 

53 109 252 

 

 

4.2. Impact of OTD factors 

Using the CHAID method for tree construction, Figure 5 classifies the factors that affect the order 

fulfillment cost in the specification-focused market („A‟).  The top box shows the average cost index 

across all 165 experimental trials to be 52.9 (rounded to 53 in Table 4).  The tree first divides by stock 

volume, showing this to be the factor that accounts for most of the variation in fulfillment cost across the 

trials.  Ten groups are identified.  The stock volume values, average cost index and size of each group are 

noted in each box in the tree.  The branch with the lowest order fulfilment cost index is on the left of the 
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chart, grouping 15 trials in which stock volume is less than or equal to 96 and with an average cost index 

of 11.4.  Looking across the other boxes at this level shows the cost index rising as stock increases.  

 

 

Cost  
 52.9 

N: 165 

<= 95 
11.4 
N: 15 

96-282 
19.6 
N: 20 

1173 -1359 
86.1 
N: 20 

>1359 
95.6 
N: 15 

<=40% 
24.6 

N: 7 

<=20% 
15.4 
N: 6 

>20% 
8.7 
N: 9 

1033-1172 
75.1 
N: 15 

892-1032 
65.8 
N:15 

705-891 
56.9 
N: 20 

564-704 
47.6 
N: 15 

424-563 
39.7 
N: 15 

283-423 
30.1 
N: 15 

Stock 

40-70% 
18.7 

N: 8 

>70% 
14.2 

N: 5 

<=30% 
35.1 
N: 5 

>30% 
27.5 
N: 10 

<30% 
43.5 

N: 8 

>30% 
35.5 

N: 7 

Prod 
60.1 
N: 8 

Dealer 
54.7 
N: 12 

Target 
69.8 

N: 6 

Random 
78.6 

N: 9 

<=60% 
69.1 
N: 7 

>60% 
62.8 
N: 8 

<=30% 
89.2 
N: 9 

>30% 
83.5 
N: 11 

<=40% 
99.6 

N: 6 

>40% 
92.9 

N: 9 

Flex 

Flex 

Flex Who 

Method 

Flex 

Flex 

Flex 

Flex 

 

Figure 5 Specification-Focused Market („A‟) Fulfillment Incentive Cost Tree 

Nine of the ten branches divide at the second level.  Seven are split by the flexibility factor, one by the 

method factor and one by who selects replenishment orders.  The leftmost branch at the first level is one of 

those split by flexibility, with its 15 trials divided into a group of 6 in which flexibility is less than or equal 

to 20%, and a group of 9 in which flexibility is greater than 20%.  The average cost index for the group of 

9 is 8.7, and it is this leaf that has the lowest cost in the whole tree.  Therefore, to achieve the lowest 

marginal order fulfilment cost in the specification market it is necessary to have more than 20% flexibility 

and to have 96 or fewer vehicles in total stock.  This branch is emboldened in the diagram.  
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Figure 6 Calibration Market („B‟) Fulfillment Incentive Cost Tree 

The equivalent classification trees for the other two market conditions are presented in Figures 6 and 

7. Comparing the lowest cost leaf in each tree shows the Demanding Market (lowest index of 124.4) to be 

almost twice as costly as the Calibration market (70). However, the ratio between the lowest of the 

Calibration and Specification (8.7) markets is approaching ten.  
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Figure 7 Demanding Market („C‟) Fulfillment Incentive Cost Tree 

Trees for customer waiting time and degree of compromise experienced (in terms of the average 

number of product features different to a customer‟s preferred specification) have also been created but 

are not reproduced here for brevity.  For each tree the branch leading to the best leaf is summarized in 

Table 5. Importantly, the table reveals both consistency and conflicts between the metrics in the different 

markets.  

Although a stacked design has been used, the compactness of the NOLH matrix means that only a 

limited number of possible combinations of factor settings are tested and that interactions are 

unquantified. For example, in the case of the Calibration market, the best combination of settings of the 

three factors occurred in 12% of the trials (20 from 165), hence this combination was not exposed to all 

settings of other factors. To increase confidence in the findings, one set of 33 trials is re-run in which the 

other factors keep their original settings and hence vary over their entire experimental ranges, but the 

three factors are restricted to their best ranges, i.e. stock varies only between 96 and 423, shape varies from 
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2 to 4, and flexibility is greater than 30%.  The box plots in Figure 8 compare the results of the original and 

re-run sets of 33 trials, and give confidence that no interaction has a significant effect.  Re-runs for other 

markets and metrics indicate similar confidence in the CHAID results.  

 

Figure 8  Box plots of cost index for two sets of 33 trials, for the Calibration market  
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Table 5 Best branch for three metrics in each market 

  Market  

 ‘A’ – Specification-Focused ‘B’ - Calibration  ‘C’ - Demanding 

Order 

Fulfillment 

cost index 

Stock volume  <= 95 

Flexibility > 20% 

 

 

 

aCost 8.68, n=9 

Stock volume  96-423 

Shape   > 1 

Recon Flex  > 30% 

 

 

Cost 70.04, n=20 

Stock volume  283-1172 

Compound <= 82% 

Shape   > 2 

Openness  > 0 

Who  Dealer 

Cost 124.36, n=18 

Customer 

lead time  

Flexibility > 70% 

Openness  > 1 

Week One  Amend 

Pipeline Trading True 

Stock volume  > 704 

Lead time 13.76, n=9 

Stock volume  > 704 

Shape   > 2 

Week One  Amend 

Method   Targeted 

 

Lead time 7.39, n=10 

Stock volume  > 891 

Compound <= 64% 

Shape   > 2 

 

 

Lead time 1.91, n=19 

Customer 

specification 

compromise  

Flexibility > 60% 

Openness  > 5 

Shape   <= 2 

Method   Targeted 

Features different 0.005, n=7 

Shape   > 2 

Stock volume  >891 

 

 

Features different 0.658, n=31 

Shape   > 2 

Stock volume  > 704 

Compound > 94% 

 

Features different 1.095, n=5 

a At the bottom of each cell is the average value for the metric and the number of observations in the final leaf of the branch 

 

The first observation is that stock volume is a key factor in all three markets and impacts all metrics. 

Only for the compromise metric in the specification-focused market („A‟) does it not appear in the best 

branch, but otherwise it is the first factor dividing a tree in more than half the cases.  Stock volume 

should be different for each market condition to minimize the incentive cost.  In market „A‟ the lowest 

incentive cost is achieved with stock less than or equal to 95, but in the calibration market („B‟) it is with 

stock between 96 and 423 and in the demanding market („C‟) it should be in the range 283 to 1172.   

Also evident from the results in Table 5 is that the three metrics can be in conflict in terms of the 

stock level that achieves the lowest costs.  This is the case in the specification market „A‟ in which a stock 

of more than 704 gives the shortest lead time, while a stock of 96 or less gives the lowest cost.  Maintaining 

the volume of stock to minimize lead time would result in the fulfilment cost index being 56.9 or higher 

(from Figure 5), which is almost an 800% increase over the lowest achievable cost.  There is conflict also 

for the metrics in the calibration market („B‟), with higher stock levels needed to shorten lead time and 
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reduce compromise, but lower levels needed to reduce cost.  Only in the demanding market („C‟) is there 

harmony, with all three metrics benefitting from high stock levels. 

Aside from stock volume, the factors that have most influence on the performance metrics in the 

specification-focused market („A‟) are pipeline related factors, specifically flexibility, openness of the pipeline, 

amendments in week one, and pipeline trading.  For this market, it is best to have the pipeline visible to the 

dealers and to have a high level of ability to amend orders in the plan so as to simultaneously give 

customers the specification they seek, whilst reducing fulfilment costs and lead times. 

In contrast, in the demanding market („C‟) it is stock related factors that alter performance metrics the 

most. In this market, as well as stock volume, it is the shape factor and the compound factor (which controls 

the proportion of stock held in the VHC) that are important. In the demanding market, it is best for 

dealers to avoid having a narrow mix.  They should target the same or a slightly broader distribution 

compared to the customer demand.  Having a shared VHC is beneficial, and to reduce compromise it is 

best to store nearly all stock there. However, the time to transfer from the compound is unattractive to 

demanding customers, and the lowest fulfilment cost index is achieved by holding nearly a third of stock 

locally. It is also the case that dealers benefit from being responsible for selecting their replenishment 

orders, rather than the automaker doing this (which is controlled by the who factor). Although having the 

automaker select orders should give a better overall mix in the compound, the results indicate that dealer 

self-selection creates a better local mix. The improved local mix, in tandem with trading of compound 

vehicles, is a superior combination of factors. 

It is notable that all nine experimental factors have influence over fulfillment performance in at least 

one of the markets.  This finding, together with the fact the best OTD configuration is different in each 

market and for each metric, is evidence of the challenges in designing an OTD process with appropriate 

operating policies to match market characteristics. 

5. Discussion and managerial implications 

To study the OTD process it is recommended to use a holistic approach (Holweg et al. 2005, Aoki et al. 

2014). This study demonstrates both the necessity for, and the benefits of doing so to understand how a 

large-scale OTD process should be configured for different markets. The contributions from the study 

stem from the detail captured in the discrete event simulation model including the modeling of 

customers, the choice and design of the experimental approach, and the extent of the experimental study. 

The model has greater coverage of the OTD process, incorporating a greater range of factors, a number 

of which have never been studied before. It assesses more performance metrics than previously 

considered and uses designed experiments to understand system behavior and performance. It is the first 

to examine how a large scale OTD process performs in different markets with heterogeneity in customer 

attitudes to waiting and compromise. 

The validity of the simulation model is underpinned by it being developed and refined within a stream 

of research that involved a major automaker. Its relevance to the sector is evident from the fact that it 
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incorporates all the main processes described in the contemporary literature on OTD practices of the 

major automakers, as confirmed by Lim et al (2014). The modeling of customers is an integral part of the 

holistic analysis. The study models customers as having an aversion to waiting and an independent 

aversion to compromise. It captures customer heterogeneity within a customer population, and examines 

performance in different types of markets. The validity of the combined OTD and customer models is 

demonstrated by the level of agreement achieved in calibration against actual historical data. 

The challenge of studying and analyzing a large number of factors has been met by using the NOLH 

design (Sanchez 2008) and the CHAID technique (Berry & Browne, 2006). The former has been 

developed specifically for simulation based multi-factor experiments while the latter originates and has 

gained significant prominence in the field of data mining. Both are proven approaches and can be 

expected to be adopted more widely in large-scale simulation studies. 

5.1. Contributions and Managerial Implications 

The first insight from the study is that market attributes in terms of customer aversions to waiting and to 

specification compromise have a substantial bearing on the modes of fulfilment and on system 

performance metrics. Knowing the dominant modes of fulfilment in any market provides important 

information for the automaker in considering the design and management of the fulfilment system. This 

is revealed clearly in a comparison of the two most different markets, „A‟ and „C‟. For a demanding market 

(„C‟) in which customers are strongly averse to both waiting and compromise, the dominant mode of 

fulfillment is from stock. In contrast, for a specification-focused market („A‟), where customers are much 

more strongly averse to compromise than waiting, stock fulfillment plays a minor role and it is pipeline 

fulfillment that is the dominant fulfillment mode. In terms of marginal cost, lead-time and customer 

compromise, these two markets perform quite differently.  Within the experiments, the lowest fulfilment 

cost index for the demanding market („C‟) is over 14 times larger than the lowest cost for the specification-

focused market („A‟). However, its shortest lead time is 7 times less than for market „A‟.  The minimum 

average compromise in market „C‟ was just over 1 feature (1.095), whereas it was almost zero (0.005 

features) in „A‟. The implications are that even when the OTD process is configured appropriately for 

each type of market, the performance metrics will vary substantially from market to market. The relative 

cost of serving markets with different characteristics will be very different and the customer-centric 

metrics of expected lead times and level of compromise experienced will also vary depending on the 

market.  

The question for automakers is how should the OTD process be configured for different markets? 

Previous literature has been relatively weak in providing much if any guidance to automakers on how to 

configure their OTD processes. A clear insight from this study is that automakers face a number of 

dilemmas. The OTD configuration that achieves the lowest fulfillment cost in a market does not 

necessarily achieve the best customer-centric metrics with regard to lead-time and the level of 

compromise experienced by customers.  This is the case in the specification-focused („A‟) and calibration („B‟) 
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markets in which the best customer metrics would be achieved by larger volumes of stock but with 

negative consequences for the cost metric.  If a customer‟s loyalty and future repurchase decision is 

sensitive to their experience of either compromise and/or waiting time in their current purchase, then the 

automaker and dealers have a dilemma – do they keep stock low to reduce the cost of the current 

transaction, but in so doing put future revenues at risk, or hold more stock and incur higher costs now for 

the sake of further sales at a later time? 

A less dramatic conflict in OTD configuration is observed in the demanding market („C‟). All 

performance metrics benefit from holding stock, but there is a balance to be struck in where the stock is 

held – locally at each dealer or remotely in the shared vehicle holding compound.  Lead time is reduced 

by increasing the proportion held locally, but compromise and cost are reduced by decreasing local stock.   

These dilemmas illustrate the complexity of the OTD process and the challenges in configuring it 

appropriately, which are also evident from the fact that every one of the nine OTD factors studied 

impacted performance in some way, as shown by the CHAID analysis.  Each factor affected one or more 

metrics in one or more of the three markets.  The interplay between the heterogeneity in customer 

attributes in any market and the different potential modes of fulfillment makes OTD process 

configuration very challenging to get right. The findings from the study with regard to different markets 

can be formulated as guidance for automakers, as follows: 

 When serving a specification-focused market („A‟) or calibration market („B‟) the agenda for automakers 

should be to focus on upstream, pre-assembly, OTD factors.  Increasing flexibility in the production 

plan and responsiveness of supply should be priorities. This includes being able to amend orders in 

the production plan into any specification, and being able to do so right up until the last moment 

before assembly.  Dealers should have visibility of the production plan and be given the tools to 

amend and trade orders. For market „A‟ the stock of finished vehicles should be restricted to the 

most frequently demanded vehicle configurations, but a wider selection is beneficial in market „B‟.  

To reduce cost, a small holding of stock is recommended, but a larger volume will reduce fulfillment 

lead time in both markets „A‟ and „B‟ and reduce compromise in market „B‟. 

 When serving a demanding market („C‟) the automaker‟s agenda should be to focus on the downstream, 

post-assembly, factors of the OTD process.  It is recommended to hold a large volume of stock that 

is representative of the full range of vehicle specifications being demanded, rather than just the top 

sellers.  The majority should be held at a VHC so that dealers can trade them.   

Most of the previous literature has not provided any specific guidance on OTD systems design or how 

OTD systems should be configured. With the insights provided by this large-scale experimental analysis 

of a detailed model with a realistic level of variety, we can re-evaluate the relatively limited guidance 

provided in some previous studies. It is clear that previous studies lacked the appreciation of how 

important market characteristics can be. It is now evident that the recommendation from Lim et al (2014) 

to increase flexibility in upstream component supply is relevant to markets types „A‟ and „B‟. The use of 

vehicle compounds and trading of finished vehicles between dealers (Brabazon et al, 2010; Turner & 
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Williams, 2005) is appropriate for market „C‟.  The other recommendation of Brabazon et al (2010) of 

enabling amendments in the pipeline is applicable to market types „A‟ and „B‟.  It is important to note that 

it is not a simple case of our results contradicting or confirming existing guidance. It is that the very 

limited understanding provided from a small number previous studies is superseded by the much more 

exhaustive and detailed study presented here.  The extent of our new contributions to the understanding 

of the automotive OTD process shows both the need for, and the benefits of, a holistic approach to 

studying operational processes of similar complexity. Combining NOLH and CHAID provides new 

opportunities to use simulation to study such systems in a scientific and innovative way.  

5.2. Limitations and future work  

The guidance for markets „A‟ and „B‟ prioritizes upstream OTD factors, while it is downstream factors 

that are targeted for market „C‟. On the surface, it appears that market „C‟ cannot benefit from upstream 

capabilities, but this may not always be the case.  In this study, the ability to amend a vehicle in the 

production plan was used only when selling an order to a customer.  What if this functionality was used 

to amend unsold orders which are about to go into assembly and then stock?  In other words, just before 

entering assembly, a replenishment order would be amended to be the specification most needed to 

maintain the desired stock mix. For market „C‟ the range of vehicle specifications in stock affects cost, 

lead time and compromise and hence this upstream ability to amend orders could be used to advantage.  

The magnitude of the benefit is a matter for further study.   

The calibration of the model against actual data, which is a further strength of this study, has enabled 

the aversion factors to be quantified for the calibration market. The aversion values used for the two 

other markets were speculative to some degree. Hence, the quantification of aversions is an area for 

future study but we note that the approach can be applied to investigate a market of any type once 

aversion factors are quantified. It is also possible that the modeling of aversions could be further 

developed. In this study it is assumed a customer has the same strength of aversion for all features, i.e. 

they are as unhappy with a change in body shape as with a change in engine type.  It is also assumed a 

customer has a uniform aversion to any change in a feature (e.g. if they prefer a 4dr body, they are as 

unhappy to change to a 3dr as they are to change to a 5dr). Further work could also refine these 

assumptions. 

In common with the previous literature, this study has not differentiated products with respect to 

price.  This has been for model tractability reasons and the lack of data for calibration purposes.  To 

include product price would increase the complexity of the customer decision making model.  However, 

it is speculated the impact of introducing price differentiation on the performance of the OTD process 

may be consistent with increasing customer aversion to specification compromise. If the product range is 

differentiated by price, it is possible that customers who have selected a preferred vehicle configuration 

may perceive lower priced options as offering less value for money.  Hence, a consequence of increasing 

the price difference between options is that customers become more reluctant to shift from their 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

preferred selections. In other words, greater price differentiation leads to a general raising of aversion to 

compromise within the customer market.  The investigation of price differentiation, customer behavior 

and the above hypothesis are recommended as areas for further work. 

A simplification in the model is that demand has been assumed to be constant, whereas markets often 

exhibit some form of seasonal pattern.  The study results suggest the implications of seasonality for OTD 

performance depend on the strategy applied by the automaker.  If production rate is near constant, 

finished stock volume will fluctuate over the seasonal period.  By establishing that OTD metrics are 

strongly sensitive to stock volume, the insight from this study is that metrics will also fluctuate over the 

season. It is anticipated that metrics will alter to a lesser extent if the automaker pursues the alternative 

strategy of adjusting production rate so as to keep stock volume near constant. The implications for OTD 

performance of how automakers cope with seasonality is a topic for further work. 

This study has not sought to derive an optimal configuration but instead has focused on a 

comprehensive analysis of the dominant factors influencing performance in different markets types. 

There is scope to undertake a study in the future that seeks to determine an optimum configuration 

across multiple criteria for a specific market. The study here indicates the key factors that need to be 

modelled.   

6. Conclusions 

An extensive and representative simulation model of a large-scale automotive OTD system has been used 

to examine the impact of nine system factors on fulfillment performance. The study has identified the 

dominant factors affecting fulfillment under different market conditions. The ideal capabilities of the 

OTD process depend on the market characteristics and on which performance metric is prioritized. The 

implications of the study have been debated from the perspective of the automaker seeking to satisfy 

heterogeneous customer populations in markets with different characteristics. The use of the 

NOLH/CAID experimental simulation approach has potential applications in analyzing OTD processes 

in other sectors that have complex products, diversity and heterogeneity in markets, and significant 

planning pipelines.  

Appendix A 

Customer demand and the replenishment distributions are Beta distributions with the following 

parameters:  

1. Very narrow. α = 0.047, β = 1   

2. Narrow. α = 0.131, β = 1 

3. Balanced (same as customer demand). α = 0.296, β = 1 

4. Broad.α = 0.557, β = 1 
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Appendix B 

When using the targeted replenishment method, a dealer generates its monthly list of replenishment 

orders by using an approach based on the forward sales coverage concept. If the total number of a specific 

variant i held by a dealer in stock and pipeline replenishment orders is ai and the probability of a customer 

requesting this variant is pi then the forward sales coverage of this variant fsci is the expected number of 

customers which need to be served for the variant‟s holding to be sold (Eq. B.1). 

 
i

i
i

p

a
fsc   Eq. (B.1) 

The forward sales coverage concept is adapted into target coverage.  Instead of pi the calculation uses the 

variant‟s target probability ti which is defined by the shape of the target distribution described in section 3, 

and fsci is replaced by target coverage tci.  

Once a month the automaker tells the dealer how many replenishment orders it is to have and 

requests from the dealer the list of variants it wants.  The list, l, is compiled as follows:  

Step 1:  Receive from the automaker the number of replenishment orders required this month. 

Step 2:  Start with an empty replenishment list.  Initialise li to zero for all i. 

Step 3:  For all variants, sum it‟s holding ai and number of requests so far on the list li . 

Step 4:  For each variant calculate tci by incrementing its combined holding and requested number by 

1, using equation (5). 

Step 5:  Identify the variant i that gives the lowest target coverage tci. 

Step 6:  Increment the request for this variant li . 

Step 7:  Decrement the number of replenishment orders remaining to be requested. 

Step 8:  If the number of replenishment orders remaining is greater than zero, go to step 3, otherwise 

send the list to the automaker. 

 

 
i

ii
i

t

la
tc

)1( 
  (5) 

References 

Anderson, C. (2006). The long tail : how endless choice is creating unlimited demand. London : Random House 

Business. 

Aoki, K., Staeblein, T., & Tomino, T. (2014). Monozukuri capability to address product variety: A 

comparison between Japanese and German automotive makers. International Journal of Production 

Economics, 147(Part B), 373–384. http://doi.org/10.1016/j.ijpe.2013.02.026 

Bardakci, A., & Whitelock, J. (2004). How “ready” are customers for mass customisation? An exploratory 

investigation. European Journal of Marketing,38(11/12), 1396-1416. doi:10.1108/03090560410560164 

Bennett J., C. R. (2014, February 11). Car makers snip pricing now to avoid haircuts later. The Wall Street 

Journal. Retrieved from www.wsj.com/articles/SB10001424052702304558804579377293202213988 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

Berry, M. W., & Browne, M. (2006). Lecture notes in data mining. [electronic resource]. Hackensack, NJ : World 

Scientific. 

Brabazon, P. G., MacCarthy, B., Woodcock, A., & Hawkins, R. W. (2010). Mass Customization in the 

Automotive Industry: Comparing Interdealer Trading and Reconfiguration Flexibilities in Order 

Fulfillment. Production and Operations Management, 19(5), 489–502. http://doi.org/10.1111/j.1937-

5956.2010.01132.x 

Brabazon, P. G., & MacCarthy, B. (2004). Virtual-Build-to-Order as a Mass Customization Order 

Fulfilment Model. Concurrent Engineering, 12(2), 155–165. http://doi.org/10.1177/1063293X04044379 

Brabazon, P. G., & MacCarthy, B. (2012). Investigating a long tail in retail vehicle sales. Omega, 40(3), 

302–313. http://doi.org/10.1016/j.omega.2011.07.005 

Clemons, E. K., &Gao, G. (2008). Consumer informedness and diverse consumer purchasing behaviors: 

Traditional mass-market, trading down, and trading out into the long tail. Electronic Commerce Research 

And Applications, 7(Market transformation in a networked global economy), 3-17. 

doi:10.1016/j.elerap.2007.10.001 

Elias, S. (2002). New Car Buyer Behaviour. Retrieved from www.3daycar.com 

European vehicle inventory returns to bad old days. (2012). Retrieved from 

http://automotivelogistics.media/data/european-vehicle-inventory-returns-to-bad-old-days  

Franke, N., Schreier, M., & Kaiser, U. (2010). The “I Designed It Myself” Effect in Mass Customization. 

Management Science, 56(1), 125–140. http://doi.org/10.1287/mnsc.1090.1077 

Fredriksson, P., & Gadde, L. (2005). Flexibility and rigidity in customization and build-to-order 

production. Industrial Marketing Management, 34(IMP Conference, Rotterdam, 2004), 695-705. 

doi:10.1016/j.indmarman.2005.05.010 

Glasserman, P., & Yao, D. D. (1992). Some Guidelines and Guarantees for Common Random Numbers. 

Management Science, 38(6), 884–908. http://doi.org/10.1287/mnsc.38.6.884 

González-Benito, J., Lannelongue, G., & Alfaro-Tanco, J. A. (2013). Study of supply-chain management 

in the automotive industry: a bibliometric analysis. International Journal Of Production Research, 51(13), 

3849-3863. doi:10.1080/00207543.2012.752586 

Gupta, A. K., & Nadarajah, S. (Eds.). (2004). Handbook of Beta Distribution and Its Applications (Statistics: A 

Series of Textbooks and Monographs). CRC Press. 

Holweg, M. (2003). The three-day car challenge: Investigating the inhibitors of responsive order 

fulfilment in new vehicle supply systems. International Journal of Logistics Research and Applications, 6(3), 

165–183. http://doi.org/10.1080/1367556031000123106 

Holweg, M., & Pil, F. K. (2004). The second century : reconnecting customer and value chain through build-to-order : 

moving beyond mass and lean production in the auto industry. Cambridge, Mass.; London : MIT. 

Holweg, M., Disney, S., Hines, P., & Naim, M. (2005). Towards responsive vehicle supply: a simulation-

based investigation into automotive scheduling systems. Journal of Operations Management, 23(5), 507–

530. http://doi.org/10.1016/j.jom.2004.10.009 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

Jayaram, J., Vickery, S., & Droge, C. (2008). Relationship building, lean strategy and firm performance: an 

exploratory study in the automotive supplier industry. International Journal Of Production Research, 46(20), 

5633-5649. doi:10.1080/00207540701429942 

Kessler, A. M. (2015). With car dealership‟s ranks thinned, the survivors thrive. The New York 

Times.http://nyti.ms/1GuRBKH 

Law, A. M., & Kelton, W. D. (2000). Simulation modeling and analysis. Boston: McGraw-Hill. 

Laurent Lim, L., Alpan, G., & Penz, B. (2014). Reconciling sales and operations management with distant 

suppliers in the automotive industry: A simulation approach. International Journal Of Production 

Economics, 15120-36. doi:10.1016/j.ijpe.2014.01.011 

Lockström, M., Schadel, J., Harrison, N., Moser, R., & Malhotra, M. K. (2010). Antecedents to supplier 

integration in the automotive industry: A multiple-case study of foreign subsidiaries in China. Journal 

Of Operations Management, 28(Culture, Development, and Operations Management Viewpoints in 

Asia), 240-256. doi:10.1016/j.jom.2009.11.004 

Matzke, A., Volling, T., & Spengler, T. S. (2016). Upgrade auctions in build-to-order manufacturing with 

loss-averse customers. European Journal of Operational Research, 250(2), 470–479. 

http://doi.org/10.1016/j.ejor.2015.11.003 

Meyr, H. (2004). Supply chain planning in the German automotive industry. OR Spectrum, 26(4), 447-470. 

doi:10.1007/s00291-004-0168-4 

Nakayama, M. K. (2007). Fixed-width multiple-comparison procedures using common random numbers 

for steady-state simulations. European Journal of Operational Research, 182(3), 1330–1349. 

http://doi.org/10.1016/j.ejor.2006.09.045 

New Car Delivery Times. (2016). Retrieved from https://www.carwow.co.uk/new-car-delivery-times 

Sanchez, S. M. (2008). Better than a Petaflop: the power of efficient experimental design. In S. J. Mason, 

R. R. Hill, L. Monch, O. Rose, T. Jefferson, & J. W. Fowler (Eds.), Proceedings of the 2008 Winter 

Simulation Conference (pp. 73–84). Retrieved from http://www.informs-sim.org/wsc08papers/263.pdf 

Sanchez, S. M. (2005). NOLH designs spreadsheet.  http://diana.cs.nps.navy.mil/SeedLab/   

Stäblein, T., Holweg, M., & Miemczyk, J. (2011). Theoretical versus actual product variety: how much 

customisation do customers really demand? International Journal of Operations & Production Management, 

31(3), 350–370. http://doi.org/10.1108/01443571111111955 

Staeblein, T., & Aoki, K. (2015). Planning and scheduling in the automotive industry: A comparison of 

industrial practice at German and Japanese makers. International Journal of Production Economics, 162, 

258–272. http://doi.org/10.1016/j.ijpe.2014.07.005 

Tobin, D. (2014). Waiting times grow for most popular new cars. The Sunday Times. 

www.driving.co.uk/news/news-waiting-times-grow-for-most-popular-new-cars/ 

Tomino, T., Park, Y., Hong, P., & Roh, J. J. (2009). Market flexible customizing system (MFCS) of 

Japanese vehicle manufacturers: An analysis of Toyota, Nissan and Mitsubishi. International Journal of 

Production Economics, 118(2), 375–386. http://doi.org/10.1016/j.ijpe.2008.12.002 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

Turner, K., & Williams, G. (2005). Modelling complexity in the automotive industry supply chain. Journal 

of Manufacturing Technology Management, 16(4), 447–458. http://doi.org/10.1108/17410380510594525 

Van Utterbeeck, F., Wong, H., Van Oudheusden, D., & Cattrysse, D. (2009). The effects of resupply 

flexibility on the design of service parts supply systems. Transportation Research Part E: Logistics and 

Transportation Review, 45(1), 72–85. http://doi.org/10.1016/j.tre.2008.04.002 

Volling, T., Matzke, A., Grunewald, M., & Spengler, T. S. (2013). Planning of capacities and orders in 

build-to-order automobile production: A review. European Journal of Operational Research, 224(2), 240–

260. http://doi.org/10.1016/j.ejor.2012.07.034 

Volling, T., & Spengler, T. S. (2011). Modeling and simulation of order-driven planning policies in build-

to-order automobile production. International Journal of Production Economics, 131(1), 183–193. 

http://doi.org/10.1016/j.ijpe.2011.01.008 

Wernle, B. (2014). Higher incentives lift Ford cars, trucks. Retrieved from http:// 

www.autonews.com/article/20140801/RETAIL01/140809983/higher-incentives-lift-ford-cars-

trucks 

Williams, G., & Bozon, L. (2006). Are we moving to customer pull?  International Car Distribution Programme 

Ltd, Solihull, UK. 

Williams, M. (2014). Excess Inventory Costing Europe Millions, Retrieved from http:// 

www.automotivelogisticsmagazine.com/news/excess-inventory-costing-europe-millions 

WTO (2014). World Trade Organization International Trade Statistics 2014, available at www.wto.org/statistics 

Accessed 22/6/2015 

Wynstra, F., von Corswant, F., & Wetzels, M. (2010). In Chains? An Empirical Study of Antecedents of 

Supplier Product Development Activity in the Automotive Industry. Journal Of Product Innovation 

Management, 27(5), 625-639. doi:10.1111/j.1540-5885.2010.00741.x 

Young, A. (2014).US New Auto Inventories Highest Since '09; GM, Volkswagen Top List; Kia, Hyundai Up Most; 

Toyota Stock At 'Healthiest' Level. Retrieved from http:// www.ibtimes.com/us-new-auto-inventories-

highest-09-gm-volkswagen-top-list-kia-hyundai-most-toyota-stock-healthiest 

Zhang, X., Chen, R., & Ma, Y. (2007). An empirical examination of response time, product variety and 

firm performance. International Journal of Production Research, 45(14), 3135–3150. 

http://doi.org/10.1080/00207540600786707 

 

 


