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The Parameterized Post-Friedmannian Framework for Interacting Dark Energy
Theories
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b Institute of Cosmology & Gravitation, University of Portsmouth,
Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX, United Kingdom
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We present the most general parameterization of models of dark energy in the form of a scalar
field which is explicitly coupled to dark matter. We follow and extend the Parameterized Post-
Friedmannian approach, previously applied to modified gravity theories, in order to include inter-
acting dark energy. We demonstrate its use through a number of worked examples and show how
the initially large parameter space of free functions can be significantly reduced and constrained to
include only a few non-zero coefficients. This paves the way for a model-independent approach to
classify and test interacting dark energy theories.

I. INTRODUCTION

In recent years, cosmological data from experiments
with exquisite precision (Cosmic Microwave Background
measurements ([1],[2]), Ia supernovae [3], Baryon Acous-
tic Oscillation surveys [4]) suggest that ∼ 96% of the
matter/energy content of our Universe is in the form
of an exotic dark sector. Approximately a quarter of
the dark sector is believed to be weakly interacting Cold
Dark Matter, while roughly 70% is in the form of a Dark
Energy component, a substance with negative pressure
responsible for the current accelerated expansion of the
Universe.

The best candidate for Dark Energy is the cosmolog-
ical constant Λ. The concordance model of cosmology,
ΛCDM, is currently the best fit to observations, but it
comes along with fundamental questions and problems.
One of them is the coincidence problem, which poses the
question why the energy densities of the dark sector com-
ponents are of the same order today, when their cosmo-
logical evolution is very different. A possible solution to
the coincidence problem is a coupling between the Dark
Energy and the Dark Matter. The introduction of an
appropriate coupling does not violate observational con-
straints, and it can change the background evolution of
the dark sector components in order to offer a solution
to the coincidence problem.

A plethora of such dark coupling models can be found
in the literature (see, e.g. [5–38]). In most of these mod-
els, the choice of the coupling is purely phenomenological.
In a recent paper [39], we made further progress at the
level of construction of such models by identifying three
separate classes of models of dark energy in the form of
a scalar field (φ) coupled to Cold Dark Matter (CDM).

After constructing general models of exotic dark en-
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ergy or modified gravity and checking their mathematical
and physical viability (for example by identifying funda-
mental problems like ghosts or strong coupling issues),
one is interested in testing them against the available
data to see if they might offer a viable alternative to
ΛCDM.

Currently, there is a pressing need of fast and efficient
ways to rule out and constrain the large number of cos-
mological models available — it would be practically im-
possible to go through each and every one of them indi-
vidually. The Parameterized Post-Friedmannian (PPF)
approach offers such a framework and has been applied
to modified gravity theories [40–42] (see [43] for a recent
overview). In this work we apply the PPF approach in
interacting dark energy theories and demonstrate its use
through a number of worked examples. In Section II we
go through the PPF basic principles and general formal-
ism, extending it to the case of coupled dark matter/dark
energy. In Section III we first demonstrate how a few of
the most well-known phenomenological models in the lit-
erature fit in to this formalism and then we proceed to
apply it to the general classes of models we presented in
[39]. We conclude in Section IV.

II. FORMALISM

A. Basic Concepts

We start by writing the gravitational field equations of
a theory as

Gµν = 8πG
(
T (SM)
µν + T (GDM)

µν + T (DE)
µν

)
, (1)

where Gµν is the Einstein tensor of the metric gµν , T
(SM)
µν

is the stress-energy tensor of the known forms of mat-
ter (baryons, photons, neutrinos, etc) that are part of

the Standard Model of particle physics, T
(GDM)
µν is the

stress-energy tensor of (Generalized) Dark Matter and

T
(DE)
µν represents the stress-energy tensor of all the un-

known modifications to the gravitational field equations
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that generate the effect of Dark Energy. Such modifica-
tions may be purely due to a Dark Energy fluid or per-
haps due to a modification of gravity. It may be shown
that any kind of modification of gravity can be put in the
form (1) (see for instance [40]). Let us also note that
although we start with a Generalized Dark Matter which
may have non-zero pressure and non-zero shear [44], we
shall later on specialize to the Cold Dark Matter (CDM)
case where both of these quantities are zero.

The Bianchi identities tell us that the Einstein tensor
is divergenceless:

∇µGµν = 0. (2)

which in turn implies that

∇µ
(
T

(SM)µ
ν + T

(GDM)µ
ν + T

(DE)µ
ν

)
= 0. We as-

sume that the standard model particles do not explicitly

couple to the dark sector so that ∇µT (SM)µ
ν = 0.

This assumption is well justified by observations which
strongly constraints such couplings [45]. Furthermore,
a coupling of the evolving quintessence field to baryons
would lead to time varying constants of nature, which
are tightly constrained, see [46] and references therein.

This leaves us with ∇µ
(
T

(GDM)µ
ν + T

(DE)µ
ν

)
= 0 but

neither part is assumed to be individually conserved.
Thus we have that

∇µT (GDM)µ
ν = Jν = −∇µT (DE)µ

ν (3)

where the coupling current Jν represents the energy and
momentum exchange between the dark sector compo-
nents.

In what follows we aim to parametrise the coupling
current Jν in terms of metric potentials and their deriva-
tives as well as the scalar modes that are part of the
stress-energy tensors of the two dark sector components.
We shall do that in such a way so that the resulting field
equations contain at most two time derivatives, or equiv-
alently, each dark sector component obeys two first order
linearized field equations on an FRW background result-
ing from (3). We shall proceed by considering first a
FRW background spacetime and find the relevant equa-
tions that describe the dark sector and then consider lin-
ear perturbations about this background spacetime and
see how this affects the parameterization. Background
variables will be signified with a “bar” (unless no confu-
sion can arise, e.g. the scale factor a is always a back-
ground variable) while typically all perturbed tensors will
be preceded by a δ. For instance, we may split Jν into
Jν = J̄ν + δJν .

B. FRW Background

Consider a FRW background spacetime described by
a metric

ds2 = a2
(
−dτ2 + γijdx

idxj
)

(4)

where a is the scale factor, τ is the conformal time and
γij is the spatial metric, assumed to be flat. The sym-
metries of the spacetime impose that the only non-zero
components T̄µν are the energy density ρ̄ = −T̄ 0

0 and
pressure P̄ such that T̄ ij = P̄ δij .

The generalized Einstein equations (1) for this ansatz
give

3H2 = 8πGa2 (ρ̄SM + ρ̄GDM + ρ̄DE) (5)

and

H2 − 2
ä

a
= 8πG

(
P̄SM + P̄GDM + P̄DE

)
, (6)

where H = ȧ
a is the conformal Hubble parameter and

dots denote derivatives with respect to τ .
Turning now to the coupling current Jν , the symme-

tries of the spacetime impose that the only non-zero com-
ponent is

Q ≡ J̄0 (7)

while J̄i = 0. The function Q(τ) is the background cou-
pling function which is for our purposes a phenomenolog-
ically free function. Specific models of a coupled dark sec-
tor will in general result to specific choices of Q(τ) (see,
for example, [5, 25], which are two models we present and
parametrise in Section III).

The ν = 0 component of (3) gives the field equations
for the evolution of a particular component indexed by
“I” as

˙̄ρI + 3Hρ̄I(1 + wI) = sIQ, (8)

where we have defined the equation of state parameter
for each I-component as wI ≡ P̄I/ρ̄I and the constant sI
takes the values

sI =

{ 1 DE
0 SM fields
−1 GDM

. (9)

C. Linear Perturbations

1. The perturbed variables

We now turn to linear perturbations about the FRW
background. We shall consider only scalar modes. The
spacetime metric takes the form

ds2 = −a2(1 + 2Ψ)dt2 − 2a2∇iζdtdxi

+ a2
[
(1 + 1

3h)γij +Dijν
]
dxidxj , (10)

where Ψ, ζ, h, and ν are four functions of time and space
(four scalar modes) and

Dij = ∇i∇j −
1

3
γij∇2 (11)
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is a derivative operator that projects out the longitudinal,
traceless, spatial part of the perturbation.

Let us now consider the perturbed variables of the flu-
ids. These are the density contrast δ ≡ δρ/ρ̄, the scalar
mode of the momentum, θ, such that ui = a∇iθ, the di-
mensionless pressure perturbation Π ≡ δP/ρ̄ such that
δT ij = Πρ̄δij and the scalar mode of the shear Σ such that
the shear tensor is Σij = DijΣ. Putting it all together,
the stress-energy tensor components for a fluid are

T 0
0 = −ρ̄(1 + δ) (12)

T 0
i = −(ρ̄+ P̄ )~∇iθ (13)

T i0 = (ρ̄+ P̄ )~∇i(θ − ζ) (14)

T ij = ρ̄(w + Π)δij + (ρ̄+ P̄ )Di
jΣ (15)

2. Einstein and fluid equations

The perturbed Einstein equations (1) are

H
(
ḣ+ 2~∇2ζ

)
−6H2Ψ+2~∇2η = 8πGa2

∑
I

ρ̄IδI , (16a)

2η̇ + 2HΨ = 8πGa2
∑
I

(ρ̄I + P̄I)θI , (16b)

−ḧ− 2Hḣ+ 6HΨ̇ + 6
(
H2 + 2Ḣ

)
Ψ

−~∇2
(

2η − 2Ψ + 2ζ̇ + 4Hζ
)

= 24πGa2
∑
I

ρ̄IΠI (16c)

and
1

2
ν̈ + ζ̇ +H (ν̇ + 2ζ) + η −Ψ

= 8πGa2
∑
I

(ρ̄I + P̄I)ΣI (16d)

Turning now to the fluid equations, they are obtained
by perturbing (3). To this purpose we define the two
scalar mode perturbations q and S by

q ≡ δJ0
~∇iS ≡ δJi. (17)

We find

δ̇I = 3wIHδI + (1 + wI)

[
~∇2θI −

1

2
ḣ− ~∇2ζ

]
−3HΠI +

sI
ρ̄I

[q −QδI ] , (18a)

and

θ̇I = −
[
H(1− 3wI) +

ẇI
1 + wI

]
θI +

ΠI

1 + wI

+
2

3
~∇2ΣI + Ψ +

sI
ρ̄I

[
S

1 + wI
−QθI

]
. (18b)

where the index I runs over all species (and once again
let us recall that sDE = 1 = −sGDM while sI = 0 for all
other species).

D. Dark Coupling Parameterisation

The goal of this article is to parametrise both of the two
perturbation variables q and S as linear combinations of
all other perturbations, such as, the fluid variables δ, θ,
Π and Σ for each fluid, as well as the metric variables Ψ,
ζ, h and ν. This means 12 variables in total for each of q
and S. However, this linear combination is not entirely
arbitrary, but must obey certain rules regarding gauge
transformations. As we shall see, this reduces the num-
ber of effective independent variables to 10 for each of q
and S. Before proceeding to the parameterization, let us
briefly discuss gauge transformations.

1. Gauge transformations

The metric in (10) is in a form which is not gauge-fixed.
In other words the four scalar modes are not invariant un-
der gauge transformations δgµν → δgµν+L

ξ
ḡµν generated

by a vector field ξµ. Parameterized as ξµ = 1
a

(
ξT , ~∇iξL

)
for two scalar modes ξT and ξL the gauge transformations
of the metric and fluid perturbations will involve combi-
nations of ξT and ξL and their first time derivatives.

Consider first the variables q and S. We find that they
transform as

q → q +
1

a

[
Qξ̇T +

(
Q̇−HQ

)
ξT

]
(19a)

and

S → S +
1

a
QξT , (19b)

respectively. Thus if we write q and S as a linear combi-
nation of the metric and fluid variables, variables which
involve ξL in their transformation must combine together
so that ξL does not appear overall in the transformation
of the entire linear combination.

Now the fluid variables transform only with the gauge
variable ξT , i.e. as (dropping the obvious I indices)

δ → δ − 1

a

[
3H(1 + w)− sQ

ρ̄

]
ξT , (20a)

θ → θ +
1

a
ξT , (20b)

Π → Π +
1

a

[
ẇ − 3H(1 + w)w + sw

Q

ρ̄

]
ξT , (20c)

while Σ is gauge-invariant, hence, all four of them are
allowed to appear in the q and S parameterization.

However, the metric variables involve ξL in their trans-
formation. This means that the metric variables must
combine together so that ξL is eliminated alltogether.
Following [40] we can find three linear combinations of
the metric perturbations and their first time derivatives
which transform only with the gauge variable ξT . These
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are U ≡ h−∇2ν and V ≡ ν̇+2ζ as well as ḣ+2∇2ζ. The
latter one is not independent but is equal to U̇ + ∇2V .
Thus out of the four metric scalar modes, we are left
with two combinations, namely U and V , which trans-
form exclusively with ξT and Ψ which transforms with
ξ̇T . Explicitely, the transformations are

U → U +
6

a
HξT , (21a)

V → V +
2

a
ξT , (21b)

Ψ → Ψ +
ξ̇T
a
. (21c)

Since, q and Ψ contain ξ̇T in their transformation, we
must allow a further metric variable combination which
does so, but which doesn’t have higher than 2nd time
derivatives. The only possibility is the variable U̇ .

To summarise, we expect that each of q and S can be
written as linear combinations of the four fluid variables
(for each fluid) plus the four variables U , V , Ψ and U̇ .

2. Completing the parameterization

Following the discussion above, we start from the pa-
rameterization

q = C1Ψ + C2V +A1U +A2U̇ +A3δDE +A4δGDM

+A5θDE +A6θGDM +A7ΠDE +A8ΠGDM

+A9ΣDE +A10ΣGDM (22)

and

S = C3Ψ + C4V +B1U +B2U̇ +B3δDE +B4δGDM

+B5θDE +B6θGDM +B7ΠDE +B8ΠGDM

+B9ΣDE +B10ΣGDM (23)

Performing the gauge transformations in (22) we find two
constraint equations, namely

C1 = Q− 6HA2 (24a)

and

2C2 = Q̇−HQ− 6HA1 + 6(H2 − Ḣ)A2 −
˙̄ρDE
ρ̄DE

A3

−
˙̄ρGDM
ρ̄GDM

A4 −A5 −A6 −
˙̄PDE
ρ̄DE

A7 −
˙̄PGDM
ρ̄GDM

A8(24b)

Likewise, performing the gauge transformations in (23)
we find two further constraint equations, namely

C3 = −6B2H (24c)

and

2C4 = Q− 6HB1 + 6(H2 − Ḣ)B2 −
˙̄ρDE
ρ̄DE

B3

−
˙̄ρGDM
ρ̄GDM

B4 −B5 −B6 −
˙̄PDE
ρ̄DE

B7 −
˙̄PGDM
ρ̄GDM

B8 (24d)

TABLE I: Gauge invariant variables.

Φ̂ ≡ − 1
6
U + 1

2
HV

Ψ̂ ≡ Ψ− 1
2
V̇ − 1

2
HV

Γ̂ ≡ − 1
6
U̇ +HΨ + 1

2
(Ḣ − H2)V =

˙̂
Φ +HΨ̂

δ̂ ≡ δ − 1
2

˙̄ρ
ρ̄
V

θ̂ ≡ θ − 1
2
V

Π̂ ≡ Π− ˙̄P
ρ̄
V

The two constraints (24a) and (24b) are then used to
eliminate C1 and C2 from (22) while the two constraints
(24c) and (24d) are used to eliminate C3 and C4 from
(23). The remaining perturbations are written in terms
of the gauge-invariant variables listed in Table I by com-
bining them with V . The result is

q =
1

2
(Q̇−HQ)V +QΨ− 6A1Φ̂− 6A2Γ̂

+A3δ̂DE +A4δ̂GDM +A5θ̂DE +A6θ̂GDM

+A7Π̂DE +A8Π̂GDM +A9ΣDE +A10ΣGDM (25)

and

S =
1

2
QV − 6B1Φ̂− 6B2Γ̂ +B3δ̂DE +B4δ̂GDM

+B5θ̂DE +B6θ̂GDM +B7Π̂DE +B8Π̂GDM

+B9ΣDE +B10ΣGDM (26)

Hence, we are left with 20 free functions in total.

3. Special case: Cold Dark Matter

From now on we will assume that the Dark Matter
fluid is completely cold. This automatically means that
wGDM = ΠGDM = ΣGDM = 0. We shall further make
the assumption that the Dark Energy fluid has no shear,
i.e. ΣDE = 0. Furthermore, since there is no possibility
of confusion we shall set wDE = w.

In general, the pressure perturbation ΠDE would be
an independent dynamical degree of freedom (see [47] for
an explicit model). However, there are many instances
where ΠDE is expressed in terms of δDE and θDE via
equations of state such as the Generalized Dark Matter
model [44]. As in [44] we shall also assume that the
pressure perturbation ΠDE is expressed in terms of δDE
and θDE via equations of state. However, the usual ex-
pression in [44] no longer holds, as it does not transform
correctly under gauge transformations. An expression
which does is

ΠDE = c2sδDE + (c2s − c2a)

[
3(1 + w)H− Q

ρ̄DE

]
θDE

+µ(θc − θDE) (27)
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where c2s and c2a are the (gauge-invariant) effective and
adiabatic speeds of sound respectively. It may be shown
that the divergence of the entropy flux is proportional to
ΠDE − c2aδDE [48], hence, the gauge-invariant “relative
entropy” parameter µ measures entropy transfer to DE
due to its motion relative to the CDM fluid. The adia-
batic speed of sound is fixed by the equation of state w
via

c2a = w +
ẇ

Q
ρ̄DE
− 3H(1 + w)

. (28)

Hence, without loss of generality, we may further set A7

and B7 to zero. With these choices, the number of free
functions is reduced to 12.

We shall further assume the conformal Newtonian
gauge for which ζ = ν = 0 (so that V = 0). With this
choice, the gauge-invariant variables we have defined in
table I are equal to the conformal Newtonian gauge vari-
ables.

Let us now re-state the parameterization as well as the
necessary evolution equations. The two parameters q and
S are given by

q = QΨ− 6A1Φ− 6A2(Φ̇ +HΨ) +A3δDE

+A4δc +A5θDE +A6θc (29a)

and

S = −6B1Φ− 6B2(Φ̇ +HΨ) +B3δDE

+B4δc +B5θDE +B6θc (29b)

for unknown functions Ai and Bi with i ∈ 1 . . . 6.
The evolution equations for CDM are

δ̇c = ~∇2θc + 3Φ̇ +
1

ρ̄c
(Qδc − q) , (30a)

and

θ̇c = −Hθc + Ψ +
1

ρ̄c
(Qθc − S) . (30b)

while the evolution equations for DE are

δ̇DE = 3wHδDE + (1 + w)
[
~∇2θDE + 3Φ̇

]
−3HΠDE +

1

ρ̄DE
[q −QδDE ] , (31a)

and

θ̇DE = −
[
H(1− 3w) +

ẇ

1 + w

]
θDE +

ΠDE

1 + w

+Ψ +
1

ρ̄DE

[
S

1 + w
−QθDE

]
. (31b)

In the following Section we are going to investigate the
underlying space of models of coupled DM to DE, and
show how we can construct a “dictionary” of interact-
ing dark energy theories and their PPF correspondences.
The same method was applied to modified gravity theo-
ries in [42].

III. WORKED EXAMPLES

As a “warm-up” exercise, we are first going to demon-
strate the use of our PPF formalism for interacting dark
energy theories by showing that the functions Ai and Bi
are severely constrained when one considers specific mod-
els which appear often in the literature. These are the
“coupled quintessence” model [5], a model where Jµ ∝ uµ
[25, 49] and the elastic scattering of model of Dark Mat-
ter and Dark Energy [33, 50]. In table II one can see
the list of the models we consider with their coefficients
displayed.

Following that, we consider the parameterisation of the
general classes of coupled theories we constructed in [39].
More specifically, in [39] we presented three distinct types
of models of dark energy in the form of a scalar field
explicitly coupled to dark matter. We used the pull-back
formalism for fluids and generalized the standard fluid
action in order to include a dark coupling. The general
functional form for the combined dark energy and dark
matter Lagrangian we considered is

L = L(n, Y, Z, φ), (32)

where n is the fluid number density, Y = 1
2∇µφ∇

µφ, and
Z = uµ∇µφ. As an example, within GR, a quintessence
field and an uncoupled fluid is described by the La-
grangian L = Y + V (φ) + f(n).

We then considered three distinct ways to reduce the
general function (32) giving rise to the three Types
of coupled models which we now want to parametrise.
These are the Type-1 models where L = F (Y, φ)+f(n, φ)
(the coupled quintessence model [5] is a subcase of Type-1
with the choice F = Y +V (φ) and f = neβAφ), the Type-
2 models where L = F (Y, φ) + f(n,Z) and the Type-3
models where L = F (Y, Z, φ) + f(n).

A. Specific models

1. Coupled Quintessence

Let us start with the coupled quintessence (CQ) model
suggested by Amendola [5], which is a specific subcase of
the Type 1 class of models we presented in [39]. The
scalar field action for this model is

S = −
∫
d4x
√
−g
[

1

2
gµν∂µφ∂νφ+ V (φ)

]
, (33)

where V (φ) is the quintessence potential. If a constant
coupling parameter βA is assumed, the coupling current
Jµ is found to be (see [39] for details)

Jµ = −βAρc∇µφ (34)

Writing the scalar field as φ = φ̄ + ϕ for a background
field φ̄ and perturbation ϕ, the components of the stress-
energy tensor for this model are (using expressions from
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[39])

ρ̄DE =
1

2a2
˙̄φ2 + V P̄DE =

1

2a2
˙̄φ2 − V (35)

c2a = 1 +
2 ˙̄φVφ

3 φ̄
2

a2H−Q
Q = −βAρ̄c ˙̄φ (36)

for the background, where Vφ ≡ dV
dφ , and

δρDE =
˙̄φ

a2
(ϕ̇− ˙̄φΨ) + Vφϕ , θDE =

ϕ
˙̄φ
, (37)

δPDE =
˙̄φ

a2
(ϕ̇− ˙̄φΨ)− Vφϕ , c2s = 1 , µ = 0 (38)

for the perturbations. The required coupling parameters
are found to be

q = Q

(
δc +

ϕ̇
˙̄φ

)
(39)

S = Q
ϕ
˙̄φ
. (40)

Now we read-off the coefficients. They are:

A1 = A2 = A6 = 0 A3 =
Q

1 + w

A4 = Q A5 = βAρ̄ca
2Vφ (41)

B5 = Q Bi 6=5 = 0

2. Model with Jµ ∝ uµ

In this model, which was introduced in [25] and [49],
the energy-momentum transfer vector Jµ is parallel to
the dark matter 4-velocity uµ. In our notation we have
uµ = a(1 + Ψ,∇θc) and

Jµ = Γintρ̄c(1 + δc)uµ, (42)

with Γint a local constant interaction rate. The back-
ground coupling function is

Q = aΓintρ̄c (43)

while the perturbative coupling parameters q and S are

q = Q(δc + Ψ) and S = Qθc. (44)

Comparing with our general parameterisation scheme, we
find that the only non-zero coefficients are

A4 = B6 = Q (45)

3. Elastic scattering of Dark Matter and Dark Energy

This model was introduced in [33] and it considered
an elastic interaction between dark energy and dark mat-
ter. It is a pure momentum transfer model and its back-
ground cosmology remains unaltered. In our language,

this model has

Q = 0 (46)

in the background while

q = 0 S = (ρ̄DE + P̄DE)anDσD(θc − θDE), (47)

at the level of the perturbations, with nD the proper
number density of dark matter particles and σD the scat-
tering cross section between dark matter and dark energy
(also note that w = const and c2s = 1 in this model) [33].
We therefore find that the only non-zero coefficients are

B5 = −(ρ̄DE + P̄DE)anDσD = −B6. (48)

Now we turn our attention to the three general Types of
models in [39].

B. Type 1 theory of DM coupled to DE

Type 1 models are classified in [39] via

L(n, Y, Z, φ) = F (Y, φ) + f(n, φ). (49)

For the case where the Dark Matter is CDM we further
have f(n, φ) = neα(φ) where α(φ) is a free function of the
field φ.

From [39] we have that the coupling current is

Jµ = −ρcαφ∇µφ (50)

so that

Q = −ρ̄cαφ ˙̄φ

q = Q

(
δc +

ϕ̇
˙̄φ

)
− ρ̄cαφφϕ (51)

S = Q
ϕ
˙̄φ

where αφ ≡ dα
dφ and αφφ ≡ d2α

dφ2 . Note that the expres-

sion for S agrees with the one we recovered previously,
Eq. (40), and the expression for q agrees with Eq. (39) if
αφφ = 0. This is expected, as the CQ model we studied
is a sub case of Type 1.

We now need to express ϕ and ϕ̇ in terms of fluid-type
variables. For Type-1 theories, we find from [39] that the
background energy density and pressure are given by

ρ̄DE = −K̄ P̄DE = −F̄ (52)

where we have introduced the function

K(Y, φ) = 2Y FY − F (53)
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which will come in handy below (and also for Type-2).
Furthermore, the perturbed variables of interest are [39].

δDE = − Z̄K̄Y

K̄
δZ +

K̄φ

K̄
ϕ , θDE =

ϕ
˙̄φ
, (54)

c2a = c2s +
˙̄φ
[
F̄φ − c2sK̄φ

]
3(ρ̄DE + P̄DE)H−Q

, (55)

c2s =
F̄Y
K̄Y

, µ = 0 (56)

where K̄φ ≡ ∂K̄
∂φ and similarly for F̄ . The expression for

c2a, above (and since also µ = 0), says that if F̄φ = 0 then
the scalar field perturbations are adiabatic.

To express ϕ and ϕ̇ in terms of fluid-type variables we
invert the relations (56) to get

δZ = − K̄

Z̄K̄Y
δDE −

aK̄φ

K̄Y
θDE , ϕ = ˙̄φθDE (57)

which are valid for adiabatic and non-adiabatic pertur-
bations.

Let us now calculate the sought-after coefficients. Us-

ing aδZ = ˙̄φΨ− ϕ̇ and (57) we find

ϕ̇
˙̄φ

= Ψ +
c2s

1 + w
δDE −

c2sK̄φ

(1 + w)K
˙̄φ θDE . (58)

so that (51) gives the required coefficients as

A1 = A2 = A6 = 0 A3 =
Qc2s

1 + w

A4 = Q A5 = Q

[
αφφ
αφ
− c2sK̄φ

(1 + w)K̄
˙̄φ

]
(59)

B5 = Q Bi 6=5 = 0

For the case where αφ = βA is a constant and furthermore
F (Y, φ) = Y + V (φ) we recover the coefficients for the
coupled quintessence model discussed above, which is in
fact a subcase of a Type-1 model of coupled dark energy.

C. Type 2 theory of DM coupled to DE

Type 2 models are classified via [39]

L(n, Y, Z, φ) = F (Y, φ) + f(n,Z), (60)

with f = nh(Z) in the case that the scalar field is coupled
to CDM. The coupling current in this case is [39]

Jµ = ∇ν (ρcβu
ν)∇µφ (61)

where β(Z) is the function

β(Z) =
hZ

h− ZhZ
. (62)

and hZ = dh
dZ (and the same when Z is used as a subscript

for β). Let us first note that the relations for the fluid

variables given by (56) are still valid for the case of Type-
2 theory and the function K is still defined via (53).

In order to proceed further we need the function Q
which at first glance using (61) is given by

Q = Z̄
[
( ˙̄ρc + 3Hρ̄c)β + ρ̄cβZ

˙̄Z
]
. (63)

Using (8) to eliminate the terms ˙̄ρc and ˙̄Z we find

Q =
Z̄βZ

1 + Z̄β
ρ̄c

˙̄Z (64)

where ˙̄Z is determined from eq (70) of [39] as

˙̄Z = −3Z̄F̄YH+ aK̄φ

K̄Y − ρ̄cβZ
1+Z̄β

(65)

The perturbative variables q and S are also found from
(61). Firstly S is easily calculated as

S = Qθφ (66)

while q is found to be from (61) as

q = QΨ + Z̄

{(
δ̇c − ~∇2θc − 3Φ̇

)
ρ̄cβ + ρ̄cβZ ˙δZ

+
[
( ˙̄ρc + 3Hρ̄c)β + ρ̄cβZ

˙̄Z
]

[δc −Ψ]

+

[
( ˙̄ρc + 3Hρ̄c)βZ + ρ̄cβZZ

˙̄Z +
Q

Z̄2

]
δZ

}
(67)

However, using (63) as well as (30) in order to eliminate

δ̇c the expression for q simplifies to

q = Qδc +Q
˙δZ
˙̄Z

+
d

dZ

[
Z̄βZ

1 + Z̄β

]
ρ̄c

˙̄Z δZ (68)

What remains is now to eliminate ˙δZ. This can be done
using the perturbative version of eq (70) of [39] which
gives

˙δZ
˙̄Z

= Ψ +

{[
Z̄K̄Y Y + ρ̄c

d

dZ

(
βZ

1 + Z̄β

)]
1

K̄Y − ρ̄cβZ
1+Z̄β

+
3K̄YH+ K̄Y φ

˙̄φ

3Z̄F̄YH+ aK̄φ

}
δZ − 3Z̄F̄Y

3Z̄F̄YH+ aK̄φ
(Φ̇ +HΨ)

+Z̄

[
3F̄Y φH ˙̄φ− a2K̄φφ − F̄Y ~∇2

3Z̄F̄YH+ aK̄φ

+
aK̄Y φ

K̄Y − ρ̄cβZ
1+Z̄β

]
θφ +

ρ̄cβZ
(1 + Z̄β)K̄Y − ρ̄cβZ

δc (69)

Using (69) and (57) into (68) we may now determine the
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coefficients. They are

A1 = A6 = 0 , A2 =
Z̄F̄Y

6Z̄F̄YH+ 2aK̄φ
Q

A3 =
c2s

(1 + w)
(
K̄Y − ρ̄cβZ

1+Z̄β

){Q[Z̄K̄Y
d

dZ
ln

(
Z̄βZ

1 + Zβ

)

+Z̄2K̄Y Y

]
−
ρ̄cβZ

[
Q+ Z̄2

(
3K̄YH+ K̄Y φ

˙̄φ
)]

1 + Z̄β

}

A4 =
(1 + Z̄β)K̄Y

(1 + Z̄β)K̄Y − ρ̄cβZ
Q

A5 =
1

K̄Y − ρ̄cβZ
1+Z̄β

{
aK̄φQ

[
ρ̄cβZ

Z̄K̄Y (1 + Z̄β)
− Z̄K̄Y Y

K̄Y

− d

dZ
ln

(
Z̄βZ

1 + Zβ

)]
+
Z̄ρ̄cβZ(3K̄YH+ K̄Y φ

˙̄φ)

1 + Z̄β

aK̄φ

K̄Y

− Z̄
2ρ̄cβZ(3F̄Y φH ˙̄φ− a2K̄φφ − F̄Y ~∇2)

1 + Z̄β
+QZ̄aK̄Y φ

}
B5 = Q Bi6=5 = 0 (70)

D. Type 3 theory of DM coupled to DE

Type 3 models are classified via

L(n, Y, Z, φ) = F (Y,Z, φ) + f(n). (71)

The coupling current in this case is [39]

Jν = qβν

{
X∇βφ+ FZ∇βZ + ZFZu

µ∇µuβ
}
. (72)

where X ≡ ∇µ(FZu
µ) A straightforward calculation

gives

Q = q = 0 (73)

(although there can be 2nd order corrections to J0)
This means that the Type 3 case provides for a pure
momentum-transfer coupling up-to linear order in per-
turbation theory.

To proceed to the coefficients we need S which is found
to be

S = −
(
X̄ ˙̄φ+ F̄Z

˙̄Z + Z̄F̄ZH
)
θc− Z̄F̄Z θ̇c−

1

a
F̄Z ϕ̇+ X̄ϕ

(74)
where the background value of X is

X̄ =
1

a

[
(Z̄F̄ZY − F̄ZZ) ˙̄Z − F̄Zφ ˙̄φ− 3HF̄Z

]
(75)

We eliminate the θ̇c term using (30) to get

S =
1

1− Z̄F̄Z
ρ̄c

[
X̄ϕ− (X̄ ˙̄φ+ F̄Z

˙̄Z)θc + F̄ZδZ
]
. (76)

where to remind the reader δZ = − 1
a

(
ϕ̇− ˙̄φΨ

)
. Now we

need to express ϕ and ϕ̇ in terms of the fluid variables.
From [39] we find

ρ̄DE = Z̄2FY − Z̄FZ + F P̄DE = −F (77)

for the background variables while

δρ̄DE = Z̄
[
FY − Z̄2FY Y + 2Z̄FY Z − FZZ

]
δZ

+
[
Z̄2FY φ − Z̄FZφ + Fφ

]
ϕ (78)

δP̄DE = (Z̄FY − FZ)δZ − Fφϕ (79)

θDE =
FY
a ϕ+ FZθc

FZ − Z̄FY
(80)

for the perturbations. For completeness, the adiabatic
sound speed is

c2a =
3H(Z̄FY − FZ)− a

[
Fφ + Z̄2FY φ − Z̄FZφ

]
3HZ̄(F̄Y + 2Z̄F̄Y Z − Z̄2F̄Y Y − FZZ)

− aFφ
3H(Z̄F̄Y − F̄Z)

(81)

while the effective sound speed c2s is

c2s =
Z̄F̄Y − F̄Z

Z̄
(
F̄Y + 2Z̄F̄Y Z − F̄ZZ − Z̄2F̄Y Y

) . (82)

and the relative entropy parameter is

µ =
3FZ
Z̄F̄Y

(c2s − c2a)(ρ̄DE + P̄DE)H (83)

Clearly if Fφ = 0 then the perturbations are adiabatic,
i.e. c2s = c2a and µ = 0 (so that ΠDE = c2aδDE).

We can now proceed to find the coefficients. Equations
(78) and (80) can be inverted to give

δZ =

[
µ

F̄Z
− aFφ

FY

] [
θDE +

Z̄FZ
ρ̄DE + P̄DE

θc

]
+

c2sZ̄

1 + w
δDE (84)

and

ϕ = a

(
F̄Z
F̄Y
− Z̄

)
θDE −

aF̄Z
F̄Y

θc (85)

We also need the equation for ˙̄Z which is found to be (eq
(75) in [39] )

˙̄Z = −3HZ̄
[
c2a +

aFφ
3H(Z̄F̄Y − F̄Z)

]
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Model/Coefficients Q A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6

Coupled Quintessence −βAρ̄c ˙̄φ - - Q
1+w

Q βAρ̄ca
2Vφ - - - - - Q -

Jµ ∝ uµ aΓintρ̄c - - - Q - - - - - - - Q

elastic scattering - - - - - - - - - - - −ρ̄DE(1 + w)anDσD −B5

Type-1 −ρ̄cαφ ˙̄φ - -
Qc2s
1+w

Q Q

[
αφφ
αφ
− c2s

˙̄φK̄φ
(1+w)K̄

]
- - - - - Q -

Type-2 Z̄βZ ρ̄c
1+Z̄β

˙̄Z - A2 A3 A4 A5 - - - - - Q -

Type-3 - - - - - - - - - B3 - B5 −B5 +
3HZ̄FZc2s
1− Z̄F̄Z

ρ̄c

TABLE II: Specific models and their PPF coefficients. The coupled Quintessence model is a subcase of Type 1 with αφ = βA.
The elastic scattering model is in fact distinct from Type-3 (see text at the end of section III D). For the coefficients A2, A3,
A4 and A5 in the case of Type-2 see (70). For the coefficients B3 and A5 in the case of Type-3 see (86). For the remaining
functions the reader is referred to each specific example in the text.

The above equations are then inserted into (76) to give
the required coefficients as

B1 = B2 = B4 = 0

B3 =
1

1− Z̄F̄Z
ρ̄c

Z̄F̄Zc
2
s

1 + w

B5 =
a

1− Z̄F̄Z
ρ̄c

[
X̄

(
F̄Z
F̄Y
− Z̄

)
+ F̄Z

[
µ

aF̄Z
− Fφ
FY

] ]

B6 = −B5 +
3HZ̄FZc2s
1− Z̄F̄Z

ρ̄c

(86)

It would seem tempting to try model the elastic scat-
tering model [33] discussed above (section III A 3) into
the Type 3 class. However, this is in fact impossible. As
we can easily check, the elastic scattering model requires
B3 = 0. Within the Type 3 class this is possible only
if F is independint of Z (i.e. FZ = 0). This implies
that B5 and B6 are also zero, in other words, the model
becomes completely uncoupled. Hence, it is impossible
construct a model of elastic scattering between CDM and
DE within the Type-3 class of coupled Dark Energy.

IV. CONCLUSIONS

We have presented the most general parameterization
of models of Dark Energy which is explicitly coupled to
Dark Matter using the Parameterized Post-Friedmannian
framework, and have shown that it is able to encapsulate
a rich variety of theories.

Starting from the linearised Einstein equations and us-
ing the Bianchi identities we managed to express the
modifications to GR coming from the dark sector cou-
pling as a collection of new terms containing the met-
ric potentials and their derivatives as well as the scalar
modes of the two dark sector components, i.e. the fluid
variables of (generalised) Dark Matter and Dark Energy.
Of course, our formalism is based on a few basic as-
sumptions: the background cosmology has an FRW solu-
tion, all field equations are at most second-order in time

derivatives, and the field equations are gauge-invariant.
Completing the parameterization we were left with 24
free functions, but demanding gauge invariance we de-
rived 4 constraint equations which eliminated 4 free func-
tions.

Twenty free functions in our general parameterization
is certainly a big number, but by imposing certain well
motivated assumptions, for instance that the Dark Mat-
ter is Cold, that the Dark Energy is shear-less and that
the pressure perturbation is not a dynamical quantity we
reduced the number of free functions to 12. Furthermore,
we showed that only a handful of these functions are
non-zero when one considers known models. We demon-
strated this by investigating a number of specific models
in the literature, as well as the classes of theories we con-
structed in [39]. It is useful to note that, although our
theories in [39] are derived from an action, the PPF pa-
rameterization does not require knowledge of the action,
but only knowledge of the field equations. This means
that the PPF parameterization is a very useful tool for
phenomenological model building (see [42] for further dis-
cussion in the context of modified gravity theories). The
full list of models we consider in this work is displayed in
table II along with their coefficients.

Our Type 1, 2 and 3 theories contain a fairly gen-
eral coupling function and hence they encapsulate many
different models. The parameterization coefficients for
these theories can depend, of course, on the chosen cou-
pling function and its derivatives, and other quantities
such as the background coupling Q, the background field
energy density ρ̄φ, the quintessence potential V (φ), the
speed of sound c2s etc. For Type 1 theories there is only 1
non-zero B coefficient and 3 non-zero A coefficients, for
Type 2 there is 1 non-zero B coefficient and 4 non-zero
A coefficients, while for Type 3 all A’s are automatically
zero and there are 3 non-zero B’s: different classes of
theories correspond to different non-zero functions. In
particular, from all the cases we have studied, the coeffi-
cients A1, A6, B1, B2 and B4 are always zero. It would
be indeed very interesting to find models for which any
of these coefficients is non-zero.

It would also be interesting to consider the inverse



10

problem, i.e. given Q(t) and a set of PPF coefficients
Ai and Bi can we reconstruct the functions that appear
in the coupled Dark Energy Lagrangian for each of the
Type-1,2 and 3 theories? For instance, what kind of func-
tions correspond to constant PPF coefficients? Tackling
the inverse problem will help to reduce the free functions
into simple functional forms which are parametrised by a
set of constants and can make constraining such theories
easier and more efficient.

Another important question is how we can further con-
strain the PPF functions? As discussed in [42], we might
expect to find that a subset of the PPF functions can
be very well constrained, whilst another subset can not.
However this might not pose a serious problem, as the
constraining power of a few PPF functions might be suf-
ficient to distinguish between theories. Tackling the in-
verse problem will certainly help here as it can guide us
to which functional form of the PPF coefficients is the
most useful. The implementation of the PPF framework
presented here in numerical codes for the computation of

the cosmological effects of interacting Dark Energy could
provide an answer to these questions. We plan to inves-
tigate this in future work.
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