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Colliding branes and big crunches.
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We examine the global structure of colliding domain walls in AdS spacetime and come to the
conclusion that singularities forming from such collisions are of the big-crunch type rather than that

of a black brane.

INTRODUCTION

As one of the two competing theories for hiding extra
dimensions, braneworlds have received a lot of attention,
starting from the first attempts to get matter to stick on
a field theory domain wall [I} 2], and then to the under-
standing of how gravity can become localized on a hyper-
surface [3]. This naturally led to braneworld cosmologi-
cal models [4] with the possibility that the big-bang may
simply correspond to the collision of two brane-worlds
[BH8]. With this in mind there have been a number of
numerical studies examining the behaviour both of how
matter on the branes react to such collisions [9HI2], and
to how the spacetime geometry itself deals with the colli-
sions [I3] [14]. As is to be expected, if the collision of the
walls is energetic enough then a singularity will form due
to gravitational collapse, this was the main focus of [14]
and is what we concern ourselves with here, in partic-
ular the global structure of collisions where a curvature
singularity forms. The symmetry of the problem is that
of parallel branes with three flat, extended spatial direc-
tions, so any singularity that forms will have the same
symmetry, leading Takamizu et al [14] to write that the
end state of the collision process would be the black hole
with these symmetries. In this paper we re-examine the
same system, but we claim instead that the end state of
a collision process that forms a curvature singularity is
in fact a big-crunch, there are no asymptotic regions for
any observers to hide in.

FIELD THEORY DOMAIN WALL

The model we use to examine the collision of domain
walls is that of a single real scalar, canonically coupled
to gravity in five dimensions.
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where we require the potential to have at least two dis-
tinct vacua in order for a domain wall solution to exist
that can interpolate between them. A rather nice way to
achieve this, and one that allows for explicit analytic so-
lutions, is to write the scalar potential in a form inspired

by supergravity [15],
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where W(¢) is termed the superpotential. With this re-
striction on the form of the potential one finds that a line
element and scalar field ansatz of the form

ds? = eQU(T)nm,da?“dx” + dr?,

leads directly to the following BPS system of equations
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where the £ gives us our kinks or anti-kinks. To be
specific we need to make a choice of superpotential, and
we pick the sine-Gordon model

W=t %cos(ﬁqs/m (5)

giving a potential of the form
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The three parameters of the superpotential, m, 3, u have
the following effect: firstly, m is the mass of the scalar
field if we switch off gravity, i.e. m, — oo, and so m
controls the curvature of the potential in the minima; 3
gives the separation of the vacua in field space, with the
vacua being located at ¢q. = nm/B; finally, p controls
the additive constant to the potential, and we shall tune
it so that one set of the vacua have vanishing potential,
and lead to a Minkowski geometry. To see how to achieve
a Minkowski minimum we note that
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FIG. 1: The potential for *m} = 10 (lower curve) and
B°m3 = 100 (upper curve). The labels A, B, C, D, E in-
dicate the various minima, with B and D being AdS vacua,
and A, C, E being Minkowski.

and so by choosing pu* = 4m/B? we have a set of
Minkowski minima, leaving us with
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and a form of potential shown in Fig. [I} where A, C, E
refer to minima tht are Minkowski vacua, and B, D are
the AdS® vacua. In the simulations we perform we shall
be using ,82m13) = 100, correspond to the upper curve of
Fig. [

The setup we focus on is the same as Takamizu et
al [14], where we have two parallel domain walls, with
a geometry that asymptotes to AdS® and contains a
Minkowski region sandwiched in between. The field is
then taken to interpolate from the B-vacuum, through
the C-vacuum, and then on to the D-vacuum. In order
to accomplish this we need the profiles of the BC-kink
and the CD-kink.

BC kinks are given by the BPS solutions (lower sign

of )
Bo/2 =
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while CD anti-kinks are given by the anti-BPS solutions
(upper sign of )

Bp/2 = 2tan™! [tanh[m(r — r)/2]] + 7/2 + (10)
2,4
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What we have just presented are the solutions for the
single-kink systems, but we need double kink initial con-
ditions. Although the analytic solution is not available,
we are able to add together the BC and the CD kink
profiles for ¢ and U to provide an excellent approximate
solution - so long as the kinks are far enough apart. This
is still not quite what we need, as we want to be able to
boost the kinks at will, in order to collide them at var-
ious speeds; we shall address this when we write down
the dynamical equations.

ASYMPTOTIC STRUCTURE

From the kink solutions @D we see that the line
element has the asymptotic limit

ds®(r — 400) — exp [—2ar] nudtdz” +dr? (11)
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and by defining aZ = exp [ar]| we see that the asymptotic
region of the domain wall is given

ds*(Z — +o00) — [ dztda” 4+ dZ?] (13)
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which we recognize as a portion of AdS®, in particular,
it does not contain the AdS boundary, Z = 0.

Now let us consider a possible end-state for a singular
system generated by the collision of two domain walls.
The natural choice isthe AdS® black-brane given by

2
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Indeed, a version of Birkhoff’s theorem tells us that this
is the unique solution with these symmetries [16], [17] in
AdS® spacetime. Now note that the asymptotic limit is
reached at large R, and in order to compare it to the
brane case we perform the following co-ordinate trans-
formations, t = /—A/6T, R = 1/(y/—A/6Z) and find

that the asymptotic region is given by
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(16)
confirming that the asymptotic regions of the domain
wall and the asymptotic region of the black brane cover
different portions of AdS®. It would therefore be surpris-
ing if the the collision of domain walls ended up with a
final state that was a black brane.

Before we move on the the dynamical system, we
briefly note we use dimensionless variables Z, (;NS defined
by

T = ¢ =0/B,

Z/m, (17)



meaning that we are left with the single physical param-
eter Bme’,. From now on we work with the dimensionless
variables but drop the tildes. This is analogous to mea-
suring distances and the Planck mass in units of m, and
measuring ¢ in units of 5.

THE DYNAMICAL SET-UP

Having found the solutions for isolated, static kinks,
we need to know how to get them to move. The simplest
way to achieve this is to change to co-ordinates in which
the spatial direction defining the wall (the co-dimension
one direction), and the time co-ordinate are on an equal
footing, in which case there is an explicit SO(1,1) Lorentz
symmetry. The metric suited to dynamics is therefore of
the form

ds? = A2 (at? 4 dz?) 4 2BUA)6, datda? | (18)

with z and r related by eAdz = +dr in the static case.
The equations of motion using these co-ordinates may be
written in a form that highlights the SO(1,1) symmetry
as
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where the /i index runs over the ¢, z directions; the con-
straint equations become
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It is now clear that A(t,z), B(t, z) and ¢(¢,2) are all
Lorentz scalars under this SO(1,1), and so it is easy to
boost to different Lorentz frames O and O’ using

t =yt —vz), 2 =ry(-—0t), V' ()=T(x)

for generic scalars .

Now, because we are interested in studying the global
structure of the system, and that system has a singular-
ity, it is actually more convenient to use a double-null
co-ordinate system [I4][I8] given by

1 1
u=—t—2), v=—70F+=2 24
\/5( ) \@( ) (24)
because then the null geodesics are simply 45degree lines,
and the causal structure is easy to picture. The precise
details of the numerical method we use may be found in
[18], but for another approach see [19] 20].

FIG. 2: Evolution of the scalar field; ¢ = 0 corresponds to the
Minkowski minima, and ¢ = 27 to the AdS minima. The up-
per boundary of the solid-shaded and the white region marks
the location of the curvature singularity.

SIMULATIONS

Having described the system we now move on and give
an overview of the collisions that lead to a singularity.
To orient ourselves we start with Fig. [2] that shows the
evolution of the scalar field, where we only simulate the
region z > 0, as the z < 0 region follows by symme-
try. Recall that the vacua are ¢ = 0, 27, and that the
¢ = 27 vacuum corresponds to the AdS®, and the ¢ =0
vacuum is Minkowski. Fig. [2| therefore shows two walls
coming together, interacting, and then moving apart. In
the example shown we found that a curvature singular-
ity was forming, and so we cut off the evolution when
the curvature became too large. A benefit of the double-
null co-ordinates is that one can carry on simulating and
map out the region where the curvature gets cut off; in
Fig, |2| this region is given by the upper boundary of the
solid-shaded region.

HORIZON STRUCTURE

Given that a singularity has formed it is natural to
ask about the horizon structure of the spacetime, and
for this we need to know about the behaviour of null
geodesics. It is clear from Fig. [2] that there is a region
inside which timelike geodesics are doomed to end on
the singularity, and so we my expect a horizon. How-
ever, given the dynamic nature of the system it is ac-



tually more convenient to work with objects that have
a local definition, namely trapping surfaces. Hayward
[21] defined trapping surfaces in terms of the expansion
of outgoing and ingoing null geodesics, which may be
measured without reference to the global properties of
the geometry. We start with the co-ordinate vectors
Ny = 0y, N_ = 0, which are ingoing and outgoing re-
spectively (for z > 0), and introduce their dual one-forms

ny = —e?Adv, n_ = —e**du. Normalized outgoing and
ingoing null vectors are then defined by uqy = 6*2‘4NjF
such that ny(us) = —1, and an induced three-metric, h,

is given by h = g+ e ?4n, @n_ + e 24n_ ®@n,, where
g is the full metric. The expansions are then defined as

1
0. = 5hab.cihab (25)

where the Lie derivatives L4 are taken along u..

A marginal surface is then a surface where one of the
expansions vanishes, say ©_. A marginal surface for us
is a three-surface, and will be a single point on the u — v
plane diagrams such as Fig. 2} A trapping horizon is
then the four-surface found by sticking together all these
marginal surfaces; for us, they correspond to a line on
the u — v plane. Having found the trapping surface we
can characterize it according to the sign of © (the trap-
ping horizon is future if ©, < 0 and past if ©, > 0),
and the sign of £,©_ (the trapping horizon is outer if
L:0_ < 0 and inner if £;:60_ > 0). In Figs. |3 and
[4 we show the expansions, where we clearly see a trap-
ping horizon that separates regions where ©_ changes
sign, moreover we see from Fig. [ that along this curve
O, < 0, making it a future trapping horizon, i.e. once
you pass this surface your future is determined - you hit
the singularity. To see whether the trapping surface is
inner or outer we evaluate £,0_, i.e. just see whether
©O_ increases or decreases along 9,; it increases. That
©4 < 0 and £,6_ > 0 makes the trapping horizon a
future inner horizon, which is the same type as one finds
in a cosmological big crunch, as opposed to black hole
trapping horizons which are future-outer. Another sig-
nature of future inner trapping horizons is that its area is
non-increasing, which we confirm by measuring the value
of B along the trapping horizon in Fig. [f

To really check the claim that what we have is a big
crunch, with no asymptotic region we should examine
how the singularity behaves in the large-v region. This is
clearly a challenging task numerically, but what we can
show is the location of level surfaces of the Ricci scalar,
with the aim of showing that it cuts across any putative
asymptotic region. In Fig. [6] we give the location of
some level set (in this example it is R = —5) and we see
that it is consistent with the line hitting u = 0, albeit
rather slowly in these co-ordinates. If this behaviour is
repeated for larger values of the Ricci scalar, in particular
the singular value, we see that the spacelike singularity
cuts off the asymptotic region, ending the spacetime in a
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FIG. 3: The expansion scalar ©_, see (25).
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FIG. 4: The expansion scalar O, see (25).

big crunch.

CONCLUSIONS

We have re-considered the analysis of Takamizu et al
[14] with the aim of understanding the global structure of
domain wall collisions that form a curvature singularity.
By examing the asymptotic regions of domain walls and
black branes, and by measuring the behaviour of null rays
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FIG. 5: The value of the metric parameter B as measured on
the trapping horizon.
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FIG. 6: The curved line is the location of Ricci level set R =
—5, and the straight line is a fit of the form 1/v%7*°

in the dynamical geometry we conclude that the horizon
structure is more consistent with that of a big-crunch,
rather than black-brane end-state. Moreover, by follow-
ing the location of level set of the Ricci scalar we find
tentative agreement of this picture. The rather slow fall-
off of makes it difficult to track the level sets to sufficient
distance in v using these co-ordinates, before numerical
error becomes a problem. This can be compared to a
prediction of [I5] which is that the AdS® Cauchy hori-
zon, generically gets replaced by a pp singularity when
the AdS region is perturbed. Here we claim that in the
cases where the collisions form a curvature singularity,
then that curvature singularity closes off the geometry
and no pp singularity would form. However, in less vi-

olent cases where no curvature singularity is observed,
the Cauchy horizon could still be expected to form a pp
singularity.
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