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First order convergence and roots∗

Demetres Christofides† Daniel Král’‡

Abstract

Nešetřil and Ossona de Mendez introduced the notion of first order
convergence, which unifies the notions of convergence for sparse and dense
graphs. They asked whether if (Gi)i∈N is a sequence of graphs with M
being their first order limit and v is a vertex of M , then there exists a
sequence (vi)i∈N of vertices such that the graphs Gi rooted at vi converge
to M rooted at v. We show that this holds for almost all vertices v of M
and we give an example showing that the statement need not hold for all
vertices.

2010 Mathematics Subject Classification. 03C98 (Primary), 05C63,
28E15.

1 Introduction

The theory of limits of combinatorial objects keeps attracting more and more at-
tention and its applications in various areas such as extremal combinatorics, com-
puter science and many others grow. The most understood is the case of dense
graph convergence which originated in the series of papers by Borgs, Chayes,
Lovász, Sós, Szegedy and Vesztergombi [3–5, 12, 13]. This development is also
reflected in a recent monograph by Lovász [11]. Another line of research concen-
trated around the convergence of sparse graphs (such as those with bounded max-
imum degree) known as the Benjamini-Schramm convergence [1, 2, 8, 9]. Nešetřil
and Ossona de Mendez [14, 15] proposed a notion of first order convergence to
unify the two notions for the dense and sparse settings.

First order convergence is a notion of convergence for all relational structures.
For simplicity, we limit our exposition to graphs and rooted graphs only but all
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our arguments extend to the general setting naturally. If ψ is a first order formula
with k free variables and G is a finite graph, then the Stone pairing 〈ψ,G〉 is the
probability that a uniformly chosen k-tuple of vertices ofG satisfies ψ. A sequence
(Gn)n∈N of graphs is called first order convergent if the limit lim

n→∞
〈ψ,Gn〉 exists

for every first order formula ψ. A modeling M is a (finite or infinite) graph whose
vertex set is equipped with a probability measure such that the set of all k-tuples
of vertices of M satisfying a formula ψ is measurable in the product measure for
every first order formula ψ with k free variables. In the analogy to the graph
case, the Stone pairing 〈ψ,M〉 is the probability that a randomly chosen k-tuple
of vertices satisfies ψ. If a finite graph is viewed as a modeling with a uniform
discrete probability measure on its vertex set, then the stone pairings for the
graph and the modeling obtained in this way coincide.

A modeling M is a limit of a first order convergent sequence (Gn)n∈N if

lim
n→∞
〈ψ,Gn〉 = 〈ψ,M〉

for every first order formula ψ. It is not true that every first order convergent
sequence of graphs has a limit modeling [15] but it can be shown, e.g., that first
order convergent sequences of trees do [10,16].

Nešetřil and Ossona de Mendez [15, Problem 1] raised the following problem,
which we formulate here for graphs only.

Problem 1. Let M be a modeling that is a limit of a first order convergent
sequence (Gn)n∈N and let v be a vertex of M . Does there exist a sequence (vn)n∈N
of vertices of the graphs (Gn)n∈N such that the modeling M rooted at v is a limit
of the sequence (G′n)n∈N where G′n is obtained from Gn by rooting at vn?

We prove that the statement from Problem 1 is true for almost every vertex
v of M .

Theorem 1. Let M be a modeling that is a limit of a first order convergent
sequence (Gn)n∈N. It holds with probability one that if M ′ is a modeling obtained
from M by rooting at a random vertex v of M , then there exist a sequence (vn)n∈N
of vertices of (Gn)n∈N such that M ′ is a limit of the sequence (G′n)n∈N where G′n
is obtained from Gn by rooting at vn.

Theorem 1 follows from a more general Theorem 5 which we prove in Section 3.
In Section 4, we present an example that the statement of Theorem 1 cannot be
strengthened to all vertices v of M , i.e., the answer to Problem 1 is negative.
This also answers a more general problem [15, Problem 2] in the negative way.

2 Notation

We assume that the reader is familiar with standard graph theory and logic
terminology as it can be found, e.g., in [6,7]. We briefly review here less standard
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terminology and notation only. Throughout the paper, we write [k] for the set of
positive integers between 1 and k (inclusively).

There is a close connection between the first order logic and the so-called
Ehrenfeucht-Fräıssé games. The p-round Ehrenfeucht-Fräıssé game is played by
two players, the spoiler and the duplicator, on two relational structures. We
explain the game when played on two graphs G and H. At the beginning of
each round, the spoiler chooses a vertex in any one of the two graphs and the
duplicator responds with choosing a vertex in the other. One vertex can be chosen
several times in different rounds of the game. Let vi be the vertex chosen in the
i-th round in G and wi the vertex chosen in the i-th round in H. The duplicator
wins the game if the subgraph of G induced by v1, . . . , vp and the subgraph of
H induced by w1, . . . , wp are isomorphic through the isomorphism mapping vi to
wi.

It can be shown that the duplicator has a winning strategy for the p-round
Ehrenfeucht-Fräıssé game played on G and H if and only if G and H satisfy
the same first order sentences with quantifier depth at most p. More generally,
suppose that ψ(x1, . . . , xk) is a first order formula with k free variables and with
quantifier depth d, G and H are two graphs, and v1, . . . , vk and w1, . . . , wk are
(not necessarily distinct) vertices of G and H, respectively. If the duplicator has a
winning strategy for the (k+d)-round Ehrenfeucht-Fräıssé game when played on
G and H with the vertices v1, . . . , vk and w1, . . . , wk played in the first k rounds
(so, it remains to play d rounds of the game), then G satisfies ψ(v1, . . . , vk) if and
only if H satisfies ψ(w1, . . . , wk). This correspondence can be used to show [7]
that the set Fm

p,q of all non-equivalent first order formulas with p free variables and
quantifier depth at most q for m-rooted graphs is finite for all positive integers
m, p and q (the language for m-rooted graphs consists of a single binary relation
representing the adjacency and m constants representing the roots).

3 Almost every rooting is good

In this section, we prove our main result which provides a positive answer to
Problem 1 in the almost every sense. As preparation for the proof, we need to
establish several technical lemmas.

Lemma 2. Let ψ be a first order formula for m-rooted graphs and let [a, b] ⊆ [0, 1]
be a non-empty interval. For every ε > 0, there exists a first order formula ψ′

such that the following holds for every m-rooted modeling M :

• if 〈ψ,M〉 ∈ [a, b], then 〈ψ′,M〉 > 1− ε, and

• if 〈ψ,M〉 6∈ (a− ε, b+ ε), then 〈ψ′,M〉 < ε.

Proof. If ψ is a sentence, i.e., it has no free variables, then the statement is trivial.
Suppose that ψ has k free variables. Let ψn be the first order formula with nk
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free variables grouped in n k-tuples such that ψn is true if and only if at least
an− n2/3 and at most bn+ n2/3 of these k-tuples do satisfy ψ. Formally,

ψn(x11, . . . , x
1
k, . . . , x

n
1 , . . . , x

n
k)

=
bbn+n2/3c∨
i=dan−n2/3e

∨
A∈([n]

i )

( ∧
j∈A

ψ(xj1, . . . , x
j
k) ∧

∧
j 6∈A
¬ψ(xj1, . . . , x

j
k)

)
.

The Chernoff bound implies that the formula ψ′ can be chosen to be the formula
ψn for n sufficiently large.

An interval is a dyadic interval of order k ∈ N if it is of the form [a2−k, (a +
1)2−k] for some integer a. A point x is ε-far from an interval J if |x− y| ≥ ε for
every y ∈ J . Otherwise, we say that x is ε-close to J . A multidimensional interval
is a subset of [0, 1]d that is the product of d intervals; if J is a multidimensional
interval, then Ji denotes the i-th term in the product. A multidimensional interval
J is dyadic of order k ∈ N if every Ji is dyadic of order k.

The next lemma is a direct consequence of Lemma 2. Recall that Fm
p,q is the

set of all non-equivalent first order formulas with p free variables and quantifier
depth at most q, and the set Fm

p,q is finite for all m, p and q.

Lemma 3. Let m, p and q be integers and let J ⊆ [0, 1]F
m
p,q be a multidimensional

interval. For every ε > 0, there exists a first order formula ψm,J,εp,q such that the
following holds for every m-rooted modeling M :

• if 〈ψ,M〉 ∈ Jψ for every ψ ∈ Fm
p,q, then 〈ψm,J,εp,q ,M〉 > 1− ε, and

• if 〈ψ,M〉 is ε-far from Jψ for at least one ψ ∈ Fm
p,q, then 〈ψm,J,εp,q ,M〉 < ε.

If ψm,J,εp,q is the formula from Lemma 3, then ψ̂m,J,εp,q is the formula obtained

from ψm,J,εp,q by adding m new free variables such that ψ̂m,J,εp,q is satisfied if and only
if ψm,J,εp,q is satisfied for the modeling obtained from M by rooting at the m-tuple
specified by the new free variables, i.e., the m constants in ψm,J,εp,q are replaced with
the new m free variables of ψm,J,εp,q . An m-tuple of vertices v1, . . . , vm of a modeling
M is negligible if there exist integers p and q and a dyadic multidimensional
interval J ⊆ [0, 1]F

m
p,q such that

• 〈ψ,M ′〉ψ∈Fm
p,q
∈ J where M ′ is the m-rooted modeling obtained from M by

rooting at v1, . . . , vm, and

• there exists ε0 > 0 such that 〈ψ̂m,J,εp,q ,M〉 ≤ ε for every 0 < ε < ε0.

The next lemma asserts that very few m-tuples can be negligible.

Lemma 4. If M is a modeling and m is an integer, then the set of negligible
m-tuples of M is a subset of a set of measure zero.
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Proof. Note that there are countably many triples p, q and J ⊆ [0, 1]F
m
p,q where

J is dyadic. Hence, it is enough to show for every p, q and J , that if there exists
ε0 > 0 such that 〈ψ̂m,J,εp,q ,M〉 < ε for every 0 < ε < ε0, then there exists a set
of measure zero containing all m-tuples v1, . . . , vm such that 〈ψ,M ′〉ψ∈Fm

p,q
∈ J

where M ′ is obtained from M by rooting at v1, . . . , vm. Fix p, q and J for the
rest of the proof. Let X be the set of all such m-tuples, and let k0 be an integer
such that 2−k0 < ε0.

Let Fk(v1, . . . , vm) for k ∈ N be the function from Mm to [0, 1] defined to be
〈ψm,J,2−k

p,q ,M ′〉 whereM ′ is the modeling obtained fromM by rooting at v1, . . . , vm.

Since the set of tuples satisfying ψ̂m,J,2
−k

p,q is measurable, the function Fk is mea-
surable in the corresponding product space. Moreover, it holds that∫

Fk(v1, . . . , vm) dv1 · · · vm = 〈ψ̂m,J,2−k

p,q ,M〉 < 2−k

for every k ≥ k0. Observe that Lemma 3 yields that

X ⊆
∞⋂

k=k0

F−1k ([1− 2−k, 1]) .

Since the function Fk takes values between 0 and 1 (inclusively), the measure of
F−1k ([1− 2−k, 1]) is less than 2−k/(1− 2−k). It follows that X is a subset of a set
of measure zero.

We are now ready to prove our main theorem.

Theorem 5. Let M be a modeling that is a limit of a first order convergent
sequence (Gn)n∈N and let m be a positive integer. It holds with probability one
that if M ′ is a modeling obtained from M by rooting at a random m-tuple of
vertices of M , then there exist a sequence (vn,1, . . . , vn,m)n∈N of m-tuples such
that the graphs (Gn)n∈N rooted at these m-tuples first order converge to M ′.

Proof. By Lemma 4, we can assume that the randomly chosenm-tuple w1, . . . , wm
of the vertices of M is not negligible. It is enough to show for every p, q and
δ > 0 that there exists n0 such that every graph Gn, n ≥ n0, contains an m-tuple
vn,1, . . . , vn,m of vertices such that the graph G′n obtained from Gn by rooting at
the vertices vn,1, . . . , vn,m satisfies that

|〈ψ,G′n〉 − 〈ψ,M ′〉| ≤ δ (1)

for every ψ ∈ Fm
p,q. Note that (1) implies that

|〈ψ,G′n〉 − 〈ψ,M ′〉| ≤ δ

for every ψ ∈ Fm
p′,q′ for p′ ∈ [p] and q′ ∈ [q].
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Fix the integers p and q and the real δ > 0 for the rest of the proof. Choose
an integer k such that 2−k < δ and a real ε > 0 such that 2−k + ε < δ. Further,
let J ⊆ [0, 1]F

m
p,q be the dyadic multidimensional interval of order k containing

the point 〈ψ,M ′〉ψ∈Fm
p,q

. Since the m-tuple vn,1, . . . , vn,m is not negligible, there
exists ε′ < ε such that

〈ψ̂m,J,ε′p,q ,M〉 > ε′ .

Since the sequence (Gn)n∈N converges to M , there exists n0 such that

〈ψ̂m,J,ε′p,q , Gn〉 > ε′ (2)

for every n ≥ n0. By the definition of the formula ψ̂m,J,ε
′

p,q , the inequality (2)
implies that every graph Gn, n ≥ n0, contains an m-tuple vn,1, . . . , vn,m of vertices
such that

〈ψm,J,ε′p,q , G′n〉 > ε′ (3)

where G′n is obtained from Gn by rooting at vn,1, . . . , vn,m. By Lemma 3, the
Stone pairing 〈ψ,G′n〉 is ε′-close to Jψ for every ψ ∈ Fm

p,q. It follows that

|〈ψ,G′n〉 − 〈ψ,M〉| < 2−k + ε′ < δ

for every ψ ∈ Fm
p,q. The proof of the theorem is now finished.

4 Counterexample

We now show that the statement of Theorem 1 cannot be strengthened to all
vertices. Before doing so, we need to introduce some additional notation.

If a (finite or infinite) graph G is bipartite, we write G(A,B) where A and
B are the two parts of G. The adjacency matrix M of G is the matrix with
rows indexed by A and columns indexed by B such that Mab is equal to 1 if the
vertices a ∈ A and b ∈ B are adjacent, and it is equal to zero, otherwise. If
G(A,B) is a bipartite graph and W is a subset of its vertices, then WA is A∩W
and WB is B ∩W . The adjacency matrix of G restricted to W is the submatrix
with rows and columns indexed by WA and WB, respectively. Suppose that W is
a subset of vertices of G(A,B), W ′ is a subset of vertices of G′(A′, B′) and there
is a one-to-one correspondence between the vertices of W and W ′. When we say
that the adjacency matrices of G and G′ restricted to W and W ′ are the same,
we mean that they are the same in the stronger sense that the rows/columns for
the corresponding vertices are the same.

A bipartite graph G(A,B) is `-universal, if every vector from {0, 1}B appears
at least ` times among the rows of the adjacency matrix of G. If W is a subset
of vertices of G(A,B), then the `-shadow of W is the multiset S such that each
of the vectors u ∈ {0, 1}WA is included to S exactly min{k, `} times where k it
the number of times u appears among the columns of the adjacency matrix of
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G restricted to WA × (B \WB). If WA = ∅, then the `-shadow of W consists of
min{|B|, `} null vectors (i.e. vectors of dimension zero).

The following is the key lemma in our construction.

Lemma 6. Let p and q be two non-negative integers. Suppose that G(A,B) and
G′(A′, B′) are two (p + q)-universal graphs and that w1, . . . , wq and w′1, . . . , w

′
q

are two sequences of the vertices of G(A,B) and G′(A′, B′), respectively. Let
W = {w1, . . . , wq} and W ′ = {w′1, . . . , w′q}. If the adjacency matrices of G(A,B)
and G′(A′, B′) restricted to WA×WB and to W ′

A′×W ′
B′, respectively, are the same

(with the row/column corresponding to wi being the same as that of w′i), and the
2p-shadows of W and W ′ are also the same, then the duplicator has a winning
strategy for the (p+q)-round Ehrenfeucht-Fräıssé game where the vertices chosen
in the first q rounds are w1, . . . , wq and w′1, . . . , w

′
q.

Proof. We proceed by induction on p. If p = 0, then the graphs induced by the
vertices of W and W ′ are isomorphic since the adjacency matrices of G and G′

restricted to W and W ′ are the same.
Suppose that p > 0. By symmetry, we can assume that the spoiler chooses

a vertex of G in the next round. Let wq+1 be the chosen vertex. If wq+1 = wi
for some 1 ≤ i ≤ q, the duplicator responds with w′i. So, we can now assume
that wq+1 is different from all the vertices w1, . . . , wq and we distinguish two cases
based on whether wq+1 belongs to A or B.

Let us start with the analysis of the case when wq+1 ∈ A \ AW . Let x be the
row of the adjacency matrix of G corresponding to wq+1. We will construct a
vector x′ ∈ {0, 1}B′ which will determine the response of the duplicator.

Set x′w′i
= xwi

for w′i ∈ W ′
B′ . Fix a vector u ∈ {0, 1}WA . Let u0, u1 ∈

{0, 1}WA∪{wq+1} be the two extensions of u, and let m0 and m1 be the multiplicities
of u0 and u1, respectively, in the 2p−1-shadow of W ∪ {wq+1}. Finally, let Wu be
the set of the vertices v of B′ \W ′

B′ such that the column of v restricted to W ′
A′

is u. If m0 + m1 < 2p, then the 2p-shadow of W ′ contains the vector u exactly
m0 +m1 times. Set x′v to 0 for m0 of the vertices v ∈ Wu and to 1 for m1 of such
vertices. If m0 +m1 ≥ 2p, at least one of the numbers m0 or m1 is at least 2p−1.
If m0 ≥ 2p−1, set x′v to 1 for min{m1, 2

p−1} of vertices v ∈ Wu and to 0 for all
other v ∈ Wu. If m0 < 2p−1 and m1 ≥ 2p−1, set x′v to 0 for m0 of vertices v ∈ Wu

and to 1 for all other v ∈ Wu. Performing this for every vector u ∈ {0, 1}WA , the
entire vector x ∈ {0, 1}B′ is defined.

Since the graph G′ is (p+q)-universal, there exists a vertex w′q+1 ∈ A′ different
from the vertices w′1, . . . , w

′
q such that the row of w′q+1 in the adjacency matrix

of G′ is equal to x′. The duplicator responds with the vertex w′q+1. Observe
that the choice of x′ implies that the adjacency matrices of G and G′ restricted
to W ∪ {wq+1} and W ′ ∪ {w′q+1}, respectively, are the same and that the 2p−1-
shadows of W ∪{wq+1} and W ′ ∪{w′q+1} are also the same. The existence of the
winning strategy for the duplicator now follows by induction.
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It remains to consider the case that wq+1 ∈ B \ BW . Let u be the column of
wq+1 in the adjacency matrix of G restricted to WA. Clearly, u is contained in
the 2p-shadow of W . Consequently, there is a vertex w′q+1 ∈ B′ \ B′W ′ such that
the column of w′q+1 in the adjacency matrix of G′ restricted to W ′

A′ is u. The
duplicator responds with the vertex w′q+1. The adjacency matrices of G and G′

restricted to W ∪{wq+1} and W ′ ∪{w′q+1}, respectively, are the same. The 2p−1-
shadow of W ∪ {wq+1} in G is obtained from the 2p-shadow of W by removing u
from the shadow and restricting the multiplicity of each vector to be at most 2p−1.
Likewise, the 2p−1-shadow of W ′ ∪ {w′q+1} in G′ is obtained from the 2p-shadow
of W ′ by removing u from the shadow and restricting the multiplicity of each
vector to be at most 2p−1. Note that if A = A′ = ∅, each of the 2p−1-shadows
consists of 2p−1 null vectors. Since the 2p-shadows of W and W ′ are the same, the
2p−1-shadows of W ∪ {wq+1} and W ′ ∪ {w′q+1} are also the same. The existence
of the winning strategy for the duplicator now follows by induction.

Let s = (sn)n∈N be a sequence of integers such that sn ≥ 2 for every n ∈ N.
For each x ∈ [0, 1], there exists a unique sequence (xn)n∈N of integers such that

x =
∞∑
n=1

xn∏n
k=1 sk

,

0 ≤ xn < sn for every n, and there is no n ∈ N such that xn 6= sn and xn′ = sn′
for every n′ ≥ n. We define Ms to be the following modeling. The vertex set of
Ms is the unit square [0, 1]2 with the uniform measure on its Borel subsets. Fix
a sequence (zn)n∈N of distinct vertices, say z = (2−n, 0), and let Z = {zn, n ∈ N}.
The modeling Ms(A,B) is the bipartite graph with A = [0, 1]2 \ Z and B = Z
such that a vertex (x, y) ∈ A = [0, 1]2 \ Z is adjacent to a vertex zn ∈ B = Z if
and only if xn 6= 0.

We next verify that every first order definable subset of Mk
s is Borel. A

subset X of M `
s is basic if there exist v1, . . . , vp ∈ B (we allow p = 0), a matrix

M ∈ {0, 1}`×p, an integer q and a multiset S ⊆ {0, 1}p such that the set X is
formed by all `-tuples w1, . . . , w` ∈ A such that the adjacency matrix restricted
to {v1, . . . , vp, w1, . . . , w`} is M and the 2q-shadow of {v1, . . . , vp, w1, . . . , w`} is
S. In particular, if X is basic, then X ⊆ A`.

Let X(`, B′,M, T ) for a non-negative integer `, a finite subset B′ ⊆ B, a ma-
trix M ∈ {0, 1}`×B′ and a subset T ⊆ {0, 1}`, be the set of `-tuples w1, . . . , w` ∈ A
such that the the adjacency matrix of Ms restricted to {w1, . . . , w`}×B′ is M and
all the columns of the adjacency matrix not associated with vertices of B′ belong
to T after restricting to w1, . . . , w`. Observe that the set X(`, B′,M, T ) ⊆ A` is
Borel for all `, B′, M and T . Since every basic set is a countable union of sets
X(`, B′,M, T ), every basic set is Borel.

Fix a first order formula ψ with k free variables and quantifier depth d. By
Lemma 6, the set of k-tuples of Mk

s satisfying ψ can be partitioned into countably
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many subsets such that each of them after a suitable permutation of coordinates
is either a basic set or a product of a basic set and one or more single element
subsets of B. Consequently, every first order definable subset of Mk

s is Borel.
The next lemma directly follows from the definition of a modeling Ms.

Lemma 7. Let s = (sn)n∈N be a sequence of integers such that sn ≥ 2 for
every n ∈ N. The modeling Ms(A,B) is `-universal for every ` ∈ N. For all
integers p and `, it holds with probability one that a random p-tuple of vertices
of Ms contains p different vertices from A and the `-shadow of the p-tuple is the
multiset containing each vector {0, 1}p with multiplicity `.

Observe that Lemmas 6 and 7 yield that 〈ψ,Ms〉 = 〈ψ,Ms′〉 for every first
order formula ψ and any two sequences s and s′.

We now define the graph Hn(A,B) to be the graph with A = [2n] × [n] and
B = [n] such that (a, a′) ∈ A is adjacent to b ∈ B iff the b-th bit of a when
written in binary is 1. We summarize the properties of the graphs Hn in the next
lemma.

Lemma 8. Let p and ` be two integers. The graph Hn(A,B) is `-universal if
n ≥ `, and the probability that a random p-tuple of vertices of Hn contains p
different vertices from A and the `-shadow of them is the multiset containing
each vector {0, 1}p with multiplicity ` tends to one as n tends to infinity.

The next theorem follows directly from Lemmas 6–8.

Theorem 9. Let s = (sn)n∈N be a sequence of integers such that sn ≥ 2 for every
n ∈ N. It holds for every first order formula ψ that

lim
n→∞
〈ψ,Hn〉 = 〈ψ,Ms〉 .

In particular, the modeling Ms is a limit of (Hn)n∈N.

Let ψ0(x) be the first order formula that is true if x is adjacent to the root.
If sn = 3 for every n ∈ N, then the set of neighbors of every vertex of B in the
modeling Ms(A,B) has measure 2/3. Hence, if M ′

s is the modeling obtained from
Ms by rooting at an arbitrary vertex of B, then 〈ψ0,M

′
s〉 = 2/3. Since no vertex

of Hn is adjacent to more than 2n−1n vertices (the vertices of A are adjacent to
at most n vertices each and each vertex of B is adjacent to 2n−1n), it holds that

lim sup
n→∞

〈ψ0, H
′
n〉 ≤

1

2

for any sequence (H ′n)n∈N of rooted graphs obtained from Hn. We conclude that
the sequence (Hn)n∈N, the modeling Ms(A,B) with s = (3)n∈N and rooting Ms

at any vertex of B provide a counterexample to Problem 1.
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