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Abstract  25 

Purpose: To use eye-tracking technology to directly compare information acquisition behavior of 26 

experienced and novice cyclists during a self-paced 10 mile (16.1 km) time-trial. Method: Two groups 27 

of novice (N=10) and experienced cyclists (N=10) performed a 10-mile self-paced time-trial (TT) on two 28 

separate occasions during which a number of feedback variables (speed, distance, power output, 29 

cadence, heart rate, and time) were projected within their view. A large RPE scale was also presented 30 

next to the projected information and participants. Participants were fitted with a head-mounted eye-31 

tracker and heart rate monitor. Results: Experienced cyclists performed both time-trials quicker than 32 

novices (F1,18=6.8, P=.018) during which they primarily looked at speed (9 of 10 participants) whereas 33 

novices primarily looked at distance (6 of 10 participants). Experienced cyclists looked at primary 34 

information for longer than novices across the whole time-trial (24.5±4.2% vs. 34.2±6.1%, t18=4.2, 35 

P<0.001) and less frequently than novices during the last quarter of the time-trial (49±19 vs. 80±32, t18=-36 

2.6, P=0.009). The most common combination of primary and secondary information looked at by 37 

experienced cyclists was speed and distance respectively. Looking at ten different primary-secondary 38 

feedback permutations, the novices were less consistent than the experienced cyclists in their 39 

information acquisition behavior. Conclusion: This study challenges the importance placed on 40 

knowledge of the endpoint to pacing in previous models, especially for experienced cyclists for whom 41 

distance feedback was looked at secondary to, but in conjunction with, information about speed.  Novice 42 

cyclists have a greater dependence upon distance feedback, which they look at for shorter and more 43 

frequent periods of time than the experienced cyclists. Experienced cyclists are more selective and 44 

consistent in attention to feedback during time-trial cycling. 45 

Keywords: Performance; Pacing; Cycling; Vision; Cognition; Decision 46 

 47 



Running Title: Eye-tracking Cycling Time-Trials 
 

 3 

Introduction 48 

(Paragraph 1) It is important for athletes to employ their available energy effectively to perform 49 

optimally and avoid fatigue during exercise, so that “all energy stores are used before finishing a race, 50 

but not so much that a meaningful slowdown occurs.” (8,18,29) Pacing strategy is an essential aspect of 51 

competitive prolonged athletic performance and refers to the variation of speed during an event by 52 

regulating the rate of energy expenditure (18–21,28). Where completion time is the measure of success, 53 

pacing strategy has an influence over success in events lasting longer than 60 seconds (1). 54 

(Paragraph 2) Several factors are known to influence the pacing strategy that an athlete adopts 55 

including the duration of the event (8), presence of a competitor (7,57), environmental conditions (41), 56 

previous experience (35), perceptions of exertion (49), and the availability and veracity of performance 57 

feedback information (14,36). Previous models of pacing place a lot of emphasis on an athlete’s 58 

awareness of changes to the internal physiological state of their body, experienced as perceived exertion, 59 

in relation to their progress towards the endpoint as informed through various forms of feedback. 60 

According to Teleoanticipation Theory (50) and later on the Central Governor Model (40), a ‘central 61 

governor’ anticipates exercise and presets a pacing strategy based on the end-point or duration of 62 

exercise. In a more recent manifestation of Central Governor Model, more complex information-63 

processing mechanisms have been proposed in which rate of change of perceived exertion is evaluated in 64 

the light of expected duration or distance of an event and modified through appropriate alternations in 65 

pace (48). The Psychobiological Model similarly supports the notion of effort-related decisions about 66 

pace in the context of event duration, but argues that such decisions are entirely conscious and that 67 

subconscious processes, such as those proposed by the Central Governor Model, are inapposite (34). The 68 

linear relationships found between RPE and the proportion of completed event, are such that the RPE 69 

gradient was found to peak in coincidence with the expected endpoint (15,19,31). 70 
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(Paragraph 3) In an attempt to factor for varying uncertainty about pace during endurance events, a 71 

model has been specified whereby risk is expressed as the proportion of the remaining task multiplied by 72 

their momentary RPE, a variable the authors refer to as hazard score (9). An appealing feature of the 73 

hazard score model is that the further an athlete progresses, the lower hazard score becomes, thus 74 

explaining how athletes are sometimes able to risk performing very intense spurts of energy towards the 75 

end of an event when the risk of not-completing as a consequence of doing so is relatively low. An 76 

alternative model proposed that pacing decisions are based upon the estimated time that present power 77 

output can be maintained, as judged against the duration or length of the task (23). More recent 78 

suggestions of how pace is regulated have drawn on the decision-making literature (42) and the 79 

interdependence of perception and action in attempting to account for pacing behavior in 80 

environmentally complex situations (45). 81 

(Paragraph 4) Whatever theory of pacing is subscribed to, all emphasize knowledge of proximity to the 82 

endpoint as a key determinant of pacing strategy. However, the importance placed on endpoint 83 

knowledge in pacing models is based on experimental evidence that was collected using limited indirect 84 

observation methods where participants have been deceived about, or deprived of, progression or 85 

performance feedback information (30). A number of studies have used false feedback about distance or 86 

time to understand the importance of feedback and the use of knowledge during exercise. Studies have 87 

found that deceiving athletes about the duration of exercise, by providing false or no knowledge about 88 

the exercise endpoint, leads to increased RPE and a different pacing strategy caused by an incorrect 89 

allocation of physiological resources (3,12). Experience of using blind, true and false performance 90 

feedback has also been found to provoke different types of learnt pacing strategies (38).  91 

(Paragraph 5) Feedback deception and blinding experimental methods have been the dominant 92 

approaches used to understand how athletes use information to pace themselves. Deductions about the 93 
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significance and role of particular types of performance information are made based upon what happens 94 

to pace if that information is altered or removed. The underlying logic is that if, after altering or 95 

removing a particular source of information pacing or performance worsens, then it can be inferred that 96 

that information source has an important contributory role. It has been this approach that has led to the 97 

emphasis placed on knowledge of the endpoint in various pacing models. 98 

(Paragraph 6) There are several limitations to this information-knockout approach. The first is the focus 99 

on singular sources of information and the lack of investigative sophistication in understanding how 100 

athletes interpret various sources of information in conjunction with each other. For example, the 101 

importance athletes place on speed or power information to make pacing decisions could potentially vary 102 

according to how much time or distance has elapsed, or according to environmental conditions or 103 

competitor behavior. A further, but related, limitation is that knockout and deception studies have not 104 

investigated within-trial changes in the emphasis placed on certain types of feedback. For example, 105 

potentially an athlete may be more concerned with average speed in the first half of a race and then 106 

become more interested in elapsed time or distance towards the end of an event. The final limitation is 107 

the inability to understand individual differences in feedback preferences, which could vary according to 108 

past experience or the outcome measure by which they appraise their achievement success. A threat to 109 

the validity of previous pacing models is the reliance on limited deception and blinding methods, which 110 

necessitated indirect interpretation regarding the importance of endpoint awareness as a determinant of 111 

athletic pace. It is this point that the present study intended to redress. 112 

(Paragraph 7) A more direct method of measuring what information athletes seek and use during self-113 

paced exercise will greatly improve our understanding of pacing decisions and, to our knowledge, this 114 

have never been achieved. In one study the frequency with which children looked at elapsed time during 115 

a time-limited run was measured from a video recording and it was found that they looked at the watch 116 
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more often towards the end of the run (6). While the methods of measuring information acquisition in 117 

this study were quite basic, eye-tracking technology does provide a more sophisticated method of 118 

directly measuring what information athletes look at during self-paced exercise. Unlike previous 119 

deception and information-knockout studies, the precision with which information acquisition behavior 120 

can be measured using eye-tracking technology is able to overcome the limitations of deception studies 121 

discussed earlier. Importantly, eye-tracking enables detailed information to be gathered about how 122 

athletes acquire information in dynamic and conjunctive ways during an exercise trial, as well as how 123 

they learn to use information differently with experience to pace themselves. 124 

(Paragraph 8) The use of eye-tracking technology in sport is a powerful method (11) that has enabled 125 

researchers to develop better insights about perceptual-cognitive mechanisms of sport performance (24, 126 

33). Mobile eye-tracking technology has proven especially versatile in allowing researchers to collect 127 

data in many different sports domains where performance is dependent upon the ability perceive and 128 

process complex information in often fast moving environments. In such situations, the visual is the 129 

dominant mode of sensory feedback in the perceptual-action coupling (32), a system in which attention 130 

to external cues enables the kind of adaptive movements required for the successful performance of 131 

motor tasks such as catching or striking a ball. In the context of cycling, eye-tracking has provided 132 

useful insights about the role of visual behaviour in balance and steering (51, 53) but has not been used 133 

to understand information pick-up as part of the perceptual-action processes in regulating pace (45). 134 

Eye-tracking technology has also provided considerable insights about differences in perceptual-135 

cognitive mechanisms between expert and novice performers (24, 55), and this approach has great 136 

potential in developing a better understanding of information acquisition and decision-making during 137 

self-paced cycling. Generally, previous research has suggested that experts across many sports domains 138 

tend to look at task-relevant information less frequently and for less time than novices (24,27). This has 139 
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a relevance to pacing theory because it raises the question of whether differences exist between expert 140 

and novice cyclists about what information feedback they consider to be task relevant, and whether 141 

differences exist in how frequently they refer to such information and for how long. 142 

(Paragraph 9) While we acknowledge that the use of eye-tracking technology is fairly common-place in 143 

sport domains and expertise research, the present study used eye-tracking technology in an original way 144 

to better understand information acquisition and pacing behaviour in cyclists. The purpose was, for the 145 

first time, to directly measure what information cyclists look at while performing a time-trial, and to 146 

compare the information-acquisition strategies of novice and experienced cyclists. We hypothesized that 147 

experienced cyclists would look at fewer sources of information, and would seek out information less 148 

frequently compared to novices.  149 

Methods 150 

Participants 151 

 (Paragraph 10) Experienced (n=10) and novice male cyclists (n=10) were recruited for this study from 152 

the University of Essex and local cycling clubs. Mean ± 1SD age, stature and body mass for the 153 

experienced cyclists was 38.6 ± 11.3 years, 176.6 ± 6.9 cm and 74 ± 9.4 kg for the experienced cyclists, 154 

and for the novice cyclists was 36.1 ± 9.9 years, 178.5 ± 6.7 cm and 80.2 ± 8.7 kg. The experienced 155 

cyclists were recruited from local cycling clubs and had participated in competitive 16.1 km time-trials 156 

for an average of 14.1 ± 13 years. During the 6 months preceding the study, the experienced cyclists had 157 

on average trained each week on 4.7 ± 1.1 occasions for a total of 8.5 ± 2.1 hours. The novice cyclists 158 

were recruited from the University of Essex staff and students and, although they could all ride a bicycle, 159 

they had never trained for, or participated in competitive cycling events of any kind. In an attempt to 160 

control for fitness, only physically active individuals were recruited to the novice group who had on 161 

average trained each week on 2.8 ± 0.8 occasions for a total of 4.6 ± 1.1 hours across a range of different 162 
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sports that did not involve cycling. Each participant provided written informed consent to take part in 163 

this study, which was approved by the University of Essex ethics committee.  164 

Design 165 

(Paragraph 11) A two-way mixed experimental design (experience-by-segment) was used in which we 166 

compared pace, performance and visual information acquisition between novice and experienced cyclists 167 

(between-subjects experience factor) during a 16.1 km cycling time-trial  every 4 km (within-subjects 168 

segment factor). All participants performed a 16.1 km familiarization time trial (TTFAM) and then had a 169 

recovery period of 5 to 10 days before completing the 16.1 km experimental time-trial (TTEXP). During 170 

each time-trial completion time (s), speed (km.hr-1), power output (W), distance (km), pedaling cadence 171 

(r.min-1) and heart rate (b.min-1) was measured. RPE was recorded every 4 km. Participants wore a 172 

monocular eye-tracking device for familiarization purposes during TTFAM and then to measure the type, 173 

duration and frequency of information they looked at during TTEXP.  174 

Procedure  175 

(Paragraph 12) Before each time-trial participants were asked to refrain from ingesting caffeine for at 176 

least 6 hours, alcohol for 24 hours and food for 2 hours prior to testing. Participants were also asked not 177 

to train or engage in heavy physical work for 24 hours before testing. On the first laboratory attendance 178 

each participant had their body mass and stature measured and was briefed as to the requirements of the 179 

trial but not the purpose of the study. Participants also completed a short training history questionnaire. 180 

After all tests had been completed, participants were debriefed about the purpose of the study.  181 

Cycling Ergometry and Video Simulation 182 

(Paragraph 13) All cycling tests were performed on a Velotron (3D) Racer Mate ergometer with 183 

RealVideo simulation software (Racermate, Seattle). The 16.1 km time-trial duration was selected as this 184 

is a common format used in the UK and one which the experienced cyclists used in this study were most 185 
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accustomed. All cycling tests were performed at the same time of day ± one hour to control for circadian 186 

variation in outcome measures. Prior to each time-trial, participants performed a standardized 5-minute 187 

self-paced warm-up. Participants were instructed to complete the time-trial in the fastest possible time. 188 

They were not provided with any information acquisition or pacing guidance.  189 

(Paragraph 14) During each time-trial, a RealVideo simulated cycling course was projected onto a wall 190 

in front of and slightly offset to the right of the cycling. The projected video footage was coupled in a 191 

multiplicative way to the cyclists’ actual power output such that any alteration in speed was instantly 192 

represented on the screen. Notwithstanding minor projector repositioning variances, the projected screen 193 

size was 2.1 m wide by 1.5 m high with the bottom border of the projection running 1 m above and 194 

parallel to the floor. The cycle ergometer was positioned such that the handlebar stem riser was 3 m 195 

perpendicular to the plane of the screen which itself was offset to the right of the natural forward field of 196 

vision of the cyclists with a vector displacement of 8q at 3.03 m for the left border of the projection and 197 

40q at 3.91 m for the right border (visual arc 32q). Offsetting the screen in this way required participants 198 

to rotate their neck to look at the projected information, thus adding confidence that the eye-tracking 199 

measurements constituted deliberate attempts to acquire information, rather than information glances just 200 

because it happened to fall naturally within participants forward field of vision. 201 

(Paragraph 15) Incorporated into the projection beneath the simulated time-trial video, were five fields 202 

of real-time feedback information which, presented from left to right, were speed (km.hr-1), elapsed 203 

distance (km), power output (W), pedaling cadence (r.min-1) and heart rate (b.min-1). The row of five 204 

feedback information fields were 0.375 m above and parallel to the bottom border of the projection or 205 

1.375 m above the floor. The vector displacement of the center of each information field from the 206 

handlebar stem riser was speed (9.5q, 3.04 m), elapsed distance (18.1q, 3.16 m), power output (26.0q, 207 

3.34 m), pedaling cadence (32.9q, 3.57 m) and heart rate (38.9q, 3.86 m). Elapsed time (min:sec) was 208 
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displayed above the heart rate field (3.0q, 0.2 m). The block size of individual characters within each 209 

field was 4.5 cm high by 2.9 cm wide. Angular separation of the information fields was at its most acute 210 

3q (elapsed time – heart rate) and at its least acute 8.6q (elapsed distance - speed), well beyond the 211 

manufacturer-defined eye-tracker spatial resolution of 0.1˚ and gaze position accuracy within the nearest 212 

degree. The size and separation of the projected information blocks therefore facilitated clear 213 

differentiation in eye-tracker measurements as later described. An A0 sized RPE scale was also 214 

displayed to the left of the projector screen.  215 

Psychophysiological Measures  216 

(Paragraph 16) Heart rate (HR) was recorded during both cycling time-trials every (120) milliseconds 217 

using a chest strap Polar Accurex Plus heart rate monitor (Polar Electro. Kempele, Finland) connected 218 

via wireless to the Velotron software. Average HR was calculated every 4 km. Participants were asked to 219 

provide an overall rating of perceived exertion every 4 km using the Borg 6-10 RPE scale (5). All 220 

subjects were familiarised with the RPE scale, which was administered in accordance with published 221 

standardised instructions (4). 222 

Eye-Tracking and Video Analysis 223 

(Paragraph 17) Participants were fitted with a SensoMotoric Instruments SMI iViewX head-mounted 224 

monocular eye-tracking device (HED). The system consists of two cameras mounted on a cycling 225 

helmet, one that records the eye position of the participant, and a 3.6 mm wide-angle forward-looking 226 

camera that records the scene the participant is looking at. Eye position was recorded at 50 Hz, which 227 

was then down-sampled to 25 frames per second for the resulting scene videos. The eye-tracker was 228 

calibrated using the participant’s left eye in accordance with the manufacturer’s instructions by asking 229 

participants to fixate a series of markers spanning the area of the display. Calibration accuracy was 230 

checked sporadically and at the end of the time trial by asking the participant to fixate points on the 231 
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screen and information display. The equipment has a manufacturer-defined spatial resolution of 0.1˚ and 232 

tests demonstrated that gaze position was accurate to within the nearest degree. The system tracks eye 233 

movements using pupil and corneal reflex so that each participant’s point of regard can be superimposed 234 

onto the recorded scene, thus enabling timed measurements to be made of eye fixations. 235 

(Paragraph 18) The eye-tracking videos for TTEXP were subsequently reviewed and manually coded by 236 

the first author. Manual coding of eye-tracking data remains the state-of-the-art in active tasks, (52) and 237 

within-coder comparisons indicated that gaze location could be determined unambiguously. Reliability 238 

of similar methods have shown very good inter-rater reliability (22). Due to the relatively low sampling 239 

rate of the eye-tracker, saccades could not be automatically detected, but fixations were only coded when 240 

data was within the same region for at least 3 frames (# 100 ms). Eye gaze was coded by recording the 241 

start and end frame of each entry into a new region of interest. This allowed us to determine the periods 242 

of time spent inspecting each of then eye fixation times were manually recorded in milliseconds against 243 

nine predetermined categories. Six of the categories related to information feedback that were speed, 244 

elapsed distance, power output, cadence, heart rate and elapsed time. Eye fixation times were also 245 

recorded for the rating of perceived exertion and the video simulation of the time-trial course that was 246 

projected onto the wall. A final category was created to capture all other objects of regard not 247 

corresponding to the other eight categories, for example, when participants looked at the laboratory floor 248 

or at laboratory equipment. Fixations of less than 3 frames, blinks and other periods of data loss (e.g. 249 

when participants looked at extreme angles) were also included in the ‘other’ coding category. This 250 

procedure allowed detailed coding of point of regard for the whole length of the time trial. 251 

Data Processing and Statistical Analysis  252 

(Paragraph 19) Total gaze time and gaze frequency for each of the nine categories (speed, elapsed 253 

distance, power output, cadence, heart rate, elapsed time, video simulation and other) was calculated on 254 
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a participant-by-participant basis for the whole time-trial and for each 4 km segment. Gaze frequency, 255 

defined as the number of separate eye fixations for each category, and total gaze time, defined as the 256 

accumulated time of all eye fixations for each category, were calculated for each participant across the 257 

whole time-trial and for each segment. Total gaze times were then used to determine what information 258 

source that each participant looked at for longest accumulated average time (primary), second longest 259 

accumulated average time (secondary), third longest accumulated average time (tertiary) and so on until 260 

quaternary (4th), quinary (5th), senary (6th), septenary (7th), octonary (8th) and nonary (9th) had all been 261 

established. To normalize absolute total gaze times for inter-participant differences in time-trial 262 

performance, primary to nonary fixation data were all converted from absolute time (ms) to percentage 263 

of time-trial completion time. 264 

(Paragraph 20) Time-trial average cycling speed (performance) interactions between experienced and 265 

novice cyclists, and between the first and second time-trials was analysed using two-way mixed 266 

ANOVAs. Three-way mixed ANOVAs were used to analyse group-by-trial-by-segment interactions in 267 

average cycling speed (pace) as well as relative fixation time and gaze frequency for the primary, 268 

secondary and tertiary visual categories. 269 

(Paragraph 21) For both performance, pace and visual data, significant interactions were followed up 270 

using planned post-hoc comparisons between segments using paired-samples t tests for within-group 271 

comparisons and independent sample t tests for between-group comparisons. Paired-samples t tests were 272 

also used to compare within group comparison and RPE values. All results are expressed as mean (SD) 273 

and effect sizes as partial eta squared. 274 

Results 275 

Time Trial Performance, Heart Rate and RPE   276 
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(Paragraph 22) Two-way mixed ANOVAs revealed the following experience and trial factor outcomes. 277 

Average cycling speed: No group-by-trial interaction (F1,18=2.7, P=.082, ηp
2=.16) but there was a group 278 

main effect (F1,18=6.8, P=.018, ηp
2=.27) and a trial main effect (F1,18=11.2, P=.004, ηp

2=.38). Completion 279 

time: No group-by-trial interaction (F1,18=2.7, P=.082, ηp
2=.16) but there was a group main effect 280 

(F1,18=6.8, P=.018, ηp
2=.27) and a trial main effect (F1,18=11.2, P=.004, ηp

2=.38). Average power output: 281 

No group-by-trial interaction (F1,18=0.6, P=.440, ηp
2=.03) but there was a group main effect (F1,18=10.8, 282 

P=.004, ηp
2=.38) and a trial main effect (F1,18=11.6, P=.003, ηp

2=.39). Average pedaling cadence: No 283 

group-by-trial interaction (F1,18=0.1, P=.740, ηp
2<.01) or trial main effect (F1,18=3.6, P=.07, ηp

2=.17) but 284 

there was a group main effect (F1,18=12.7, P=.002, ηp
2=.414). Average heart rate: No group-by-trial 285 

interaction (F1,18=0.3, P=.086, ηp
2<.01), no group main effect (F1,18<0.1, P=.945, ηp

2<.01) and no trial 286 

main effect (F1,18=0.2, P=.646, ηp
2=.01). Average RPE: No group-by-trial interaction ( F1,18<0.1, P=.929, 287 

ηp
2<.01), no group main effect (F1,18=0.4, P=.518, ηp

2=.02) and no trial main effect (F1,18=0.9, P=.361, 288 

ηp
2=.05). Group and trial differences in performance, heart rate and RPE variables are presented in 289 

Figure 1A, with post-hoc statistical outcomes indicated for significant differences between novice and 290 

experienced cyclists (independent samples t-tests) and between familiarization and experimental time-291 

trials (paired samples t-tests). 292 

Segment Comparisons of Performance, Heart Rate and RPE 293 

(Paragraph 23) There were no group-by-trial-by-segment interactions or two-way interactions for 294 

speed, completion time, power, cadence, heart rate or RPE. Trial main effects were found for speed 295 

(F1,18=12.9, P=0.002, ηp
2=.42), completion time (F1,18=12.9, P=0.002, ηp

2=.42) and power (F1,18=11.5, 296 

P=0.003, ηp
2=.39). Segment main effects were found for speed (F3,54=4.3, P=0.009, ηp

2=.19), completion 297 

time (F3,54=4.3, P=0.009, ηp
2=.19), power (F3,54=6.9, P=0.001, ηp

2=.28), heart rate (F3,54=101, P<0.001, 298 

ηp
2=.85) and RPE (F3,54=518, P<0.001, ηp

2=.97). Group main effects were found for speed (F1,18=7.9, 299 



Running Title: Eye-tracking Cycling Time-Trials 
 

 14 

P=0.012, ηp
2=.31), completion time (F1,18=7.9, P=0.012, ηp

2=.31), power (F1,18=10.8, P=0.004, ηp
2=.38) 300 

and cadence (F1,18=12.7, P=0.002, ηp
2=.414). Post hoc independent samples t-tests found experienced 301 

cyclists were faster than novices during every time-trial segment, in both TTFAM and TTEXP. Group and 302 

segment differences in pace with post-hoc outcomes are presented in Figure 1B for TTFAM and in Figure 303 

1C for TTEXP. Mean and standard deviation data for speed, completion time, power, cadence, heart rate 304 

and RPE are given in Table 1 for each group, time-trial and segment along with post hoc statistical test 305 

outcomes.   306 

Whole Time-Trial Eye-Tracking Outcomes: Total Gaze Duration and Gaze Frequency  307 

(Paragraph 24) Novice and Experienced mean total gaze duration data for primary through to nonary 308 

points of regard were calculated over the full 16.1 km for TTEXP and are presented in Figure 2A. A two-309 

way mixed ANOVA found a group-by-point of regard interaction for total gaze duration (% time-trial 310 

duration), F8,144=10.9, P<0.001, ηp
2=.38. Independent-samples post-hoc t-tests revealed that experienced 311 

cyclists looked at primary points of regard for longer than novices during TTEXP (34.2 ± 6.1% vs. 312 

24.5±4.2%, t18=-4.2, P<0.001, η2=0.49). Other experienced vs. novice post-hoc outcomes for total gaze 313 

time are represented in Figure 2A. 314 

 (Paragraph 25) The frequency of which novice and experienced participants looked at primary through 315 

to nonary points of regard was counted overall for TTEXP and is presented in Figure 2B. A two-way 316 

mixed ANOVA found a group-by-point of regard interaction for gaze frequency, F8,144=2.2, P=0.03, 317 

ηp
2=0.11. Independent-samples post-hoc t-tests revealed that experienced cyclists looked at information 318 

less frequently than novices (Figure 2B). 319 

Time-Trial Segment Eye-Tracking Outcomes: Total Gaze Duration and Frequency 320 

(Paragraph 26) Segment changes in gaze duration and gaze frequency were analysed using two-way 321 

mixed ANOVAs for primary, secondary and tertiary points of regard. Group main effects were found for 322 
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total gaze duration for the primary point of regard (F1,18=16, P<0.001, ηP
2=0.47) and the secondary point 323 

of regard (F1,18=6.7, P=0.02, ηP
2=0.27) but not the tertiary point of regard. No segment main effects or 324 

segment-by-group interactions were found for primary, secondary or tertiary points of regard (Figures 325 

3A-C). For gaze frequency of the primary point of regard a segment-by-group interaction was found 326 

(F3,54=3.4, P=0.02, ηP
2=0.16) and a segment main effect (F3,54=2.8, P=0.05, ηP

2=0.13) but not a group 327 

main effect. For gaze frequency of the secondary point of regard only a group main effect was found 328 

(F1,18=8.9, P=0.008, ηP
2=0.33) with no segment main effect or segment-by-group main effect. There 329 

were no gaze frequency interactions or main effects for the tertiary point of regard (Figures 4A-C). 330 

(Paragraph 27) Group-by-trial-by-segment analysis for quaternary through to nonary points of regard 331 

are excluded from this article for the sake of brevity, owing to the large amount of statistical data. We 332 

also believe that the analysis of gaze data beyond the three most looked at points of regard are unlikely 333 

to yield significant insights about systematic perceptual patterns, pacing and performance. 334 

Primary-Secondary Point of Regard Combinations 335 

(Paragraph 28) Data is presented in Table 2 shows the combination of primary and secondary points of 336 

regard that participants looked at across the entire experimental time-trial and on a segment-by-segment 337 

basis. Individual participant data is present in an attempt to convey the complex, yet in some instances 338 

similar, patterns of information that participants looked at during the time-trial. Seven primary-339 

secondary point of regard combinations were observed for the novice group during TTEXP, whereas the 340 

experienced cyclists exhibited only three primary-secondary point of regard combinations. 341 

(Paragraph 29) Mann-Whitney non-parametric comparisons were made between novices and 342 

experienced cyclists in the number of primary points of regard they looked at in each segment and the 343 

number of times they switched what they primarily looked at between segments. Results showed a lower 344 

number of different primary points of regard by experienced cyclists compared to novices during TTEXP 345 
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(1.7±0.8 vs. 2.8±0.9, U=19.5, Z=-2.41, P=0.008). From segment to segment, the number of times 346 

participants switched to a different primary point of regard was lower among the experienced cyclists 347 

compared to novices (1.3±1.4 vs. 2.3±0.9, U=31, Z=-1.53, P=0.064). Primary point of regard and switch 348 

data is given in Table 2. 349 

(Paragraph 30) A two-way mixed ANOVA found a group-by-segment interaction for the percent 350 

dominance of the primary point of regard in the primary-secondary combination, F3,54=4.4, P=0.05, 351 

ηp
2=.20, a group main effect, F1,18=9.4, P=0.007, ηp

2=.34, but no segment main effect, F3,54=0.4, P=0.52, 352 

ηp
2=.02. Independent-samples post-hoc t-tests revealed that dominance of the primary point of regard in 353 

the primary-secondary combination was greater among experienced cyclists compared to novices for the 354 

0-4 km segment (63.8±7.8% vs. 53.6±3.2%, t18=-3.8, P<0.001, η2=0.45), the 4-8 km segment 355 

(61.7±8.0% vs. 56.2±4.3%, t18=-1.9, P=0.036, η2=0.17), the 8-12 km segment (63.4±6.5% vs. 356 

56.6±5.3%, t18=-2.6, P=0.01, η2=0.27) but not the final 12-16.1 km segment (59.8±7.6% vs. 60.1±7.8%, 357 

t18=0.1, P=0.93, η2<0.01). Group-by-trial-by-segment primary dominance values are given in Table 2. 358 

Discussion   359 

(Paragraph 31) This study was the first to make direct measurements of information-acquisition 360 

behavior among time-trial cyclists and constitutes a significant step forward in our understanding of 361 

endurance exercise pacing mechanisms. It seems that patterns of information acquisition during a self-362 

paced cycling time trials are very complex and that pacing behavior is not necessarily universally 363 

informed by the integration of endpoint awareness and perceived exertion, as previous models have 364 

argued (9,15,20,23,40,46,48,50). This is because we observed that, firstly, cyclists refer to different 365 

types of information according to their experience, with experienced cyclists primarily looking at speed 366 

and novices primarily looking at distance (Fig 2A). Secondly, experienced cyclists appear to be more 367 

selective in their information acquisition behavior compared to novices, referring to fewer sources of 368 
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information, which they look at for longer (Fig 2A) and less frequently (Fig 2B). Thirdly, novices 369 

increased the duration (Fig 3A) and frequency (Fig 4A) of looking at their primary information source 370 

during the final segment of the time-trial but experienced cyclists were more constant throughout the 371 

trials. Finally, with only four different combinations of primary and secondary information used by the 372 

experienced cyclists, there was better commonality in what information they looked at compared to the 373 

novices who used seven primary-secondary information combinations (Table 2). Our finding that 374 

experienced cyclists refer to task-relevant information less often is consistent with a meta-analysis of 375 

eye-tracking studies of expert performers (24), yet our findings that experienced cyclists fixate for longer 376 

than novices is not consistent with the meta-analysis (24). This maybe because, as acknowledged by the 377 

authors of the meta-analysis, the type of sport task may moderate expert-novice differences in visual 378 

behavior compared to other domains (24). Experienced cyclists also tended to stick to a primary 379 

information source throughout the time-trial, whereas novices switched the type of information they 380 

primarily looked at between segments much more often (Table 2). We are not suggesting that endpoint 381 

awareness is not important in pacing regulation, clearly it is given how often it featured as either a 382 

primary or secondary point of regard in our findings (Table 2). Our argument is that previous pacing 383 

models are deficient in accounting for variations in information acquisition that we have found 384 

attributable to individual preference, expertise or event segment. It seems that in simulated time-trial 385 

cycling experienced cyclists look at speed more than distance, whereas distance feedback appears to be 386 

what novices seek out more. 387 

(Paragraph 32) An important finding of this study was that experienced and novice cyclists differed in 388 

the types of information they looked at during the experimental time trial. The majority of the 389 

experienced cyclists (9 of 10 participants) tended to look at speed most across the whole time trial. In 390 

contrast most novices (6 of 10 participants) looked at distance most, noting that a significant number of 391 
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novices (4 of 10 participants) chose to primarily look at other information too. In addition to experienced 392 

cyclists being more consistent in what information they look at, of note is that they looked at primary 393 

information for longer and less frequently.  394 

(Paragraph 33) While the eye-tracking data we have collected reveals a lot about how time-trial cyclists 395 

acquire information, it does not tell us anything about how the information is integrated and processed, 396 

or the decisions they have made. For this, other process-tracing methods such as think aloud protocols, 397 

may usefully compliment eye-tracking in the study of decision-making and pacing. This is because that, 398 

while eye-tracking technology provides a powerful method for measure information acquisition 399 

processes, it reveals nothing about how that information is subsequently processed. Although longer eye 400 

fixation times have been linked to greater depth of processing (16,26,43,44), rather than assuming this to 401 

be the case in future pacing studies, it would be preferable to use eye-tracking in conjunction with think 402 

aloud protocols to directly capture information processes. Nevertheless, the results of the present study 403 

so highlight differences in information acquisition between novice and experienced time-trial cyclists 404 

that bring to question the common information-processing mechanisms put forward by previous pacing 405 

models (9,15,18,23,31,34,40,42,45,50). In particular, the assumption in previous pacing models that the 406 

integration of endpoint awareness with perceived exertion is the primary and universal driver of pacing 407 

decisions, regardless of athletic experience or individual feedback preferences. It may be that decision-408 

making among experienced cyclists was different to novices and indeed different between individuals 409 

which resulted in a need to seek out more varied sources of information. This is consistent with the idea 410 

that individuals use information in an adaptive way according to the perceived demands of a situation or 411 

problem (25). Thus, it could be that distance information is still important to experienced cyclists but, 412 

owing to their previous experience, they are able to process and integrate such information much more 413 

quickly and thus do not need to look at it quite so often or for so long. Since the experienced participants 414 
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were experienced at performing the 16.1 km time-trial format, it is also quite likely that their need to 415 

refer to distance information was less than novices unaccustomed to cycling such a distance. The extent 416 

to which information acquisition differences between experienced and novice cyclists are attributable to 417 

distance familiarity, is something that could be tested by using the same experimental protocol but with 418 

an unfamiliar time trial distance. While it is well established that experience influences pacing strategy 419 

(19,35,38), our findings further show that information acquisition strategies accompanying pacing 420 

behavior also vary with previous experience. 421 

(Paragraph 34) As expected the experienced cyclists completed both time-trials faster than the novices, 422 

with both groups exhibiting a mostly constant pace throughout. Owing to imperfect fitness matching 423 

between the novice and experienced cyclists, we cannot conclude that that time-trial performance 424 

differences between the groups was exclusively due to experience differences. While in future studies 425 

greater effort should be made to measure associations between moment-by-moment change in gaze and 426 

pacing time-series data (37), in this study we have limited our analysis to detecting concomitant changes 427 

in gaze and pace at a segment-by-segment level. What our data clearly shows is that, whatever type of 428 

information is preferred as the primary reference, the experienced cyclists looked at it for longer than the 429 

novices but less frequently. As previously discussed, this is broadly consistent with previous expertise 430 

literature (24).  During the second time-trial the experienced cyclists increased the relative amount of 431 

time they spent looking at the primary information source from 30 to 35% showing that they became 432 

more selective in what information they referred to. The shallower curves presented in Figure 2A also 433 

shows that novices tended to distribute their attention across a number of different information sources, 434 

spending more time looking at quaternary to octonary sources of information compared to the 435 

experienced cyclists. The notion that experienced cyclists are more selective in what feedback they look 436 

at is also consistent with previous expertise literature (24,33) and is supported in a number of ways. In 437 
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the first three segments, the experienced cyclists on average spent between 5-10% longer than novices 438 

looking at the primary point of regard. It was only in the last segment of the time-trials from 12-16.1 km, 439 

that the novices increase both the amount of time and the frequency with which they look at the primary 440 

information source close to that of the experienced cyclists. The increased information acquisition 441 

behavior towards the end of the time-trial is consistent with the behavior observed in children during a 442 

self-paced running task (6), further supporting the idea that feedback-dependency is more strongly 443 

associated with proximity to the end-point among inexperienced athletes compared to experienced 444 

athletes.   445 

(Paragraph 35) The data from our study indicates greater consistency in experienced cyclists’ approach 446 

to information acquisition both in terms in inter- and intra-participant behavior. Inter-participant 447 

consistency is evident in the data showing that 9 of 10 experienced cyclists chose to primarily look at 448 

speed. Even when combinations of information sources are considered, experienced cyclists consistency 449 

chose either speed-distance (5/10), speed-other (2/10) or speed-power (2/10) as the combination of 450 

primary and secondary points of regard. In fact, the experienced cyclists only exhibited four different 451 

primary-secondary information combinations, whereas seven different primary-secondary combinations 452 

were observed among the novices (Table 2).  453 

(Paragraph 36) Greater intra-participant consistency among the experienced cyclists is apparent owing 454 

to the fact that on a segment-by-segment basis, the modal primary-secondary combinations were speed-455 

distance and speed other, but for the novices it was often not possible to specify a modal combination 456 

because the primary-secondary permutations were so varied. On average novices used 2.3 different 457 

primary information sources across the four segments compared to 1.5 for the experienced cyclists. 458 

Novices also tended to switch primary information sources between segments more frequently than the 459 

experienced cyclists as indicated in Table 2. 460 
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(Paragraph 37) The primary-secondary combination data presented in Table 2 is also interesting 461 

because it highlights that distance is still an important reference source to experienced cyclists, but only 462 

secondary to and in combination with speed. In contrast, distance feedback appears to be the most 463 

dominant type of information they refer to in combination with many other types of secondary 464 

information. A lot of emphasis has been placed the role of the endpoint in influencing pacing 465 

(2,3,9,15,19,31,34,40,46,50) support for which being found in a number of studies where deception or 466 

blinding methods have been used (3,12,30,38). However, our study shows that the importance placed on 467 

knowledge of the end-point may be overstated in most pacing models and that, knowledge of the 468 

endpoint may in fact be a secondary to information about speed in informing the actions of experienced 469 

cyclists. Another interesting outcome of this study is that perceived exertion did not feature in the 470 

primary-secondary information acquisition combinations for any of the participants (Table 2), and that, 471 

whether experienced or novice cyclists, all looked at least three other sources of information in 472 

preference to the 6-20 RPE scale (Fig 2). That does not mean perceived exertion is not an important 473 

factor in pacing decisions as predicted by many of the previous models. It does however, highlight to 474 

methodological complexities of investigating pacing decisions in terms of the acquisition and utilization 475 

of external referents, which can be easily observed using methods like eye-tracking, and the integration 476 

of internal bodily referents such as perceived exertion, which cannot be directly observed. This particular 477 

problem warrants innovative research using process-tracing methods of the kind described in much more 478 

detail elsewhere (37). 479 

(Paragraph 38) This eye-tracking study has produced some important new data not entirely consistent 480 

with previous models of pacing about the attention to, and use of, feedback information. Nevertheless, 481 

there are a number of limitations associated with the laboratory-based nature of this experiment and the 482 

eye-tracking technology that was used. Cyclists in our study performed simulated time-trials on a static 483 
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cycle ergometer under conditions where certain demands on the visual system were absent, for example 484 

those associated with balancing, navigating, negotiating hazards and avoiding collisions as reported 485 

elsewhere (51, 53). Furthermore, differences between laboratory and real-world visual behavior have 486 

been reported in several studies, the most notable findings being more centralized fixations in the real 487 

world (17), a tendancy to fixate on closer objects in the laboratory (17), and earlier longer object 488 

fixations in the realworld (10). Therefore, it cannot be assumed that, during road-based time-trials, the 489 

capacity to attend to performance information will be the same as reported in this experiment since it 490 

will compete with, or be interrupted by, other demands placed on the visual system. In the future, with 491 

careful configuration of mobile eye-tracking technology, it may be possible to measure the attention to 492 

performance information in field-based studies with associated improvements in ecological validity. 493 

(Paragraph 39) Another limitation of this study relates to the link between visual information, decision-494 

making processes and pacing behavior. While there is some evidence that what individuals look at is 495 

associated with their choices (16,26,43,44), it is unclear whether visual attention influences choice or 496 

simply reflects a choice that has been made (44). In our study the issue is further complicated by the 497 

difficulties of quantifying a pacing choice, since the method of detecting a meaningful change in pace 498 

from either speed or power time-series data is mathematically complex (41). Even if it were possible to 499 

precisely identify moments where a decision had been made to increase or decrease pace, decisions to 500 

maintain pace would clearly be impossible to detect, as they would not be indirectly reflected in time-501 

series data. In this study, conclusions about the link between visual attention and pacing decisions, are 502 

deduced from the associated changes in vision and pace observed at a segment-by-segment level. In 503 

future, greater precision about the association between visual attention to performance information and 504 

pace could be investigated by setting up experiments were cyclists are presented with pacing dilemma 505 

where their decision to act can be pinpointed in time. 506 
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(Paragraph 40) Finally, with regards to information acquisition and decision-making during endurance 507 

sport, further consideration is needed regarding fatigue related constraints on visual behavior as 508 

predicted in Newell’s model (39) because they are often overlooked (56). A relationship between fatigue 509 

and declining visual attention was found in one interesting study where increased levels of exertion 510 

among biathletes was associated with reduced visual behavior before making a rifle shot (54). Saccadic 511 

eye-movements are so fast and energetically efficient (47) that they are less likely to be responsible for 512 

such effects compared to high-order cognitive processes such as attention allocation mechanisms which 513 

have themselves been found to become fatigued as characterized by reduced capability to suppress 514 

irrelevant external cues (13). Such factors are likely to impact information acquisition and decision-515 

making during endurance sport and warrant further investigation. 516 

Conclusions 517 

(Paragraph 41) Although perhaps counterintuitive, this study challenges the degree of importance 518 

placed on knowledge of the endpoint to pacing in previous models. This is especially true for 519 

experienced cyclists for whom distance feedback was looked at secondary to, but in conjunction with 520 

information about speed.  Novice cyclists appear to have a greater dependence upon distance feedback, 521 

which they look at for shorter and more frequent periods of time than the experienced cyclists. 522 

Experienced cyclists are more selective in the information they refer to during a time-trial and they are 523 

also more consistent in the combination of primary and secondary information they use, and more 524 

consistent between various phases of a time-trial. The difference in information acquisition behavior 525 

observed in this study may reflect differences in motivational regulators, with experienced cyclists 526 

perhaps focusing more strongly on performing at the fastest speed and novices focusing on completion 527 

of the distance.  528 
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 (Paragraph 42) This study is the first to directly measure cyclists’ information acquisition behavior 529 

during a time-trial and the data shows that the information athletes attend to and use during self-paced 530 

endurance tasks is much more complex than previously assumed and not necessarily dominated by 531 

knowledge of the endpoint. The limitations associated with this study are that it cannot be assumed 532 

information acquisition would be the same during a road-based time-trial. There are also improvements 533 

to the analysis of time-series performance data that are needed to reveal hidden moments where a 534 

decision to alter pace has been made so that corresponding gaze behavior can be interrogated with 535 

greater precision. Nevertheless, this study has produced some exciting new insights about the 536 

information acquisition strategies of experienced and novice cyclists, as well as a new method for 537 

investigating visual attention and decision-making during paced exercise. 538 

 539 
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Figure Legends 

 

Figure 1. Overall time-trial performance (A) and time-trial pacing by segment for familiarization (B) 

and time-trial 1 (C). 

 

Figure 2. Novice and Experienced total gaze duration data (A) and average gaze frequency (B) for 

primary (most looked at) through to nonary (least looked at) information sources calculated over the full 

16.1 km distance for time-trial 1 (A) The type of information looked at with the corresponding number 

of subjects is presented alongside the data points in 2A for primary to tertiary sources but not included 

for quaternary to nonary sources. * denotes P<0.05; ** denotes P<0.01; *** denotes P<0.001. 

 

Figure 3. Experienced versus novice segment-by-segment time-trial 1 total gaze duration data for 

primary (A), secondary (B) and tertiary information sources (C). * Denotes P<0.05; ** denotes P<0.01; 

*** denotes P<0.001; NS denotes not significant.  

 

Figure 4. Experienced versus novice segment-by-segment time-trial 1 average gaze frequency for 

primary (A), secondary (B) and tertiary information sources (C). * Denotes P<0.05; ** denotes P<0.01; 

*** denotes P<0.001; NS denotes not significant. 

 

 



 

 

Table 1



  
Table 2. Individual gaze combinations of primary and secondary information sources.  

  

 ID 

Primary-
Secondary 

Combination 
for the Whole         

Time-Trial 
*Group 
Code 

Primary-
Secondary 

Combination 
Change by 
Segment             

(4-8-12-16 km)  

**Primary 
Dominance 
by Segment 

(%) 

Different 
Primary 
Sources 
Used per 
Segment 

(N)  

Primary 
Source 

Switches 
Between 

Segments 
(N) 

                
Novices       
  S13 DS 

1 
SD-DS-DS-PD 52-59-55-62 3 2 

 S3 DS DT-DP-DS-DS 50-56-57-54 1 0 
 S8 DS OV-DS-TS-DT 58-53-51-65 3 3 
  S10 DO 

2 
CD-HD-OD-DO 50-51-51-51 4 3 

  S11 DO DO-DP-DO-DO 51-65-64-61 1 0 
 S12 DP 3 DP-DP-PD-DT 58-53-56-78 2 2 
  S7 PD 4 DV-PT-PS-DS 55-60-60-60 2 2 
  S9 SD 5 SD-SD-SO-SD 56-52-55-52 1 0 
  S6 VD 6 DP-VO-VO-DO 55-57-66-56 2 2 
  S1 TP 7 OT-PV-TP-DV 51-56-51-62 4 3 
Mean    54-56-57-60 2.3 1.7 
S.D.    3-4-5-8 1.2 1.3 
Mode DS  ##-##-##-DO  1 2 
               
Experts       
  S24 SD 

5 

SD-SD-SD-SD 61-62-64-64 1 0 
 S25 SD SP-SD-OD-SH 50-50-52-52 2 2 
 S26 SD DS-DS-SD-SD 54-52-62-71 2 1 
 S30 SD SO-SO-SD-SO 66-62-58-61 1 0 
 S32 SD SD-SO-SO-SD 64-64-70-66 1 0 
  S22 SO 

8 
SD-ST-OS-SO 78-79-59-53 2 2 

  S27 SO SD-SO-SO-SD 69-57-70-59 1 0 
 S21 SP 

9 
SP-SO-SP-DS 65-65-72-51 2 1 

 S28 SP SP-SP-SO-SP 68-61-68-69 1 0 
  S23 PS 10 PS-PS-PD-SH 63-65-59-52 2 1 
Mean    64-62-63-60 1.5 0.7 
S.D.    8-8-7-8 0.5 0.8 
Mode SD   ##-SO-SO-SD   1 0 
Note - *Group code represents a specific combination of primary-secondary point of regard; **Dominance 
of the primary point of regard is expressed as a percentage of the combined gaze time for both primary and 
secondary points of regard. Primary-secondary point of regard combinations are represented by two letters, 
with each single letter being coded as follows: S=Speed; D-Elapsed DIstance; P=Power; C=Cadence; 
H=Heart Rate; T=Elapsed Time; R=Ratings of Perceived Exertion; V=Projector Simulation View and 
O=Other. ## Indicating mode shared by more than one category 
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