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Abstract 

Purpose  To investigate the effects of high-intensity interval (HIIT) running on markers of 

gastrointestinal (GI) damage and permeability alongside subjective symptoms of GI 

discomfort. Methods  Eleven male runners completed an acute bout of HIIT (eighteen 400 m 

runs at 120% O2max ) where markers of GI permeability, intestinal damage and GI 

discomfort symptoms were assessed and compared with resting 

conditions. Results  Compared to rest, HIIT significantly increased serum lactulose:rhamnose 

ratio (0.051 ± 0.016 vs. 0.031 ± 0.021, p = 0.0047; 95% CI = 0.006 - 0.036) and sucrose 

concentrations (0.388 ± 0.217 vs 0.137 ± 0.148 mg.l-1; p < 0.001; 95% CI = 0.152 - 0.350). In 

contrast, urinary lactulose:rhamnose (0.032 ± 0.005 vs 0.030 ± 0.005; p = 0.3; 95%  CI = -

0.012 - 0.009) or sucrose concentrations (0.169 ± 0.168% vs 0.123 ± 0.120%; p = 0.54; 95% 

CI = -0.199 - 0.108) did not differ between HIIT and resting conditions. Plasma I-FABP was 

significantly increased (p < 0.001) during and in the recovery period from HIIT whereas no 

changes were observed during rest. Mild-symptoms of GI discomfort, were reported 

immediately- and 24 h post-HIIT, although these symptoms did not correlate to GI 

permeability or I-FABP. Conclusion Acute HIIT increased GI permeability and intestinal I-

FABP release, although these do not correlate with symptoms of GI discomfort. Furthermore, 

by using serum sampling, we provide data showing that it is possible to detect changes in 

intestinal permeability that is not observed using urinary sampling over a shorter time-

period.   
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Abbreviations:  ANOVA Analysis of variance 

ELISA Enzyme-linked immunosorbent assay 

GI Gastrointestinal  

   HIIT High-intensity interval training  

   HR Heart rate 

   I-FABP Intestinal-fatty acid binding protein 

   L:R Lactulose:rhamnose ratio 

   NSAID non-steroidal anti-inflammatory drug 

   RPE Ratings of perceived exertion 

   TC Thermal comfort 

Introduction 

Gastrointestinal (GI) discomfort is common among distance runners, with prevalence 

estimated to range between 30-90%, depending upon the event, sex and the screening methods 

(de Oliveira et al. 2014). During ultra-endurance running events, as many as 96% of 

participants have been reported as experiencing GI symptoms (Stuempfle et al. 2015). 

Symptoms expressed during endurance exercise typically include nausea, cramping, bloating 

and diarrhoea (Peters et al. 1999; Ter Steege et al. 2008). The severity of such symptoms can 

range from mild, which does not impair performance, to severe which may not only impact 

performance but also health (de Oliveira et al. 2014; Riddoch and Trinick 1988). Situated 

between these ends of the symptomology continuum, acute exercise activity may also impact 

upon digestion, absorption and importantly, the recovery process (Riddoch et al. 1988; van 

Wijck et al. 2013a; de Oliveira et al. 2014).  



The aetiology of exercise-related GI symptoms is thought to be multifactorial, but decreased 

splanchnic perfusion has been postulated as a key mechanism (van Wijck et al. 2012). During 

exercise, there is a redistribution of blood flow, which results in splanchnic hypoperfusion (Otte 

et al. 2001). Decreased blood flow, and the resulting decrease in oxygenation of the intestinal 

epithelial cells, can lead to a loss in epithelial integrity, as can increased epithelial temperature, 

which have been associated with increased gastrointestinal permeability, bacterial and 

endotoxin translocation, and intestinal inflammation (Dokladny et al. 2006; van Wijck et al. 

2012). It has been shown that there is an inverse relationship between splanchnic blood flow 

and exercise intensity (Ott et al. 2001) with increased exercise intensity resulting in more 

pronounced intestinal permeability (Pals et al. 1997). Increased intestinal permeability has also 

been suggested to play a role in exertional heatstroke (Lambert 2004). Some connection has 

been made between increases in endotoxaemia and GI symptoms in athletes during and 

following prolonged strenuous exercise (Brock-Utne et al. 1988; Jeukendrup et al. 2000; 

Altenhoefer et al. 2004) although markers of GI permeability and symptoms are not always 

connected. Athletes have presented both increases in permeability or elevated endotoxin 

concentrations without subsequent GI symptoms, or GI symptoms have been reported without 

increases in GI permeability (Jeukendrup et al. 2000; Moncada-Jiménez et al. 2009). There is 

also some discrepancy between some field studies showing increases in GI damage and 

symptoms (Brock-Utne et al. 1988), and laboratory studies showing increases in GI damage 

but not symptoms (Lambert et al. 2008).  

Traditional assessment of GI permeability has relied upon a 5 h urinary collection period whilst 

the subject remains fasted, which may be impractical with athletic populations. It has been 

shown that determination of the ratio of saccharide concentrations in serum correlates with the 

5 h urine ratio and has been shown to be an acceptable alternative to urine and can reduce the 

sample collection time to 90-120 minutes (Fleming et al. 1996). Determination of saccharide 



concentrations in plasma have also been used to show increases in GI permeability following 

exercise (Van Wijck et al. 2011; JanssenDuijghuijsen et al. 2016). Plasma analysis revealed 60 

minutes cycling at 70% maximal capacity increased intestinal permeability, measured at 140 

minutes, while urine samples at 2 h showed a non-significant increase in permeability (Van 

Wijck et al. 2011). It has though, been shown that more than 50% of orally ingested saccharides 

in solution reach the colon in just 2 h and the mono- to di-saccharide ratio from urine output 

after 0-2 h maybe representative of colonic and small intestinal permeability (Camilleri et al. 

2010). 

More recently, the use of I-FABP, a small (15 kDa) cytosolic protein specifically present in 

mature enterocytes of the small intestine, has also emerged as an early and sensitive marker of 

small intestinal injury (Pelsers et al. 2003; Derikx et al. 2008). It has been shown that increases 

in I-FABP correlate with splanchnic hypoperfusion (Van Wijck et al. 2011). Whilst multiple 

models of exercise have been shown to alter I-FABP (van Wijck et al. 2012; Barberio et al. 

2015), increases in I-FABP have not been conclusively shown to correlate to the onset or 

severity of GI symptoms (Van Wijck et al. 2011). 

Endurance training in both elite and non-elite athletes typically involves exercise that can vary 

in frequency, duration and intensity (Seiler 2010). Descriptive studies of elite runners have 

shown that while 80% of training sessions appear to be steady state and performed at low 

intensities (< 2 mM blood lactate), around 20% of training consists of periods of high-intensity 

exercise (> 4 mM blood lactate), that is usually completed as intervals at approximately 90% 

O2max (Seiler 2010). High-intensity interval training (HIIT) is central to athlete training, based 

on the premise that it improves middle distance running performance, O2max and running 

economy (Billat 2001; Daussin et al. 2008), induces fat loss (Trapp et al. 2008) and is perceived 

to be more enjoyable than moderate intensity steady state exercise (Bartlett et al. 2011). 

However, despite the growing realisation and understanding as to the physiological benefits of 
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HIIT (Gillen et al. 2013), to the authors’ knowledge the effects of acute HIIT protocols on 

markers of GI damage and permeability, and symptoms of GI discomfort are not well 

characterised. Furthermore, given that GI symptoms are reported to be more common during 

“hard” runs compared to “easy” type training sessions (Riddoch and Trinick 1988), there is a 

definitive need to better understand the acute effect of HIIT on GI profile.  

We therefore conducted the present study to characterise the acute effects of a HIIT running 

session on markers of small intestinal damage, intestinal permeability and whether these were 

associated with symptoms of GI discomfort. When compared with resting conditions, we 

hypothesised that acute HIIT (using a model considered relevant for elite runners) would 

significantly increase markers of intestinal damage (I-FABP), permeability (primarily 

lactulose:rhamnose ratio) and symptoms of GI discomfort.  

Methods 

Eleven trained runners (mean ± SD O2max 60.0 ± 3.2 mL kg−1
min−1, body mass 75.1 ± 5.8 

kg, height 179.1 ± 8.9 cm, age 33.1 ± 10.4 years) completed the study. The criteria used for 

selection was a minimum 10km race performance of 39 min, and a minimum of 5 training 

sessions a week. Runners were excluded if they had been adherent to medications at any time 

one month prior to participation, had a history of GI symptomology i.e. IBS or disease, or 

previous abdominal surgery. All runners were informed about the purpose of the study, the 

practical details, and the risks associated with the process before giving their written consent. 

The Ethics Committee of Liverpool John Moores University approved the study.  

Experimental design 

In a repeated measures counter-balanced design, and after previously completing an assessment 

of O2max, participants reported to the laboratory on 2 occasions, separated by a minimum of 

7 days, to complete the HIIT and rest trials. Prior to the first visit, participants completed a 24 
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h food diary and repeated this diet prior to the second visit. For a given participant, each trial 

was conducted at the same time of day, beginning between 07:00 and 10:00. No alcohol 

consumption, non-steroidal anti-inflammatory drug (NSAID) consumption, fibre-rich or spicy 

food product consumption, unaccustomed or strenuous exercise was permitted during this 

period. On the morning of each trial, participants were informed to eat a small breakfast, typical 

of that consumed prior to training or competition and that this breakfast should remain the same 

for each visit. Participants arrived at the laboratory on the morning of the trial. After obtaining 

measures of nude body mass, an indwelling cannula (Safety Lock 22G, BD Biosciences, West 

Sussex UK) was inserted into the anticubital vein in the anterior crease of the forearm and a 

resting blood sample drawn. After the resting blood sample, the cannula was flushed with ~5 

ml of sterile saline to keep the cannula patent. This procedure was repeated after each 

subsequent blood draw. Standing, posture-controlled venous blood samples were taken pre-

exercise, after each set of exercise, and 2 h post baseline. Participants also provided a urine 

sample pre, and 120 minutes post exercise, and at the same corresponding time points during 

non-exercise rest trial. At each sample point, urine volume was recorded and 20 mL was 

directly transferred to pre-chilled containers, and frozen at -80 oC for later analysis. 

 

Assessment of maximal oxygen uptake 

O2max was assessed using an incremental exercise test performed on a motorized treadmill 

(HP Cosmos, Germany). Oxygen uptake was measured continuously during exercise using an 

on-line gas analysis system (Oxycon Pro, Carefusion, Germany). The test commenced with a 

2-min stage at 10 kmh-1 followed by 2-min stages at 12 kmh-1, 14 kmh-1, and 16 kmh-1. On 

completion of the 16 kmh-1 stage, the treadmill was inclined by 1% every 2 minutes thereafter 

until volitional exhaustion. O2max was stated as being achieved by the following endpoint 
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criteria: (1) heart rate within 10 beats min−1 of age predicted maximum, (2) respiratory 

exchange ratio >1.1 and (3) plateau of oxygen consumption despite increased workload. Peak 

O2 was determined from the mean of last 10 s of each 2 minutes of each interval. Based on 

the results of the incremental test, the running speed corresponding to 100% O2max was 

estimated for each participant using a linear regression equation. The running speed 

corresponding to 120% was then calculated.  

 

HIIT protocol 

The high intensity interval exercise protocol consisted first of a 5 minute rest period, then a 5 

minute warm-up run at a velocity corresponding to 50% O2max, and finally 5 minutes of active 

stretching. Participants then performed a total of 18 x 400 m interval efforts, performed on a 

motorized treadmill (HP Cosmos, Germany). The running pace for the interval runs was based 

on individual’s pre-assessed O2max, corresponding to 120% of their O2max. Each interval 

was followed by running at a velocity associated with 50% O2max for an amount of time equal 

to 75% of that taken to run the 400 m. These were divided into 3 sets of 6 × 400 m runs 

separated by 3 minutes of complete rest. Measurements of heart rate (HR) (Polar FT1, Finland), 

and subjective ratings of perceived exertion (RPE) (Borg 1970), thermal comfort (TC) 

(Matzarakis et al. 1999) and gastrointestinal discomfort using a modified Likert scale (Nieman 

et al. 2006) were obtained during each trial. Participants were permitted to consume water ad 

libitum during and after each trial; drinking patterns were not recorded although participants 

were encouraged to consume fluid during the trials in order to prevent dehydration. On 

completion of exercise, participants remained in the laboratory, resting until 2 h post-baseline 

for further sampling. During the resting protocol, the participants remain seated for 120 
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minutes. All measurements and sampling took place at times mimicking the sampling points 

of the HIIT exercise protocol (Fig. 1).  

 

Assessment of intestinal damage  

I-FABP concentrations from EDTA plasma were determined using an ELISA (Hycult 

Biotechnology, Uden, the Netherlands; detection window 47 – 3000 pg/ml) according to the 

manufacturer’s instructions. Plasma samples were taken at baseline, following each of the 3 

sets of 6 x 400 m runs, and at 90 and 120 minutes. The coefficient of variance was 8% for 

between-sample duplicates.  

 

Assessment of intestinal permeability  

Permeability was assessed using a previously published protocol (Fleming, Duncan et al. 

1996), with the modification of using L-rhamnose instead of mannitol as the monosaccharide 

probe. Briefly, at baseline, participants drank a standardized sugar solution containing 5 g 

lactulose, 2 g rhamnose, 1 g sucrose and 0.5 g D-xylose in a total of 50 ml water. Saccharide 

concentrations were determined from serum samples 120 minutes post baseline. Participants 

also provided urine samples 120 post baseline for analysis. The various sugars were separated 

by HPLC and quantitated by use of a pulsed electrochemical detector using a gold working 

electrode and silver/silver chloride reference electrode. The detection potential was -0.01 V (0-

0.5 s), the oxidation potential was +0.75 V (0.51-0.64 s), the reduction potential was -0.75 V 

(0.65-0.75 s), and the integration period was 0.05 to 0.5 s. The coefficient of variation using 

this method has been found to be between 1.8 – 8.5%. 

 



Assessment of GI discomfort 

During both experimental protocols GI symptoms were assessed using a GI discomfort scale 

(adapted from Pfeiffer et al. 2009). During exercise, global GI symptoms were scored on a 9-

point scale, with a score > 4 being regarded as serious. At the end of exercise participants 

completed a more detailed questionnaire (adapted from Pfeiffer et al. 2012) in order to assess 

more specific symptoms of GI discomfort during the session, such as bloating, flatulence and 

urge to vomit. GI symptoms were scored on a 10-point scale (0 = no symptoms and 10 = 

extreme symptoms) with a score >4 being regarded as serious. This questionnaire was 

completed again at 24 h post activity and participants were asked to assess GI symptoms during 

the last 24 h, since the experimental visit. Using this questionnaire, participants also rated 

symptoms typically experienced in their habitual training during the following types of training 

runs; short steady-state runs (< 60 minutes), long steady-state runs (> 60 minutes), and high 

intensity interval runs, as well as symptoms typically experienced at rest. 

 

Statistical analyses 

Statistical analysis was conducted using the Statistical Package for the Social Sciences software 

programme (SPSS, version 23). A two-factor repeated measure ANOVA was used to analyse 

plasma I-FABP with condition (rest, exercise) and various time points (pre, set 1, set 2, post, 

90 min, 2 h) as the independent variables. Pairwise t-tests with a Bonferroni corrections were 

used to compare time points between conditions. Intestinal permeability was assessed using 

paired t-tests. To evaluate data on GI symptoms, a nonparametric statistical approach was 

chosen, as scores on GI symptoms were mainly reported on the low end of the scale and not 

normally distributed. Mean values were compared with the use of Wilcoxon Signed Rank tests. 

Pearson correlation was used to analyse the relationship between significantly increased GI 



symptoms, with post exercise I-FABP and intestinal permeability measured in serum. All 

normally distributed data are presented as mean ± standard deviation (SD), data not normally 

distributed are reported as median and range. P < 0.05 was considered statistically significant. 

 

Results  

Physiological responses to acute HIIT protocol 

Participants ran a total of 7.2 km-1 at a velocity of 17.7 ± 1.0 km.h-1, while recovery running 

totalled 2.2 ± 0.1 km at a velocity of 8.9 ± 0.5 km.h-1. HR, RPE and thermal comfort increased 

incrementally throughout interval bouts with peak values of 187 ± 10 bpm (95 ± 6% HRmax), 

19 ± 1, and 8.5 ± 0.7, respectively. 

 

I-FABP as a biomarker of intestinal damage 

A significant interaction effect between condition and time was found (p = 0.002). I-FABP 

increased 72% during HIIT from baseline concentration of 481 ± 334 pg/mL to mean peak 

levels of 829 ± 448 pg/mL immediately post exercise and then decreased during subsequent 

recovery, whilst there was no change during rest (see Figure 2). There was no significant 

difference in baseline I-FABP concentrations between HIIT (481 ± 334 pg/mL) and rest 

condition (263 ± 149 pg/mL) (p = 0.2).   

 

Gastrointestinal permeability 

The lactulose:rhamnose ratio (L:R) in serum was 59% higher following HIIT when compared 

to the resting condition (0.051 ± 0.016 vs. 0.031 ± 0.021, p = 0.0047) (see Figure 3A). However, 

there was no significant difference in urinary L:R between rest and HIIT trial (p = 0.37) (see 



Figure 3B). There was no correlation between serum and urinary L:R (r = -0.179, p = 0.21), 

Serum sucrose recovery was also significantly higher during the HIIT trial when compared to 

the resting condition (0.388 ± 0.217 vs. 0.137 ± 0.148%, p < 0.001). There was no difference 

in urinary sucrose recovery following HIIT (0.169 ± 0.168%) compared to rest (0.123 ± 

0.120%, p > 0.05).  

 

Gastrointestinal discomfort 

During habitual training, participants reported uncertain increases in symptoms including 

“Bloating”, “Flatulence”, and “Urge to defecate” during both long steady state and high 

intensity interval runs compared with rest and short steady state runs (p > 0.05, data not shown), 

although symptoms were typically low to mild (≤ 4). During experimental visits, global peak 

GI symptoms were higher during HIIT compared with rest (3.0 ± 2.5 vs. 0.3 ± 0.5, p < 0.01).  

The results of the specific GI symptoms are displayed in Table 1. During both trials, GI 

symptoms were mostly scored at the low end of the scale (“no problems at all”, “very minor 

problems”). For symptoms during activity, severity scores for “Bloating”, “Urge to burp” and 

“Flatulence” were higher, and 24h “Bloating’ and “Stomach cramps” were higher in HIIT 

compared to the rest condition (p < 0.05). From these symptoms which were significantly 

increased, there was no significant correlation with any of these to either post-exercise I-FABP 

or serum L:R (see Table 2).  

 

Discussion 

The aim of the present study was to characterise the acute effects of a HIIT running session on 

markers of small intestinal damage, intestinal permeability and symptoms of GI discomfort. 

We report for the first time, that in a group of trained male runners, acute HIIT increased 



markers of gastrointestinal permeability (both L:R and sucrose) and small intestinal injury (I-

FABP). Runners also reported acute symptoms of GI discomfort (bloating, urge to burp, 

stomach cramps and flatulence) during and in the 24 h post exercise, although these markers 

of discomfort did not correlate with measures of GI permeability or damage.  

During exercise, there is a redistribution of blood away from the splanchnic area, analogous 

with increased blood flow to heart and contracting skeletal muscle. The magnitude of such 

reductions in splanchnic blood flow appears to be related to relative exercise intensity 

(McAllister 1998). It has been shown previously that the extent of this exercise-induced 

splanchnic hypoperfusion significantly correlates with intestinal damage, measured as plasma 

I-FABP concentration (Van Wijck et al. 2011). I-FABP is a cytosolic water-soluble protein, 

which appears to be present in mature enterocytes of the small and large intestine (Pelsers et 

al. 2003). As such, plasma I-FABP is considered a sensitive measurement of small intestinal 

damage (Pelsers et al. 2003; Derikx et al. 2008). Here, we report for the first time that I-FABP 

is increased during HIIT running session following a similar temporal sequence to that reported 

by others following steady state exercise. The increase in these plasma parameters could, 

theoretically, be partly attributed to an exercise-induced reduction in plasma volume. The 

increases, however, largely exceeded the  decreases in plasma volume that have been described 

in athletes following HIIT exercise of up to 20% (Kargotich et al. 1998; Kavouras 2002; 

Graham et al. 2016). Also, given that I-FABP is a small (15 kDa), water-soluble protein, 

changes in plasma volume may have less of an effect, should it permeate through the 

microvascular system at a proportionate rate to plasma solvent (Michel et al. 1999). 

Nonetheless, peak values exceed those previously seen following 60 minutes of cycling at 70% 

peak power output (Van Wijck et al. 2011; van Wijck et al. 2012), 60 minutes of running at 

70% O2max in the heat (Sessions et al. 2016)  but are lower than I-FABP levels reported 

following exhaustive running in the heat (Barberio et al. 2015).  Differences between studies 
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may be attributable to analytical procedures, subject characteristics and exercise intensities and 

durations. However, taken together, such data further suggest that factors affecting splanchnic 

blood flow (i.e. intensity, exhaustion, heat stress etc.) are potent regulators of intestinal damage. 

Of note in the present study is the seemingly large day to day variations in I-FABP 

concentrations within participants, and the large variation in response to exercise. For example, 

although pre-test conditions were standardised as much as possible, one participant’s baseline 

values were 318 pg/mL and 1218 pg/mL during rest and HIIT conditions respectively. In total, 

nine of the eleven participants’ baseline values were higher during HIIT compared to resting 

condition. This may be due to poor compliance with pre-test conditions, psychological factors 

such as anxiety of having to perform strenuous exercise, which has been shown to effect GI 

symptoms (Haug et al. 2002), or other factors unknown to the authors. As such, further studies 

may be required to examine day-to-day variations, as well as the effect of other factors on I-

FABP. 

Intestinal permeability has been clinically defined as the non-mediated diffusion of large, 

normally prohibited molecules (> 0.15 kDa molecular mass) from the intestinal lumen to the 

blood (Travis et al. 1992; Zuhl et al. 2012). Due to differences in the dosages of the probes 

used, time delivered in relation to exercise, and analytical methods, it is difficult to compare 

L:R values between studies. However, the relative increase in L:R here (59%) is similar to 

those seen previously following 60 minutes of continuous running of 60-70% O2max, (33-

78%) (Pals et al. 1997; Lambert et al. 2008). Nonetheless, the methodological approach used 

here holds promise for future investigations. Traditionally, 5 hour urine collection and 

percentage recovery of sugar probes has been used to assess intestinal permeability. This 

method has been shown to be sensitive to changes in permeability caused by exercise of varying 

modalities, durations and intensities (Pals et al. 1997; Nieuwenhoven 1999; Lambert et al. 

2008; Marchbank et al. 2011). However, the main disadvantage of this method is the need to 
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collect all urinary output for 5 hours, with participants normally remaining fasted. Given that 

both saccharides are assumed to be affected in the same way to pre- and postmucosal 

confounders such as gastric dilution, gastrointestinal motility, bacterial degradation, renal 

function or changes in plasma volume (Bischoff et al. 2014), changes in GI permeability may 

also be detected from plasma or serum. We have shown that by measuring sugar probes in 

serum, we could quantify exercise induced increase in L:R and sucrose concentration 2 hours 

after probe ingestion. Conversely, analysis of urine collected at 2 hours did not show any 

differences, both of which agrees with previous works (van Wijck et al. 2011). It has been 

suggested that the use of plasma and serum samples increases the detection sensitivity, thus 

reducing the need for large oral doses (van Wijck et al. 2013b), and reduces the collection time 

(Fleming et al. 1996). We show here that serum sampling is a more time efficient method of 

assessing GI permeability and we were able to detect increases in permeability 2 hours after 

probe ingestion but were not able to using urine sampling over the same time course.  

Although we have shown that an acute bout of HIIT increases I-FABP and L:R, these did not 

correlate to any increases in ratings of GI discomfort, either during or in the following 24 hours 

after exercise and overall scores were low to mild (all median values < 4). The low scores for 

GI discomfort may be due to the fact that the cohort were healthy, well trained males who were 

also accustomed to the exercise modality, well hydrated and had no history of GI disease. This 

is consistent with much of the recent laboratory-based research into single exercise sessions 

and markers of GI damage. Many of these have reported measures of increased intestinal 

damage but reported either low or mild scores of GI discomfort during acute exercise bouts 

(Lambert et al. 2008; van Wijck et al. 2011) or have not reported GI symptoms at all 

(Marchbank et al. 2011; Zuhl et al. 2014). Even 60 minutes of running in the heat, 30 minutes 

of which was a distance time trial, mean symptoms were rated as very mild to noticeable 

(Morrison et al. 2014). This apparent discrepancy between symptom expression between field 



and laboratory studies may be due to a number of factors. Exercise modalities used in 

laboratory studies have often been shorter in duration and lower in relative intensity than those 

typically seen in competitive endurance races. Competitive events could also cause increases 

in mental stress not seen in laboratory studies which could exacerbate GI symptoms due to 

further decreases in splanchnic blood flow (Murray 2006), direct changes to intestinal bacterial 

composition (Palma et al. 2014) or effects on GI transit time via the central nervous system 

(Brouns et al. 1993). There may also be specific nutritional strategies employed during 

competition that lead to GI symptoms, that are not used during the training cycle, such as 

carbohydrate loading and/or carbohydrate ingestion during exercise (de Oliveira et al. 2011). 

Participants in the current study reported only low to mild symptoms experienced during 

typical training runs. Further investigations should look to better identify whether there are 

unique aetiologies relating to different exercise modalities (i.e. long duration, steady state vs. 

shorter, high intensity) and between training and competition.  

Although the present study provides novel measurements of intestinal damage following HIIT 

running which have not been reported before, there are some limitations to be considered. 

Firstly, there was no steady-state exercise to act as a control. Whilst we have shown that HIIT 

running leads to increases in markers of damage, had a workload-matched, steady-state running 

protocol been included, this may have shown whether HIIT caused additional damage due to 

the activity profile. For example, it is known that upper GI symptoms may be exacerbated by 

HIIT due to a reduction in gastric emptying compared to steady-state exercise (Leiper et al. 

2001). The current sample also did not include any females despite GI symptoms appearing to 

be more prevalent in female athletes (de Oliveira et al. 2014), and as such, further studies 

should examine any separate effects of exercise on markers of intestinal damage in females. 

Finally, while splanchnic hypoperfusion is considered to be the primary factor in exercise-



induced intestinal damage, this was not directly measured here, due to obvious technical 

difficulties this would incur during high intensity running. 

In summary, we report for the first time that acute high intensity interval running increases 

gastrointestinal permeability and intestinal cellular damage in trained male runners though such 

markers do not correlate to symptoms of GI discomfort. Furthermore, by using serum sampling, 

we also provide novel data by observing that it is possible to detect changes in intestinal 

permeability over a shorter time-period, which could not be detected via urinary sampling, 

which may advantageous for any future investigations that involve the participation of elite 

athletes. Future studies should continue to examine the functional relevance of markers of 

intestinal damage, particularly during “real-world” training sessions and when there is an 

absence of symptoms of GI discomfort. Finally, more work is required to accurately report the 

prevalence of GI symptoms during, and following, different training modalities and further 

investigations could lead to more understanding of any unique aetiology of symptoms linked 

with such exercise or the associated training and competition practices.  
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Table 1. GI symptoms during rest and HIIT conditions and the following 24 hours. 

Data are median and range. * higher GI symptom scores following HIIT versus rest 

 

  

 Exercise 24 hours 

Symptom Rest HIIT Wilcoxon 

p value 

Rest HIIT Wilcoxon 

p value 

Side stitch 0 (0) 0 (0-1) 0.317 0 (0) 0 (0) 1.000 

Nausea 0 (0-1) 0 (0-5) 0.157 0 (0) 0 (0-1) 0.157 

Bloating 0 (0-1) 1 (0-6) 0.027* 1 (0-2) 2 (0-8) 0.034* 

Urge to burp 0 (0-2) 1 (0-6) 0.027* 0 (0-3) 0 (0-2) 0.915 

Urge to vomit 0 (0) 0 (0-4) 0.109 0 (0) 0 (0-2) 0.317 

Urge to defecate 0 (0-1) 0 (0-8) 0.062 2 (0-5) 3 (0-6) 0.150 

Diarrhea 0 (0-3) 0 (0-3) 0.0785 0 (0-3) 0 (0-3) 0.785 

Flatulence 1 (0-2) 2 (0-6) 0.037* 0 (0-4) 2 (0-5) 0.018 

Stomach Cramps 0 (0-5) 0 (0-6) 0.833 0 (0) 0.9 (0-8) 0.042* 

Stomach upsets 0 (0-3) 0 (0-4) 0.139 0 (0-1) 0 (0-3) 0.285 



Table 2. Correlations between GI symptoms with I-FABP and L:R 

 I-FABP L:R 

Symptom Correlation p value Correlation p value 

Exercise     

Bloating 0.0114 0.739 0.084 0.826 

Urge to burp 0.071 0.835 -0.324 0.392 

Flatulence 0.206 0.544 -0.068 0.861 

24 hours     

Bloating -0.066 0.848 -0.172 0.484 

Flatulence 0.343 0.302 -0.358 0.384 

 

  



Fig. 1. Schematic overview of the experimental protocol. Urine and blood samples were taken at the 

same corresponding time points during rest as they were during HIIT 

 

Fig. 2. Mean (±SD) plasma I-FABP concentrations during rest and HIIT conditions.  * Significant 

difference between baseline (p < 0.05) 

 

Fig.3 Mean and individual serum (A) and urinary (B) lactulose to rhamnose ratios during rest and 

HIIT. p < 0.001 

 

  



 

  





 


