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Abstract. In this study, the problem of primary headache diagnosis
is considered, referring to multiple frames of reference, including the
complexity characteristics of living systems, the limitation of human
information processing, the enduring nature of headache throughout his-
tory, and the potential for intelligent systems paradigms to both broaden
and deepen the scope of such diagnostic solutions. In particular, the use
of machine learning is recruited for this study, for which a dataset of 836
primary headache cases was considered, originating from two medical
centres located in Turkey. Five primary headache classes were derived
from the data obtained, namely Tension Type Headache (TTH), Chronic
Tension Type Headache (CTTH), Migraine With Aura (MwA), Migraine
Without Aura (MwoA), followed by Trigeminal Autonomic Cephalalgia
(TAC). A total of 9 machine learning based classifiers, ranging from
linear to non-linear ensembles, in addition to 1 random baseline pro-
cedure, were evaluated within a supervised learning setting, yielding
highest performance outcomes of AUC 0.985, sensitivity 1, and specificity
0.966. The study concludes that modern computing platforms represent a
promising setting through which to realise intelligent solutions, which in
turn support the space of analytical operations needed to drive forward
diagnostic capability in the primary headache domain and beyond.

1 Introduction

Over the centuries, the phenomenon of headache, which is formally known as
Cephalalgia, has remained an enduring burden for societies and a significant
source of enigma within the domain of healthcare systems [1, 2]. Principally,
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headache is defined as pain occurring anywhere in the region of the head or
neck [3], though the boundary of such conditions remains incompletely defined.
Today’s accepted international standard is provided by the International Classi-
fication for Headache Disorders (ICHD) criteria [4], first introduced in 1988,
which describes both headache entities and diagnostic criteria. The prompt
and accurate diagnosis of headache conditions represents a critical step in the
healthcare pathway, since effective treatment relies on identification of the type of
headache process responsible for the patient’s condition [5, 6]. Such conditions
are currently dichotomised into two broad categories, primary (benign), and
secondary (serious), where the former occurrences are relatively common and
the latter constitute only around 10% of all known cases [7]. Although epidemi-
ological and impact studies of headache remain incomplete [8], it is indicated
that the combined prevalence of headache conditions is set at around 50% of
the global population, rendering an economic impact estimated to be £500
million per annum in the UK and between $5.6 and $17.2 billion in the United
States alone [9]. Correspondingly, headache conditions account for one of the
most common complaints within primary and neurological care settings, with
a significant proportion of sufferers choosing not to seek medical attention [10]
and therefore remaining unreflected in the estimates.

In this study we focus on demonstrating a potential pathway of advancement
for the diagnostic process for the primary headache conditions, through the
use of an intelligent systems methodology. In particular, a consideration of
machine learning based diagnostics is undertaken, examining the potential role
for algorithmically composed services in unlocking the information utility of in-
creasingly numerous medical data channels. Our approach is grounded within the
supervised learning framework, seeking to evaluate a range of model architectures
that are trained to perform classification mappings, where response classes are
representative of entities within the headache domain and therefore correspond
to specific headache definitions. A consideration of 5 primary headache types
is undertaken, comprising Chronic Tension Type Headache (CTTH), Cluster
Headache (CH), Migraine with aura (MwA), Migraine without aura (MwoA),
Tension type headache (TTH), and Trigeminal Autonomic Cephalalgia (TAC).
Accordingly, the rest of this paper is therefore organised as follows. In Section 2
a review of prior works is undertaken, Section 3 considers machine learning as a
diagnostic solution; the approach and methodology for this study are covered in
section 4, sections 5 and 6 present results of exploratory and classification anal-
ysis, discussion and conclusions are given finally in sections 7 and 8 respectively,
completing the paper.

2 Review of Prior Works

At the intersection of the domains of primary headache diagnostics and intelli-
gent systems, a range of works are seen to exist in the literature. Intuitionistic
fuzzy sets are considered in [11, 12]. The studies use an interval-valued intuition-
istic fuzzy (IVIFS) weighted arithmetic average operator, with a min-max com-



position rule to determine the final diagnosis of disease. The authors concluded
that the IVIFS method is viable for medical diagnosis. An Artificial Neural
Network approach is considered in [13]. The study considers four types of primary
headache disorder over a sample of 2,177 patients. Results reported a sensitivity
and specificity of 0.93 and 0.91 for tension type headache, 0.99 and 0.94 for
migraine without aura, 1.0 and 0.98 for migraine with aura, and 1.0 and 0.96 for
medication overuse headache. A manually defined Decision Tree approach was
considered in [14], in which the criteria published by the International Headache
Society (IHS) are compared in terms of the performance of ad-hoc criteria. The
research found a 10% error rate yielded by use of the IHS diagnostic criteria.

Celik et al address migraine, tension-type, cluster, and other primary headaches
using an Artificial Immune System (AIS) algorithm in [15]. A sample of 850
patients was considered, reporting 94% classification accuracy, with the best
result reaching 99.65%. In another study, the same authors investigate the use
of the k-means algorithm in [16], restricting the scope of the study to migraines
with and without aura. The work uses the data of 288 students for use with
cluster based analysis, the authors conclude in closing discussion that the final
system performance is not acceptable when compared with results obtained from
a neurologist. Tezel and Kose apply an artificial immune approach, using a Clonal
Selection Algorithm [17] to analyse a sample of 150 headache patients and 65
healthy subjects, reporting a highest classification accuracy of 92%.

3 Machine Learning as a Diagnostic Solution

Diagnostic tasks can be considered a form of information intensive problem,
demanding processing pathways capable of maximising the utility of available
input. The space of primary headaches, seated in biological substrates, is com-
plex and demands a high-information factor. Conventionally, human actors have
necessarily undertaken the role of information processor, acting out routines
depending on a bounded numbers of variables, intuition, and commonly a pro-
cedural prototype or some form of regulation. However, given the availability
of inexpensive computing power and the increasingly available sensor technolo-
gies [18], it is possible to provided concentrated analytical power from within
a computational setting, shifting processing requirements into a form that is
no longer directly bounded by human resource dynamics or biological cogni-
tive limits. In fact the composition of intelligent systems, of which machine
learning represents an important constituent, allows information workloads to
be addressed autonomously, without the interference expected of thought-based
process artefacts, namely biologically bounded attention, memory, and decision
making [19, 20], in addition to intra and inter-observer variability [21], coupled
with limited, localised availability. Consequently, the integration of computation-
ally driven intelligent agency therefore promises to efficiently shift the boundaries
in diagnostic accuracy in headache, allowing an arbitrary number of simultaneous
patient features to be analysed without necessitating a team of human experts.
Such properties offer a good response to the problem of headache, given both its



complexity and prevalence in populations. Moreover, the continued adoption of
data oriented diagnostics promises to act as a feedback loop, allowing intelligent
systems to sustainably self improve and adapt, in addition to furthering our
understanding of the disease processes themselves.

4 Methodology

4.1 Dataset

The dataset used in this study represents 836 applicable primary headache
cases, collected from two medical institutions located in Turkey, namely Cerrah-
pasa Medical Faculty, Istanbul, followed by Mersin University Medical Facility,
Mersin. The ground truth for each case was determined by expert opinion, which
is assumed in this study to represent a reasonable proxy for the true diagnosis.
Diagnoses in the original dataset span a total of 8 primary headache types,
which were subsequently reduced to 5 distinct classes through consolidation of
the Trigeminal Autonomic Cephalalgias, which individually lacked sufficient case
quantities to be useful. The final headache classes considered therefore comprise:
Tension type headache (TTH), Chronic Tension Type Headache (CTTH), Mi-
graine with aura (MwA), Migraine without aura (MwoA), followed by Trigeminal
Autonomic Cephalalgia (TAC). The TAC category originally existed as 4 dis-
tinctly labelled subsets, namely Cluster Headache (CH), Paroxysmal Hemicrania
(PHem), Hemicrania continua (HC), and Short-lasting unilateral neuralgiform
headache with conjunctival injection and tearing (SUNCT).

4.2 Features

A total of 65 features are considered in this study, which can be summarised
according to 9 broad categories. Firstly, the patient’s sociodemographics were
extracted, revealing 4 features, namely age, gender, smoking status, and smok-
ing duration. Subsequently, Headache characteristics themselves are considered
using 6 distinct features, comprising Headache Onset (months), Headache Fre-
quency (days/months), Headache Characteristic (throbbing, pressing, stabbing,
dull, lightening), Headache duration (hours), Headache localisation (Bilateral
generalised, Bi-temporal, Calvarial, Facial Pain, Frontal, Occipital, Periocular,
Secondary generalised, and Unilateral), followed by Headache intensity (Visual
Analogue Scale, VAS). In conjunction with the former attributes, further features
comprised of Precipitant factors (8 features), Accompanying symptoms (11 fea-
tures), Psychological condition (5 features), in addition to examinations, namely
Fundoscopy (1 feature) and Neurological (1 feature). The patient’s medical
history was also included (21 features), followed by their family medical history
(8 features).

4.3 Preprocessing

Prior to the application of analytical operations, the raw dataset, originating as
a result of human input, was scrutinised to ensure consistency with the expected



domain of each feature, 2 cases were dropped due to the presence of malformed
information. Subsequently, all human readable character representations were
subject to mapping to discrete integer enumerations, yielding a numerical en-
coding over all features, as is required to provide suitable input for the machine
learning phase of analysis. Missing values at this point were substituted for
dummy values, such that the number of cases could be maintained; appropriately
values were chosen for each feature domain so as not to introduce conflicts. It
was later found that this approach did not unduly impact classifier performances.
The numerical representation of the problem space was then subjected to zscore
normalisation, yielding a consistent scale and location of values over all features.
As a result, the original dataset used for this study was applied to the analytical
phase in a unified numerically encoded form.

4.4 Supervised Learning Formulation

A numerically encoded representation derived from the original domain data is
used in this study as an operational substrate upon which a machine learning
problem may be established. In particular, a supervised learning problem is
formulated, where data may be interpreted as a series of numerically encoded
examples, of the form: xi,1, ..., xi,p, yi, where x represents a feature vector with
parameters 1 through p, and y ∈ 1, ..., 5 a ground truth value. Each value of y
may be considered a index pointing to one of the 5 classes of headache considered
in this study. Classifier models may be formed through repeated exposure to such
x, y pairs, following which the fitted model may be used to produce estimates of
y, given x alone, to produce ŷ. Such a functional mapping may be given formally
as f : x̄ → y ∈ {1, ..., 5}, where the learning element of the algorithm searches

by induction a hypothesis space F for a suitable f̂ ∈ F, with the aim of optimal
generalisation performance. In effect, once trained, the knowledge synthesised by
a model may be used to classify future inputs for which outputs are not known.

4.5 Model Architectures

The series of models considered in this study are listed in Table 1, accompanied
by respective architecture and hyperparameter values. In order to investigate
which model types may operate effectively with the dataset under consideration,
a variety of architectures have been posed, spanning multiple learning paradigms
and complexity classes. The use of a diverse model space ensures that the
potential information utility of the primary headache data may be profiled
while highlighting the strengths and weakness of the member algorithms within
this domain. Each model may be thought of as a hypothesis concerning which
structural elements of the dataset may be conducive to learning a classification
rule. An uninformed model, ROM, is used as a random baseline, while the LNN,
LDA, and SVM models represent linear model classes, followed by KNN and
TREEC which serve as weak non-linear learners, with the remaining models
acting as experimental models, capable of powerful non-linear approximation.



In particular, two hybrid ensemble models are introduced, H1 and H2, such
that weaknesses of individual models may be overcome while maintaining their
strengths [22].

Table 1: Models

No. Model Description Architecture Training Algorithm Role

1. ROM Random Oracle Model Pseudo-random
Number Generator

NA RAND

2. LNN Linear Neural
Network

35 Units, Linear
Activations

Batch training
with weight and
bias learning rules

LB

3. LDA Linear Discriminant
Analysis

Linear Combination Between class
maximisation via
closed form
equation [23]

LB

5. SVM Support Vector
Machine

Matrix Kernel Quadratic
Optimisation

LB

3. KNN K-Nearest Neighbour 5 Neighbours Instance Induction WNLB

3. TREEC Decision Tree
Classifier

Decision Tree Tree induction
using information
gain criterion

TC

6. RFC Random Forest
Classifier

Decision Tree
Ensemble with 200
trees

Random feature
subset bagging

TC

8. LEVNN Levenberg Neural
Network

Units: 68-55-5 Levenberg
Marquardt

TC

9. H1 Hybrid Stacked
Generaliser 1

Learners:
LEVNN 68-55-5,
SVM, KNN 25,10,3;
Combiner:
RFC 200 trees

Hybrid TC

10. H2 Hybrid Stacked
Generaliser 2

Learners:
KNN 25,20,15,12,10,3;
Combiner:
RFC 200 trees

Hybrid TC

Key:

RAND = Random Baseline

LB = Linear Baseline

WNLB = Weak Non-linear Baseline

TC = Test Classifier

4.6 Simulation Procedure

In order to obtain empirical results for the proposed case study, the dataset
previously discussed was used for the purposes of both training and testing in



relation to the range of classifiers under consideration. The procedures for train-
ing and testing were applied to all models, producing a set of class probabilities,
one for each of the 5 classes for each model. Importantly, such procedures were
subjected to 50 repeated trials, such that average responses could be obtained, to
attenuate the effect of outlying realisations. Additionally, the prepared dataset
was partitioned according to a 70% to 30% ratio to allow systematic isolation
between model fitting results and the generalisation performance obtained within
the testing procedure. Feature space mapping via Principal Component Analysis
(PCA) was subsequently estimated over the training set and the mapping applied
to both the training and test feature vectors, such that noise components and
the dimensionality were reduced. The first 55 principal components were used.

4.7 Performance Evaluation

To objectively measure the capability of the classifiers under study, a framework
of performance metrics is introduced and applied to the responses obtained from
the simulation procedure. A total of 7 scalar metric calculations are listed in
Table 2, including sensitivity and specificity, which are applied in conjunction
with graphical domain Receiver Operating Curve (ROC) analysis. ROC analysis
comprises a parametric curve in two dimensional ROC space, formed from true
and false positive rate measurements. Such graphical encoding provides detail
of the classification performance pertaining to a given model when accounting
for the complete space of decision thresholds. It is from this curve that an
optimal decision threshold may be chosen. In the case of this study, the minimum
Euclidean distance from the optimal location, the top North West corner, is used.
Conversely, ideal random guessing performance, given a dataset of infinite size,
falls along the diagonal running from the South West to the North East corners
respectively. Of additional importance is that ROC analysis, in addition to being
widely accepted in the medical domain [24], is agnostic to imbalances in class
representation, in contrast to a simple accuracy calculation. The scalar summary
metrics with the exception of Area Under Curve (AUC) are therefore dependent
on a distinct decision point.

Table 2: Performance Metrics

Metric Abbr. Computation Range

Area Under Curve AUC 0 6 area(ROC) 6 1 [0,1]

Sensitivity SEN TP/(TP+FN) [0,1]

Specificity SPEC TN/(TN+FP) [0,1]

Precision PRE TP/(TP+FP) [0,1]

F1 Score F1 2·(PRE·RC)/(PRE+RC) [0,1]

Youden’s J Statistic J Sensitivity + Specificity - 1 [-1,1]

Accuracy ACC (TP+TN)/(TP+FN+TN+FP) [0,1]

TP = True Positive Count, TN = True Negative Count

PRE = Precision, RC = Recall, ROC = Receiver Operating Characteristic



5 Exploratory Analysis

Following the derivation of a feature matrix and prior to primary classification
analysis, graphical domain representations of the data were constructed, en-
coding the problem in multiple perceptually accessible forms, each potentially
revealing structural facets of interest. A single perceptually complete view of the
data is not possible due to the high dimensional nature of the problem, though
the combination of views may used to offer a nonetheless useful representation.
In this study, both Principal Component Analysis (PCA) and t-Distributed
Stochastic Neighbourhood Embedding (tSNE) [25] techniques were used for this
purpose, providing graphical encodings of the primary headache feature space
as two dimensional views. Results from this procedure are listed in Figures 1
and 2. Jointly, the two graphical views reveal distinctive areas of clustering for
TTH, MwoA, and CTTH, with TAC and MwA appearing more diffuse and less
coherent. The tSNE domain plot appears to capture more sharply the essence
of such clustering, showing both areas of separability and conflation between
headache types within the two dimensional summary space. The visual domain
suggests that the data does in fact carry distinct structures and that classification
has a justifiable basis.
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Fig. 2: tSNE Plot

6 Results

The test results from the experimental procedure undertaken in this study are
presented as follows. Table 3 lists the results from each classifier in terms of the
7 scalar performance metrics considered; Figure 3 shows plots resulting from
ROC domain analysis, allowing visual inspection of the classifier responses over
each model and class, Figure 4 provides a visual summary of the AUC values
obtained from the former.
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Fig. 4: AUC Plots for the Test Set



Table 3: Results (test holdout)

Model Class Sensitivity Specificity Precision F1 J Accuracy AUC

ROM TTH 0.51 0.61 0.352 0.417 0.12 0.581 0.496

CTTH 0.615 0.362 0.151 0.242 -0.0229 0.401 0.419

MwA 0.333 0.852 0.148 0.205 0.185 0.814 0.482

MwoA 0.803 0.376 0.457 0.582 0.179 0.545 0.556

TAC 0.643 0.575 0.122 0.205 0.218 0.581 0.583

LNN TTH 0.938 0.966 0.918 0.928 0.904 0.958 0.979

CTTH 0.923 0.865 0.558 0.696 0.788 0.874 0.93

MwA 0.667 0.832 0.235 0.348 0.499 0.82 0.757

MwoA 0.955 0.9 0.865 0.908 0.855 0.922 0.953

TAC 0.857 0.771 0.255 0.393 0.628 0.778 0.822

LDA TTH 0.959 0.932 0.855 0.904 0.891 0.94 0.969

CTTH 0.923 0.83 0.5 0.649 0.753 0.844 0.924

MwA 0.833 0.652 0.156 0.263 0.485 0.665 0.783

MwoA 0.97 0.901 0.865 0.914 0.871 0.928 0.954

TAC 0.857 0.784 0.267 0.407 0.641 0.79 0.822

SVM TTH 0.939 0.915 0.821 0.876 0.854 0.922 0.97

CTTH 0.885 0.936 0.719 0.793 0.821 0.928 0.956

MwA 0.75 0.626 0.134 0.228 0.376 0.635 0.753

MwoA 0.939 0.901 0.861 0.899 0.84 0.916 0.942

TAC 0.643 0.863 0.3 0.409 0.506 0.844 0.793

KNN TTH 1 0.898 0.803 0.891 0.898 0.928 0.969

CTTH 0.731 0.95 0.731 0.731 0.681 0.916 0.882

MwA 0.75 0.703 0.164 0.269 0.453 0.707 0.772

MwoA 0.985 0.901 0.867 0.922 0.886 0.934 0.95

TAC 0.643 0.81 0.237 0.346 0.453 0.796 0.761

TREEC TTH 0.735 0.898 0.75 0.742 0.633 0.85 0.878

CTTH 0.615 0.73 0.296 0.4 0.346 0.713 0.717

MwA 0.417 0.6 0.0746 0.127 0.0167 0.587 0.535

MwoA 0.682 0.851 0.75 0.714 0.533 0.784 0.811

TAC 0.571 0.699 0.148 0.235 0.271 0.689 0.652

RFC TTH 0.959 0.924 0.839 0.895 0.883 0.934 0.984

CTTH 0.846 0.872 0.55 0.667 0.718 0.868 0.907

MwA 0.75 0.781 0.209 0.327 0.531 0.778 0.734

MwoA 0.955 0.891 0.851 0.9 0.846 0.916 0.957

TAC 0.714 0.771 0.222 0.339 0.486 0.766 0.803

LEVNN TTH 0.98 0.941 0.873 0.923 0.92 0.952 0.979

CTTH 0.923 0.929 0.706 0.8 0.852 0.928 0.94

MwA 0.667 0.858 0.267 0.381 0.525 0.844 0.81

MwoA 0.985 0.881 0.844 0.909 0.866 0.922 0.96

TAC 0.786 0.712 0.2 0.319 0.498 0.719 0.818

H1 TTH 0.959 0.949 0.887 0.922 0.908 0.952 0.985

CTTH 0.962 0.894 0.625 0.758 0.855 0.904 0.964

MwA 0.667 0.845 0.25 0.364 0.512 0.832 0.789

MwoA 0.939 0.921 0.886 0.912 0.86 0.928 0.959

TAC 0.857 0.732 0.226 0.358 0.589 0.743 0.874

H2 TTH 0.959 0.924 0.839 0.895 0.883 0.934 0.983

CTTH 0.885 0.894 0.605 0.719 0.778 0.892 0.942

MwA 0.75 0.626 0.134 0.228 0.376 0.635 0.797

MwoA 1 0.891 0.857 0.923 0.891 0.934 0.95

TAC 0.857 0.752 0.24 0.375 0.609 0.76 0.88



7 Discussion

From examination of the 5 primary headache classes, evaluated over the 9 models
and 1 random baseline, it is apparent that TTH, CTTH, and MwoA have yielded
viable results over nearly all of the informed classifiers, with exception of the
decision tree learner, achieving highest AUC values of 0.985, 0.96, 0.964, respec-
tively. Additionally, it can be observed that all three of these classes consistently
yield AUC values greater than 0.9, with the exception of evaluation over the
decision tree and KNN models. The classes TAC and MwA have yielded a
significantly lower band of performance, with AUCs of 0.88 and 0.81 respectively,
while following the same relative cross-model performance pattern as the other
classes. On observation of the ROC plots, the similarity in the performance
profile, with a few exceptions, can be confirmed. All models appear to exhibit a
similar behaviour over the classes, with the exception of the decision tree, the
KNN model, and to a lesser extent the RFC model. The highest sensitivities
were achieved by the KNN model with respect to the TTH class, followed by
the H2 ensemble model for the MwoA class, both of which achieved a perfect
result in terms of this metric. Sensitivities for the same were 0.898 and 0.891
respectively, indicating that such model-class combinations are a viable prospect.
Such a result can be filtered by the ROC geometry, showing that the KNN model,
although equally sensitive when compared to the H2 model, shows a less stable
performance profile overall in relation to the decision threshold. The highest
overall accuracy outcome was obtained by the LNN mode over the TTH class,
yielding a value of 0.958. Moreover, the other performance outcomes obtained
by this model were also comparable to the more powerful non-linear classifiers,
demonstrating the adequacy of a linear model complexity within the considered
data scenario. Finally, it is observed that the non-linear models offered little
advantage over the linear model classes, though all informed models significantly
outperformed the ROM random baseline.

8 Conclusion and Future Work

To investigate primary headache diagnosis within the intelligent systems frame-
work, an experimental procedure was undertaken in this study, considering a
dataset originating from two medical institutions in Turkey, containing over 800
cases. Five primary headache classes were used as targets in the study, over
which 9 machine learning based classifiers were simulated. Results showed that
a highest AUC of 0.985 could be obtained, followed by a highest sensitivity of 1
and a best specificity of 0.958. The most clearly discriminated classes were found
to be the TTH, MwoA, and CTTH respectively, with both linear and non-linear
model classes demonstrating significant capability. Less accurate results were
obtained for classes TAC and MwA, though it was found that data availability
for these headache types comprised significantly fewer cases than the other three
targets, leading to a hypothesis that an increase in data may equalise the result
distribution, which is to be considered in future work. It was also found that



there was little indication of the presence of non-linear components within the
dataset, as is demonstrated by the close similarity in performance between the
non-linear and linear model types.

In aggregate, the results demonstrate that intelligent systems represent a
promising approach for primary headache diagnosis, which in conjunction with
wider technological ecosystems likely hold significant potential to disrupt conven-
tional models of diagnostic delivery, positioned as a component of personalised
medicine. In future work, we aim to overcome some of the key limitations inher-
ent of the former case study. In particular, the assumption of a single headache
diagnosis should be extended to allow for multiple simultaneous diagnoses, since
multiple headache types are known to coexist in patients [26, 27]. Additionally,
it is understood that the ground truth labels used, the diagnosis provided by
expert opinion, has the potential itself to be inaccurate; an investigation of this
issue is warranted. The use of deep learning algorithms is a further avenue of
interest, since it was apparent that a change in feature representation via PCA
caused a significant shift in results, where deep network architectures are known
to internally facilitate such representational mappings [28]. Finally, the scope
of the study should be expanded to included physiological signals such as EEG
as an additional channel of information, since it may be possible that hidden
neurophysiological markers may lie present within the dynamics of such signals,
providing a more intimate vantage point of the living system state and therefore
leading to increased diagnostic performance.
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