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Abstract— Critical infrastructures encompass various sectors, 

such as energy resources and manufacturing, which tend to be 

dispersed over large geographic areas. With recent 

technological advancements over the last decade, they have 

developed to be dependent on Information and 

Communication Technology (ICT); where control systems and 

the use of sensor equipment facilitate operation. However, the 

persistently evolving global state of ICT has resulted in the 

emergence of sophisticated cyber-threats. As dependence upon 

critical infrastructure systems continues to increase, so too 

does the urgency with which these systems need to be 

adequately protected. Modelling and testbed development are 

now crucial for the study and analysis of security within 

critical infrastructures; particularly as testing within a live 

system can have far-reaching impacts, including potential loss 

of life. Existing testbed approaches are not replicable or 

involve the use of simulation, which impacts upon the realism 

of the datasets constructed. As such, the research presented in 

this paper discusses the novel development of a replicable and 

affordable critical infrastructure testbed for cyber-security 

training and research. The testbed can be used to anticipate 

cyber-security incidents and assist in the development of new 

and innovative cyber-security methods. The access to real-

world data for training, research and testing new design 

methodologies is a challenge for security researchers; as such, 

the aim of this project is to provide an original methodology 

for the construction of accessible data for cyber-security 

research. The testbed data is evaluated through a comparison 

with a simulation comprised of the same components. 

Keywords-critical infrastructure; cyber-security; modelling; 

testbed; data analysis; teaching. 

I.  INTRODUCTION (HEADING 1) 

Critical infrastructures are comprised of a network of 
interdependent man-made systems. They interoperate to 
provide a continuous flow of services, which are essential for 
economic development and social well-being. Food and 
water distribution, energy supply, finance, military defence, 
manufacturing, transport, governmental services and 
healthcare are all notable examples of services provided by 
critical infrastructures (Merabti et al.,). One of their key 
defining factors is society’s dependence on their amenities 
and the potential loss encountered if a successful physical or 
cyber-attack takes place. For example, Reichenbach et al., 
detail that public life within Germany would reach civil war 

levels if power supply breaks down; optimistic worst-case 
scenarios had this occurring within a 10-day period. This 
illustrates the emphasis placed on critical infrastructure 
safeguarding practices.  

All critical infrastructure areas are becoming substantial 
Information and Communication Technology (ICT) users; 
making use of automation to facilitate production and 
expand their services. ICT has also increased in areas such as 
agriculture and water (Mafuta et al.,), where control systems 
and the use of sensor equipment increases the efficiency of 
production to satisfy growing demands. For example, the use 
of robotics in farming to assist with labour-intensive work is 
revolutionising the way in which crops are grown and 
maintained (Mafuta et al.,). However, the challenge of low-
power operation, means that almost no update, encryption or 
debugging capabilities are possible for the sensors in place. 

Infrastructure interdependencies have developed as ICT 
usage has increased. Many companies accept that IC 
systems' communication is not encrypted and try to hide 
them within internal networks. Many network protocols have 
now been replaced by normal TCP and HTTP. The challenge 
is, many systems that were not accessible before, are now 
within the public internet. In addition, a critical failure in one 
infrastructure can directly lead to disruptions in others, 
exacerbating the risks being faced. This increase in 
digitisation and interconnectivity has also meant that such 
failures could be deliberately implemented from a remote 
location by means of a cyber-attack. Furthermore, the 
increasing complexity of cyber-attacks and the open source 
availability of attack-toolkits mean that effective security 
within critical infrastructures is a challenging task. 

Developing future cyber-attack countermeasures requires 
real-world critical infrastructure data, which can be 
problematic. Real-world data is sensitive and often 
classified, thus companies are unwilling to part with it, even 
to aid researchers and students investigating cyber-security 
methods that may help safeguard their systems in the future.  

The novel Micro-CI project, featured in this paper, aims 
to address the lack of access to experimental data and the 
hands-on experience needed to properly understand the 
challenges involved in an era of growing digital threats. This 
is achieved through the design and construction of a 
replicable critical infrastructure testbed for cyber-security 
training and research. 
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As such, the intended output of the project is to construct 
a bespoke ‘bench-top’ testbed for data generation; consisting 
of a model infrastructure system. The testbed is used for 
cyber-security research purposes and testing new 
experimental methods for enhancing the level of security in 
cyber-critical systems. The testbed consists of a hackable 
water distribution plant with control system and realistic 
infrastructure data output. This results in the creation of a 
safe and interactive environment, in which, theoretical cyber-
security systems can be tested.  

Software-based simulation data is often used to test 
theoretical cyber-security systems; however, data constructed 
through emulators is inherently lacking in realism and a 
hands-on learning experience is missed. A simulation is a 
representation of a mental model. This is an issue, as a tester 
would test the correctness of the mental model and not the 
real world application, which would have a negative impact. 
In addition, environmental concerns (e.g. temperature) might 
be a significant consideration during a test; typically, this is 
not a consideration during simulation design. Also, from an 
educational perspective, there are multiple modes of learning 
(e.g., aural, visual,) and there is a category of students that 
need physical hands-on experience to understand a concept. 

For that reason, in this paper, the architecture for the 
Micro-CI testbed, which replicates a water distribution plant, 
is outlined. Similarly, both the physical design and 
construction of the testbed is detailed. The Micro-CI testbed 
forms the basis of the novel contribution made by this paper. 
A case study and evaluation, in which cyber-attacks are 
launched against the water distribution plant, is also 
presented. For this, both the Micro-CI testbed and industry-
leading critical infrastructure simulation software are used to 
generate results, and compare the datasets produced. This 
then enables the assessment of the suitability of the data 
produced by the testbed for future cyber-security research 
and experimentation. 

The remainder of this paper is organised as follows. 
Section 2 presents a background discussion on testbed and 
critical infrastructure modelling. Cyber-security and cyber-
threats are also highlighted. Section 3 presents the novel 
methodology used to construct the Micro-CI testbed, the 
software simulation control model and an example of the 
data constructed from the testbed and the simulation. Section 
4 focuses on a case study of the impact of an attack on both 
the simulated and physical infrastructures. The application 
offered in Section 4 is an example to demonstrate the 
effectiveness of the methodology highlighted in Section 3. 
Section 5 presents a discussion of the experiment and case 
study results. Finally, the paper is concluded in Section 6 and 
future work is highlighted. 

II. TYPE STYLE AND FONTS 

Having a well-established critical infrastructure network is 
often considered a sign of civilised life. Nations can be 
mediated by the strength of their infrastructure network and 
the services provided to their citizens. Dependence on these 
infrastructures is also one of society’s greatest weaknesses. 
A disruption to a single critical infrastructure can result in 
debilitating consequences on the population, economy and 

government. Operating as part of a distributed system, 
failures within critical infrastructures have the potential to 
cascade rapidly. 

A. The Cyber-Threats 

As dependence on these critical infrastructures increases, it is 
important that the ability to avoid disasters is enhanced. 
However, cyber-crime is becoming an increasingly 
concerning problem, especially with the abundance of freely 
available hacking toolkits. The effects of a cyber-attack can 
have far-reaching consequences including the availability of 
other dependent critical infrastructure services and the 
economy.  

Most cyber-attacks are financially motivated, whether 
this is from offering the attack as a paid-for service, through 
selling stolen information, exploiting information captured 
from spear-phishing attacks or from ransom or extortion 
tactics. Understanding the strategies employed by cyber-
attackers is crucial to counteracting the threat posed. 
Typically, attackers’ strategies can be categorised into three 
different types, Reckless, Random and Opportunistic 
(Mitchell et al.,). A Reckless attacker performs attacks 
whenever there is an opportunity to inflict maximum 
disruption to the services provided. A Random attacker 
strikes arbitrarily, to avoid detection, with the intention to 
cripple the target system. An Opportunistic attacker exploits 
the ambient noise of a system, and only attacks when the 
system is weak and the probability of success is high.  

As mentioned previously, most attacks are financially 
motivated. The most common of which is paid-for 
Distributed Denial of Service attacks (DDoS). DDoS attacks 
can be used to incapacitate the host servers of a organisation 
and usually involve the use of illegal botnets (Poisel et al.,). 
Botnets are effectively a hidden and illegal cyber-army, 
which can span across the globe, without the controlling-user 
having to invest in their own hardware or own any physical 
components (Feily et al.,). The popularity of this attack can 
be attributed to the operator having a relatively high level of 
anonymity. The usual form of a DDoS attack involves 
overloading routers and intermediate links by sending them 
enormous volumes of network traffic (Feily et al.,). There are 
several different types of DDoS techniques, some of which 
include:  

• SYN Flood: Known as a Transmission Control Protocol 
Synchronised Flood (SYN Flood), the attack involves 
exploiting the TCP connection establishment process 
(Haris et al.,). Specifically, to establish a connection, a 
device sends and receives a SYN. The DDoS attack, in 
this case, functions by making the server unavailable and 
the SYN process is blocked. 

• Peer-to-peer: This type of attack normally involves 
forcing clients of significant peer-to-peer file sharing 
centres to connect to a victim after disconnecting from 
their own network. These attacks operate differently to a 
botnet and the bot computers are often controlled 
individually. 

• Permanent denial of service: Often DDoS attacks can be 
so severe that the target hardware needs replacement as a 



result. This is known as a permanent denial of service 
(PDoS), where backdoors are exploited and used to target 
device firmware which is replaced by the attackers’ own 
firmware. 

Spear-phishing is another common form of cyber-attack, 
which relies on human error and a lack of threat awareness to 
be successful. The aim is to trick victims into thinking an 
email-based scam is legitimate by ensuring the information 
inside is specific to that person or organisation. As a result of 
successful spear-phishing attacks, numerous military and 
private industry systems have been breached in recent years 
(McAfee et al.,). Each penetration is the direct result of lack 
of understanding about the nature of the attack, which leads 
to sensitive information being disclosed. Unfortunately, once 
attackers have gained an initial point of entry to the system, 
they can often freely move throughout most of the network. 

The consequences of a successful spear-phishing attack 
are made possible through the tactical goal of achieving a 
foothold on the targeted system. For that reason, attacks are 
usually accomplished by using shellcode, code injection and 
capture attacks to compromise a physical component. Within 
a critical infrastructure setting, after a target node is 
compromised, the adversary refocuses the attack and 
employs the use of forgery, data modification, 
greyhole/blackhole (packet drop) and replay attacks to 
compromise sensors and return incorrect readings or execute 
incorrect commands (forgery attacks). These techniques 
ensure maximum damage is caused through a foothold 
situation. The above mentioned attacks comprise part of the 
background discussion as they are the most common faced 
by critical infrastructures. As such, they are demonstrated in 
the case study presented in Section 4. 

B. A Cyber-Security Challenge 

The control systems currently used in critical infrastructures 
systems are understandably closed source and not publically 
available. However, such systems continue to be at risk from 
cyber-attacks; and the facilitation of essential cyber-security 
research remains inherently a challenge.  

Critical infrastructures tend to be civilian owned by 
majority. Commercial companies operate competitively with 
limited capital for spending on security. The result of this is 
that security can be put at a disadvantage. Different 
technologies may be used in separate infrastructures as 
owners are hesitant to share or co-operate with others. This is 
because information or strategy can be given away by the 
actions it takes to secure the infrastructure. Separate private 
ownership of infrastructures poses a challenge for access to 
real-world data for cyber-security research and teaching. It is 
this challenge that is at the core of the research put forward 
in this paper. 

One aspect, which all critical infrastructures adopt to 
secure their service provision despite their separate 
ownership, is a Defence in Depth (DiD) approach (Hitchins 
et al.,). DiD involves compartmentalising the system into 
various layers, each of which operates with different security 
technologies and Intrusion Detection Systems (IDS). This 
ensures that if an attacker penetrates one layer, they are not 

automatically able to access the next one (Mukherjee et al.,). 
DiD is most effective when layers are created that are 
independent of each other. These various levels of security 
would, for example, include Low levels, Medium levels and 
High levels. The Low levels would be accessible by general 
employees who require basic security clearance to the 
infrastructure to perform their tasks and have access to only a 
small amount of necessary data. Whereas, the High levels 
would only be accessible by management and system 
administrators as the contents would be of a more sensitive 
nature. 

Inside the DiD approach, IDSs have the role of detecting 
hostile activities within a network, and signalling alarms 
when attacks are identified (Nowak et al.,). There are 
multiple types of IDS that are widely used to enhance 
network security (Zhang et al.,) by providing real time 
identification of misuse or unauthorised use, whilst allowing 
the system to continue functioning. Two common types of 
IDSs used for the identification of intrusion attempts include 
anomaly detection and signature-based detection. Anomaly 
detection involves the detection of abnormal network 
activities. For example, such an anomaly may include a 
sudden increase in data flow to a certain part of the system, 
which is unexpected (Sekar et al.,). Signature-based 
detection is the use of a pattern to identify data that stands 
out as being an intrusion (Nowak et al.,). The pattern is based 
on the comparison of the attack with known attack 
signatures. Signature-based detection, however, is non-
adaptive and cannot detect zero-day attacks (which do not 
have a pre-existing signature), making it an ineffective 
technique when used by itself (Li et al.,). To cover for 
various forms of attack, critical infrastructures typically use a 
combination of multiple types of IDS to maximise 
infrastructure protection from the many threats that can 
originate from external network connections. 

The continued growth in scale and complexity of some 
critical infrastructure systems means that they are becoming 
increasingly enticing targets for cyber-attacks. One such 
example is healthcare critical infrastructure systems, which 
are expanding to accommodate the influx of eHealth 
monitoring systems spawned by smart devices and the 
Internet of Things (IoT) concept. Modern eHealth 
monitoring systems are comprised of two main infrastructure 
layers (Sawand et al.,). The first is the Physical Layer, which 
encompasses wireless body area networks (WBANs), smart 
health trackers, IoT sensors and physical equipment used by 
medical staff. The second is the Service Layer, which houses 
the cloud computing and storage facilities, and the 
applications, software and services offered to patients that 
utilise the data provided by the Physical Layer. 

The Physical Layer is composed of many heterogeneous 
and computationally limited devices (e.g. heart rate sensors, 
blood oxygen sensors and blood sugar monitors), which pose 
many security and privacy challenges. For example, wireless 
communications make sensor technologies internet-
accessible, which leaves them publically exposed and highly 
vulnerable (Hill et al.). 

This exposure can be used to an attacker’s advantage by 
disseminating specific attacks to the patient-side that target 



both hardware and software. Attacks on medical critical 
infrastructure systems are increasing, with attackers aiming 
to cause maximum damage. This is exacerbated by the 
increasing number of attack vectors, such as over-the-air 
software update mechanisms, limited security/encryption 
capabilities, exploitable developer API exploitation and open 
source software exploitation. As an example, in over-the-air 
software update attacks, if updates are frequent, attackers can 
configure a radio to the appropriate frequency and with a 
demodulation technique, record updates, reverse engineer the 
format, craft a software containing malware and deliver it to 
the targeted device. Additionally, in source code analysis 
(through Open Source software or disassembled and 
decompiled binaries), stack buffer overflow vulnerabilities 
can be revealed. The attacker can also use fuzzing to execute 
stack buffer overflow attacks. 

C. Current Critical Infrastructure Testbeds 

Cyber-security research is hampered by a lack of realistic 
experimental data and opportunities to test new theories in a 
real-world environment (Benzel et al.,). Ordinarily, the 
production of reliable and accurate research results would 
require the purchase of critical infrastructure hardware, 
which is extremely expensive and impractical. This has led 
to the development of specific software-based simulators, 
such as Technomatix (Stoll et al.,) and NS3 (Aalamifar et 
al.,)]; and the adaptation of existing software-based 
simulators such as OMNET++ (Queiroz et al.,), Simulink 
and Matlab (Ficco et al.,). These software simulators enable 
affordable representations of critical infrastructure systems, 
by modelling their behaviour, interactions and the integration 
of their specific protocols (e.g. MODBUS).  

However, the suitability of simulation has long been 
disputed; with the argument that simulations do not represent 
real-world scenarios accurately, as they lack the ability to 
model the interactions of control system components. As 
such, this project aims to provide a testbed that is 
rudimentary and low-cost to build, but remains extensible. 
The practical nature of the testbed aims to provide users with 
a greater level of realism, and a more accurate representation 
of how different events and behaviours would manifest 
themselves in real-world scenarios. 

As critical infrastructure testbed development for security 
research is an active yet relatively infantile subject area, 
there are several similar, yet limited, existing research 
projects. Some of them are outlined as follows. SCADA 
LAB (Aragó et al.) is an EU funded project to build a critical 
infrastructure testbed with a conjoined security lab, to 
facilitate security experiments. However, the primary 
limitation of this system is that it is a remote access system, 
with both the configuration and experimentation carried out 
by a third party. The testbed proposed in the paper is 
localised, where researchers/students are able to oversee and 
manage all aspects of their experiments directly. This means 
it is more tangible and users can more readily relate directly 
with their experimentations.  

As the implementation of a working critical infrastructure 
testbed can be time-consuming, Farooqui et al., propose a 
hybrid approach by combining physical commercial 

hardware and simulation software. However, our project 
consists of the implementation of working control devices, 
rather than relying on simulation software. Additionally, the 
testbed utilises small-scale, and therefore portable, hardware; 
rather than rigid commercial hardware. 

Benzel et al., discuss the use of DETER, a cyber-
DEfense Technology Experimental Research testbed for 
supporting the development of next-generation security 
technologies and experimentation. The testbed is deigned to 
bridge the gap between small-scale and Internet-scale 
experiments, through combing both software and hardware 
components. The testbed also offers tools that aid the 
experimenters. The main drawback of the DETER testbed is 
that it is not sufficiently replicable or portable. Meaning 
users are unable to create their own and its operation relies 
on connecting to the DETER host. 

In addition to the aforementioned testbed approaches, 
there are several existing proposals for critical infrastructure 
testbed architectures, which focus on specific systems, such 
as electricity substations (Wei et al.,). However, our long-
term goal is not to constrain our testbed to a single role, but 
to adopt a modular approach; whereby new critical 
infrastructure roles can be integrated at a later stage. This 
would make it suitable and useful to a wider audience. 
Specifically, the proposed system focuses on a water 
distribution plant; however, the design is extendable and 
testbeds can be extended to incorporate other infrastructure 
types, such as an ecologically-aware power plant. 

A framework has also been proposed to address the 
problem of simulating large-scale critical infrastructure 
systems on a localised testbed by Ficco et al. As such, they 
present a framework, which acts as a glue layer between a 
distributed testbed and simulation of components. The 
drawback of such an approach is the use of a hybrid method 
to combine both simulation and physical systems. This 
results in a testbed which is not rudimentary and where 
simulation impacts the quality of data produced. Within the 
MicroCI project, we are primarily concerned with the 
practical realism of the data and reliability of the generated 
results through a real-world implementation. 

The testbed proposed in by Morris et al., is the most 
similar existing research to ours in terms of its design, and 
pedagogical and research purposes (Morris et al.,). The 
research put forwards proposes a testbed that focuses on 
cyber-security and utilises miniature hardware for a realistic 
representation of critical infrastructures. However, the 
project is only available locally at the authors’ institution and 
is not easily replicable or portable.  

A defining factor of the MicroCI project is to develop a 
testbed, which is cost effective and easily replicable by other 
institutions. The design and implementation will both be 
detailed in publications and made accessible during the 
project dissemination process. 

III.  METHODOLOGY & IMPLEMENTATION 

Currently, model critical infrastructure testbeds are sparse in 
the UK. This project provides research opportunities for the 
testing and development of security enhancements in a real-
life scenario. As such, the aim of the research is to have a 



practical output; a fully working critical infrastructure 
testbed. The goal is to demonstrate that the datasets 
generated by the Micro-CI testbed, are of comparable 
suitability to those created by industry-standard software. In 
this section, an outline of the architecture of the Micro-CI 
project is presented. This includes an explanation of how the 
architecture is identically replicated using both the physical 
Micro-CI hardware and the industry-standard simulation 
software. 

A. Testbed Architectural Overview 

The design displayed below in Figure 1 presents a water 
distribution plant. The specification is modest, meaning there 
is scope for future expansion; yet is sufficient in size to 
produce realistic infrastructure behaviour datasets for 
research purposes. As illustrated in the diagram, there are 
two reservoir tanks, which are fed by two pumps moving 
water from external sources. 

 

Figure 1. Water distribution plant testbed architecture 

The remote terminal unit (RTU) is used to monitor the 

outgoing flow rate and water level, to dynamically adjust 

the pump speed ensuring adequate replenishment of the 

reservoir tanks. However, vulnerabilities exist in the system, 

meaning that it is possible for an attacker to cut off the 

water supply or flood the reservoir tanks. The design is 

extendable to other applications, in that it can be connected 

to other critical infrastructure models (such as power plants, 

telecommunications etc.), if additional equipment is to be 

included. This would facilitate future research projects 

investigating the effect of cascading failures throughout a 

network of inter-connected critical infrastructures.  

B. Practical Micro-CI implementation and data 

generation 

To replicate the architecture illustrated in Figure 1, we will 

be constructing the physical Micro-CI testbed in accordance 

with the wiring schematics shown in Figure 2. Specifically, 

the physical components required include: an Arduino Uno 

Rev. 3 as the RTU, two 12v peristaltic pumps as the water 

pumps, two liquid flow meters, two water level sensors, two 

amplification transistors, diodes, resistors and an LCD.  

 

Figure 2. Physical wiring schematics 

In the schematics shown in Figure 2, potentiometer 

symbols have been used in place of the four sensors; this is 

due to the limited symbols available in the modelling 

software. The fifth, unlabelled, potentiometer is used to 

control the brightness of the LCD. As the maximum output 

of the Arduino is only 5v, transistors amplify this to the 12v 

required by the pumps. Lastly, the diodes are used to ensure 

the current can only travel in one direction, thus preventing 

damage to the Arduino. The hardware specification used is 

modest, meaning there is scope for future expansion; yet is 

sufficient in size to produce realistic infrastructure 

behaviour datasets for research purposes. 

 

Figure 3. Example Serial Data Stream 

For the purpose of this experiment, the Arduino board 
remains connected to a PC via a USB cable (although this 
could be replaced with a network connection for similar 
experiments). Through this USB connection, a serial 
connection is established to supply a real-time data feed, 
which is recorded and preserved by the PC (as illustrated in 
Figure 3). The metrics collected in this instance include: 
Water level sensor1/2 readings, Flow meter1/2 readings and 
Pump1/2 speeds. These readings are taken from each sensor 
every 0.25 seconds (4Hz) and written to the serial data 
stream.  

To examine the quality of the data produced by the 
Micro-CI implementation, a dataset was recorded over the 
period of 1 hour. During this time, the testbed was operating 



under normal parameters (i.e. no cyber-attacks were present). 
Essentially, this means that the pump speeds are configured 
to slowly continue filling the tanks at a controlled speed until 
full (even if no water is being used) and to cover the current 
rate of water consumption (if possible). The outflow (water 
being consumed) is a randomly applied value within a 
specific range (to make usage patterns more realistic). In this 
instance, the water source pipe is 60% smaller than the 
outflow pipe, which allows for a more accurate 
representation (and to simulate overflow). 

Table 1 – Physical testbed Data Sample (%)* 

Sample (t) P1 P2 P3 P4 P5 P6 

00:10.5 65.0 69.9 47.3 55.4 81.9 85.1 

00:10.7 65.0 69.9 39.4 48.5 74.1 78.8 

00:11.0 65.0 69.9 39.4 53.4 74.1 83.1 

00:11.2 65.0 69.9 33.6 50.5 69.0 81.1 

00:11.5 65.0 69.9 41.4 39.7 76.0 70.2 

*Symbol explanations are given in the Appendix 

C. Software simulation model implementation and data 

generation 

The simulation is constructed, in accordance with the 

architecture shown in Figure 1. The software is based on 

object-oriented modelling, where each component inserted 

is an individual object, which can be adjusted and used to 

construct data. The resulting simulation environment is 

displayed in Figure 4. 

 

Figure 4 – Case Study Simulation Testbed 

The figure depicts a graphical overview of the emulation, 

including a water source, two pumps, two tanks and 

network of pipes used to deliver the water throughout the 

system. Sensors are coded to extract data at a sampling rate 

of 0.25 seconds (4Hz) from each of the components within 

the system. The flow of water from the source to the tanks is 

governed by the two pumps, and the speed can be adjusted 

as required. During simulation run-time, the behaviour of 

one simulation component has a direct impact on another. 

When a component failure occurs, the simulation is able to 

keep functioning, but the effects of the fault should be 

visible in the dataset. The system functions smoothly and 

consistently. However, the output and behaviour differs 

slightly every time the system operates resulting in variance 

in the datasets.  

As previously mentioned, it is clear the use of simulation 

has many benefits in critical infrastructure protection 

planning. The advantage of using simulation is that 

conducting experimentation can be done on a realistic 

representation of a system without the worry that any 

damage done would have a real impact. It is this aspect that 

is transferred over the physical testbed. However, the 

drawback of simulation is in the quality of data produced. 

As such, in the following subsection, data constructed from 

the simulation and the physical testbed are presented and 

compared in a case study put forward in Section 4. 

The water distribution infrastructure in the simulation 

consists of 12 components. To provide a benchmark to 

compare the Micro-CI data against, the simulation data was 

again captured over the period of 1 hour of simulation, with 

the system functioning under normal conditions. Appendix 

(1) clarifies the selected components presented in the table. 

The numbers in Table 2 represent the percentage of the 

water level in the corresponding component or the 

operational speed of the component. For example, at 00:10.5 

component C1 is 85.7% full, whereas C2 is empty. Each of 

the components within the simulated system are started with 

the initial configuration of 0 % full. This is because, unlike 

the Micro-CI testbed, it is a challenge to begin a simulation 

with the tanks partially filled. The tank water level is 

calculated based upon the units of water, which flow into 

and out of the component. 

Table 2 – Simulation Data Sample (%)* 

Sample (t) C1 C2 C3 C4 C5 C6 

00:10.5 85.7 0 0 100 100 83.3 

00:10.7 100 100 100 100 100 100 

00:11.0 100 100 100 100 100 100 

00:11.2 100 100 100 100 100 100 

00:11.5 100 100 100 100 100 100 

*Symbol explanations are given in the Appendix 

There is no significant change in the data during the one 

second sample presented above. This demonstrates that the 

water flow is consistent within each of the components at 

the given point in time. 

IV. 4. CASE STUDY 

In this section, a case study is presented, which involves 
conducting known cyber-attack types on both the Micro-CI 
testbed and the simulation. The quality of the data produced 
is assessed and a discussion is put forward on the suitability 
of both data types for cyber-security research. 

In the scenario of this case study, the end users’ water is 
supplied by a remote water distribution plant. The control of 



this plant is governed by an RTU, which is under a DDoS 
attack. The attack degraded the stability of the 
communication links between the RTU and its sensors. This 
in turn means that the availability and frequency of the 
sensor value measurements is degraded.  

A.  Simulation Data Preparation 

In the simulation, each of the components has a random 
failure implemented and a specified time to repair. This 
enables the introduction of a level of realism within the 
dataset constructed. However, the system should not stop 
functioning if one of the minor components has a fault. As 
such, threat behaviour is constructed by causing targeted and 
random disruptions to the system by increasing the 
availability percentage in specific components. Turning 
components off and on, during the simulation, causes a 
knock-on effect throughout the rest of the system. To 
construct our abnormal dataset, the availability percentage 
was increased in each of the components, whilst ensuring the 
system was able to continue functioning. The Availability 
Percentage refers to the chances of a machine or component 
being ready to use at any given time taking into account 
failures and blockages. It is calculated using the following 
formula (1): 

 
(1) 

Here, A is the unavailability of the component, M is the 

Mean Time To Repair (MTTR) and F is the Mean Time 

Between Failures (MTBF). The implementation of random 

failures is intended to reflect realistic unexpected 

component malfunctions, which occur in all infrastructures. 

However, due to the fact that power plant systems are 

designed to be enduring, the failure percentage in the system 

components was kept low. 

When constructing the anomalous behaviour dataset, this 

approach facilitates impacting system behaviour and, 

subsequently, the data produced. By implementing more 

extensive system failures, orchestrated attacks can be 

conducted on the simulation in order to construct a data set, 

which would be similar to that of a cyber-attack taking 

place. In order to generate attack behaviour, a number of 

recognised faults are introduced to the system. This 

facilitates an understanding of the system operating whilst 

under the effects of a cyber-attack. 

(a)  (b) 

Figure 5 – Simulation Normal Data Plot(a) vs Cyber-Attack Data Plot (b) 

These faults are introduced to the system over a period of 

two hours, to create a balanced dataset for normal and attack 

behaviour. Figure 5 displays box plots of the simulation data 

for normal behaviour and when in a cyber-attack scenario. 

The components are displayed along the x-axis, with labels 

1 to 6. The y-axis displays the level of water within the 

component. The change in behaviour, as a result of the 

attack, can be seen in the average value changes in the 

datasets, and is clearer in some components, such as C1 and 

C4. The change in behaviour is not visually apparent in 

others. Changes in behaviour as a result of an attack taking 

place can often be subtle and hard to identify, particularly 

when individual components within a vast system are 

targeted. 

B.  Testbed Data Preparation 

For the first part of this case study, data for the water 

distribution plant is recorded whilst operating under normal 

conditions. This allows for the building of a behavioural 

norm profile for the system, in order to identify anomalies. 

Within the testbed, during the DDoS attack, only 

intermittent readings from the sensors are received, forcing 

it to make drastic (and therefore uncharacteristic) changes to 

the pump speeds, rather than gradual as when operating as 

normal. 

In this cyber-attack dataset, a DDoS attack is launched 

against the RTU’s communications channel, so it is only 

able to get sensor readings intermittently. Whilst no new 

values are readily available, the RTU will continue to 

maintain the previous pump speed. 

(a) (b) 

Figure 6 – Testbed Normal Data Plot (a) vs Cyber-Attack Data Plot (b) 

Again, the components are displayed along the x-axis, 

with labels 1 to 6. The y-axis displays the operating capacity 

of the component. The exact behaviour induced by this 

experiment was relatively unknown. The results obtained 

showed that one tank kept filling whilst the other 

maintained the same level. Figure 6 displays box plots of 

the testbed data for normal behaviour and when in a cyber-

attack scenario. The change in behaviour, as a result of the 

attack, can be seen in the average value changes in the 

datasets, as previously for the simulation dataset. 

Particularly a change in the output for P5 is visually 

apparent.  

The data constructed during normal operation and under 

cyber-attack is used to assess the potential of the data to be 

used for cyber-security training and research. The data is 



evaluated using data classification techniques to identify the 

nature and timing of the conducted cyber-attacks. The 

quality of the results produced by the testbed is compared 

with the data constructed through simulation. 

C. Data Pre-Processing 

Before data classification is performed, the data requires 

pre-processing. One of the main issues with the dataset 

generated by the simulation is the level of noise in the data. 

In order to achieve the highest possible results in the 

classification process, the noise needs to be reduced. This is 

achieved by editing or removing values from the dataset 

which are unwanted by the classifiers but constitute parts of 

the dataset which are of interest. 

As a result of the behaviour of specific components in 

the system, there is a high level of zeros in the simulation 

dataset. The zeros are a result of either component failing 

due to introduced errors, or units of liquid in the system 

passing through a component faster than the sampling rate. 

Zeros, therefore, represent aspects such as pipes functioning 

normally. If the samples are consistently above zero for 

components, such as the water pipes, it would be the result 

of failures in the system. For that reason, the zero values are 

retained in our data set. 

Data pre-processing and feature extraction are essential 

stages, and affect the data classification results. The features 

selected represent characteristics of system behaviour (Xu et 

al.,). The process of feature selection effectively minimises 

the dataset and presents a representation of the behaviour 

taking place in the data to the classifier. Primarily, the goal 

of the feature selection process has three clear benefits 

including data comprehension, increased efficiency and 

prediction performance. 

Table 3 – Feature Construction 

Mechanism Component 

Feature Construction 

Sample 

Rate 

Variable 

Extraction 

Total 

Time 

C1 C2 C3 C4 C5 C6 4Hz Every Minute 1 Day 

P1 P2 P3 P4 P5 P6 4Hz Every Minute 1 Day 

• Data Comprehension: Extracting features from a data set 

allows for a better comprehension of what the data is 

representing. 

• Efficiency: Reducing the amount of data being classified 

allows for faster processing, reducing time of learning 

and reducing memory use. 

• Prediction: The performance of the classifiers is also 

improved through effective feature selection. Factors 

such as noise reduction and the elimination of irrelevant 

data enable the classifiers to be efficiently trained. 

• The data manipulation process is the construction of 

feature vectors from significantly large normal and 

abnormal data sets. For this initial case study, the 

components themselves comprise the features, with the 

variables extracted every minute or 240 rows in the raw 

data. The data analysis is presented in the following 

subsection. 

D. Data Analysis 

In this section, data classification techniques are employed 

to assess the effectiveness of the data produced by the 

testbed for research purposed. Neural network classifiers are 

selected to assess the quality of the data produced. Previous 

research has used neural networks to successfully measure 

data quality (Tchorbadjieff et al.,). Hence, we will be using 

neural networks as a bench mark to assess the quality of the 

data produced, a comparison and discussion on the datasets 

is put forward. 

In order to perform the classification of the data, a 

selection of classifiers where used, these include: back-

propagation trained feed-forward neural network classifier 

(BPXNC), levenberg-marquardt trained feed-forward neural 

network classifier (LMNC), automatic neural network 

classifier (NEURC), trainable linear perceptron classifier 

(PERLC), voted perception classifier (VPC) and the random 

neural network classifier (RNNC) (Hyong et al.,). The 

classification experiments are run 30 times on the datasets. 

The reason the classification experiments are conducted 30 

times is to account for errors and to give consistency. 

Statisticians identify that experiments conducted 30 times 

provide an adequate realistic average (Salkind et al.,). 

In order to calculate the results, firstly, a Confusion 

Matrix determines the distribution of errors across all 

classes (Marom et al.,). The estimate of the classifier is 

calculated as the trace of the matrix divided by the total 

number of entries. Additionally, a Confusion Matrix 

highlights where misclassification occurs in experiment. In 

other words, it shows true positive (a), false positive (c), 

true negative (d) and false negative (b) values. Diagonal 

elements show the performance of the classifier, while off 

diagonal presents errors. This is displayed in Table 4. 

Table 4 – Confusion Matrix 

 + - 

+ a b 

- c d 

The results are calculated mathematically, using the 

following formulae, where a refers to True Positive, d 

implies True Negative and b and c refer to False Positive 

and False Negative respectively. N is the total number of 

feature vectors within the dataset. 



 
(1) 

 
(2) 

 
(3) 

Tables 5 and 6 present the results of the classification 

process and include the success of the classification or Area 

under the Curve (AUC), sensitivity, specificity and error. 

Where specificity refers to normal system behaviour, 

sensitivity refers to abnormal (or attack behaviour) and 

accuracy represents the success of the classification. Each of 

the results are calculated using the above formulae. 

Table 5 – Simulation Classification Results 

Classifiers AUC Sensitivity Specificity Error 

VPC 0.050 0.500 0.000 0.500 

RNNC 0.850 0.769 1.000 0.150 

PERLC 0.750 0.667 1.000 0.250 

BPXNC 0.767 0.682 1.000 0.233 

LMNC 0.833 0.750 1.000 0.167 

NEURC 0.867 0.789 1.000 0.133 

It is clear from the results in both tables, that the 

classifiers are able to detect accurately both the normal and 

abnormal behaviours in the data set. A discussion and 

comparison of the results is subsequently presented in the 

following section. 

Table 6 – Testbed Classification Results 

Classifiers AUC (%) Sensitivity Specificity Error 

VPC 0.733 0.652 1.000 0.267 

RNNC 0.850 0.818 0.889 0.150 

PERLC 0.800 0.875 0.750 0.200 

BPXNC 0.983 1.000 0.968 0.017 

LMNC 0.997 0.997 0.997 0.033 

NEURC 0.933 0.933 0.933 0.063 

V. EVALUATION 

Within the simulation classification results, the NEURC 

classifier is the most accurate; able to classify 86.7% of the 

data correctly with an error of 0.133. For the NEURC 

classifier 28 out of 30 normal behaviours are correctly 

classified. During the physical testbed classification process 

LMNC is to identify 99.67% of the behaviours accurately, 

with an error of 0.0667. In the following subsection, a 

discussion is put forward on the significance of the results 

obtained. 

A. Results Comparison 

Figure 7 displays a comparison of the results achieved from 

the neural network classification. The graphs depict that the 

classifiers are able to more successfully identify threat 

behaviours using the Micro-CI testbed, rather than through a 

simulation approach. This is particularly the case for the 

sensitivity, AUC and error. In addition to the difference 

between the AUC results produced by the neural network 

classification, the specificity results, in particular, hold 

significance for the evaluation of the datasets. 

 

Figure 7 – Simulation Results vs Testbed Results 

A comparison between the specificity results (normal 

behaviours) show that the simulation approach results in 5/6 

classifiers being able to identify 100% of normal behaviour; 

with most of the misclassification occurring for the 

sensitivity (the identification of abnormal/attack behaviour). 

Within the simulation approach, normal system behaviour is 

straightforward to identify, as the simulation behaviour 

doesn’t have significant changes in its operation and 

performs as coded to perform. In a ‘real-life’ environment, 

the physical system is set up to behave in a specific way but 

always functions slightly differently to the anticipated. This 

means that any research conducted using simulation to 

construct data is hampered by over classification for the 

specificity/normal behaviour dataset. 

B. Testbed Attacks Comparison 

As previously discussed, one of the aims of this project is to 

devise a testbed, which is suitable for cyber-security training 

and research. As demonstrated in the previous subsection, it 

is our belief that the use of real-life data is more suitable for 

cyber-security research, than that of simulation. The second 

part of the case study involves a demonstration of the two 

further datasets constructed through launching the following 

cyber-attacks on the Micro-CI testbed:  

• Signal injection: Falsified malicious data is injected, 

masquerading as one of the flow sensors. This forces the 



RTU to change the pumps’ settings to suit the malicious 

data. Specifically, a signal injection attack is launched 

against the water flow sensor on tank 2, in which we tell 

it there is no water leaving tank2. The water level drops, 

however, it drops slowly as the tank is still on a slow 

refill (as it is not full). 

• DoS: One of the water level sensors is rendered 

completely inaccessible to the RTU by means of a DoS 

attack. This causes the RTU to labour to accurately 

control the pumping station, as the crucial data needed is 

unavailable. Specifically, a DoS attack was launched 

against the water level sensor in tank1, meaning the 

RTU is getting a result of 0, which misleads it into 

thinking the tank is empty, so the tank fills up much 

quicker. 

• As such, Figure 8 below displays the resulting data 

output of the Micro-CI testbed pump speeds, during 

normal operation and when subjected to the three attacks 

discussed in this paper. Each of the experiments was 

conducted on an identical testbed. 

 

Figure 8 – Simulation Attack Data Visualisation 

The graphs display a clear change in behaviour as a 

result of the attacks taking place. The majority of the attacks 

are targeted at pump 2, where the separation of the datasets 

can be clearly identified. This is a demonstration of realistic 

data construction though use of the testbed. The RTU 

inclusion means that Micro-CI users have remote access to 

the functioning components. Different attack types produce 

diverse dataset outputs. 

C. Physical Testbed Benefits 

As a whole, modern education and research is becoming 

increasingly reliant on virtualised labs and tools (Topham et 

al.,). Despite the numerous benefits they offer, there are 

many inherent limitations. Therefore, any learning or 

research undertaken using these tools is based around the 

limitations and characteristics of such tools, as well as any 

assumptions made by their developers. Additionally, the 

accuracy of data resulting from such simulations and models 

may be further decreased if used outside of their intended 

usage scenario. For example, in network reconnaissance, a 

Christmas tree packet (a packet set with an unusual 

combination of TCP headers), can cause different operating 

systems to respond in different ways (differing from defined 

IP standards). The disparity amongst these responses can be 

used to identify the underlying operating system. These 

types of unusual quirks can be utilised by attackers, and are 

often not something that is covered by simulation software. 

The practical element involved in the Micro-CI project 

introduces a level of realism that is difficult to match 

through simulation. 

A recent report (Lewis et al.,) examined the usage of 

both physical and virtual tools and labs. The report 

concluded that a virtual-based approach offers significant 

cost savings and a self-paced and active approach to 

learning. However, it also highlighted that it has several key 

limitations including: no hands-on experience, no real-world 

training with specific equipment and no experience in 

identifying and interpreting incorrect or uncharacteristic 

data.  

The findings of this report echo our concerns that 

simulation is very effective at representing “correct” 

behaviour. However, critical infrastructure systems need to 

be protected against situations where they are exposed to 

extreme abnormal events. Unfortunately, in such 

circumstances, systems will not always behave in the way 

expected, fail gracefully or consistently respond in the same 

manner. Similarly, it is therefore difficult to accurately 

model how a system’s erratic behaviour might affect other 

parts of the infrastructure. This is why we firmly believe 

that adopting Micro-CI’s unique approach would provide an 

ideal solution, as it allows for the advantages of both 

physical and virtual tools to be combined, some of which 

are discussed below. 

• Pedagogical benefits: The Micro-CI approach offers 

students and researchers with hands-on experience and 

first-hand knowledge of the unpredictability of a system 

under attack or stress. It will also help them to refine 

their problem solving and practical skills. 

• Cost effectiveness: The Micro-CI project has been 

designed to be as cost effective as possible. For example, 

at the time of writing, we estimate that at current prices, 

the design presented in this paper can be replicated for 

around £100. 

• Portability: As the project components are on a 

miniaturised bench top scale, it enables them to be 

packed away, stored and transported with ease. In most 

cases, projects can still be moved and/or stored whilst 

partially assembled. 

• Platform independency: The Micro-CI project does not 

require any specific requirements, dependencies or 

operating systems to interact with the testbeds 

developed. Additionally, it is not tied or restricted by 

any licencing model, so it can be used on an infinite 

number of different machines, without incurring 

additional costs. 

As with all solutions, there are some drawbacks to our 

approach. The first is that the use of low cost hardware 

reduces the level of accuracy that can be achieved. For 



example, the Arduino Uno uses an ATMega 

microcontroller, which is only capable of recording 4-byte 

precision in double values (Lewis et al.,). This can present 

problems if precision is a crucial part of the research being 

undertaken. However, this can be mitigated by purchasing 

more expensive hardware. Another, limitation is that in 

comparison to simulation software, the practical approach 

may require a greater level of improvement to students’ 

skillsets (which is not a detrimental attribute), and a longer 

initial construction time, to accomplish a working 

implementation. 

VI. CONCLUSION AND FUTURE WORK 

One of the main challenges for governments around the 

globe is the need to improve the level of awareness for 

citizens and businesses about the threats that exist in 

cyberspace. The arrival of new information technologies has 

resulted in different types of criminal activities, which 

previously did not exist, with the potential to cause 

extensive damage to internal markets. 

Given the fact that the Internet is boundary-less, it makes it 

difficult to identify where attacks originate from and how to 

counter them. Improving the level of support for security 

systems helps with the evolution of defences against cyber-

attacks. This project supports the development of critical 

infrastructure security research, in the fight against a 

growing threat from the digital domain.  

The research project will further knowledge and 

understanding of information systems; specifically acting as 

a facilitator for cyber-security research. In our future work, 

we will publish the constructed testbed and make the 

datasets available for cyber-security and critical 

infrastructure research. In addition, we propose to add 2-3 

cheap CHIPs/ Raspberry Pi’s to the testbed. In a real-world 

scenario, ICS systems are continually connected to a 

computing infrastructure. Therefore, with the addition of the 

PIs the following would be possible.  

• Denote a Pi as the ‘Coorporation Firewall’. Behind the 

Firewall, there would be two systems: the existing ICS 

as well as another Pi, referred to as the ‘office 

computer’. External to the firewall, there should be 

another computer called ‘Target’. All three of these 

could be implemented using CHIPs. The additional cost 

of this implementation would be minimal (around £15 

together).  

This additional equipment would then enable further 

attack scenarios, such as: 

• The office computer periodically surfs to the external 

‘target’. Now the attacker could place a payload on the 

external computer. This would emulate a waterhole 

attack, which is quite common for spear phishing. With 

that, it would be possible to connect a mentioned threat 

to the test lab. 

• As ICS are often part of a botnet, with this setup it 

would then also be possible to measure outgoing traffic 

from the ICS to the external computer. That would make 

the DoS scenario increasingly realistic. 

• Pivoting, i.e., lateral movement after the initial breach 

would also be testable with this setup. 

This future implementation would move the testbed 

from pure IC testbed to IC within a company setup testbed. 

Such a testbed would be invaluable for education. In 

addition, the forthcoming work will involve making the 

construction design and instructions available to other 

researchers and students. 
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VII. APPENDIX 

Table 7 A.1 – Simulation Components 

Abbreviation Simulation Component Description  

C1 WaterSourcePipe 

C2 Pump1 

C3 Pump2 

C4 WaterFeedPipe 

C5 Pipe1 

C6 Pipe2 

Table 8 A.2 – Micro-CI Testbed Components 

Abbreviation Physical Component Description  

P1 Water Level 1 

P2 Water Level 2 

P3 Water Flow 1 

P4 Water Flow 2 

P5 Pump Speed 1 

P6 Pump Speed 2 

 
 

 

 


