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1 Introduction

In the biomagnetic inverse problem the main inter-
est is the activation of a region of interest, i.e. the
power dissipated in that region. The Bayesian power
imaging method (BPI) provides a quantified probabil-
ity that the activation of a region of interest is above
a given threshold. This paper introduces the method
and derives the equations used. The method is illus-
trated in this paper using both experimental and sim-
ulated data. Another paper [1] in this volume extends
the method to compare task and control experiments.

2 Methods

Before we can begin to describe the method we need
a few standard definitions, as used in [2]. Let m 2

R
N be the vector of measurements at a single time

instant, i.e. mi is the measurement of the ith channel,
i = 1; : : : N . Let ~Li(~r) be the lead field of the ith
detector.
For simplicity we will use the same Hilbert space of
currents as in [2], namely L2(Q) the square integrable
field defined on the brain volume Q with the follow-
ing inner product between currents

D
~j1 ; ~j2

E
=

Z
Q

~j1(~r) �~j2(~r)
!(~r)

d~r

where !(~r) is a weighting distribution defined on the
source space Q. Define the Gramm-Schmidt matrix

P , using this inner product, by Pik =
D
~Li ; ~Lj

E
.

This section continues by first deriving expressions
for the a posteriori probability distribution on the
measurements using the results from [2]. In turn this
is used to derive an a posteriori probability distribu-
tion on the activation of brain regions. It is this latter
probability distribution that is mapped out in source
space.

2.1 Distribution on measurements

The Bayesian method derived in [2] provides the a
posteriori probability distribution of current distribu-
tions~j(~r). The results of [2] are stated in terms of the
projection of this a posteriori probability distribution
onto one dimensional subspaces of L2(Q) by using
a test current ~t(~r). A special case (namely when the
assumed prior current distribution ~jprior is identically
zero) of the results derived in [2] are that the expected
mean is uT

(P + �D)
�1m and the expected variance

is:
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where ui =
D
~t(~r) ; !(~r)~Li(~r)

E
. �2D is the covari-

ance matrix of the assumed Gaussian noise and � is a
regularization parameter. In this Bayesian setting the
regularization parameter � is equal to �2=�2 where
�2 is the variance of the assumed prior probability
distribution on currents~j(~r).
In [2] the test current ~t was scanned across a set of
voxels to produce an image. Here the approach is dif-
ferent. By setting ~t(~r) = !(~r)~Li(~r) we can project
the a posteriori distribution onto the expected mea-
surement in the ith channel. So, the probability dis-
tribution represents our best guess of the true value of
the measurements given our prior knowledge of the
measurement geometry and the data vector m. The
expected mean and variance can be calculated using
the equations above. The formulae can be simplified

by noting that uj =
D
!(~r)~Li(~r) ; !(~r)~Lj(~r)

E
= Pij ,

i.e. the vector u is the ith column of P . It follows that
the mean and variance for all channels can be calcu-
lated in a single matrix equation. In this case the ex-
pected mean is P (P + �D)

�1m and the covariance
matrix is given by
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which simplifies to �2D(P + �D)
�1P .



A few checks on the reasonableness of the above
equations are possible by looking at extreme cases of
the regularization parameter � .
As � ! 0, the mean tends to m and the covariance
tends to �2D. This is reasonable because, in this
Bayesian setting, � ! 0 corresponds to having ei-
ther perfect data (i.e. � ! 0) or no prior knowledge
(i.e. � ! 1). In this case, the formulae show that
the best estimate of the measurements is given by the
data with covariance equal to the assumed covariance
of the noise.
As � !1, both the mean and the covariance matrix
tend to zero. This is also reasonable since � ! 1

corresponds to either worthless data (i.e. � ! 1) or
perfect prior knowledge (i.e. � ! 0). The formulae
above indicate that the best estimate of the measure-
ments is equal to our prior prejudices (in this case zero
current density) with complete certainty.

2.2 Distribution on activation estimates

The above formulae can be used in the direct power
estimation algorithm derived previously [3]. In this
method an optimal estimation matrix Y� for the �th
voxel is derived and the expression mTY�m is used to
estimate the activation of the �th voxel. The expres-
sion derived in [3] for Y� is

(P 2
+D)Y�(P

2
+D) = PX�P (1)

where X� is a matrix which is related to the choice of
region of interest. In this paper the region of interest is
a single voxel in a source space so the expression for
X� is simply Lk�L

k
�

T
where Lk� is a column of the gain

matrix for the problem, i.e. Lk� is the measurement
vector that would result from a dipole at position ~r�
oriented in direction bek.
The matrix Y in Equation 1 is then given by;

Y� =
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where 	k
� = (P 2

+D)
�1
PLk� . For this special case

it is more efficient not to form the matrix Y but to
calculate the activation directly using 	

k
� ;
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T
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(3)

Here the method is put in a Bayesian context be-
cause we now know the a posteriori distribution of

measurement channels. Unfortunately the probabil-
ity distribution of the quadratic form mTY�m is not
known in a closed form. Analytic approximations
have been derived to calculate the probability distri-
bution of quadratic forms in Gaussian random vari-
ables (e.g. [4]) but these methods are computationally
expensive. In practice the quickest way of achieving a
given level of accuracy for the probability is by Monte
Carlo integration. First the measurements are normal-
ized by factoring out the known covariance matrix:

m?
=

1

�
(P + �D)

�1=2P 1=2m (4)

Then the probability can be estimated by picking M

Gaussian random vectors of length N with zero mean
and unit covariance matrix, say zi, i = 1; : : : M , and
computing the probability:

P�(x) =
1

M

MX
i=1

�(x�A�(zi)) (5)

where P�(x) is the one-sided probability of the esti-
mate x and � is the Heaviside step function.
Maps of probability can then be computed by scan-
ning � across a defined source space.

3 Results

The effectiveness of the algorithms has been tested in
two simulated experiments and on real data.
The first simulated experiment has a simple geometry
(Figure 1). The head is modelled as a homogeneous
conducting sphere of radius 8:9 cm with its centre at
(0; 0;�0:07 cm). The source space is a 6 cm�6 cm
square thin lamina consisting of 33�33 voxels in the
plane z = �0:01 cm with centre (0,0,-0.01 cm). The
measurement instrument is a hexagonal array of 37
second order axial gradiometers with baseline 5 cm
with the lowest ’sensing’ coils in the plane z = 4 cm.

The sources for the first numerical study were
two current dipoles with positions (0 cm, 0 cm) and
(�2:25 cm,�2:25 cm) and oriented along the x and
y axes respectively. Uncorrelated Gaussian noise is
added to the pure signal so that the resulting signal to
noise ratio was 9:7.
In analyzing the experimental data there are many
possible methods of determining noise levels etc. In
this paper we have tried to keep the analysis choices
simple in order to concentrate on the fundamentals
of the method. With this in mind, all the examples
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Figure 1: A plan view of the experiment geometry.
The grid depicts the source space voxels and the cir-
cles represent the position of the measurement coils
of the second order gradiometers.

have the same choices for the parameters: the noise
is assumed to be uncorrelated Gaussian noise of vari-
ance �2, the regularization parameter is fixed to be
0:1 � trace(P )=N and the number of trials, M , for
the Monte-Carlo probability estimation method was
1000.
If the Monte-Carlo probability estimation method is
applied directly to the raw power estimates, large ar-
eas of the source space are found to be significant.
This is because it is very unlikely for there to be zero
power dissipated in each voxel. An easy calculation
shows that the expected power for the �th voxel is
given by trace(Y�). The sensitivity to the (unknown)
variance of the noise in the measurements can be min-
imized by using the mean and standard deviation of
the power estimates across the source space as a mea-
sure of expected power. This is equivalent to the as-
sumption that the desired signal produces significant
power estimates on only a small proportion of the
source space. In this paper the examples show prob-
ability maps of the probability that the activation is
more than three standard deviations above the mean
activation. The resulting thresholded image is shown
in Figure 2. The two sources are located accurately
and with a very high significance.
In the second example, a current dipole source was
embedded in the innermost shell of a 3-shell model
conducting sphere. The shell radii are 73mm, 80mm
and 86mm and the corresponding conductivities are
0:33 Sm�1, 0:0042 Sm�1 and 0:33 Sm�1. A detector
system consisting of 65 EEG electrodes was used to
measure the scalp potential. The electrode positions
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Figure 2: A probability map across the source space
shown in Figure 1. The scale goes from white (repre-
senting a probability of less than 0.1) to black (prob-
ability greater than 0.9).

and a representation of the potentials measured by the
electrodes are shown in Figure 3. Also shown in Fig-
ure 3 is the conducting shell used as the source space
for the reconstruction.

Figure 3: An EEG simulated dipolar dataset, together
with the corresponding BPI map. The white blob that
appears on the shell is the region where the activation
is greater than the threshold (at the 99.9% significance
level).

The third and last example involves real MEG data
from an evoked response study of face-processing [6].
The experimental instrument used is the Neuromag-
122TM [5]. Human subjects were presented briefly
with photographs of human faces. It is known that
the early response to face images involves widespread
activity in the posterior brain but there is limited ev-



idence for the precise distribution and timecourse of
the neuronal sources. One suggestion is that there are
three major areas of activity; in occipital cortex and
both right and left ventral occipito-temporal cortex
[7]. Strong occipital activity (starting about 100 ms
after the stimulus) is expected to lead to concurrent
activity in the two other regions with a stronger re-
sponse in the right hemisphere [6].
The result shown in Figure 4 is derived from the re-
sponse in an individual subject at a latency of 160ms
after the stimulus. At this time, there is a global
peak in the total field power for this experiment. The
source space was restricted to the surface of the cor-
tex, as revealed by MRI and also shown in Figure 4.
The findings of the BPI algorithm are consistent with
earlier studies in that there is a significant response in
both right and left cortices, with a stronger response
in right hemisphere. Further work is needed to refine
these predictions as the source space has a complex
folded structure and we have not yet disentangled the
contributions of superficial and deeper source regions

Figure 4: The BPI map on the cortical source space
used. The 122-channel helmet detector system is also
shown.

4 Discussion

The main impetus behind the development of
quadratic algorithms to estimate power rather than
current density is that other modalities (e.g. fMRI,
PET) naturally produce images of power dissipated.
So if multi-modal comparisons are to be made then it
is sensible to produce power images from MEG data.
The BPI method has the additional advantage of be-
ing able to produce spatial images of the variation of
probability that are easy to interpret.

In this paper the BPI method was shown to work ef-
fectively for simulated MEG and EEG data. It was
also demonstrated for experimental MEG data and
produced results consistent with earlier analyses.
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