
Open Research Online
The Open University’s repository of research publications
and other research outputs

Insights from expert software design practice
Conference or Workshop Item
How to cite:

Petre, Marian (2009). Insights from expert software design practice. In: 7th joint meeting of the European
Software Engineering Conference (ESEC) and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), 24-28 Aug 2009, Amsterdam, The Netherlands, pp. 233–242.

For guidance on citations see FAQs.

c© 2009 ACM

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/1595696.1595731
http://www.esec-fse-2009.ewi.tudelft.nl/

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82923292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1145/1595696.1595731
http://www.esec-fse-2009.ewi.tudelft.nl/
http://oro.open.ac.uk/policies.html

Insights from Expert Software Design Practice
Marian Petre

Centre for Research in Computing
The Open University

Milton Keynes, MK7 6AA, UK
+44 1908 65 33 73

m.petre@open.ac.uk

ABSTRACT
Software is a designed artifact. In other design disciplines, such
as architecture, there is a well-established tradition of design
studies which inform not only the discipline itself but also tool
design, processes, and collaborative work. The 'challenge' of this
paper is to consider software from such a 'design studies'
perspective. This paper will present a series of observations from
empirical studies of expert software designers, and will draw on
examples from actual professional practice. It will consider what
experts’ mental imagery, software visualisations, and sketches
suggest about software design thinking. It will also discuss some
of the deliberate practices experts use to promote innovation.
Finally, it will open discussion on the tensions between observed
software design practices and received methodology in software
engineering.

Categories and Subject Descriptors
D.2.10 [Software]: Design – methodologies, representations.

General Terms
Design, Experimentation, Human Factors

Keywords
Expertise, design, empirical studies, software development
processes

1. INTRODUCTION
Software design can be difficult. The problems are often “wicked”
[Rittel and Webber, 31]: too big, too ill-defined, too complex for
easy comprehension and solution. Sometimes the problems are
only fully understood after they are solved. Solving such

problems is rarely a matter of ‘brute force’ or routine. So how
do expert software designers solve them?

Fundamentally, software engineering is about thinking. Richard
Hamming wrote that: “The purpose of computing is insight, not
numbers” [15]. The constraints to design and innovation within
the discipline are not physical, but human: software is constrained
primarily by our ability to invent, by what software engineers
have managed to think about so far, and how they go about it.
Things like algorithms, programming languages, analytic engines,
and software solutions are all thought products. Reasoning is at
the heart of expertise in software design. How experts reason
about problems and design, and how they use representations and
tools to help them reason about bigger and more complex things,
is interesting.

Researchers have recognised that many software problems are
‘too big for the head’, and that only exceptional “super-designers”
can reason across the full breadth and depth of such massive
problems in order to consider consequences and implications of
design decisions [Curtis et al., 9]. As a result, expertise is the
crucial commodity in software development today, with
individual developers differing in productivity by 10 to 30 times
[Boehm, 5].

The study of expert design presents particular challenges; expert
design is complex in terms of context, task, and time. Design
occurs within organisations, teams, and disciplines which shape
design processes via social structures and interactions,
conventions, and practices (cf. [Bucciarelli, 6]). Software projects
may span years, and some aspects of expertise may be occasional
phenomena, appearing irregularly. Experts are by definition a
minority, and issues of intellectual property and workload limit
their accessibility. As a consequence, effective study requires an
approach that is sensitive to context and can make the most from
small numbers, restricted access, and occasional phenomena.
Lawson [19] argued that “…to get good data on [expert design]
we need to study not just the actions, graphical outputs and
finished designs of these designers but also the conversations they
have with each other and their clients during their normal working
practice.” (p. 38)

Research has shown that experts differ from others not just in the
amount they produce, but in how they produce it: they know
more, have more effectively organized conceptual
representations, solve problems using more advanced processes,
use the information they have more effectively, are more creative,
and are more pragmatically adept due to their application of their
experiences (see [Kaplan et al., 16] and [Allwood, 1] for reviews).

© 2009 ACM. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in:
ESEC/FSE '09 Proceedings of the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering. ISBN: 978-1-60558-001-2.
ACM Digital Library: http://dl.acm.org

233

My own research has shown that software design experts are
distinguished both by the repertoire of reasoning strategies they
use, and by their ability to choose the appropriate strategy for the
task. They also build custom tools that match their thinking. So,
capturing expert strategy – what experts do, how they reason, and
what tools they use – could have a significant impact on
productivity. It could also enable us to communicate expert
strategies to the next generation of software designers.

Design requires elements of creativity as well as methodical
practice and domain knowledge. It is often described as the
exploration of the domain space, alternating between expansion of
the space of possibilities and the pruning of that space based on
requirements and design choices, ideally converging on a
satisfactory solution [Newell and Simon, 24]. This exploration is
shaped by knowledge (the designer’s existing information,
experience, ideas, and heuristics that is brought to bear on a
design problem), goals (the desired outcome), and ideas (specific
notions that together define one or more states in the design
space) [Simon, 34] It encompasses both ‘normal’ design
(recognition of known design problems and mapping of known
solutions onto them, incremental innovation based on known
solutions and solution strategies) and ‘radical’ design (invention
of new solutions for unfamiliar problems) [Vincenti, 35].

Software design has much in common with other design
disciplines such as architecture, mechanical engineering,
industrial design and so on: for example, the design of structures,
the management of multiple and often conflicting constraints, and
the need to bridge between conceptual models (the idea of what
should be built) and physical models (the pragmatics of what can
be built in the world).

Software design is also different in significant ways. Its ‘thought
products’ are abstract, complex, and hard to observe (what does
an operating system ‘look like’?). Yet these products must also
interact with the physical world, and software designers must
reason not just about software properties, but also about
software’s behaviour over time – behaviour which is potentially
complex. In other design disciplines, such as architecture, there is
a well-established tradition of design studies which inform not
only the discipline itself but also tool design, processes, and
collaborative work. The 'challenge' of this talk is to consider
software from such a 'design studies' perspective, that is, to
examine the design process through studies of actual design
practice, considering how designers explore the design space
[Newell and Simon] – and hence to consider design as a cognitive
and social process.

The next sections are organized simply: first, a broad overview of
the empirical basis for the insights is offered, along with a
characterization of the sorts of expert designers and high
performing teams that were studied; then ‘insights’ from that
programme of research are discussed in turn, with perspectives
from studies of experts’ mental imagery, software visualization
tools, sketches, and team behavior, culminating with a more
general discussion of implications.

2. BASIS IN EMPIRICAL STUDIES
Understanding how expert software designers and high-
performing software design teams create and reason about
software design, articulating their strategies, and identifying how

they support their reasoning with techniques, tools, and
representations, has been the focus of the empirical studies on
which the ‘insights’ presented here are based, studies which are
part of on a ongoing programme of empirical research spanning
more than 20 years and more than 20 companies.

The research programme has included a spectrum of research
methods, from long-term, situated, ethnographically-informed
observational studies, through targeted observations and
interviews, through constrained tasks in which a number of
participants engaged in the same specified task, (also called field
experiments or quasi-experiments) to controlled experiments –
with other variations such as corpus analyses also within the
spectrum. Overall, the emphasis has been on the use of in situ,
qualitative methods aimed at making the most of limited access to
expert designers, while intruding as little as possible on authentic,
situated practice. This approach occupies a space between case
studies and controlled studies such as experiments and quasi-
experiments. It fits into the broad category of work which Ball
and Ormerod [6] characterised as ‘cognitive ethnography’. It
views design activity in context, while contributing to the
understanding cognition ‘in-the-head’, hence attending to “the
interplay between people-laden contexts and expert cognition” (p.
148). Ball and Ormerod characterise cognitive ethnography as:

1. observationally specific: using small-scale data collection
based around representative time slices of situated activity.

2. purposive: focusing on selected issues within existing work
practices, and

3. verifiable: in terms of validating observations across
observers, data sets and methodologies.

The approach provides a means for identifying patterns across
individuals: identifying phenomena for further study, cataloguing
behaviours and strategies, identifying key factors, and focusing
questions for further study. It is informed by (and triangulates
among) various types of inputs, including: direct observation,
talk-aloud protocols, interviews, environments and artefacts. This
approach both yields useful descriptive accounts and feeds into
other methods such as controlled studies by providing a well-
founded basis for focusing investigation. Hence, the spectrum of
techniques works together: we observe in order to understand,
explicate, abstract into theory, and question – and we constrain,
hypothesise, and experiment in order to test and refine our
descriptions, explanations, and theory.

The research programme has studied a variety of software
designers and developers in a variety of contexts, but largely the
focus has been on ‘generalist’ experts: those designers and
problem-solvers who, in mastering a discipline, achieve both
breadth and depth. These are creative software designers – those
who combine technical expertise with creative flair in conceiving
and generating novel solutions and innovative software. The
experts, from both industry and academia, and from several
countries in Europe and North America, share the same general
background: all have ten or more years of programming and
software engineering experience; all have experience with large-
scale, real-world, real-time, data- and computation-intensive
problems; and all are acknowledged by their peers as expert. All
are proficient with programming languages in more than one
paradigm. The coding language used was not of particular interest

234

in these investigations, but, for the record, a variety of styles was
exercised in the examples, using languages including APL, C,
C++, Hypercard, Java, common LISP, macro-assembler, Miranda,
Prolog, and SQL. Their preferred language was typically C or
C++, because of the control it afforded (although the preference
did not exclude routine verbal abuse of the language).
The experts worked in high performing teams: effective, creative,
intellectual-property-producing teams that tend to produce
appropriate products on time, on budget, and running first time.
For the most part, the teams were small teams of 3 to 12
members, and all were in companies where the generation of
intellectual property (i.e., novel solutions) and the anticipation of
new markets characterised the company’s commercial success.
All were effective, as evidenced by consistency of turnover,
completed projects, and design prizes. Most were in large, long-
term (1- to 2-year) projects, with software developers generating
between 5 and 10,000 lines of code per compile unit, typically
around 200 lines per compile unit, with on the order of 3,000 files
per major project.
Industries included computer systems, engineering consultancy,
professional audio and video, graphics, computer-aided design
and manufacturing, games, embedded systems, satellite and
aerospace – as well as retail systems, insurance and
telecommunications. Often the software was one component of a
multi-disciplinary project including computer hardware and other
technology.
It is important to note that these experts work in relatively small
companies or groups that typically produce their own software
rather than working with legacy systems, although there were
examples of the latter in the programme overall. For the most
part, the software they produce is ‘engineering software’ rather
than, for example, information systems, although products may
include massive data handling and database elements. This
context was determined pragmatically – by which companies
were willing to allow access to their expert software developers.
The results presented may not generalise beyond this variety of
design and this style of working.

3. MENTAL IMAGERY AND SOFTWARE
VISUALISATION
Elicitation of experts’ mental imagery – of the ways they envision
and manipulate software designs and programmes in their minds –
reveals both that the imagery is rich and varied, and that there are
strong commonalities among individuals in terms of the properties
of their mental imagery (if not in the entirety of their repertoires)
[Petre and Blackwell, 29]. Mental imagery is used here to
describe any inspectable mental representations, regardless of the
sensory modality of the image. Indeed, the imagery the
informants described was not just visual but also verbal, auditory,
spatial, and tactile.

Unsurprisingly, the experts’ mental imagery was rich and varied,
including dynamic mental simulations of abstract machines
(vivid, colourful, ‘physical’ structures that could run and be
manipulated); strongly spatial imagery corresponding to
landscapes over which awareness could ‘fly’, with different parts
of the solution residing in different regions; strongly spatial,
mathematically-oriented imagery of solution surfaces used in

“prospecting around the equation space”; an imagery of non-
visual ‘presence’ (of entities and their relationships “known in
the dark”); verbal imagery, in which parts of the problem were
described or ‘discussed’ mentally; “text with animation”; and
even auditory presentations of solution characteristics, with
auditory qualities like loudness or tone reflecting some aspect of
the solution, such as level of activity or type of data.

The nature of this mental imagery – and in particular the
characteristics common across different forms of mental imagery
– offers insights into how experts think about design.

3.1 Insight: Experts’ mental imagery
supports selection of focus, provisionality, and
the juxtaposition of multiple views.
Selection of focus: The imagery afforded tremendous control of
attention: of what was considered, of the degree of focus and the
level of granularity, and of the level of awareness. The
distribution and resolution of information in the imagery was not
uniform; the experts chose where to put their attention at any
given moment, and different regions of the imagery were
described as coming in and out of focus. Information outside the
focus might be undefined, or unsolved, or soluble, or solved;
mainly, it was deemed not important at the moment. This
selection of focus supports experts’ ability to reason across the
full breadth and depth of software designs in order to consider
consequences and implications of design decisions.

Provisionality: All of the imagery could accommodate
incompleteness and provisionality, which were usually signalled
in the imagery in some way, e.g., absence, fuzziness, partial
shading, distance in a landscape, change of tone. This is
consistent with Miller’s claim [23] that the vagueness of an image
is critical to its utility. Accommodating provisionality means that
experts can leave decisions open, and hence explicitly maintain
options and alternatives.

Juxtaposition and multiplicity: All of the experts described
simultaneous, multiple imagery. Some alternatives existed as
different regions, some as overlaid or superimposed images, some
as different, unconnected mental planes.

3.2 Insight: Mental imagery is often
externalized as a way of coordinating models
of a design.
Mental imagery used by a software designer in constructing an
abstract solution to a design problem can be externalised and
adopted by the rest of the team as a focal image. The externalized
images are used both to convey the proposed solution – to share
ideas – and to co-ordinate subsequent design discussions. They
tend to be some form of analogy or metaphor, depicting key
structural abstractions. But they can also be ‘perspective’ images:
‘if we look at it like this, from this angle, it fits together like this’
– a visualization of priorities, of key information flows or of key
entities in relationship. Hence, the image is a conceptual
configuration which may or may not have any direct correlation
to eventual system configuration.
When externalized images are introduced, they are ‘interrogated’
in discussion by the team, for example establishing its boundaries
with questions about ‘how is it different from this’; considering
consequences with questions like ‘if it’s like this, does it mean it

235

also does that?’; assessing its adequacy with questions about how
it solved key problems; and seeking its power with questions
about what insights it could offer about particular issues. By
interrogating and discussing the image and its implications with
the originator, the recipients are establishing a shared semantics,
and the originator is co-ordinating with the rest of the team. In
the course of the discussion and interrogation, the image might be
embellished – or abandoned. Sketching is a typical part of the
process of assimilation, embodying the transition from ‘mental
image’ to ‘external representation’. The sketches may be various,
with more than one sketch per image, but a characteristic of a
successful focal image is that the ‘mature’ sketches of it are useful
and meaningful to all members of the group. This fits well with
the literature about the importance of good external
representations in design reasoning (e.g., [Flor & Hutchins, 12],
[Schön, 32], and others). Ko, DeLine and Venolia [17], in a study
of the information needs of software developers, found that design
questions about intent and rationale were among the most difficult
to satisfy. These ‘mature’ sketches, with their shared
interpretation, a shared ‘jargon’ of key terms and short-hand
references relating to it, provide a means of preserving intent and
rationale within the team.
It is interesting to note that this co-ordination issue has been taken
on board by recent software development methodologies, which
often try to address it by creating an immersive environment of
discourse and artefacts which is intended to promote regular re-
calibration with the other team members and with artefacts of the
project. For example, ‘contextual design’ [Beyer and Holtzblatt,
4] describes ‘living inside’ displays of the external representations
in order to internalise the model (to take it into one’s thinking),
referring to the displayed artefacts as “public memory and
conscience”. In another example, ‘extreme programming’ [Beck,
3] emphasises the importance of metaphor, requiring the whole
team to subscribe to a metaphor in order to establish that they are
all working on the same thing. In that case, the metaphor is
carried into the code, for example through naming.

3.3 Insight: The software visualizations
experts create for themselves are specialised.
The software visualizations and visualization tools which experts
build to support their own design activities tend to be designed for
a specific context, rather than generic [Petre, 28]. In one expert’s
characterisation of what distinguished his team’s own tool from
other packages they had tried: “the home-built tool is closer to
the domain and contains domain knowledge”. Software
developers talk about software visualization with respect to three
major activities: comprehension (particularly comprehension of
inherited code), debugging, and design reasoning. The
visualization tools for design reasoning (the only ones considered
here) appeared to fall into two categories, corresponding to the
distinction the experts made between ‘debugging the software’
(reasoning about the software artifact – program visualization)
and ‘debugging the application’ (reasoning about the design,
about what is intended – conceptual design visualization).

Low-level or program visualizations tend to be used to debug the
software artefact. They pre-suppose that the expert’s
understanding of the artefact is correct, and they examine the
artefact in order to investigate its behaviour. They typically
represent the interpreted or implemented design, showing key
entities, relationships and structures through different levels of

abstraction, allowing the user to examine and manipulate values,
for example altering a value of one variable or output from one
process while monitoring others and hence identifying the
connective relationship between different parts. It appears that
these visualizations reflect some aspects of what the imagery
presents, but they do not ‘look like’ what the engineers ‘see’ in
their minds. There are a number of such tools, especially ones
that highlight aspects of circuits or code (e.g., signal flows,
variables) or tools for data visualization, as well as visualizations
that represent aspects of complexity or usage patterns. In effect,
they visualize things engineers need to take into account in their
reasoning, or things they need in order to form correct mental
models, rather than depicting particular mental images.
Conceptual or design visualizations tend to be used to debug the
concept or process – to reason about the design. Conceptual
visualisations appear to be closer to what engineers ‘see’ in their
minds. (Indeed, examples are often described by the developers
as depictions of personal mental imagery.) They often bear strong
resemblance to mathematical visualizations or illustrations, for
example showing surfaces that relate to solution spaces.
The distinctions between program visualization and conceptual
design visualization in the self-built tools are important. Program
visualization contributes to the mental imagery rather than
reflecting it. Conceptual visualization appears to offer a more
direct relationship between the mental imagery and the software
visualization. More work is needed on the interaction between
the two – to what extent does understanding conceptual
visualization contribute to solving problems in the domain of
program visualization?
It is important to remember that there are differences between
reasoning about conceptual design and reasoning about artefacts.
Conceptual design is a divergent thinking problem, in the early
stages at least, which requires creativity and readiness to think
‘outside the box’. Schön [32] talks about a design as a ‘holding
environment’ for a set of ideas. The importance of fluidity,
selectivity, and abstract structure are emphasised by both the
experts’ own mental imagery and by their stated requirements for
visualization tools.
Visualising concepts: There are few visualizations yet to support
conceptual design, rather than just re-present the code,
performance or data flow. This highlights the need to make
available information that is not typically contained in the source
code: information about the originators’ intentions and models of
the software. This implies that the visualizations (and the tools
that drive them) must embody more knowledge of the application
domain. Experts want to see software visualized in context – not
just what the code does, but what it means. Automatic generation
from code is inherently unlikely to produce conceptual
visualizations because the code does not contain information
about intentions and principles.
Domain knowledge: The utility of visualization lies not in mere
re-presentation of data, but in an appropriate and meaningful
distillation and abstraction of the data in order to provide access
to desired information about the software. That is, it is no good
translating massive source code into an equally massive
visualization; what is required is views on the artefact that
disclose significant patterns within it. Minimising cognitive load
by reducing the amount of information handled by the user and
maximising the information pertinent to the user requires that the

236

visualization be tailored to the user's task and goals. This, in turn,
requires some knowledge of the domain. Because generic tools
do not contain domain knowledge, they cannot depict what the
software developers actually reason about when they reason about
design.
The big issues that face software visualization – particularly with
respect to design – relate to matching visualizations to human
needs. It is arguable that, currently, what is visualized is what
can be visualized, not necessarily what needs to be visualized.
The big technical challenges lie in developing the analysis and
selection techniques needed to tailor visualizations to support
human cognition. Software developers seek facilities that
contribute to insight, e.g., useful abstractions, ready
juxtapositions, information about otherwise obscure
transformations, informed selection of key information, etc. –
and they need those facilities to be set in context, to be informed
by domain knowledge. Tools that simply re-present available
information (e.g., simplistic diagram generation from program
text) do not provide insight.

4. SKETCHES
Conceptual-level reasoning is reflected in the sketches and other
informal representations experts make when exploring early
design ideas. Notes and sketches allow designers to capture ideas
early in the conceptual design process when the ideas are perhaps
incomplete and fleeting – these informal representations have a
role in capturing, generating, and evaluating design ideas.
Lansdowne [18] writes that “…sketching is needed not simply to
illustrate completed ideas to others…its main purpose is to assist
designers in eliciting, developing and evaluating the design ideas
themselves.” (p. 1) He reports that good designers are better at
externalizing ideas than less able ones, and that they do it earlier
in the design process. Cross [8] calls sketching an “intelligence
amplifier” and enumerates how sketching helps design thinking:
enabling designers to handle different levels of abstraction
simultaneously, enabling identification and recall of relevant
knowledge, assisting problem structuring through solution
attempts, promoting recognition of emergent features and
properties (pp. 34-38). Other researchers, too, write about the role
of external representations in assisting creativity and cognition.
Conceptual software design is often collaborative. Developers
work in face-to-face settings, creating many sketches on paper
[Craft and Cairns, 7] or on whiteboards [Damm et al., 10]. It is
unusual to see designers get together to discuss a design without
making some sort of sketches or notes. If they arrive unprepared
to do so, they’ll improvise, grabbing whatever means were to
hand, for example using marker pens on windows. Not only must
designers think about design, but they must also communicate
their concepts and coordinate their thinking across the team in
order to develop a shared vision.
In this context, sketches can not only capture early ideas, but also
potentially communicate them and act as a coordination
mechanism to support the design dialogue. Lubars, Potts and
Richter [21] conducted a study of the requirements analysis
process in 23 organizations, which demonstrated clearly that
informal documentation, communication and coordination are all
more important during what we now call the conceptual design
phase, than conventional notational and analytic methodologies.

Luff et al. [22], based on field studies of real-world organizational
environments, concluded that paper-based representations had
particular advantages for collaboration. The ‘tailorability’ of
paper-based documentation (e.g., its amenability to annotation)
and its ‘ecological flexibility’ (its ability to move around the
environment) were key features.

4.1 Insight: Designers use, juxtapose, and
switch among formalisms deliberately.
Juxtaposition and annotation: Designers use juxtaposition and
annotation deliberately and expressively. Experts juxtapose two
different representations in order to use the match or mis-match
between them to support reasoning and to spot omissions or
inconsistencies. They explicitly represent design alternatives in
juxtaposition. Annotation, both textual (adding detail, notes,
emphasis) and graphical (highlighting, relating) are important and
are used dynamically to support dialogues. Crossings out
(exclusions, corrections) remain visible in sketches, are referred
to explicitly, and are sometimes annotated specifically.
Goldschmidt [14] describes the ‘dialectic of sketching’: that
design is a dialog between the designer and the sketch, in which
the externalization plays a key role in cognition, reflection, and
creativity. Sketches allow a dialectic between perception of the
figural properties in a sketch (‘seeing as’) and non-figural
propositions about the design (‘seeing that’), hence “…allows the
translation of the particulars of form into generic qualities and
generic rules into specific appearances” (p. 139). Schön [33], too,
observes the reflective dialog with materials, the externalization
of design “talking back” to the designer and providing insight.
Working around formal representations: Software designers use
proportionately little free sketching – the majority of their
sketches refer to formal representations – yet they consider free
sketching to be crucially important in early design. Often, variants
of formal representations were interpreted more freely than they
might be ‘downstream’ in the design process. This freedom of
expression took the form of using what was directly relevant and
useful from the formal representation, disregarding elements that
were not, and possibly adding additional elements. Designers
might produce incomplete fragments, disregard syntax rules (even
commenting that “this wouldn’t work like this…”, include ‘place
holder’ elements or elements that were not formally part of the
notation or component library, add in elements from a different
representation, represent alternatives, annotate freely, and so on.
Exploiting this freedom allowed the designers to express things
that were not addressed or were excluded by the formal
representation.
Deliberate changes of formalism: Experts change representation
instrumentally and expressively. They make a deliberate change
of representation to highlight key points. Further, they
deliberately change notation in order to ‘escape from the
formalism’ (and hence the selection, orientation, or
simplification) embodied in a given notation and hence to
highlight different aspects of a problem or solution.

4.2 Insight: Explicit expression of
provisionality allows a dialogue with
incomplete ideas.
The imprecision, ambiguity and generality of manipulation of
free-hand representations is considered by many to be crucial to

237

design creativity. Goel [13] presents evidence that free-hand
sketching “by virtue of being ‘dense’ and ambiguous – correlates
with creative, explorative, ill-structured phases of problem
solving and the avoidance of early fixation. Fish and Scrivener
[11] argued that creativity is supported by the sorts of selective or
fragmentary information and indeterminacies typical of sketches;
the abstraction and indeterminacies help in preserving or
suggesting alternatives.
A feature which distinguishes informal design representations
from more formal capture (such as CAD drawings) is the explicit
indication of ‘provisionality’, that what is being represented is not
fixed, not certain, not fully specified, not fully defined, undecided
or uncommitted – but is subject to reconsideration and/or
alteration. Designers use different qualities of line (e.g., light
pressure, broken or wavy lines, different colours), annotations
(such as question marks or lists of alternatives or other
considerations), and juxtaposition of alternatives as ways of
conveying provisionality. The expression of provisionality plays a
role in focusing attention (and diverting attention), considering
alternatives (including marking things for later consideration of
alternatives), and deferring decisions. It allows designers to
consider ‘downstream’ decisions before having all ‘upstream’
issues resolved.
This ability to defer decisions (and to note them as deferred) is
part of designers’ dialogue with incomplete ideas – supportive of
the creativity of software design by allowing designers to reason
their way through parts of the design while setting aside
constraints that may impinge from other parts, and supportive also
of subsequent systematic exploration and evaluation of the whole.
Fish and Scrivener [11] argued that sketching includes “tolerances
and indeterminacies in ways that can amplify the artist’s ability to
perceive or imagine many options” (p. 117). Something similar
appears to apply to software designers, who use representations of
‘provisionality’ to assist their design exploration and discussion.
Information such as crossings out (indicating exclusions,
corrections) remain visible and are referred to during discussions.
Designers make use of such ‘litter’, of artefacts remaining from
previous activity and discussion, to assist them in recalling the
design process, history, and rationale.

4.3 Insight: Designers use scenario sketches
to make context explicit in the design process.
Design teams often represent context – using scenario sketches,
hierarchy and structure diagrams – both as scene-setting and in
discussion of specific design decisions, alternating between
representations of context and representations of specific design
elements. They draw scenarios: use-oriented views of the whole
system in context. These show up most frequently in
representations generated during discussions between team
members. They demonstrate a recurrent attention to context and
user needs during design.

5. DELIBERATE PRACTICES TO
PROMOTE INNOVATION
In an analysis of effective multi-disciplinary engineering firms,
Petre [25] identified 14 ‘disciplines of innovation’, of deliberate
practices, whose purpose is to support innovation in design. Most
of them are ways to expand the search space, either by admitting

more potential solutions, or by broadening the definition of the
problem. Some (such as examination of barriers and the
systematic relaxation of constraints) are ways to change
perspective, to alter the view of the problem or of what might
constitute a solution. Some (such as collecting ‘loose
possibilities’) are ways to maintain the knowledge base. Some of
these (such as patent searches) are routine and wide-spread
practices even in much less innovative companies, but some (such
as reasoning about ‘essences’ or functional abstractions) require
exceptional information or expertise.
1. systematic knowledge acquisition (patent searches, technical

literature reviews, analysis of legislative requirements and
regulatory standards, review of the competition)

2. collection of ‘loose possibilities’ (keeping track of
knowledge, techniques, ideas or opportunities that might
come in useful)

3. record keeping (keeping track of design documents of all
sorts, meeting notes, informal notes of design rationale,
photographs of whiteboards, search and research results, and
so on)

4. reflection on completed projects (debriefing on recently
completed projects, reviewing potentially relevant past
projects, reviews on general themes)

5. systematic re-use or re-implementation of recent innovations
6. identification of barriers (and seeking to remove them in

order to identify previously unnoticed assumptions, to
review the status of existing limitations on technologies, and
so on)

7. attention to conflicts (such as those between stakeholder
goals, or between constraints, in order to expose assumptions
or seek a new alignment)

8. brainstorming
9. systematic exploration of possibilities (finding gaps, or

finding unexplored relationships between problems and
potential approaches)

10. scenario-based reasoning to explore assumptions and
consequences

11. stripping down to fundamentals (setting aside the ‘noise’ of
detail and stripping the problem down to what essential
functionality must be addressed and how it might be
achieved)

12. considering ‘essences’ (or functional abstractions)
13. systematic variation in constraints
14. playing with toys (investigating other people’s widgets and

developing pet ideas)
It is striking how many of these disciplines require expertise,
either in terms of breadth and depth of experience, or in terms of
expert reasoning, such as the identification of deep structure in
problems and solutions.
In software design, experts use some similar strategies to deal
with intractable problems, the sorts of design problems that others
find ‘too big for one head’ [Petre, 26]. Their strategies include:

a. simplification (solving a simpler problem)
a. transformation (into another, easier to handle, form)
b. re-segmentation (dividing it up differently, identifying sub-

goals)
c. relaxing constraints (altering or reducing constraints;

changing reality)

238

d. analogy (using an analogy to provide some key insight about
functionality, or using differences between apparently
analogous thing to explore boundaries)

e. abstraction (solving the essence, for example identifying one
key functional abstraction)

f. re-shaping the problem space (solving the problem instead of
the solution)

g. seeking insight (rather than solution per se, for example
solving a different but related problem, or proving that the
problem maps onto a known insoluble problem)

As with the ‘disciplines of innovation’ these are creative
strategies concerned with moving around the design space. Some
are (such as relaxing constraints) are about divergence, or
expansion of possibilities. Others (such as analogy) are about
pruning the space, making progress within a conception of the
problem, and converging toward a solution.
Cultivating awareness of alternatives: Innovation and design
require divergent thinking, at least in the early stages, and these
studies of expert designers provide evidence of such thinking
during the software design process. Embodied in the observed
expert practices are strategies that help designers to cultivate
alternatives or at least maintain awareness that alternatives are
possible.
The role of error and failure in innovation: Exceptional
companies hire the best possible people and immerse them in a
cooperative, communicative culture where exploration is
supported. A feature of such cultures is a tolerance for error,
supported by robust practices that make it likely that slips and
errors will be detected, and a recognition that failure can be
informative. Embodied in the ‘disciplines of innovation’ are
reflections on experience that include reflections on failure (as
well as successes), not just to learn from them, but also to detect
when conditions have changed in a way that might re-open
possibilities. One of the advantages of play is that it allows
designers to explore ideas before they’re needed, and hence with
little penalty for failure.

6. DISCUSSION: TENSIONS BETWEEN
OBSERVED SOFTWARE DESIGN
PRACTICES AND SOFTWARE
ENGINEERING METHODOLOGY
Several themes have recurred through these investigations: the
role of explicit provisionality in maintaining alternatives and
exploring the design space; the role of juxtaposition in exploration
of design ideas; the awareness of context and the attention to user
needs; the balance of activity and strategies between expansion of
the space of possibilities and convergence toward a particular
solution; the role of dialogues in design, and the social
components of effective performance.
Examinations of professional practice make it clear that
professional software designers, and in particular experts, don’t
necessarily do what the literature would suggest that they do. Yet
all of the teams and individuals we studied were reflective
practitioners [Schön, 33], who engaged in systematic practices
including the examination and evaluation of their own work and
working.

6.1 Systematic practice vs. software
development methodology
Few of the teams studied consistently followed a specified
software development methodology. This is not to say that that
they were not methodical – on the contrary, high-performing
individuals and teams demonstrate deliberate, systematic practices
with due attention to both functional and non-functional
requirements, to context, and to the needs of various stakeholders,
from users to maintainers.
Moreover, their practices are not orthogonal to ‘received’
methodologies. On the contrary, they have elements in common.
This is no surprise, given that methodologies are for the most part
un-startling and un-revolutionary, but rather tend to provide a
rationalized, coherent account of something practitioners have
already been attempting. So, for example, although the traditional
teams studied during this programme of research did not engage
in pair programming, many did routinely engage in pair
debugging. In another example, most use formal methods, but
they do so selectively, and only when the potential benefit
warrants the investment.
These software designers showed no reluctance to investigate
potential tools and methodologies, and they routinely scan the
literature and review applications. It must be considered that
these are high-performance teams, with well-established
methodologies and work practices. They continually seek tools
and methods that augment or extend their practice, but they are
reluctant to change work practices (particularly work style)
without necessity. The tools that persisted and passed into use
were those which were robust, worked at scale, and associated
well with their preferred software development environment. The
take-up of tools and methodologies was based on a thoughtful
cost-benefit analysis which took into account the impact on the
teams’ own systematic practices. Tools for which the cost of
take-up was perceived as too high were discarded. Usually the
cost was associated with taking on the philosophies, models or
methodologies associated with the useful elements. Where there
were major discrepancies of process between the package and
existing practice, or where there was incompatibility between the
package and other tools currently in use, the package was
typically discarded as likely to fail. It should be noted that ‘Not
invented here’ was never offered as a reason not to use a tool.

6.2 Deliberate changes of paradigm,
formalism, and representation
A paradigm is a decision about what to see, a kind of formalism, a
focus on particular aspects of a problem. It makes some things
more accessible by pushing others back. Hence, no one paradigm
will suit every problem; no one paradigm will make easier the
whole set of problems that people solve with computers.
Expert programmers use a paradigm as a thought-organizer or a
discipline or a frame of reference. They collect a repertoire of
useful paradigms — of reference models — which offer different
views onto which problems can be mapped, and which facilitate
different aspects of solution and different virtues.
Petre and Green [30] introduced the need to “escape from
formalism” as an essential part of real-life, professional-level
design, necessary to cope with things not accessible within a
given formalism. Changing paradigm is a mechanism for escape

239

from one formalism — from one set of constraints or values —
into an alternative. Expert programmers employ a conscious
change of paradigm in order to re-assess a solution or to gain
insight—that is, they exert a paradigm to reveal the information
they know they want or to support the reasoning process they
know they need to accomplish. For them, a paradigm is used as a
convenient (if temporary) world view, a way of looking at things,
a way of doing things—a decision about what the world is, for the
moment. But the sense is of a pair of lenses rather than of the
Kuhnian set of eyes—something one can put on, take off,
alternate with something of a different hue; not necessarily
something incorporated permanently and to the exclusion of
alternatives. The expert treats a programming paradigm as a
reasoning tool.

6.3 Reassessing the trajectory
One contrast between expert software designers’ deliberate
practices and software engineering methodologies, is the process
of continual reassessment. Expert behaviour includes significant
elements of reflection, correction, and reassessment of the design
problem. Software engineering methodologies are largely about
setting a solution trajectory and following it through. A colleague
has described them as ‘a juggernaut’. They tend not to be about
creativity, or reflection – methodologies are more concerned with
‘normal’ design (which after all dominates the field) and with
‘normal’ designers than with ‘radical’ design and ‘innovative’
designers. In contrast, expert practice is highly reflective, and
gives due attention both to seeking insight along a suggested
trajectory (about making progress within a conception of the
problem, and a notion of the destination) and to reconsidering the
trajectory as understanding develops. In my colleague’s analogy,
the expert designers periodically ‘get off the juggernaut’, examine
the landscape, and reassess both trajectory and destination.
One use of scenarios is to encourage designers to change
perspective away from a product and to look instead at the whole
process in which a product might play a role, in order to identify
which and how many steps in the process a new product might
cover. This is often characterised as ‘white space finding’:
examining a whole process (perhaps one that is not yet
achievable) and trying to identify inefficiencies, obstacles, or gaps
in the currently available products or services that limit the
process.

6.4 Social context
Another contrast between expert practice and software
engineering methodologies is the attention to social knowledge.
Methodologies may well define roles in the development process,
but they say less about interactions. And yet study of high
performing teams makes it clear that the interplay between
designers plays a crucial part both in nurturing creativity and
innovation and in embedding systematic practice and rigour.
High-performing teams use knowledge of the group, of both
individual and combined strengths and limitations, to structure
their activities and reinforce their strengths. Exceptional teams
take care over the deliberate induction of new members into local
culture and practice, while eliciting fresh perspectives from them.
Care is also taken over deliberate knowledge recovery from
exiting members before they leave, although the collaborative,
reflective culture tends to ensure that project and process
knowledge is disseminated among personnel. Reliance on
qualities such as expertise, reliability, and trust, and on practices

such as pair debugging that provide systematic checks on
activities and sharing of knowledge, can liberate individuals to
extend themselves.

6.5 Conclusion
Looking at software design as it is practised by experts and high-
performing teams reveals not only a variety of useful strategies
but also essential characteristics of the design process. Designers
make use of provisionality and juxtaposition to explore
alternatives and maintain awareness of options. They deliberately
change paradigms, formalisms and representations as a way of
changing perspective. And they resist tools that impose too
severely on their work practices. Many of their strategies concern
expansion of the design space, not just convergence to a solution.
More work is needed on supporting conceptual design and
providing conceptual design visualizations. Design is a process
of dialogues: between designers and artifacts, and among
designers. These have implications for tools and methodologies,
suggesting that design tools should promote the dialogue between
designer and representation, that variations on formalisms might
usefully be supported, that explicit provisionality and
juxtaposition are essential features, that fluid transitions and
mappings between conceptual and software representations are
likely to be beneficial, and that capturing and exploiting domain
knowledge is a challenge to be addressed.

7. ACKNOWLEDGMENTS
The author is profoundly grateful to the expert software designers
and teams, without whom the paper would not be possible, and to
their companies which permitted access. The author is a Royal
Society Wolfson Research Merit Award Holder. Some of
research on which this paper draws was carried out under grants
including: EPSRC grant GR/J48689 (Facilitating Communication
across Domains of Engineering) in collaboration with George
Rzevsky and Helen Sharp, and EPSRC Advanced Research
Fellowship AF/98/0597. Thanks also to Bashar Nuseibeh, Andre
van der Hoek, David Bowers, Lutz Prechelt, Thomas Green and
Jim Buckley.

8. REFERENCES
[1] Allwood, C.M. 1986. Novices on the computer: a review of

the literature. International Journal of Man-Machine Studies,
25, 633-658.

[2] Ball, L.J., and Ormerod, T.C. 2000. Putting ethnography to
work: The case for a cognitive ethnography of design.
International Journal of Human-Computer Studies, 53, 147-
168.

[3] Beck, K. 1999. Extreme Programming Explained: Embrace
Change. Addison-Wesley.

[4] Beyer, H., and Holtzblatt, K. 1988. Contextual Design:
Defining Customer-Centered Systems. Morgan Kaufmann.

[5] Boehm, B.W., 1981. Software Engineering Economics.
Prentice-Hall ‘Advances in Computing Science and
Technology’ series. Prentice-Hall. xxvii, 767.

[6] Bucciarelli, LL 1988. An ethnographic perspective on
engineering design. Design Studies, 9, 159-168.

[7] Craft, B., and Cairns, P. 2006. Using sketching to aid the
collaborative design of information visualization software. In

240

Human Work Interaction Design: Designing for Human
Work, IFIP vol. 221, 103-122.

[8] Cross, N. 2006. Designerly Ways of Knowing. Springer-
Verlag.

[9] Curtis, B., Krasner, H., and Iscoe, N. 1988. A field study of
the software design process for large teams. Communications
of the ACM, 31, 11, 1268-1287.

[10] Damm, C.H., Hansen, K.M., and Thomsen, M. 2000. Tool
support for cooperative object-oriented design: gesture based
modeling on an electronic whiteboard. In Proceedings of the
SIGCHI conference on Human Factors in Computing
Systems, ACM, 518-525.

[11] Fish, J. and Scrivener, S. 1990. Amplifying the mind’s eye:
sketching and visual cognition, Leonardo, 23, 1, 118-126.

[12] Flor, N.V., and Hutchins, E.L. 1991. Analysing distributed
cognition in software teams: a case study of team
programming during perfective software maintenance. In J.
Koenemann-Belliveau, T.G. Moher and S.P. Roberston
(eds), Empirical Studies of Programmers: Fourth Workshop,
Ablex.

[13] Goel, V. 1995. Sketches of Thought. MIT Press.
[14] Goldschmidt, G. 1991, The dialectics of sketching.

Creativity Research Journal, 4, 2, 123-143.
[15] Hamming, R.W. 1987. Numerical Methods for Scientists and

Engineers, 2nd ed., Dover Publications.
[16] Kaplan, S., Gruppen, L., Leventhal, L.M., and Board, F.

1986. The Components of Expertise: A Cross-Disciplinary
Review. The University of Michigan.

[17] Ko, A.J., DeLine, R., and Venolia. G. 2007. Information
needs in collocated software development teams. In 29th
International Conference on Software Engineering (ICSE
‘07), IEEE Computer Society, 344-353.

[18] Lansdown, J. 1993. Visualising design ideas. In Proceedings
of Interacting with Images (London, February). BCS.

[19] Lawson, B. 2003. Schemata, gambits and precedent: some
factors in design expertise. In N Cross and E Edmonds (eds),
Expertise in Design: Design Thinking Research Symposium
6, Creativity and Cognition Studio Press, 37-50.

[20] Logie, R.H. 1989. Characteristics of visual short-term
memory. European Journal of Cognitive Psychology, 1, 275-
284.

[21] Lubars, M., Potts, C., and Richter, C. 1993. Developing
Initial OOA Models. In Proceedings of 15th International
Conference on Software Engineering, IEEE Computer
Society Press, 255-264.

[22] Luff, P., Heath, C., and Greatbatch, D., 1992. Tasks-in-
interaction: paper and screen based documentation in
collaborative activity. In Proceedings of CSCW 92, 163-170.

[23] Miller, G.A. 1993. Images and models, similes and
metaphors. In A.Ortony (ed.), Metaphor and Thought, 2nd
edition. Cambridge University Press, 357-400.

[24] Newell, A., and Simon, H.A. 1990. GPS: A Program that
Simulates Human Thought. In Computers and Thought,
McGraw-Hill.

[25] Petre, M. 2004. How expert engineering teams use
disciplines of innovation. Design Studies, 25, 477–493.

[26] Petre, M. 2007. Expert strategies for dealing with
complex and intractable problems. Keynote address,
Psychology of Programming Interest Group Workshop.

[27] Petre, M. 2009. Representations for idea capture in software
and hardware development. Open University Centre for
Research in Computing Technical Report.

[28] Petre, M. In press. Mental imagery and software
visualization in high-performance software development
teams. To appear in: Journal of Visual Languages and
Computing.

[29] Petre, M., and Blackwell, A. 1997. A glimpse of
programmers’ mental imagery. In S. Wiedenbeck and J.
Scholtz (Eds), Empirical Studies of Programmers: Seventh
Workshop, ACM Press, 109-123.

[30] Petre, M., and Green, T.R.G. 1990. Where to draw the line
with text: some claims by logic designers about graphics in
notation. In D. Diaper, D. Gilmore, G. Cockton, and B.
Shackel (eds.), Human-Computer Interaction: Interact’90,
North-Holland, 463-468.

[31] Rittel, H., and Webber, M. 1973. Dilemmas in a general
theory of planning. Policy Sciences, 4, 155-169.

[32] Schön, D. 1988. Design rules, types and worlds. Design
Studies, 9, 3, 181-190.

[33] Schön, D.A., 1983. The Reflective Practitioner: How
Professionals Think in Action, Basic Books.

[34] Simon, H.A. 1996. The Sciences of the Artificial, 3rd ed.,
MIT Press.

[35] Vincenti, W.G. 1990. What Engineers Know and How They
Know It: Analytical Studies from Aeronautical History.
Johns Hopkins University Press.

241

