
Open Research Online
The Open University’s repository of research publications
and other research outputs

Improving the tokenisation of identifier names
Conference or Workshop Item

How to cite:

Butler, Simon; Wermelinger, Michel; Yu, Yijun and Sharp, Helen (2011). Improving the tokenisation of identifier
names. In: ECOOP 2011 – Object-Oriented Programming (Mira, Mezini ed.), Lecture Notes in Computer Science,
Springer Verlag, pp. 130–154.

For guidance on citations see FAQs.

c© 2011 Springer Verlag

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1007/978-3-642-22655-77
http://dx.doi.org/10.1007/978-3-642-22655-7 7

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82923061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1007/978-3-642-22655-7_7
http://dx.doi.org/10.1007/978-3-642-22655-7_7
http://oro.open.ac.uk/policies.html


Improving the Tokenisation of Identifier Names

Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp

Computing Department and Centre for Research in Computing
The Open University, Milton Keynes, United Kingdom

Abstract. Identifier names are the main vehicle for semantic informa-
tion during program comprehension. Identifier names are tokenised into
their semantic constituents by tools supporting program comprehen-
sion tasks, including concept location and requirements traceability. We
present an approach to the automated tokenisation of identifier names
that improves on existing techniques in two ways. First, it improves to-
kenisation accuracy for identifier names of a single case and those con-
taining digits. Second, performance gains over existing techniques are
achieved using smaller oracles. Accuracy was evaluated by comparing
the output of our algorithm to manual tokenisations of 28,000 identifier
names drawn from 60 open source Java projects totalling 16.5 MSLOC.
We also undertook a study of the typographical features of identifier
names (single case, use of digits, etc.) per object-oriented construct (class
names, method names, etc.), thus providing an insight into naming con-
ventions in industrial-scale object-oriented code. Our tokenisation tool
and datasets are publicly available1.

1 Introduction

Identifier names are strings of characters, often composed of one or more words,
abbreviations and acronyms that describe actions and entities in source code.
Identifier names are tokenised into their component words to support a wide
range of activities in software development, maintenance and research, including
concept location [16, 14], to extract semantically useful information for other
processes such as traceability [2], and the extraction of domain-specific ontologies
[17], or to support investigations of the composition of identifier names [9, 10].

Identifier naming conventions describe how developers should construct iden-
tifier names. The conventions typically provide mechanisms for identifying bound-
aries between component words either with separator characters, e.g. get text

(Eclipse), or internal capitalisation where the initial letter of the second and
successive component words is capitalised, colloquially known as ‘camel case’,
e.g. getText (OpenProj). The use of separator characters and internal capitali-
sation mean identifier names can be readily tokenised. However, a non-negligible
proportion of identifier names (we found approximately 15%) are more difficult
to tokenise accurately and reliably because they contain features such as upper

1 http://oro.open.ac.uk/28352/



case acronyms, unconventional uses of capitalisation and digits, or are com-
posed of characters of a single case. Upper case acronyms and words are delim-
ited inconsistently, e.g. setOSTypes (jEdit) contains the acronym OS, hasSVUID
(Google Web Toolkit) contains two acronyms, SVU and ID, concatenated, while
DAYSforMONTH [7] relies on a change of case to mark a word boundary. Digits
are found in some acronyms, e.g. J2se and POP3, and are also found as discrete
tokens, thus there is no simple means of recognising a word boundary where
a digit appears in an identifier name. Single case identifier names contain no
readily identifiable word boundaries and in some instances, e.g. ALTORENDSTATE
(JDK), have more than one plausible tokensiation based on dictionary words,
which needs to be resolved. Further difficulties arise from the use of mixed case
acronyms like OSGi and DnD, where the acronym is difficult to recover as a
single token when used in the mixed case form, e.g. as in isOSGiCompatible

(Eclipse), which lack conventional word boundaries.

Current approaches to identifier name tokenisation [7, 8, 15] report accuracies
of around 96% for the tokenisation of unique identifier names. However, some
approaches ignore identifier names containing digits [8, 15], or treat digits as
discrete tokens [7]. In this paper, we present a step-wise strategy to tokenising
identifier names that improves on existing methods [7, 8] in three ways. Firstly,
we introduce a method for tokenising single case identifier names that addresses
the problem of resolving ambiguous tokenisations and does not rely on the as-
sumption that identifier names begin and end with known words; secondly, we
implement and evaluate a method of tokenising identifier names containing digits
that relies on an oracle and heuristics; and thirdly, we use an oracle created from
published word lists [4] with 117,000 entries, which makes the solution easier to
create and deploy than that described in [7] where the oracle consists of 630,000
entries harvested from 9,000 Java projects.

Improvements in identifier name tokenisation can have a big impact on the
coverage of concept location and program comprehension tools because tokeni-
sation accuracy is reported in terms of unique identifier names. Hence, even a
1% improvement of accuracy can have a radical effect (e.g. in concept location)
if it affects those identifiers with many instances throughout the source code,
which would otherwise lead to incorrect or missing concept locations. More im-
portantly, by improving techniques for tokenising identifier names composed of
characters of a single case and those containing digits, the coverage of concept
location tools can be extended to include identifier names have previously been
ignored or underused.

Identifier name tokenisation can also be used in IDE tools to support iden-
tifier name quality assurance. For example, some projects use tools like Check-
style2 to check conformance to programming conventions when source code is
committed to the repository. Such tools typically only ensure typographical con-
ventions, like the usage of word separators in names of constants, not lexical
ones, like the usage of dictionary words and recognised abbreviations. Using to-

2 http://checkstyle.sourceforge.net/



kenisation to check whether an identifier name can be properly parsed would
allow a more pro-active approach to ensuring the readability of source code.

The remainder of the paper is structured as follows. Section 2 consists of
an exposition of the problems encountered when tokenising identifier names. In
Section 3 we give an account of related work including the approaches taken by
other researchers, before describing our approach to the problem in Section 4. In
Section 5 we describe the experiments undertaken to evaluate our solution and
compare it with existing solutions. In Sections 6 and 7 we discuss the results of
our experiments and draw our conclusions.

2 The Identifier Name Tokenisation Problem

In this section we describe the practical problems encountered when trying to
tokenise identifier names.

2.1 The Composition of Identifier Names

Programming languages and programming conventions constrain the content
and form of identifier names. Programming languages impose hard constraints,
most commonly that identifier names must consist of a single string3, where the
initial character is not a digit, and are composed of a restricted set of characters.
For the majority of programming languages, the set of characters permitted
in identifier names consists of upper and lower case letters, digits, and some
additional characters used as separators. An additional hard constraint imposed
by languages such as Perl and PHP is that identifier names begin with specific
non-alphanumeric characters used as sigils – signs or symbols – to identify the
type represented by the identifier. For example, in Perl ‘$’ denotes a scalar and
‘@’ a vector.

Programming conventions provide soft constraints in the form of rules on
the parts of speech to be used in identifier names, how word boundaries should
be constructed and often include the vague injunction that identifier names
should be ‘meaningful’. Programming conventions typically advise developers
to create identifier names with some means of identifying boundaries between
words. Java, for example, employs two conventions [19]: constants are composed
of words and abbreviations in upper case characters and digits separated by
underscores (e.g. FOO BAR), and may be described by the regular expression
U [DU ]∗(S[DU ]+)∗, where D represents a digit, S a separator character and U
an upper case letter; and all other identifier names rely on internal capitalisation
to separate component words (e.g. fooBar).

2.2 Tokenising Identifier Names

Programming conventions, though applied widely, are soft constraints and, con-
sequently, are not applied universally. Thus, tools that tokenise identifier names

3 Smalltalk method names are a rare exception where the identifier name is separated
to accommodate the arguments, e.g. multiply: x by: y



need to provide strategies for splitting both conventionally and unconventionally
constructed identifier names. Identifier names contain features such as separator
characters, changes in case, and digits that have an impact on tokenisation. We
discuss each feature before looking at the difficulties encountered when attempt-
ing to tokenise identifier names without separator characters or changes in case
to indicate word boundaries.

Separator Characters Separator characters – for example, the hyphen in
Lisp and the full-stop, or period, in R4 – can be used to separate the component
words in identifier names. Accordingly, the identification of conventional internal
boundaries in identifier names is straightforward, and the vocabulary used by
the creator of the identifier name can be recovered accurately.

Internal Capitalisation Internal capitalisation, often referred to as ‘camel
case’, is an alternative convention for marking word boundaries in identifier
names. The start of the second and subsequent words in an identifier name are
marked with an upper case letter as in the identifier name StyledEditorKit

(Java Library), where the boundary between the component words of an identi-
fier name occurs at the transition between a lower case and an upper case letter,
i.e. internally capitalised identifier names are of the form U?L+(UL+)∗, where L
represents a lower case letter, and the word boundary is characterised by the reg-
ular expression LU . The word boundary is easily detected and identifier names
constructed using internal capitalisation are readily tokenised.

A second type of internal capitalisation boundary is found in practice. Some
identifier names contain a sequence consisting of two or more upper case letters
followed by at least one lower case letter, i.e. the sequence U+UL+. We refer to
this type of boundary as the UCLC boundary, where UCLC is an abbreviation
of upper case to lower case. Most commonly, identifier names with a UCLC
boundary contain capitalised acronyms, for example the Java library class name
HTMLEditorKit. In these cases the word boundary occurs after the penultimate
upper case letter of the sequence. However, identifier names have also been found
[7] with the same characteristic sequence where the word boundary is marked
by the change of case from upper case to lower case, for example PBinitialize

(Apache Derby). Thus, identification of the UCLC boundary alone is insufficient
to support accurate tokenisation [7].

Some identifier names mix the internal capitalisation and separator character
conventions, e.g. ATTRIBUTE fontSize (JasperReports). Despite being uncon-
ventional, such identifier names pose no further problems for tokenisation than
those already given.

Digits Digits occur in identifier names as part of an acronym or as discrete
tokens. Where a digit or digits are embedded in the component word, as in
the abbreviation J2SE, then the boundaries between tokens are defined by the

4 http://www.r-project.org/



internal capitalisation boundaries between the acronym and its neighbours. Ab-
breviations that have a bounding digit, e.g. POP3 and 3D, cannot be separated
from other tokens where boundaries are defined by case transitions between
alphabetical characters. Even if developers rigorously adopted the convention
of only capitalising the initial character of acronyms advocated by Vermeulen
[20], that would only help detect the boundary following a trailing digit (e.g.
Pop3Server), it would not allow the assumption that a leading digit formed a
boundary – that is it could not be assumed that UL+DUL+ may be tokenised
as UL+ and DUL+. In other words, because digits do not appear in consistent
positions in acronyms, there is no simple rule that can be applied to tokenise
identifier names containing acronyms that include digits. Similar complications
arise where digits form a discrete component of identifier names, including the
use of digits as suffixes (e.g. index3) and as homophone substitutions for prepo-
sitions (e.g. html2xml).

Single Case Some identifier names are composed exclusively of either upper
case (U+) or lower case characters (L+), or are composed of a single upper
case letter followed by lower case letters (UL+). Such identifier names are of-
ten formed from a single word. However, some, such as maxprefwidth (Vuze)
and ALTORENDSTATE (JDK), are composed of more than one word. Lacking word
boundary markers, multi-word single case identifier names cannot be tokenised
without the application of heuristics or the use of oracles. A variant of the
single case pattern is also found within individual tokens in identifier names
like notAValueoutputstream (Java library), where the developer has created
a compound, or failed to mark word boundaries. Accordingly some tokens re-
quire inspection and, possibly, further tokenisation. When tokenising identifiers
composed of a single case there are two dangers: ambiguity and oversplitting.

Ambiguity Some single case identifier names have more than one possible to-
kenisation. For example, ALTORENDSTATE is, probably, intended to be interpreted
as {ALT, OR, END, STATE}. However, it may also be tokenised as {ALTO, RENDS,
TATE} by a greedy algorithm that recursively searches for the longest dictionary
word match from the beginning of the string, leaving the proper noun ‘Tate’ as
the remaining token. A function of tokenisation tools is therefore to disambiguate
multiple tokenisations.

Oversplitting The term oversplitting describes the excessive division of tokens
by identifier name tokenisation software [7], e.g. tokenising the single case iden-
tifier name outputfilename as {out, put, file, name}. The consequence of this
form of oversplitting is that search tools for concept location would not identify
that ‘output’ was a component of outputfilename without additional effort to
reconstruct words from tokens.

Oversplitting is also practised by developers in two forms: one conventional,
the other unconventional. Oversplitting occurs in conventional practice in class



identifier names that are part of an inheritance hierarchy. Class identifier names
can be composed of part or all of the super class identifier name that may
be consist of a number of tokens and an adjectival phrase indicating the spe-
cialisation. For example, the class identifier name HTMLEditorKit is composed
of part of the type name of its super class StyledEditorKit and the adjecti-
val abbreviation HTML, yet would be tokenised as {HTML, Editor, Kit}. In this
case the compound of the super type is potentially lost, but can be recovered
by program comprehension tools. Developers also oversplit components of iden-
tifier names unconventionally by inserting additional word boundaries, which
increases the difficulty of recovering tokens that reflect the developer’s intended
meaning. Common instances include the oversplitting of tokens containing digits
such as Http 1 1, the demarcation of some common prefixes as separate words
as in SubString, and the division of some compounds such as metadata and
uppercase. In each case, a recognisable semantic unit is subdivided into com-
ponents and the composite meaning is lost, and must be recovered by program
comprehension tools [14].

In the following section we examine the literature on identifier name tokenisa-
tion and the approaches adopted by different researchers to solving the problems
outlined above.

3 Related Work

Though the tokenisation of identifier names is a relatively common activity
undertaken by software engineering researchers [1–3, 6, 9, 11, 14, 16, 18], few re-
searchers evaluate and report their methodologies.

Feild et al. [8] conducted an investigation of the tokenisation of single case
identifier names, or hard words in their terminology. Their experimental effort
focused on splitting single case identifier names into component, or soft, words.
For example, the hard word hashtable is constructed from the two soft words
hash and table.

Feild et al. compared three approaches to tokenising identifier names – a
random algorithm, a greedy algorithm and a neural network. The greedy algo-
rithm applied a recursive algorithm to match substrings of identifier names to
words found in the ispell5 dictionaries to identify potential soft words. For hard
words that are composed of more than one soft word, the algorithm starts at
the beginning and end of the string looking for the longest known word and
repeats the process recursively for the remainder of the string. For example
outputfilename is tokenised as {output, filename} from the beginning of the
string and as {outputfile, name} from the end of the string on the first pass.
The process is then repeated and the forward and backward components of the
algorithm produce the same list of soft words, and thus the single tokenisation
{output, file, name}. Where lists of soft words are different, the list containing
the higher proportion of known soft words is selected.

5 http://www.gnu.org/software/ispell/ispell.html



Of the three approaches, the greedy algorithm was found to be the more
consistent, tokenising identifier names with an accuracy of 75-81%. The greedy
algorithm, however, was prone to oversplitting. The neural network was found
to be more accurate, but only under particular conditions, for example when the
training set of tokenisations was created by an individual.

In a related study Lawrie et al. [12] turned to expanding abbreviations to
support identifier name tokenisation, and posed the question: how should an
ambiguous identifier name such as thenewestone be divided into component
soft words? Depending on the algorithm used there are a number of plausible
tokenisations and no obvious way of selecting the correct one, e.g. {the, newest,
one}, {then, ewe, stone}, and {then, ewes, tone}. Lawrie et al. suggested that
the solution lies in a heuristic that relies on the likelihood of the soft words being
found in the vocabulary used in the program’s identifier names.

Enslen et al. expanded on these ideas in a tool named Samurai [7]. Samurai
applies a four step algorithm to the tokenisation of identifier names.

1. Identifier names are first tokenised using boundaries marked by separator
characters or the transitions between letters and digits.

2. The tokens from step 1 are investigated for the presence of changes from
lower case to upper case (the primary internal capitalisation boundary) and
split on those boundaries.

3. Tokens found to contain the UCLC boundary – as found in HTMLEditor –
are investigated using an oracle to determine whether splitting the token
following the penultimate upper case letter, or at the change from upper to
lower case results in a better tokenisation.

4. Each token is investigated using a recursive algorithm with the support of
an oracle to determine whether it can be divided further.

The oracle used in steps 3 and 4 was constructed by recording the frequency
of tokens resulting from naive tokenisation based on steps 1 and 2 found in
identifier names extracted from 9,000 Sourceforge projects. The oracle returns
a score for a token based on its global frequency among all the code analysed
and its frequency in the program being analysed. The algorithms in steps 3 and
4 are conservative. In step 3 the algorithm is biased to split the string following
the penultimate upper case letter, and will only split on the boundary between
upper and lower case where there is overwhelming evidence that the tokenisation
is more frequent. The recursive algorithm applied in step 4 will only divide a
single case string where there is strong evidence to do so, and also relies on lists
of prefixes and suffixes6 to prevent oversplitting. For example, the token listen

could be tokenised as {list, en} for projects where ‘list’ occurs as a token
with much greater frequency than ‘listen’. Samurai avoids such oversplitting by
ignoring possible tokenisations where one of the candidate tokens, such as ‘en’,
is found in the lists of prefixes and suffixes.

Enslen et al. also reproduced the ‘greedy algorithm’ reported by Feild et al.
and compared the relative accuracies of the two techniques. The experiment used

6 Available from http://www.cis.udel.edu/~enslen/samurai



a reference set of 8,000 identifier names that had been tokenised by hand. The
Samurai algorithm performed better than their implementation of the greedy
algorithm, with an accuracy of 97%. The Samurai algorithm has some limitations
which we discuss in the next section.

Madani et al. [15] developed an algorithm, derived from speech recognition
techniques, to split identifier names that does not rely on conventional internal
capitalisation boundaries. The approach tries to match substrings of an identifier
name with entries in an oracle, both as a straightforward match and through
a process of abbreviation expansion analogous to that used by a spell-checking
program. Thus idxcnt would be tokenised as {index, count}. Furthermore, be-
cause the algorithm ignores internal capitalisation it can consistently tokenise
component words such as MetaData and metadata. Madani et al. achieved accu-
racy rates of between 93% and 96% in their evaluations, which was better than
naive camel case splitting in both projects investigated.

In the next section we describe our approach and how it differs from the
above techniques.

4 Approach

The approaches described were found to tokenise 96-97% of identifier names
accurately. However, there are limitations to each solution and issues with their
implementation that make their application in practical tools difficult. Of the
three approaches discussed, only Enslen et al. attempt to process identifier names
containing digits. However, digits are isolated as separate tokens at an early
stage of the Samurai algorithm so that meaningful acronyms such as http11

are tokenised as {http, 11}. Samurai is also hampered by the amount of data
collection required to create its supporting oracle.

We have implemented a solution to the problem of identifier name tokeni-
sation that addresses the issues identified in current tools. The solution named
INTT, or Identifier N ame Tokeniser Tool, is part of a larger source code mining
tool [5]. In particular, we have tried to ensure that the solution is relatively easy
to implement and deploy, and is able to tokenise all types of identifier name.
INTT applies naive tokenisation to identifier names that contain conventional
separator character and internal capitalisation word boundaries. Tokens contain-
ing the UCLC boundary or digits are processed using heuristics to determine a
likely tokenisation, and identifier names composed of letters of a single case are
tokenised using an adaptation of the greedy algorithm described above.

The core tokenisation functionality of INTT is implemented in a JAR file
so that it can be readily incorporated into other tools. The simple API allows
the caller to invoke the tokeniser on a single string, and returns the tokens
as an array. Thus front ends can range in sophistication from basic command
line utilities that process individual identifier names to parser based tools that
process source code. To support programming language independence the set of
separator characters can be configured using the API, but the caller is responsible



for removing any sigils from the identifier name. However, INTT has only been
tested on identifier names extracted from Java source code.

In summary, our algorithm consists of the following steps, which we discuss
in detail below:

1. Identifier names are tokenised using separator characters and the internal
capitalisation boundaries.

2. Any token containing the UCLC boundary is tokenised with the support of
an oracle.

3. Any identifier names with tokens containing digits are reviewed and to-
kenised using an oracle and a set of heuristics.

4. Any identifier name composed of a single token is investigated to determine
whether it is a recognised word or a neologism constructed from the simple
addition of known prefixes and suffixes to a recognised word.

5. Any remaining single token identifier names are tokenised by recursive al-
gorithms. Candidate tokenisations are investigated to reduce oversplitting,
before being scored with weight being given to tokens found in the project-
specific vocabulary.

4.1 Oracles

To support the tokenisation of identifier names containing the UCLC boundary,
digits and single case identifier names, we constructed three oracles: a list of
dictionary words, a list of abbreviations and acronyms, and a list of acronyms
containing digits. The list of dictionary words consists of some 117,000 words,
including inflections and American and Canadian English spelling variations,
from the SCOWL package word lists up to size 70, the largest lists consist-
ing of words commonly found in published dictionaries [4]. We added a further
120 common computing and Java terms, e.g. ‘arity’, ‘hostname’, ‘symlink’, and
‘throwable’. Previous work [5] included analysis of which identifier names did
not correspond to dictionary words and found that several known computing
terms were unrecognised. The list of computing terms was hence constructed
iteratively over the analysed projects, using the criterion that any word added
should be a known, non-trivial computing term. Each oracle was implemented
using a Java HashSet so that lookups are performed in constant time.

The use of dictionaries imposes a limitation on the accuracy of the result-
ing tokenisation because a natural language dictionary cannot be complete. We
addressed this limitation by adopting a method to incorporate the lexicon of
the program being processed in an additional oracle, which takes a step towards
resolving the issue highlighted in Lawrie et al.’s question of how to resolve am-
biguous tokenisations for identifier names such as thenewestone [12]. Tokens
resulting from the tokenisation of conventionally constructed identifier names
are recorded in a temporary oracle to provide a local – i.e. domain- or project-
specific – vocabulary that is employed to support the tokenisation of single case
identifier names. For example, tokens extracted from identifier names such as
pageIdx and lineCnt can be used to support the tokenisation of an identifier
name like idxcnt as {idx, cnt}.



INTT is also able to incorporate alternative lists of dictionary words in its or-
acle, and is, thus, potentially language independent. INTT relies on Java’s string
and character representations, which default to the UTF-16 unicode character
encoding standard. So, INTT is able to support dictionaries, and thus tokenise
identifier names created using natural languages where all the characters, in-
cluding accented characters, can be represented using UTF-16 (subject to the
constraints on identifier name character sets imposed by the programming lan-
guage). However, as INTT was designed with the English language and English
morphology in mind, adaptation to other languages may not be straightforward.

4.2 Tokenising Conventionally Constructed Identifier Names

The first stage of INTT tokenises identifier names using boundaries marked by
separator characters and on the conventional lower case to upper case inter-
nal capitalisation boundaries. Where the UCLC boundary is identified, INTT
investigates the two possible tokenistations: the conventional internal capitali-
sation where the boundary lies between the final two letters of the upper case
sequence, e.g. as found in HTMLEditorKit; and the boundary following the se-
quence of upper case letters, as in PBinitialize. The preferred tokenisation is
that containing more words found in the oracle. Where this is not a discriminant,
tokenisation at the internal capitalisation boundary is preferred.

Following the initial tokenisation process, identifier names are screened to
identify those that require more detailed processing. Identifier names found to
contain one or more tokens with digits are tokenised using heuristics and an
oracle. Identifier names composed of letters of a single case are tokenised, if nec-
essary, using a variant of the greedy algorithm [12]. These processes are described
in detail below.

4.3 Tokenising Identifier Names Containing Digits

In Section 2 we outlined the issues concerning the tokenisation of identifier
names containing digits. We identified three uses of digits in identifier names:
in acronyms (e.g. getX500Principal (JDK)), as suffixes (e.g. typeList2 (JDK,
Java libraries and Xerces)) and as homophone substitutes for prepositions (e.g.
ascii2binary (JDK and Java libraries)). In the latter two cases the digit, or
group of digits, forms a discrete token of the identifier, and if identified correctly
the identifier name may be tokenised with relative ease. Acronyms containing
digits are more problematic. We have identified two basic forms of acronym:
those with an embedded digit, e.g. J2SE, and those with one or more bounding
digits, e.g. 3D, POP3 and 2of7 .

Acronyms with embedded digits are bounded by letters and can be tokenised
correctly by relying on internal capitalisation boundaries alone. For example, the
method identifier name createJ2SEPlatform (Netbeans) can be tokenised as as
{create, J2SE, Platform} without any need to investigate the digit. Acronyms
with leading or trailing digits cannot easily be tokenised, and neither can those
with bounding digits. We made a special case of acronyms with bounding digits.



While they could be tokenised on the assumption that the digits were discrete
tokens, we decided that the very few instances of acronyms with bounding digits
found in the subject source code were better seen as discrete tokens from a
program comprehension perspective. Indeed all the instances we found were noun
phrases describing mappings, 1to1, or bar code encoding schemes 2of7.

With the exception of the embedded digit form of acronym there is no gen-
eral rule by which to tokenise identifier names containing digits. Accordingly we
created an oracle from a list of common acronyms containing digits and devel-
oped a set of heuristics to support the tokenisation of identifier names containing
digits.

Identifier names are first tokenised using separator characters and the rules
for internal capitalisation. Where a token is found to contain one or more digits
it is investigated to determine whether it contains an acronym found in the
oracle. Where the acronym is recognised the identifier name is tokenised so that
the acronym is a token. For example, Pop3StoreGBean can be tokenised using
internal capitalisation as {Pop3Store, G, Bean}. The tokens are then investigated
for known digit containing acronyms and tokenised on the assumption that Pop3
is a token, resulting in the tokenisation of {Pop3, Store}.

Where known acronyms are not found, the digit containing token is split to
isolate the digit and an attempt made to determine whether the digit is a suffix
of the left hand textual fragment, a prefix of the right hand one, or a discrete
token. We employ the following heuristics:

1. If the identifier name consists of a single token with a trailing digit, then the
digit is a discrete token, e.g. radius2 (Netbeans) is tokenised as {radius,
2}.

2. If both the left and right hand tokens are both words or known acronyms the
digit is assumed to be a suffix of the left hand token, e.g. eclipse21Profile
(Eclipse) is tokenised as {eclipse21, Profile}.

3. If both the left and right hand tokens are unrecognised the digit is assumed
to be a suffix of the left hand token, e.g. c2tnb431r1 (Geronimo and JDK)
is tokenised as {c2, tnb431, r1}.

4. If the left hand token is a known word and the right hand token is unrecog-
nised, then the digit is assumed to be a prefix of the right hand token, e.g.
is9x (Geronimo) is tokenised as {is, 9x}.

5. If the digit is either a 2 or 4 and the left and right hand fragments are known
words, the digit is assumed to be a homophone substitution for a preposition,
and thus a discrete token, e.g. ascii2binary is tokenised as {ascii, 2,
binary}. It is trivial for the application that calls our tokenisation method
to expand the digit into ‘to’ or ‘for’, if deemed relevant for the application.

4.4 Tokenising Single Case Identifier Names

To tokenise single case identifier names we adapted the greedy algorithm devel-
oped by Feild et al. [8]. We identified two areas of the greedy algorithm that re-
quired modification to suit our purposes. Firstly, because the algorithm is greedy,



it may fail to identify more accurate tokenisations in particular circumstances.
For example, the algorithm finds the longest known word from beginning and
end of the string, so thenewestone would be tokenised as {then, ewes, tone}
by the forward pass, and as {thenewe, stone} by the backward pass. Secondly,
the algorithm assumes that the string to be processed begins or ends with a
recognised soft word and therefore cannot locate soft words in a string that both
begins and ends with unrecognised words.

Our adaptation of the greedy algorithm is implemented in two forms: greedy
and greedier. The greedy algorithm assumes that the string being investigated
either begins or ends with a known soft word and the greedier algorithm is only
invoked when the greedy algorithm cannot tokenise the string.

Prior to the application of the greedy algorithm, strings are screened to
ensure that they are not recognised words or simple neologisms. The check for
simple neologisms uses lists of prefixes and suffixes to check that strings are not
composed of a combination of, for example, a known prefix followed by a known
word. This allows identifier names such as discontiguous (Java Libraries, JDK
and NetBeans) to be recognised as words, despite them not being recorded in
the dictionary. The greedy algorithm iterates over the characters of the identifier
name string forwards (see Algorithm 1) and backwards. On each iteration, the
substring from the end of the string to the current character is tested using the
dictionary words and acronyms oracles to establish whether the substring is a
known word or acronym. When a match is found the soft word is stored in a list
of candidates and the search invoked recursively on the remainder of the string.
Where no word can be identified the remainder of the string is added to the list
of candidates.

Algorithm 1 INTT greedy algorithm: forward tokenisation pass

1: procedure greedyTokeniseForwards(s)
2: candidates . a list of lists
3: for i← 0, length(s) do
4: if s[0, i] is found in dictionary then
5: rightCandidates← greedyTokeniseForwards(s[i + 1, length(s)])
6: for all lists of tokens in rightCandidates do
7: add s[0, i] to beginning of list
8: add list to candidates
9: end for

10: end if
11: end for
12: if candidates is empty then
13: create new list with s as member
14: add list to candidates
15: end if
16: return candidates
17: end procedure



When the greedy algorithm is unable to tokenise the string, the greedier
algorithm is invoked. The greedier algorithm attempts to tokenise a string by
creating a prefix of increasing length from the initial characters and invokes the
greedy algorithm on the remainder of the string to identify known words (see
Algorithm 2). For example, for the string cdoutputef, c is added to a list of
candidates and the greedy algorithm invoked on doutputef, then the prefix cd is
tried and the greedy algorithm invoked on outputef resulting in the tokenisation
{cd, output, ef}. This process is repeated, processing the string both forwards
and backwards until the prefix and suffix are one character less than half the
length of the string being tokenised, which allows the forward and backward
passes to find small words sandwiched between long prefixes and suffixes, while
avoiding redundant processing. For example in the string yyytozzz both the
forwards and backwards passes will recognise to, and in the string yyyytozz the
backwards pass will recognise to.

Algorithm 2 INTT greedier algorithm: backwards tokenisation pass

1: procedure greedierTokeniseBackwards(s)
2: candidates . a list of lists
3: for i← length(s), length(s)/2 do
4: leftCandidates← greedyTokeniseBackwards(s[0, i− 1])
5: for all lists of tokens in leftCandidates do
6: add s[i, length(s)] to beginning of list
7: add list to candidates
8: end for
9: end for

10: return candidates
11: end procedure

Each list of candidate component words is scored according to the percentage
of the component words found in the dictionaries of words and abbreviations, and
the program vocabulary – i.e. component words found in identifier names in the
program that were split using conventional internal capitalisation boundaries and
separator characters. The percentage of known words is recorded as an integer
and a weight of one added for each word found in the program vocabulary. For
example, suppose splitting thenewestone resulted in two candidate sets {the,
newest, one} and {then, ewe, stone}. All the words in both sets are found
in the dictionaries used and thus each set of candidates score 100. However,
suppose newest and one are found in the list of identifier names used in the
program, so two is added to the score of the first set, and that is selected as the
preferred tokenisation.

The algorithm, because of its intensive search for candidate component words,
is prone to evaluating an oversplit tokenisation as a better option than a more
plausible tokenisation. To reduce oversplitting, each candidate tokenisation is
examined prior to scoring to determine whether adjacent soft words can be con-



catenated to form dictionary words. Where this is the case the oversplit set of
tokens is replaced by the concatenated version. For example outputfile would
be tokenised as {output, file} and {out, put, file}. Following the check for
oversplitting, the first two tokens of the latter tokenisation would be concate-
nated making the two tokenisations identical, allowing one to be discarded.

The key advantage offered by the greedy and greedier algorithms are that
a single case identifier name can be tokenised without the requirement that it
begins or ends with a known word. For example, Feild et al.’s greedy algorithm
cannot tokenise identifier names like lboundsb unless ‘b’ or ‘l’ are separate entries
in the oracle. Samurai can only tokenise lboundsb if ‘l’ or ‘lbounds’ are found
as separate tokens in the oracle. Our algorithm can tokenise lboundsb using a
dictionary where ‘bounds’ is an entry.

In the following section we evaluate the accuracy of our identifier name to-
kenisation algorithm and compare its performance with Samurai and Feild et
al.’s greedy algorithm.

5 Experiments and Results

To evaluate our approach and compare its performance with existing tools we
adopted a similar procedure to that used by Feild et al. [8] and Enslen et al.
[7]. However, instead of using a single test set of identifier names, we created
seven test sets consisting of 4,000 identifier names each, extracted at random
from a database of 827,475 unique identifier names from 16.5 MSLOC7 of Java
from 60 projects, including ArgoUML, Cobertura, Eclipse, FindBugs, the Java
libraries and JDK, Kawa and Xerces8. One test set consists of identifier names
selected at random from the database. Five test sets consist of random selections
of particular species of identifier name – we use the term species to identify the
role the identifier name plays in the programming language, such as a class or
method name. The seventh set consists of identifier names composed of a single
case only (see Table 1).

Each test set of 4,000 identifier names was tokenised manually by the first
author to provide reference sets of tokenisations. The resulting text files consist
of lines composed of the identifier name followed by a tab character and the
tokenised form of the identifier name, normalised in lower case, with each token
separated by a dash, e.g. HTMLEditorKit〈tab〉html-editor-kit. Bias may have
been introduced to our experiment by the reference tokenisations having not
been created independently and we discuss the implications below in Subsection
5.4 Threats to Validity.

The identifier names in the test sets were classified using four largely mutually
exclusive categories that reflect particular features of identifier name composition
related to the difficulty of accurate tokenisation. The categories are:

7 Obtained using Sloccount http://www.dwheeler.com/sloccount/
8 A complete list of the projects analysed is available with the INTT library at http:
//oro.open.ac.uk/28352/



– Conventional identifier names are composed of groups of letters divided
by internal capitalisation (lower case to upper case boundary) or separator
characters.

– Digits identifier names contain one or more digits.
– Single case identifier names are composed only of letters of the same case,

or begin with a single upper case letter with the remaining characters all
lower case.

– UCLC identifier names contain two or more contiguous upper case charac-
ters followed by a lower case character.

Identifiers names are categorised by first testing for the presence of one or
more digits, then testing for the UCLC boundary. Consequently the digits cate-
gory may contain some identifier names that also have the UCLC boundary. In
the seven test sets there are a total of 1768 identifier names containing digits, of
which 62 also contain a UCLC boundary. The classification system is intended
to allow the exclusion of identifier names containing digits from evaluations of
those tools that do not attempt realistic tokenisation of such identifier names,
and to allow evaluation of our approach to tokenising identifier names containing
digits. The distribution of the four categories of identifier names in each of the
datasets is given in Table 1.

Table 1. Distribution of identifier name categories in datasets

C
o
n
v
e
n
ti
o
n
a
l

D
ig
it
s

S
in
g
le

C
a
se

U
C
L
C

Dataset Description

A Random identifier names 2414 467 1011 106
B Class names 3133 185 113 569
C Method names 3459 116 184 151
D Field names 2717 401 818 64
E Formal arguments 2754 250 961 34
F Local variable names 2596 349 1021 34
G Single case 0 0 4000 0

We also surveyed the 60 projects in our database. Figure 1 shows the distri-
bution of each category as a proportion of the total number of unique identifier
names in each application. Identifier names containing only conventional bound-
aries are by far the most common form of identifier name found in all the projects
surveyed. A significant proportion of single case identifier names are found in
most projects, and around 10% of identifier names contain digits or the UCLC
boundary. Table 2 gives a breakdown of the proportion of unique identifier names



●

●
●

●

●

●●

●

●

Conventional Digits Single case UCLC

0.
0

0.
2

0.
4

0.
6

0.
8

P
ro

po
rt

io
n 

of
 id

en
tif

ie
r 

na
m

es
 p

er
 p

ro
je

ct

Fig. 1. Distribution of the percentage of unique identifier names found in each category
for sixty Java projects

in each category across all 60 projects for each species of identifier. Test sets B
to F reflect the most common species, with the exception of constructor names
which are lexically identical to class identifier names, but differ in distribution
because not all classes have an explicitly declared constructor, while others have
more than one.

Table 2 shows that identifier names containing digits and those containing
UCLC boundaries constitute nearly 9% of all the identifier names surveyed.
Class, constructor and interface identifier names, the most important names for
high level global program comprehension, have a relatively high incidence of
identifier names containing the UCLC boundary – 13% for class and constructor
identifier names and 32% for interface identifier names. In other words, approxi-
mately 20% of class names and 40% of interface names require more sophisticated
heuristics to determine how to tokenise them.

We evaluated the performance of INTT by assessing the accuracy with which
the test sets of identifier names were tokenised, and by comparing INTT with
an implementation of the Samurai algorithm, both in terms of accuracy and the
relative strengths and weaknesses of the two approaches.



Table 2. Percentage distribution of identifier name categories by species

C
o
n
v
e
n
ti
o
n
a
l

D
ig
it
s

S
in
g
le

c
a
se

U
C
L
C

O
v
e
ra

ll
%

Species

Annotation 70.4 0.2 25.6 3.8 0.1
Annotation member 49.8 0.5 49.5 0.2 <0.1
Class 79.8 4.1 2.9 13.2 9.8
Constructor 79.8 3.5 3.1 13.5 7.2
Enum 73.4 0.5 19.4 6.7 0.1
Enum constant 55.9 10.2 33.6 0.2 0.8
Field 86.1 6.0 6.2 1.7 27.1
Formal argument 81.8 3.0 14.2 0.1 8.1
Interface 59.3 2.6 6.4 31.7 1.5
Label name 59.1 15.7 25.0 0.1 0.1
Local variable 82.4 3.8 12.6 1.2 16.9
Method 91.6 2.9 1.6 3.9 28.4

Total 84.9 4.1 6.4 4.6

5.1 INTT

We used INTT to tokenise the identifier names in each of the seven datasets. The
accuracy of the tokenisations was automatically checked against the reference
tokenisations for each dataset using a small Java program. A percentage accuracy
score calculated for INTT’s overall performance and for each species of identifier
name. A percentage accuracy was also calculated for each of the four structural
categories found in each set of identifier names, see Table 3. (The results for
dataset G are reported in Subsection 5.3.)

INTT was found to have an overall accuracy of 96-97%, which improves
marginally when identifier names containing digits are excluded. Identifier names
containing digits are tokenised with an accuracy in excess of 85% for three of
the six data sets A–F. However, accuracy drops to 64% for method identifier
names containing digits. Inspection of the tokenisations for class and method
names show that there are two contributing factors: firstly, the assumption that a
recognised acronym containing digits always takes precedence over the heuristics
when determining a tokenisation led to incorrect tokenisations in some instances
and, secondly, some oversplitting of textual tokens occurs. An example of the
former is the method name replaceXpp3DOM (NetBeans) which was tokenised
as {replace, Xpp, 3D, OM} on the basis that 3D is a known acronym containing
digits. Applying the heuristics alone, however, would have found the correct
tokenisation of {replace, Xpp3, DOM}.



Table 3. Percentage accuracies for INTT

C
o
n
v
e
n
ti
o
n
a
l

D
ig
it
s

S
in
g
le

c
a
se

U
C
L
C

O
v
e
ra

ll

W
it
h
o
u
t
d
ig
it
s

Dataset

A Random identifier names 97.3 95.9 97.4 85.8 96.9 97.0
B Class names 98.3 85.4 92.4 92.1 96.5 97.1
C Method names 97.1 63.8 96.8 92.7 96.0 96.9
D Field names 97.5 88.7 96.4 87.5 96.3 97.1
E Formal arguments 98.8 94.4 93.4 79.4 97.0 97.2
F Local variable names 98.2 94.3 92.0 85.3 96.2 96.3

The overall percentage accuracy for each dataset is comparable with the
accuracies reported for the Samurai tool [7] (97%) and by Madani et al. [15]
(93-96%). The breakdowns for each structural type of identifier name show that
INTT performs less consistently for identifier names containing digits and for
those containing the UCLC boundary.

5.2 Comparison with Samurai

To make a comparison with the work of Enslen et al. we developed an imple-
mentation of the Samurai tool based on the published pseudocode and textual
descriptions of the algorithm [7]. The implementation processed the seven test
sets of identifier names and the resulting tokenisations were scored for accuracy
against the reference tokenisations. The results are shown in Table 4 with the
exception of the single case dataset G, which is reported below in Subsection
5.3. The overall accuracy figure given for our implementation of the Samurai
algorithm in Table 4 excludes identifier names with digits, and should be com-
pared with the figures in the rightmost column of Table 3. Samurai’s treatment
of digits as discrete tokens leads to an accuracy of 80% or more for all but class
and method identifier names, where accuracy falls to 45% and 55% respectively.

Our implementation of the Samurai algorithm performs less well than the
original [7]. On inspecting the tokenisations we found more oversplitting than
we had anticipated. There are a number of factors that could contribute to the
observed difference in performance, which we discuss in Subsection 5.4 Threats
to Validity.

5.3 Single case identifier names

Both INTT and Samurai contain algorithms for tokenising single case identi-
fier names that are intended to improve on Feild et al.’s greedy algorithm. To



Table 4. Percentage accuracies for Samurai

C
o
n
v
e
n
ti
o
n
a
l

D
ig
it
s

S
in
g
le

c
a
se

U
C
L
C

W
it
h
o
u
t
d
ig
it
s

Dataset

A Random identifier names 93.3 92.9 69.1 82.1 86.3
B Class names 94.0 44.9 86.3 81.5 91.7
C Method names 92.8 55.2 88.8 83.4 92.3
D Field names 91.3 78.8 78.2 73.4 87.7
E Formal arguments 94.8 88.4 75.0 64.7 89.4
F Local variable names 92.7 86.2 67.7 70.6 85.4

compare the two tools we extracted a data set of 4,000 random single case iden-
tifier names from our database. All the identifier names consist of a minimum
of eight characters: 2,497 are composed of more than one word or abbreviation,
the remainder are either single words found in the dictionary or have no obvious
tokenisation.

We implemented the greedy algorithm developed by Feild et al. following
their published description [8], to provide a baseline of performance from which
we could evaluate the improvement in performance represented by INTT and
Samurai. The supporting dictionary for the Feild et al.’s greedy algorithm was
constructed from the English word lists provided with ispell v3.1.20, the same
version used by Feild et al.. We replaced their stop-list and list of abbreviations,
with the same list of abbreviations used in INTT and the additional list of terms
that are included in INTT’s dictionary.

Enslen et al. found that Samurai and greedy both had their strengths. Samu-
rai is a conservative algorithm that tokenises identifier names only when the
tokenisation is a very much better option than not tokenising. As a result, the
greedy algorithm correctly tokenised identifier names that Samurai left intact.
However, the greedy algorithm was more prone to oversplitting than the more
conservative Samurai [7].

The 4,000 single case identifier names were tokenised with 78.4% accuracy
by our implementation of the ‘greedy’ algorithm, with 70.4% accuracy by our
implementation of Samurai, and with 81.6% accuracy by INTT.

5.4 Threats to Validity

The threats to validity in this study are concerned with construct validity and
external validity. We do not consider internal validity because we make no claims



of causality. Similarly, we do not consider statistical conclusion validity, because
we have not used any statistical tests.

Construct Validity There are two key concerns regarding construct validity:
the possibility of bias being introduced through manual tokenisation of identifier
names used to create sets of reference tokenisations; and the observed difference
in perfomance between our implementation of Samurai and the accuracy re-
ported for the original implementation [7].

That we split the identifier names for the reference tokenisations ourselves
may have introduced a bias towards tokenisations that favour our tool. We
guarded against this during the manual tokenisation process as much as pos-
sible, and conducted a review of the reference sets to look for any possible bias
and revised any such tokenisations found. Of the related works [8, 7, 15] only
Enslen et al. used a reference set of tokenisations created independently.

We have identified three factors that may explain the reduced accuracy
achieved by our implementation of Samurai in comparison to the reported ac-
curacy of the original. When implementing the Samurai algorithm, we took all
reasonable steps, including extensive unit testing, to ensure our implementation
conformed to the published pseudo code and text descriptions [7]. However, it
is possible that we may have inadvertently introduced errors. There is the pos-
sibility that computational steps may have inadvertently been omitted from the
published pseudo code description. The third possibility is that the scoring for-
mula used in Samurai to identify preferable tokenisations, which was derived
empirically, may not hold for oracles composed of fewer tokens with lower fre-
quencies. The oracle used in our implementation of Samurai was constructed
using identifier names found in 60 Java projects, much fewer than the 9,000
projects Enslen et al. used as the basis for their dictionary. Our version of the
Samurai oracle contains 61,580 tokens, with a total frequency of 3 million. In
comparison the original Samurai oracle was created using 630,000 tokens with a
total frequency of 938 million.

External Validity External validity is concerned with generalisations that
may be drawn from the results. Our experiments were conducted using iden-
tifier names extracted from Java source code only. Although we cannot claim
any accuracy values for other programming languages, we would expect results
to be similar for programming languages with similar programming conventions,
because our tokenisation approach is independent of the programming language.
Our experiments were also conducted on identifier names constructed using the
English language. While the techniques and the tool we developed can be applied
readily to identifier names in other natural languages, some of the heuristics, in
particular the treatment of ‘2’ and ‘4’ as homophone substitutions for preposi-
tions, may need to be revised for non-English natural languages.



6 Discussion

One of our primary motivations for adopting the approach described above was
a concern over the computing resources, both in terms of time and space that
were being devoted to solving the problem of identifier name tokenisation. The
approach taken by Madani et al. processes each identifier name in detail and is
thus relatively computationally intensive, while the Samurai algorithm relies on
harvesting identifier names from a large body of existing source code – a total of
9,000 projects – to create the supporting oracle. Like Samurai, we process iden-
tifier names selectively and reserve more detailed processing for those identifier
names assumed to be more problematic. However, we achieve levels of accuracy
similar to the published figures for Samurai using a smaller oracle constructed,
largely, from readily available components such as the SCOWL word lists.

6.1 Identifier names containing digits

We demonstrated an approach to tokenising identifier names containing digits
that achieves an accuracy of 64% at worst and most commonly 85%-95%. The
only tool available for comparison was our implementation of the Samurai algo-
rithm, which takes a simple and unambiguous approach to tokenising identifier
names containing digits and achieves, an accuracy that is consistently between
10% and 3% less than that achieved by INTT, with the exception of class iden-
tifier names where Samurai’s treatment of digits as discrete tokens results in an
accuracy of 45%, some 40% less than INTT.

While we are largely satisfied with having achieved such high rates of accu-
racy, there is room for improvement. Inspection of INTT’s output showed that
some inaccurate tokenisations could be attributed to incorrect tokenisation of
textual portions of the identifier name. However, they also showed that some of
our heuristics for identifying how to tokenise around digits require refinement.
One possibility is the introduction of a specific heuristic for tokens of the form
‘v5’, signifying a version number, so that they are tokenised consistently. We
found that though most were tokenised accurately, some identifier names, for
example SPARCV9FlushwInstruction (JDK), were not. The difficulty appears
not to be the digit alone, but that the digit in combination with the letter is
key to accurate tokenisation. Other incorrect tokenisations occurred where iden-
tifier names such as replaceXpp3DOM contain a known acronym. The solution in
such cases appears to be to choose between the tokenisation resulting from us-
ing recognised acronyms, and that arising from the application of the heuristics
alone.

6.2 Limitations

No current approach tokenises all identifier names accurately. Indeed, accurate
tokenisation of all identifier names may only be possible with some projects where
a given set of identifier naming conventions are strictly followed. However, we



would argue that there are a number of barriers to tokenisation that are dif-
ficult to overcome, and outside the control of those processing source code to
extract information. An underlying assumption of the approaches taken to iden-
tifier name tokenisation is that identifier names contain semantic information in
the form of words, abbreviations and acronyms and that these can be identi-
fied and recovered. Developers, however, do not always follow identifier naming
conventions and building software that can process all the forms of identifier
names that developers can dream up is most likely impossible and would require
a great deal of additional effort for a minimal increase in accuracy. For exam-
ple, is0x8000000000000000L (Xerces) is an extremely unusual form of identifier
name – the form is seen only three times9 in the 60 projects we surveyed – which
would require additional functionality to parse the hexadecimal number in order
to tokenise the identifier name accurately.

Another limitation arises from neologisms and misspelt words. Neologisms
found in the single case test set include ‘devoidify’, ‘detokenated’, ‘discontigu-
ous’, ‘grandcestor’, ‘indentator’, ‘pathinate’ and ‘precisify’. With the exception
of ‘grandcestor’ these are all formed by the unconventional use of prefixes and
suffixes with recognised words or morphological stems. Some, e.g. ‘discontiguous’
are vulnerable to oversplitting by the greedy algorithm, and algorithms based
on it. Others may cause problems when concatenated with other words in single
case identifier names where a plausible tokenisation is found to span the intended
boundary between words.

Samurai and INTT both guard against oversplitting neologisms by using lists
of prefixes and suffixes. INTT identifies single case identifier names found to be
formed by a recognised word in combination with either or both a known prefix
or suffix and does not attempt to tokenise them. Samurai tries to tokenise all
single case identifier names, but rejects possible tokenisations where one of the
resulting tokens would be a known prefix or suffix. All of the neologisms listed
would be recognised as single words by both approaches. However, INTT would
not recognise ‘precisify’ as a neologism resulting from concatenation and would
try to tokenise it.

Tools that use natural language dictionaries as oracles will try to tokenise
a misspelt word, whether it is found in isolation or concatenated with another
word, as a single case identifier name. The majority of observed misspellings
result from insertion of an additional letter, omission of a letter or transposition
of two letters. Precisely the sort of problem that can be readily identified by a
spell checker. For example, possition (NetBeans) is oversplit by both INTT
and the greedy algorithm as {pos, sit, ion} and {poss, it, ion}, respectively.
Samurai also oversplits possition probably because of a combination of the
relative rarity of the spelling mistake, the more common occurrence of the token
poss (AspectJ, Eclipse, Netbeans, and Xalan). A step towards preventing some
oversplitting of misspelt words could be achieved through the use of algorithms
applied in spell-checking software, such as the Levenshtein distance [13].

9 NetBeans unit tests include the method names test0x01 and test0x16.



Inspection of the tokenisations of the test sets for each tool show that the
greedy algorithm is prone to oversplitting neologisms particularly where a suf-
fix such as ‘able’ that is also a word has been added to a dictionary word,
e.g. zoomable (JFreeChart). Greedy also cannot consistently tokenise identifier
names that start and end with abbreviations not found in its dictionary, e.g.
tstampff (BORG Calendar), and cannot differentiate between ambiguous to-
kenisations. Indeed, Feild et al. provide no description of how to differentiate
between tokenisations that return identical scores [8]. In our implementation of
the greedy algorithm, the tokenisation resulting from the backward pass is se-
lected in such situations, because English language inflections, particularly the
single ‘s’, can be included by the forward pass of the algorithm. For example,
debugstackmap (JDK) is tokenised incorrectly as {debugs, tack, map} by the
forward pass and correctly as {debug, stack, map} by the backward pass. The
backward pass is also prone to incorrect tokenisations, though from inspection
of the test set this is much less common. For example, the reverse pass tokenises
commonkeys (JDK) as {com, monkeys}, using ispell word lists where ‘com’ is
listed as a word.

Tools such as INTT and Samurai work on the assumption that developers
generally follow identifier naming conventions and that computational effort is
required for exceptions that can be identified. As noted in our description of the
problem (see Section 2) the assumption is an approximation. There are many
cases where the conventions on word division are broken, or are used in ways
that divide the elements of semantic units so as to render them meaningless. In
other words, a key issue for tokenisation tools is that word divisions, be they sep-
arator characters or internal capitalisation, can be misleading and are thus not
always reliable. Consequently, meaningful tokens may need to be reconstructed
by concatenating adjacent tokens.

7 Conclusions

Identifier names are the main vehicle for semantic information during program
comprehension. The majority of identifier names consist of two or more words
or acronyms concatenated and therefore need to be tokenised to recover their
semantic constituents, which can then be used for tool-supported program com-
prehension tasks, including concept location and requirements traceability. Tool-
supported program comprehension is important for the maintenance of large
object-oriented software projects where cross-cutting concerns mean that con-
cepts are often not located in a single class, but are found diffused through the
source code.

While identifier naming conventions should make the tokenisation of identi-
fier names a straightforward task, they are not always clear, particularly with
regard to digits, and developers do not always follow conventions rigorously, ei-
ther using potentially ambiguous word division markers or none at all. Thus
accurate identifier name tokenisation is a challenging task.



In particular, the tokenisation of identifier names of a single case is non-trivial
and there are known limitations to existing methods, while identifier names
containing digits have been largely ignored by published methods of identifier
name tokenisation. However, these two forms of identifier name occur with a
frequency of 9% in our survey of identifier names extracted from 16.5 MSLOC of
Java source code, demonstrating the need to improve methods of tokenisation.

In this paper we make two contributions that improve on current identifier
name tokenisation practice. First, we have introduced an original method for
tokenising identifier names containing digits that can achieve accuracies in excess
of 90% and is a consistent improvement over a naive tokenisation scheme. Second,
we demonstrate an improvement on current methods for tokenising single case
identifier names, on the one hand in terms of improved accuracy and scope by
tokenising forms of identifier name that current tools cannot, and on the other
hand in terms of resource usage by achieving similar or better accuracy using an
oracle with less than 20% of the entries. Furthermore, the oracle we used can be
constructed easily from available components, whereas the Samurai algorithm
relies on identifier names harvested from 9,000 Java projects.

We make two further contributions. Firstly, INTT, written in Java, is avail-
able for download10 as a JAR file with an API that allows the identifier name
tokenisation functionality described in this paper to be integrated into other
tools. Secondly, the data used in this study is made available as plain text files.
The data consists of the seven test datasets of 28,000 identifier names together
with the manually obtained reference tokenisations, and 1.4 million records of
over 800,000 unique identifier names in 60 open source Java projects, including
information on the identifier species. By making these computational and data
resources available, we hope to contribute to the further development of iden-
tifier name based techniques (not just tokenisation) that help improve software
maintenance tasks.

Acknowledgements We would like to thank the anonymous reviewers on the
ECOOP 2011 Program Committee, and Tiago Alves and Eric Bouwers for their
thoughtful comments that have helped improve this paper.

References

1. Abebe, S., Tonella, P.: Natural language parsing of program element names for
concept extraction. In: 18th Int’l Conf. on Program Comprehension. pp. 156–159.
IEEE (jun 2010)

2. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering trace-
ability links between code and documentation. IEEE Transactions on Software
Engineering 28(10), 970–983 (Oct 2002)

3. Antoniol, G., Gueheneuc, Y.G., Merlo, E., Tonella, P.: Mining the lexicon used by
programmers during sofware [sic] evolution. In: Proc. of Int’l Conf. on Software
Maintenance. pp. 14–23. IEEE (Oct 2007)

10 http://oro.open.ac.uk/28352/



4. Atkinson, K.: SCOWL readme. http://wordlist.sourceforge.net/

scowl-readme (2004)
5. Butler, S., Wermelinger, M., Yu, Y., Sharp, H.: Exploring the influence of identifier

names on code quality: an empirical study. In: Proc. of the 14th European Conf. on
Software Maintenance and Reengineering. pp. 159–168. IEEE Computer Society
(2010)

6. Caprile, B., Tonella, P.: Nomen est omen: analyzing the language of function iden-
tifiers. In: Proc. Sixth Working Conf. on Reverse Engineering. pp. 112–122. IEEE
(Oct 1999)

7. Enslen, E., Hill, E., Pollock, L., Vijay-Shanker, K.: Mining source code to auto-
matically split identifiers for software analysis. In: 6th IEEE International Working
Conference on Mining Software Repositories. pp. 71 –80. IEEE (may 2009)

8. Feild, H., Lawrie, D., Binkley, D.: An empirical comparison of techniques for ex-
tracting concept abbreviations from identifiers. In: Proc. of Int’l Conf. on Software
Engineering and Applications (2006)

9. Høst, E.W., Østvold, B.M.: The Java programmer’s phrase book. In: Software
Language Engineering. LNCS, vol. 5452, pp. 322–341. Springer (2008)

10. Høst, E.W., Østvold, B.M.: Debugging method names. In: Proc. of the 23rd Euro-
pean Conf. on Object-Oriented Programming. pp. 294–317. Springer-Verlag (2009)

11. Kuhn, A., Ducasse, S., Gı́rba, T.: Semantic clustering: Identifying topics in source
code. Information and Software Technology 49(3), 230–243 (2007)

12. Lawrie, D., Feild, H., Binkley, D.: Quantifying identifier quality: an analysis of
trends. Empirical Software Engineering 12(4), 359–388 (2007)

13. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Cybernetics and Control Theory 10(8), 707–710 (1966)

14. Ma, H., Amor, R., Tempero, E.: Indexing the Java API using source code. In: 19th
Australian Conf. on Software Engineering. pp. 451–460 (March 2008)

15. Madani, N., Guerrouj, L., Penta, M.D., Guéhéneuc, Y.G., Antoniol, G.: Recog-
nizing words from source code identifiers using speech recognition techniques. In:
Proc. of the Conf. on Software Maintenance and Reengineering. pp. 69–78. IEEE
(2010)

16. Marcus, A., Rajlich, V., Buchta, J., Petrenko, M., Sergeyev, A.: Static techniques
for concept location in object-oriented code. In: Proc. 13th Int’l Workshop on
Program Comprehension. pp. 33–42. IEEE (May 2005)

17. Raţiu, D., Feilkas, M., Jürjens, J.: Extracting domain ontologies from domain spe-
cific apis. In: Proc. of the 12th European Conf. on Software Maintenance and
Reengineering. pp. 203–212. IEEE Computer Society (2008)

18. Singer, J., Kirkham, C.: Exploiting the correspondence between micro patterns and
class names. In: Int’l Working Conf. on Source Code Analysis and Manipulation.
pp. 67–76. IEEE (Sept 2008)

19. Sun Microsystems: Code conventions for the Java programming language. http:
//java.sun.com/docs/codeconv (1999)

20. Vermeulen, A., Ambler, S.W., Bumgardner, G., Metz, E., Misfeldt, T., Shur, J.,
Thompson, P.: The Elements of Java Style. Cambridge University Press (2000)


