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COMPARISON OF BLACK-BOX, GLASS-BOX AND OPEN-BOX 

SOFTWARE FOR AIDING CONCEPTUAL UNDERSTANDING 
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Three mathematical software types: black-box (no steps shown), glass-box (steps 

shown) and open-box (interactive steps) were used by 32 students to solve conceptual 

and procedural tasks on the computer via remote observation. Comparison of the 

three software types suggests that there is no difference in the scores that students 

receive for conceptual understanding tasks. Students using the black-box are more 

likely to explore answers than students using the glass and open-box software. 

INTRODUCTION 

Various mathematical software types such as spreadsheets, CAS or graphic 

calculators are used at the undergraduate level. These types of software usually 

function as a black-box (Buchberger, 1990),  that is, students input the equations or 

numbers and through an execute command they receive the answers without seeing 

the intermediate steps. Whilst the black-box has been applauded in easing the anxiety 

of weak mathematical students and allowing students to use complex problems, there 

is concern whether black-box software is the most appropriate tool for students since 

they are unaware of the processes and have to accept the outputted (Heid & Edwards, 

2001) .Buchberger (1990;  2002) suggests that it may be appropriate for some 

students to use glass-box software which enables the students to see each step before 

the answer is produced. There is a third type of software that students may use and 

referred to in this paper as open-box software. Open-box software is where students 

are able to interact at each step during the solving of the software until the answer is 

determined. Figure 1 illustrates the three types. 

Black-Box Glass-Box Open-Box 

   

Figure 1: Comparison of an algebra solution by black-box, glass-box and open-box  



Hosein, Aczel, Clow and Richardson 

  

1- 2 Joint Meeting PME 32 - NA XXX — 2008 

There are limited studies in the comparison of the three software types. For example, 

Horton, Storm, & Leonard (2004) compared the Texas Instruments TI-83 (black-box) 

and the Casio FX (glass-box) graphing calculators. In their study, over a three week 

period college students were given problems to solve either in a TI-83 or a Casio FX 

calculator. At the end of three weeks, students were given a pen-and-paper test and 

they found that students who used the Casio FX outperformed the students using the 

TI-83. However, their study looked at only the improvement on mechanical or 

procedural skills and gave no indication whether the software helped in conceptual 

understanding. Further, their study measured symbolic manipulation by hand, and 

whilst this is important, at the tertiary level students are often required to solve 

problems using software or calculators and such workings have become trivialised.  

Perhaps, it may be more appropriate to compare and determine whether these three 

types of software may have additional advantages over each other such as improving 

conceptual understanding. Thus, this study investigates how the three software types 

influences the mathematical understanding of students. 

METHODOLOGY 

Whilst Horton et al. (2004) only investigated the mechanical or procedural 

understanding of the students, this research goes further to investigate whether there 

is any improvement in their conceptual understanding. Thus, a mathematical question 

taxonomy used by Galbraith & Haines (2000) was employed. They identified three 

questions types: mechanical, interpretive and constructive. Mechanical questions are 

mostly related to procedural knowledge, interpretive questions mostly to conceptual 

knowledge, and constructive questions a mixture of both conceptual and procedural 

knowledge. Three problems were developed in the linear programming domain 

which had three parts relating to each of these question types (see Table 1). Linear 

programming was chosen since a complex problem was needed that students were 

not familiar with at the tertiary level and could not be easily solved by hand.  All 

mechanical questions were required to be solving used the software. The interpretive 

questions required the student to either examine or interpret the solution or the 

problem. The constructive questions had two parts, the first part required the student 

to use mostly procedural skills to find a different solution for the problem and the 

second part to use mostly conceptual knowledge to indicate why the different 

solution worked. All constructive questions were designed to allow the students to 

solve the procedural part either by using the software or by pen/paper that is through 

the examination of the problem.  

Finding a similar software that displayed all three software types characteristics for 

linear programming (or for any other mathematical problem) was unsuccessful. Thus, 

the simplex algorithm used in linear programming was programmed in MS Excel 

using Visual Basic Application (VBA) to mimic the characteristics of the black-box, 

glass-box and open-box. As the simplex algorithm involves several choices during an 

iteration (for example choosing a pivot variable, determining the ratio, choosing pivot 
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row), the students using the open-box were only required to determine the pivot 

variable for each step. For all software, the students were aware of when the problem 

was solved as a pop-up box will indicate that the best solution was found. 

Linear Programming Problem: 

a) Solve  

     Max  2x1 + x2 

              2x1 + x2 ≤ 100    (constraint A) 

                x1 + x2 ≤ 80  (constraint B) 

                x1 ≤ 40  (constraint C)                  (Mechanical) 

b)   If x1 = no. of toy trains manufactured and x2 refers to the no. of toy 

soldiers manufactured, and constraint A refers to painting hours, constraint 

B to carpentry hours and constraint C, the demand for toy trains. Interpret 

what this solution means to the toy company who wants to maximize their 

profit by producing toy trains and toy soldiers. Provide as detail answer as 

possible.                                                                   (Interpretive)  

c) If the profit of trains has increased by £1, how would this affect the 

number of toy trains and toy soldiers being sold? Provide as detail as an 

answer as possible.                                          (Constructive) 

Table 1: Illustration of a linear programming problem with the three question types 

Data was collected for 36 university students in the UK and Trinidad and Tobago. 

Students were observed in individual sessions using remote observation (see Hosein, 

Aczel, Clow, & Richardson, 2007). In the remote observation method data is 

collected via the internet where students connect to the researcher’s computer and 

uses software on the researcher’s computer through application sharing (Figure 2) 

thus making it practical for collecting data from these two countries. 

 

Figure 2: Remote observation process  

The observation session was modified from the quasi-experimental framework of 

Renkl (1997) and Große & Renkl (2006) by adding on the approaches to study 

inventory (see Table 2). This method was chosen in order to collect both quantitative 

and qualitative data to allow triangulation. Further, it ensured that data from the 
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software and the questions types could be partitioned to determine if there were any 

significant differences.  

Students were randomly assigned to use one of the software types to answer all three 

problems within a Latin square design. Quantitative data was collected from the 

background questionnaire, pre-test, post-test and the approaches to study inventory. 

During Step 4, the experiment, students were able to practice with their randomly 

assigned software and then proceeded to do the three linear programming problems. 

Their answers were typed and recorded in an answer sheet created in MS Excel. 

Whilst solving these three problems, students were encouraged to think aloud 

(Ericsson & Simon, 1984). The think-aloud protocol was used to elicit what self-

explanations students were using (Chi, Bassok, Lewis, Reimann, & Glaser, 1989). 

Students use of the software and their working environment were video recorded 

from the application sharing process and webcams respectively.  

Steps Instructions 

1.Background 

Questionnaire 

Students are asked to fill in a demographic questionnaire, 

including questions asking for mathematical level, age and 

gender 

2. Study 

Materials 

Students peruse  materials to understand the fundamental 

concepts required for the learning of the topic 

3. Pre-test  Students to determine what extent they have prior 

knowledge of the topic before the stimulus is provided for 

the experiment. The pre-test problems is at a lower 

difficulty level than the post-test problems 

4. Experiment Students are provided with the interventions/ factors that 

are being studied (the type of software) 

5. Post-test Students work on a set of questions to acquire quantitative 

data to compare the investigated interventions/ factors 

6. ASI  Students filled in an approaches to study inventory (ASI) 

to determine whether a surface or deep approach was used. 

Table 2: Modified Quasi-Experimental Method   

This paper presents the post-test results for 32 students, 11 using black-box and glass-

box each and 10 using the open-box software. For each of the three problems, the 

students were scored 1 mark for the mechanical part and 2 marks each for the 

interpretive and constructive part. In this paper, the explanations that students typed 

for the interpretive and constructive parts were coded into whether the students were 

relating their explanations to real-life applications and/ or mathematical knowledge. 

These explanations were part of the students’ think-aloud self-explanations. The 

coding chosen was used to help determine how students were linking their 

knowledge.   
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RESULTS AND DISCUSSION  

Post-Test Total Mean Scores 

The mean scores for each of the software are presented in Table 3. Using an 

ANOVA, it was found that there was no significant difference in the mean scores 

from the three software types. All the students achieved full marks for the mechanical 

part of the problem as was expected since all the students had to use the software to 

solve the problem. Thus, if there was any significant difference this would have been 

to the mean scores relating to conceptual understanding. These results perhaps 

suggest that the three boxes may not improve the conceptual understanding of the 

students differently.  

Software Type Mechanical Interpretive Constructive Total 

Black-Box (11) 3.00 2.96 1.73 7.68 

Glass-Box (11) 3.00 2.82 0.95 6.77 

Open-Box (10) 3.00 2.95 0.85 6.80 

Mean (32) 3.00 2.91 1.19 7.09 

Table 3: Score means for the types of questions for the three software types 

Students received an average score of 48.5% for interpretive tasks and 19.8% on the 

constructive tasks. Further examining the constructive tasks, if the constructive tasks 

were partitioned into its two parts, the students who were able to calculate the 

procedural part were approximately 30% likely to give a reasonable conceptual 

explanation for why the procedural part worked (Table 4). 

Software Type 
Constructive 

(Procedural) 

Constructive 

(Conceptual) 

Constructive 

(Total) 

Black-Box (11) 1.32 0.41 1.73 

Glass-Box (11) 0.77 0.18 0.95 

Open-Box (10) 0.65 0.20 0.85 

Mean (32) 0.92 0.27 1.19 

Table 4: Score means for parts 1 and 2 of the constructive problems for the three 

software types 

Further, from an ANOVA, the means suggest that there may be a weak association 

(p<0.1) between the software types and the procedural part of the problem. That is, 

students using the black-box software appeared to receive scores almost twice those 

of the students using the glass-box and open-box software in the procedural part of 

the constructive problem. Whiteman & Nygren (2000) have suggested that black-box 

software types are useful tools for exploration: that is, for students inputting values 

and looking at trends. Perhaps students who used the black-box software for 

exploration in the procedural section of the constructive problems were able to do 

better. As such, the video data was examined to determine whether students explored 

using the software for the constructive problem. Those students who explored were 

coded “yes” for exploration and “no” for no exploration. Although a chi-square 
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suggests that there was no significant difference in the frequency of exploration for 

the constructive question by software, the data suggests that students using the black-

box (73%) and the glass-box software (64%) had a higher frequency of exploring the 

constructive task than the open-box (40%).    

Further, looking at how students did on the constructive problem on whether they 

explored or did not explored regardless of the software, it was found that students 

who did explored, significantly outperformed (p<0.01) students who did not explore 

(1.76 vs 0.35, see Table 5).   

Constructive 

Explored 

Constructive 

(Procedural) 

Constructive 

(Conceptual) 

Constructive 

Score  

Total Score 

No 0.35 0.00 0.35 6.23 

Yes 1.31 0.45 1.76 7.68 

Mean 0.92 0.27 1.19 7.09 

Table 5: Mean scores for the constructive questions depending on whether the 

students explored using the software 

Further, only students who were able to explore using software to determine the 

procedural part (unlike those with pen-and-paper) were able to provide a reasonable 

conceptual explanation. These results imply that although students were able to solve 

the procedural part either by hand or software, those who did get it correct were more 

likely to use the software rather than by hand. Further, there was no guarantee that if 

the students used the software to explore that they were able to obtain the procedural 

answer, as the average percentage score was approximately 44%.  

Explanations of problems     

Perhaps further light can be shed on why students did poorly if the explanations can 

be examined. Coding the explanations from the interpretive and constructive tasks 

into real-life explanations and mathematical explanations, the results indicate that the 

students use mathematical and real-life explanations almost equally (Table 6).  

 Mathematical 

Explanations 

Real-Life 

Explanations 

Total 

Explanations 

Black-Box (11) 2.6 1.9 4.5 

Glass-Box (11) 1.4 2.3 3.7 

Open-Box (10) 2.5 1.6 4.1 

Total (32) 2.2 1.9 4.1 

Table 6: Mean number of explanations that students use for each software box 

An ANOVA indicated that there was no significant difference in the mean number of 

explanations that students used depending on the software, although examining the 

data there seems to be less mathematical explanations from students using the glass-

box software.  Examining the conceptual explanations provided for the constructive 

tasks, there is a clearer indication why students were doing badly in this problem. 
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There were two main reasons, firstly that students who related their explanations to 

real-life tended to ignore the underlying mathematics as it relates to the problem (see 

Table 7). Further, students who used mathematical explanations were sometimes bad 

at algebra such as understanding the difference between a variable and a coefficient.  

 “If the profit per train increased, this means the price of the train increased, if 

the price of the train is higher than the price of the soldiers, consumers would 

more likely purchase the cheaper item” (Glass Box: Real-Life Explanation – 

ignoring underlying mathematics that x≤40) 

“Increase profit by £1 may chance constraint C to x<= 40 +1 and since x=40 

was our previous answer this may mean it would now mean x increases and y 

decreases” (Open Box: Mathematical Explanation – students is changing the 

right hand side of the equation rather than the coefficient) 

“Profit would increase to 140 but the numbers of toys made stays the same 

because constraints is that x =40 maximum so even though they get more profit 

they cant make any more trains” (Black-Box: Mathematical Explanation – 

correct explanation) 

Table 7: Examples of real-life and mathematical explanations made by students for 

the constructive problem 

Also, for the constructive problems, the students who explored using software were 

significantly likely (p<0.05) to give a mathematical explanation than those who did 

not (1.7 vs 0.9). Students who used real-life explanation gave a similar number of 

self-explanations whether they explored with software or did not (1.2 vs 0.9). 

Examining further to determine whether there is any influence from the software 

types, the type of explanations given for the constructive problems seem to be weakly 

associated with software type (p<0.1). Students using the black-box (1.73) and the 

open-box (1.5) had a higher mean number of mathematical explanations than that 

from the students using the glass-box software (0.91). A simple correlation between 

the scores made for the constructive problem and the types of explanations made 

found that mathematical explanations positively correlated (r = 0.62, p<0.01) with 

the mean constructive whilst the real-life explanations were negatively correlated (r = 

-0.37, p<0.05) with the mean constructive scores. This suggests that students who 

understood the problem mathematically were able to perform better and possibly is 

dependent on the software. 

CONCLUSION 

This paper has shown that students using any of the three software types can receive 

the same mean scores in problems associated with conceptual understanding. 

However, students using the black-box software are probably more likely to explore 

numbers and solutions and this may be due to its nature in allowing students to 

quickly get an answer. Further, students using the black-box and open-box were more 

likely to give mathematical explanations to conceptual problems than the glass-box 
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which ensured that they did better overall. Whilst mathematical explanations were 

expected to be frequent in the open-box and glass box as steps are shown, perhaps the 

reasoning for the glass-box software having low mathematical self-explanations may 

be due to the mathematical ability of the students which would have to be further 

explored.   
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