
Open Research Online
The Open University’s repository of research publications
and other research outputs

Comparison of black-box, glass-box and open-box
software for aiding conceptual understanding
Conference or Workshop Item
How to cite:

Hosein, Anesa; Aczel, James; Clow, Doug and Richardson, John T. E. (2008). Comparison of black-box,
glass-box and open-box software for aiding conceptual understanding. In: Proceedings of the 32nd Annual Conference
of the International Group for the Psychology of Mathematics Education (PME 32), 17-21 Jul 2008, Morelia, Mexico.

For guidance on citations see FAQs.

c© 2008 The Authors

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82922261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

2008. In Figueras, O. & Sepúlveda, A. (Eds.). Proceedings of the Joint Meeting of the 32nd Conference of the

International Group for the Psychology of Mathematics Education, and the XX North American Chapter Vol. 1,

pp. XXX-YYY. Morelia, Michoacán, México: PME. 1- 1

COMPARISON OF BLACK-BOX, GLASS-BOX AND OPEN-BOX

SOFTWARE FOR AIDING CONCEPTUAL UNDERSTANDING

Anesa Hosein, James Aczel, Doug Clow and John T.E. Richardson

The Open University

Three mathematical software types: black-box (no steps shown), glass-box (steps

shown) and open-box (interactive steps) were used by 32 students to solve conceptual

and procedural tasks on the computer via remote observation. Comparison of the

three software types suggests that there is no difference in the scores that students

receive for conceptual understanding tasks. Students using the black-box are more

likely to explore answers than students using the glass and open-box software.

INTRODUCTION

Various mathematical software types such as spreadsheets, CAS or graphic

calculators are used at the undergraduate level. These types of software usually

function as a black-box (Buchberger, 1990), that is, students input the equations or

numbers and through an execute command they receive the answers without seeing

the intermediate steps. Whilst the black-box has been applauded in easing the anxiety

of weak mathematical students and allowing students to use complex problems, there

is concern whether black-box software is the most appropriate tool for students since

they are unaware of the processes and have to accept the outputted (Heid & Edwards,

2001) .Buchberger (1990; 2002) suggests that it may be appropriate for some

students to use glass-box software which enables the students to see each step before

the answer is produced. There is a third type of software that students may use and

referred to in this paper as open-box software. Open-box software is where students

are able to interact at each step during the solving of the software until the answer is

determined. Figure 1 illustrates the three types.

Black-Box Glass-Box Open-Box

Figure 1: Comparison of an algebra solution by black-box, glass-box and open-box

Hosein, Aczel, Clow and Richardson

1- 2 Joint Meeting PME 32 - NA XXX — 2008

There are limited studies in the comparison of the three software types. For example,

Horton, Storm, & Leonard (2004) compared the Texas Instruments TI-83 (black-box)

and the Casio FX (glass-box) graphing calculators. In their study, over a three week

period college students were given problems to solve either in a TI-83 or a Casio FX

calculator. At the end of three weeks, students were given a pen-and-paper test and

they found that students who used the Casio FX outperformed the students using the

TI-83. However, their study looked at only the improvement on mechanical or

procedural skills and gave no indication whether the software helped in conceptual

understanding. Further, their study measured symbolic manipulation by hand, and

whilst this is important, at the tertiary level students are often required to solve

problems using software or calculators and such workings have become trivialised.

Perhaps, it may be more appropriate to compare and determine whether these three

types of software may have additional advantages over each other such as improving

conceptual understanding. Thus, this study investigates how the three software types

influences the mathematical understanding of students.

METHODOLOGY

Whilst Horton et al. (2004) only investigated the mechanical or procedural

understanding of the students, this research goes further to investigate whether there

is any improvement in their conceptual understanding. Thus, a mathematical question

taxonomy used by Galbraith & Haines (2000) was employed. They identified three

questions types: mechanical, interpretive and constructive. Mechanical questions are

mostly related to procedural knowledge, interpretive questions mostly to conceptual

knowledge, and constructive questions a mixture of both conceptual and procedural

knowledge. Three problems were developed in the linear programming domain

which had three parts relating to each of these question types (see Table 1). Linear

programming was chosen since a complex problem was needed that students were

not familiar with at the tertiary level and could not be easily solved by hand. All

mechanical questions were required to be solving used the software. The interpretive

questions required the student to either examine or interpret the solution or the

problem. The constructive questions had two parts, the first part required the student

to use mostly procedural skills to find a different solution for the problem and the

second part to use mostly conceptual knowledge to indicate why the different

solution worked. All constructive questions were designed to allow the students to

solve the procedural part either by using the software or by pen/paper that is through

the examination of the problem.

Finding a similar software that displayed all three software types characteristics for

linear programming (or for any other mathematical problem) was unsuccessful. Thus,

the simplex algorithm used in linear programming was programmed in MS Excel

using Visual Basic Application (VBA) to mimic the characteristics of the black-box,

glass-box and open-box. As the simplex algorithm involves several choices during an

iteration (for example choosing a pivot variable, determining the ratio, choosing pivot

Hosein, Aczel, Clow and Richardson

Joint Meeting PME 32 – NA XXX — 2008 1- 3

row), the students using the open-box were only required to determine the pivot

variable for each step. For all software, the students were aware of when the problem

was solved as a pop-up box will indicate that the best solution was found.

Linear Programming Problem:

a) Solve

 Max 2x1 + x2

 2x1 + x2 ≤ 100 (constraint A)

 x1 + x2 ≤ 80 (constraint B)

 x1 ≤ 40 (constraint C) (Mechanical)

b) If x1 = no. of toy trains manufactured and x2 refers to the no. of toy

soldiers manufactured, and constraint A refers to painting hours, constraint

B to carpentry hours and constraint C, the demand for toy trains. Interpret

what this solution means to the toy company who wants to maximize their

profit by producing toy trains and toy soldiers. Provide as detail answer as

possible. (Interpretive)

c) If the profit of trains has increased by £1, how would this affect the

number of toy trains and toy soldiers being sold? Provide as detail as an

answer as possible. (Constructive)

Table 1: Illustration of a linear programming problem with the three question types

Data was collected for 36 university students in the UK and Trinidad and Tobago.

Students were observed in individual sessions using remote observation (see Hosein,

Aczel, Clow, & Richardson, 2007). In the remote observation method data is

collected via the internet where students connect to the researcher’s computer and

uses software on the researcher’s computer through application sharing (Figure 2)

thus making it practical for collecting data from these two countries.

Figure 2: Remote observation process

The observation session was modified from the quasi-experimental framework of

Renkl (1997) and Große & Renkl (2006) by adding on the approaches to study

inventory (see Table 2). This method was chosen in order to collect both quantitative

and qualitative data to allow triangulation. Further, it ensured that data from the

Hosein, Aczel, Clow and Richardson

1- 4 Joint Meeting PME 32 - NA XXX — 2008

software and the questions types could be partitioned to determine if there were any

significant differences.

Students were randomly assigned to use one of the software types to answer all three

problems within a Latin square design. Quantitative data was collected from the

background questionnaire, pre-test, post-test and the approaches to study inventory.

During Step 4, the experiment, students were able to practice with their randomly

assigned software and then proceeded to do the three linear programming problems.

Their answers were typed and recorded in an answer sheet created in MS Excel.

Whilst solving these three problems, students were encouraged to think aloud

(Ericsson & Simon, 1984). The think-aloud protocol was used to elicit what self-

explanations students were using (Chi, Bassok, Lewis, Reimann, & Glaser, 1989).

Students use of the software and their working environment were video recorded

from the application sharing process and webcams respectively.

Steps Instructions

1.Background

Questionnaire

Students are asked to fill in a demographic questionnaire,

including questions asking for mathematical level, age and

gender

2. Study

Materials

Students peruse materials to understand the fundamental

concepts required for the learning of the topic

3. Pre-test Students to determine what extent they have prior

knowledge of the topic before the stimulus is provided for

the experiment. The pre-test problems is at a lower

difficulty level than the post-test problems

4. Experiment Students are provided with the interventions/ factors that

are being studied (the type of software)

5. Post-test Students work on a set of questions to acquire quantitative

data to compare the investigated interventions/ factors

6. ASI Students filled in an approaches to study inventory (ASI)

to determine whether a surface or deep approach was used.

Table 2: Modified Quasi-Experimental Method

This paper presents the post-test results for 32 students, 11 using black-box and glass-

box each and 10 using the open-box software. For each of the three problems, the

students were scored 1 mark for the mechanical part and 2 marks each for the

interpretive and constructive part. In this paper, the explanations that students typed

for the interpretive and constructive parts were coded into whether the students were

relating their explanations to real-life applications and/ or mathematical knowledge.

These explanations were part of the students’ think-aloud self-explanations. The

coding chosen was used to help determine how students were linking their

knowledge.

Hosein, Aczel, Clow and Richardson

Joint Meeting PME 32 – NA XXX — 2008 1- 5

RESULTS AND DISCUSSION

Post-Test Total Mean Scores

The mean scores for each of the software are presented in Table 3. Using an

ANOVA, it was found that there was no significant difference in the mean scores

from the three software types. All the students achieved full marks for the mechanical

part of the problem as was expected since all the students had to use the software to

solve the problem. Thus, if there was any significant difference this would have been

to the mean scores relating to conceptual understanding. These results perhaps

suggest that the three boxes may not improve the conceptual understanding of the

students differently.

Software Type Mechanical Interpretive Constructive Total

Black-Box (11) 3.00 2.96 1.73 7.68

Glass-Box (11) 3.00 2.82 0.95 6.77

Open-Box (10) 3.00 2.95 0.85 6.80

Mean (32) 3.00 2.91 1.19 7.09

Table 3: Score means for the types of questions for the three software types

Students received an average score of 48.5% for interpretive tasks and 19.8% on the

constructive tasks. Further examining the constructive tasks, if the constructive tasks

were partitioned into its two parts, the students who were able to calculate the

procedural part were approximately 30% likely to give a reasonable conceptual

explanation for why the procedural part worked (Table 4).

Software Type
Constructive

(Procedural)

Constructive

(Conceptual)

Constructive

(Total)

Black-Box (11) 1.32 0.41 1.73

Glass-Box (11) 0.77 0.18 0.95

Open-Box (10) 0.65 0.20 0.85

Mean (32) 0.92 0.27 1.19

Table 4: Score means for parts 1 and 2 of the constructive problems for the three

software types

Further, from an ANOVA, the means suggest that there may be a weak association

(p<0.1) between the software types and the procedural part of the problem. That is,

students using the black-box software appeared to receive scores almost twice those

of the students using the glass-box and open-box software in the procedural part of

the constructive problem. Whiteman & Nygren (2000) have suggested that black-box

software types are useful tools for exploration: that is, for students inputting values

and looking at trends. Perhaps students who used the black-box software for

exploration in the procedural section of the constructive problems were able to do

better. As such, the video data was examined to determine whether students explored

using the software for the constructive problem. Those students who explored were

coded “yes” for exploration and “no” for no exploration. Although a chi-square

Hosein, Aczel, Clow and Richardson

1- 6 Joint Meeting PME 32 - NA XXX — 2008

suggests that there was no significant difference in the frequency of exploration for

the constructive question by software, the data suggests that students using the black-

box (73%) and the glass-box software (64%) had a higher frequency of exploring the

constructive task than the open-box (40%).

Further, looking at how students did on the constructive problem on whether they

explored or did not explored regardless of the software, it was found that students

who did explored, significantly outperformed (p<0.01) students who did not explore

(1.76 vs 0.35, see Table 5).

Constructive

Explored

Constructive

(Procedural)

Constructive

(Conceptual)

Constructive

Score

Total Score

No 0.35 0.00 0.35 6.23

Yes 1.31 0.45 1.76 7.68

Mean 0.92 0.27 1.19 7.09

Table 5: Mean scores for the constructive questions depending on whether the

students explored using the software

Further, only students who were able to explore using software to determine the

procedural part (unlike those with pen-and-paper) were able to provide a reasonable

conceptual explanation. These results imply that although students were able to solve

the procedural part either by hand or software, those who did get it correct were more

likely to use the software rather than by hand. Further, there was no guarantee that if

the students used the software to explore that they were able to obtain the procedural

answer, as the average percentage score was approximately 44%.

Explanations of problems

Perhaps further light can be shed on why students did poorly if the explanations can

be examined. Coding the explanations from the interpretive and constructive tasks

into real-life explanations and mathematical explanations, the results indicate that the

students use mathematical and real-life explanations almost equally (Table 6).

 Mathematical

Explanations

Real-Life

Explanations

Total

Explanations

Black-Box (11) 2.6 1.9 4.5

Glass-Box (11) 1.4 2.3 3.7

Open-Box (10) 2.5 1.6 4.1

Total (32) 2.2 1.9 4.1

Table 6: Mean number of explanations that students use for each software box

An ANOVA indicated that there was no significant difference in the mean number of

explanations that students used depending on the software, although examining the

data there seems to be less mathematical explanations from students using the glass-

box software. Examining the conceptual explanations provided for the constructive

tasks, there is a clearer indication why students were doing badly in this problem.

Hosein, Aczel, Clow and Richardson

Joint Meeting PME 32 – NA XXX — 2008 1- 7

There were two main reasons, firstly that students who related their explanations to

real-life tended to ignore the underlying mathematics as it relates to the problem (see

Table 7). Further, students who used mathematical explanations were sometimes bad

at algebra such as understanding the difference between a variable and a coefficient.

 “If the profit per train increased, this means the price of the train increased, if

the price of the train is higher than the price of the soldiers, consumers would

more likely purchase the cheaper item” (Glass Box: Real-Life Explanation –

ignoring underlying mathematics that x≤40)

“Increase profit by £1 may chance constraint C to x<= 40 +1 and since x=40

was our previous answer this may mean it would now mean x increases and y

decreases” (Open Box: Mathematical Explanation – students is changing the

right hand side of the equation rather than the coefficient)

“Profit would increase to 140 but the numbers of toys made stays the same

because constraints is that x =40 maximum so even though they get more profit

they cant make any more trains” (Black-Box: Mathematical Explanation –

correct explanation)

Table 7: Examples of real-life and mathematical explanations made by students for

the constructive problem

Also, for the constructive problems, the students who explored using software were

significantly likely (p<0.05) to give a mathematical explanation than those who did

not (1.7 vs 0.9). Students who used real-life explanation gave a similar number of

self-explanations whether they explored with software or did not (1.2 vs 0.9).

Examining further to determine whether there is any influence from the software

types, the type of explanations given for the constructive problems seem to be weakly

associated with software type (p<0.1). Students using the black-box (1.73) and the

open-box (1.5) had a higher mean number of mathematical explanations than that

from the students using the glass-box software (0.91). A simple correlation between

the scores made for the constructive problem and the types of explanations made

found that mathematical explanations positively correlated (r = 0.62, p<0.01) with

the mean constructive whilst the real-life explanations were negatively correlated (r =

-0.37, p<0.05) with the mean constructive scores. This suggests that students who

understood the problem mathematically were able to perform better and possibly is

dependent on the software.

CONCLUSION

This paper has shown that students using any of the three software types can receive

the same mean scores in problems associated with conceptual understanding.

However, students using the black-box software are probably more likely to explore

numbers and solutions and this may be due to its nature in allowing students to

quickly get an answer. Further, students using the black-box and open-box were more

likely to give mathematical explanations to conceptual problems than the glass-box

Hosein, Aczel, Clow and Richardson

1- 8 Joint Meeting PME 32 - NA XXX — 2008

which ensured that they did better overall. Whilst mathematical explanations were

expected to be frequent in the open-box and glass box as steps are shown, perhaps the

reasoning for the glass-box software having low mathematical self-explanations may

be due to the mathematical ability of the students which would have to be further

explored.

References

Buchberger, B. (1990). Should students learn integration rules? ACM SIGSAM Bulletin,

24(1), 10-17.

Buchberger, B. (2002). Computer algebra: the end of mathematics? ACM SIGSAM Bulletin,

36(1), 16-19.

Chi, M. T. H. C., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-

explanations: how students study and use examples in learning to solve problems.

Cognitive Science, 13(2), 145-182.

Ericsson, K. A., & Simon, H. A. (1984). Protocol Analysis: Verbal Reports as Data.

Cambridge, MA: MIT Press.

Galbraith, P., & Haines, C. (2000). Conceptual mis(understandings) of beginning

undergraduates. International Journal of Mathematical Education in Science and

Technology, 31(5), 651-678.

Große, C. S., & Renkl, A. (2006). Effects of multiple solution methods in mathematics

learning. Learning and Instruction, 16(2), 122-138.

Heid, M. K., & Edwards, M. T. (2001). Computer algebra systems: revolution or retrofit for

today's mathematics classrooms? Theory Into Practice, 40(2), 128-136.

Horton, R. M., Storm, J., & Leonard, W. H. (2004). The graphing calculator as an aid to

teaching algebra. Contemporary Issues in Technology and Teacher Education, 4(2),

152-162.

Hosein, A., Aczel, J., Clow, D., & Richardson, J. T. E. (2007). An illustration of student's

engagement with mathematical software using remote observation. In J.-H. Woo, H.-

C. Lew, K.-S. Park & D.-Y. Seo (Eds.), Proceedings of the 31st annual conference of

the International Group for the Psychology of Mathematics Education (PME 31)

(Vol. 3, pp. 49-56). Seoul, Korea.

Renkl, A. (1997). Learning from worked-out examples: A study on individual differences.

Cognitive Science, 21(1), 1-29.

Whiteman, W. E. C., & Nygren, K. P. C. (2000). Achieving the right balance: properly

integrating mathematical software into engineering education. Journal of

Engineering Education, 89(3), 331-336.

