
Open Research Online
The Open University’s repository of research publications
and other research outputs

Non-uniform dependences partitioned by recurrence
chains
Conference or Workshop Item
How to cite:

Yu, Yijun and D’Hollander, E. H. (2004). Non-uniform dependences partitioned by recurrence chains. In:
2004 International Conference on Parallel Processing (ICPP’04), 15-18 Aug 2004, Montreal, Canada.

For guidance on citations see FAQs.

c© 2004 IEEE

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/ICPP.2004.1327909

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82922088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/ICPP.2004.1327909
http://oro.open.ac.uk/policies.html

Non-uniform dependences partitioned by recurrence chains

Yijun Yu Erik H. D’Hollander

DCS, University of Toronto, Canada ELIS, Ghent University, Belgium

Abstract
Non-uniform distance loop dependences are a known ob-
stacle to find parallel iterations. To find the outermost loop
parallelism in these “irregular” loops, a novel method is
presented based on recurrence chains. The scheme orga-
nizes non-uniformly dependent iterations into lexicograph-
ically ordered monotonic chains. While the initial and final
iteration of monotonic chains form two parallel sets, the
remaining iterations form an intermediate set that can be
partitioned further. When there is only one pair of coupled
array references, the non-uniform dependences are repre-
sented by a single recurrence equation. In that case, the
chains in the intermediate set do not bifurcate and each
can be executed as a WHILE loop. The independent iter-
ations and the initial iterations of monotonic dependence
chains constitute the outermost parallelism. The proposed
approach compares favorably with other treatments of non-
uniform dependences in the literature. When there are mul-
tiple recurrence equations, a dataflow parallel execution
can be scheduled using the technique extensively to find
maximum loop parallelism.
Keywords non-uniform dependences, loop parallelization,
recurrence chains, iteration space partitioning, imperfectly
nested loop

1. Introduction
Data dependences of a program lead to maximal parallelism
by a data flow execution. A more restricted parallelism is
implemented in common parallel programming languages
because the loop control limits the traversal of the iteration
space to regular patterns. Common language support for
parallelism is parallel DO loops (DOALL). It is one of the
most important goals for parallelizing compilers to reveal
loop parallelism [1, 16, 30, 8, 27]. The loop can run in
parallel when no data dependences exist between any two
iterations with different index values. This is judged by var-
ious dependence tests [29, 14, 18, 22]. Moreover, some loop
nests being tested as sequential can still be parallelized after
suitable loop transformations.
Existing DOALL loop transformation methods focus on
loops with uniform distance dependences [2, 9]. There
are, however, many loops with non-uniform distance de-
pendences where these transformations can not be applied.
For instance, we found that more than 46% of the nested
loops in theSPECfp95 benchmark contain non-uniform
data dependences. Furthermore, coupled array subscripts,

i.e. indices that appear in both dimensions, often cause
non-uniform distances as well. A study of 12 other bench-
marks [21] shows that about 45% of two dimensional ar-
ray reference pairs are coupled linear subscripts. Includ-
ing one-dimensional arrays, about 12.8% of the coupled
subscripts in theSPECfp95 benchmarks generate non-
uniform dependences. The percentage of loops with non-
uniform dependences is higher because a single pair of non-
uniform coupled subscripts will cause non-uniform loop de-
pendences.

A way to catch all dependences by sequential linear steps
through the iteration space is to find a set of vectors whose
linear combinations compose all distance vectors [23, 26,
6]. To enable DOALL partitioning, a previous scheme
in [27] replaces the non-uniform distance vectors with a
set of pseudo distance vectors. They allow DOALL loop
transformations to work as if they are uniform distance vec-
tors because an integer linear combination of these lexico-
graphically positive (LP) vectors covers all the non-uniform
dependences. It finds maximal parallelism when the depen-
dences are uniform, but may generate artificial dependences
in the non-uniform case.

To avoid introducing artificial dependences into the loop,
another way of treating the non-uniform dependences is
based on exact solution of the dependence equations [11].
Although it is generally impossible to enforce data flow
scheduling at compile time, recurrence chain partitioning
makes it possible when there is only one pair of coupled
subscripts or there is no compile-time unknown variable in
the loop bounds. The recurrence chain partitioning sepa-
rates the iteration space into three sequential partitions. The
first and the last sets are fully parallel. When there is only
one pair of coupled subscripts, the intermediate set is parti-
tioned as disjoint monotonic recurrence chains that can be
executed as WHILE loops. When there are multiple cou-
pled subscripts and loop bounds are known at compile time,
the intermediate set is successively partitioned into subsets
following the dataflow until it is empty.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the program model for non-uniform distance
dependences. Section 3 illustrates the recurrence chain par-
titioning scheme by showing what kinds of dependences
form the recurrence chains and how to generate the par-
allel partitions. Section 4 presents the results of applying

Yijun Yu

different schemes on some program examples and section 5
compares it with related work.

2. Program model
Consider the coupled array subscripts occur inm nested
loops: L1, . . . , Lm. For l = 1, . . . ,m, every loopLl is
normalized to have a unit stride and each loop index vari-
ableIl is constraint by a lower boundpl and an upper bound
ql. The loop bounds are affine functions of the index vari-
ables in the outer loops. Theiteration spaceΦ of the loop
is a vector set of all values taken by the integer loop indices

{i = (i1 . . . im) | pl ≤ il ≤ ql, 1 ≤ l ≤ m, i ∈ Zm}. (1)

Loop carried dependences occur when the same array-
element is addressed in two different iterations, where at
least one of them is a write. Assume an array X is referred
with affine index expressions:X[IA + a] andX[IB + b]
whereI denotes the vector of loop indexing variables, inte-
ger matricesA,B and vectorsa,b are constants. Adirect
dependenceoccurs between iterationsi andj if 1) the dio-
phantine equation has a solution

i A + a = j B + b (2)

2) and the solution is within the loop bounds:i, j ∈ Φ.
A solution of the diophantine equations results in a pair of
directly dependent iterations(i, j), also noted as(i → j).
The union of these pairs is called thedirect dependences
setof the loop,∆. An indirect dependencebetweeni and
j occurs when there exists a chain ofM > 1 direct depen-
dences:(ik, ik+1) ∈ ∆ for 1 ≤ k ≤ M , i1 = i andiM = j.
Including both direct and indirect dependences, thedepen-
dence setis ∆+ = {(i, j) | (i, j) ∈ ∆∨∃ k : (i,k), (k, j) ∈
∆}. The dependence distancebetween two dependent it-
erationsi and j is d = j − i. The union of all distances
in a dependence set is calledthe dependence distance set.
Therefore the direct dependence set∆ gives rise to thedi-
rect distance setD. Likewise the dependence distances in
a loop are represented by thedistance setD+. For any two
direct dependent iterations(i, j) ∈ ∆ and any non-zero vec-
tor c ∈ Zm, if (i+c, j+c) ∈ ∆ as long asi+c, j+c ∈ Φ,
then the loop hasuniformdependences. In all other cases,
the dependences of the loop arenon-uniform.
Consider an example from [27], as listed in figure 1. The
iteration space of this loop is:Φ = {(i1, i2) | 1 ≤ i1 ≤
N1, 1 ≤ i2 ≤ N2, i1, i2 ∈ Z}. A dependence equation is
established as a system of diophantine equations:{

3i1 +1 = j1 +3
2i1 +i2 −1 = j2 +1

(3)

The solutions of (eq.3) are a set of direct dependences.
WhenN1 = N2 = 10, the dependences are non-uniform
because e.g.(1, 2) → (3, 4) does not imply(1, 1) → (3, 3).
The detection of parallelism in uniform dependence loops
has received widespread attention, e.g. by unimodular

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

2

2

2

2

2

2

2

2

4

4

4

4

4

4

6

6

6

6

i1

i2

DO I1=1,N1
DO I2=1,N2

a(3*I1+1,2*I1+I2-1)
=a(I1+3,I2+1)

ENDDO
ENDDO

Figure 1. An example loop and its iteration
space. The direct dependences are shown as
arrows with direct distance (d, d) where d =
2, 4, 6 are marked to the left of the arrow tails.

transformations[4, 24], partitioning[9] and others [15]. Un-
fortunately, many loops contain non-uniform dependences,
for which no general mathematical approach is available
to detect the parallel iterations. A number of alternatives
have been proposed for the case of affine index expressions,
e.g. uniformization oriented techniques with DOACROSS
synchronization [23, 26, 6, 19] and dataflow oriented tech-
niques [20, 11].
In this paper, the loops with non-uniform dependences
are parallelized using WHILE loops with irregular strides.
Dataflow oriented code in the cases where the uniformiza-
tion method such as PDM [27] allows for extra paral-
lelism, a recurrence chain partitioning in section 3 con-
structs WHILE loops with irregular strides to follow the
non-uniform dependences.

3. Recurrence chain partitioning
To avoid artificial dependences introduced by uniformiza-
tion methods [27], our recurrence partitioning scheme dis-
covers dataflow parallelism by solving exact dependences.
Using exact dependences, each step ofdataflowpartition-
ing puts the iterations without lexicographically predeces-
sors into an initial fully parallel set and partitions the re-
maining iterations successively until no more iteration is
left. Besides the initial set, a three-sets dataflow partition-
ing also separates the iterations without lexicographically
successors as a fully parallel final set. When the depen-
dences can be solved as dependence convex hulls, however,
the dataflow partitioning may not terminate at compile-time
for unknown loop bounds. Therefore a special treatment is
proposed here to allow partitioning for loops with unknown
bounds and a single pair of coupled subscripts. In one step,
it separates the intermediate set of the three-set dataflow
partitioning into disjoint monotonic dependence chains.

Definition 1. Monotonic dependence chain. A monotonic
dependence chain is a sequence of lexicographically ordered iter-
ations in which each iteration directly depends on a unique imme-
diate predecessor iteration. 2

For example, the loop in figure 2 has non-uniform depen-

654321 7 8 9 2010 11 1312 14 15 16 17 18 19 DO I=1,20
a(2*I)=a(21-I)

ENDDO

Figure 2. The loop dependences are solved
as {i → j | 2i = 21− j} where i < j or i > j are
respectively solid or dashed arrows.

dences. The dependences are separated into monotonic
chains. A solution chain6 → 9 → 3 → 15 is separated into
three monotonic chains:6 → 9, 3 → 9 and3 → 15. Each
monotonic chain has only two iterations, thus the iteration
space is partitioned into two sets. The first set is the union
of the initial iterations{1, 2, 3, 4, 5, 6} and the independent
iterations{7, 12, 14, 16, 18, 20}.
The dependences can be specified as a relation in the iter-
ation space. Consider a dependence equationiA + a =
jB + b established from two references in two iterations
with index vectorsi andj respectively. Ifi ≺ j, iterationi
is called apredecessorof iterationj andj a successorof i.
The exact dependences are the union of the predecessor and
successor relations:

Rd = Rpred ∪Rsucc = {j → i | i A + a = j B + b, j ≺ i}
∪{i → j | i A + a = j B + b, i ≺ j}

(4)
For multiple coupled subscripts, the combined dependence
relation unions all the dependence relations of each depen-
dence equation. An accurate solution to a union of integer
convex sets can be found by the algorithm [18] implemented
in an integer programming tool, the Omega library.

3.1. Partitioning the iteration space into three sets
Intuitively, the iteration space can be partitioned into sep-
arate monotonic chains. Starting from an initial iteration,
i.e. an iteration without predecessors, a WHILE loop can
be formed for each monotonic chain by updating the iter-
ation index iteratively until it exceeds the border of itera-
tion space. However, even when the dependent iterations
are on separate recurrence chains, the lexicographical or-
der is not always followed by a WHILE loop. In that case,
several monotonic dependence chains may intersect at the
same iteration, e.g. figure 2 shows that a WHILE loop up-
dating indices successively byi′ = 21 − 2i, forms chain
6 → 9 → 3 → 15 which violates the lexicographical or-
dering, whereas monotonic chains6 → 9, 3 → 9, 3 → 15
intersect, such that iterations3, 9 will be executed twice.
The recurrence chain partitioning only executes the initial
and final iterations once. The iteration space is separated
into two fully parallel sets and one intermediate set so that
the monotonic chains in the intermediate set are separate,
or as in the above example, the monotonic chains in the in-

termediate set are empty. For the monotonic chains in the
intermediate set to be disjoint, it requires a single pair of
coupled subscripts. According to the dependence relation
in (eq.4), anindependentiteration that has neither prede-
cessor nor successor; otherwise it is adependentiteration
with predecessors or successors. A dependent iteration that
has no predecessor is aninitial iteration, a dependent itera-
tion that has no successor is afinal iteration, otherwise a de-
pendent iteration that has both predecessors and successors
is an intermediateiteration. Therefore the whole iteration
space is composed of independent, initial, intermediate and
final iterations. Usingdom (R) and ran (R) respectively
to denote the relationR’s domain domR ≡ {x | (x →
y) ∈ R} and range ranR ≡ {y | (x → y) ∈ R},
the sets are calculated from the dependence relationRd

and the iteration spaceΦ as: dep= (dom Rd ∪ ran Rd),
initial = dep\ ranRd, intermediate= domRd ∩ ranRd

and final= dep\ domRd. The independent and initial it-
erations are in aninitial set P1 of the iteration space, the
intermediate iterations are in anintermediate setP2 and the
final iterations are in anfinal setP3. They are calculated as

P1 = Φ \ ranRd, P2 = ranRd ∩ domRd

P3 = ranRd \ domRd
(5)

A dependence occurs only from an initial iteration to an in-
termediate one, from an intermediate iteration to another, or
from an intermediate iteration to a final one. Thus the three
sets can be executed in the order ofP1 → P2 → P3. The
intermediate setP2 needs to be further partitioned for de-
pendences occur inside it{i → j | (i → j) ∈ Rd, i, j ∈ P2}.

3.2. Partitioning the intermediate set
Starting from dependence equation (eq.2):iA+a = jB+b,
when bothA and B are full rank square matrices, there
is an one-to-one recurrence relation between the dependent
iterations.

Lemma 1. When there is only one pair of coupled references
with full rank coefficient matricesA andB, the monotonic depen-
dence chains in the intermediate setP2 are disjoint, i.e., there is
only one predecessor and one successor for each iteration inP2.
Proof. Each iteration inP2 has at least one predecessor and one
successor becauseP2 is the intersection of the domain and range
of the dependence relation. SinceA and B are full rank, let
T = BA−1,u = (b− a)A−1.The dependence (eq.2) is rewrit-
ten as:i = j T + u. Suppose∃j ∈ P2 such that there are two dif-
ferent predecessorsi1 andi2, thusi1 = jT+u andi2 = jT+u.
However,i1 = i2. Thus there is only one predecessor for all iter-
ationj ∈ P2. Similarly only one successor follows each iterations
i ∈ P2 by replacingT with AB−1 andu with (a−b)B−1.

Since the monotonic chains are disjoint in the intermedi-
ate set, a compile-time recurrence chain partitioning is ap-
plicable to the intermediate set instead of doing unlimited
steps of dataflow partitioning when loop bounds contain un-
known variables.

The dependence relation isRd = {j → i | i = (j −
u)T−1, j ≺ i} ∪ {i → j | j = iT + u, i ≺ j}. The initial
iterationsi0 are those without preceding solution in the iter-
ation spaceΦ (either is not integer or is outside the bounds):
(i0−u)T−1 /∈ Φ. The sequence of the recurrent dependent
iterations is on adependence recurrence chain. The general
solution of an iteration on the recurrence chain beginning
with i0 is ik = i0Tk + u(Tk−1 + · · ·+ T0). The distance
vector between the dependent iterationsik+1 andik is

dk = ik+1 − ik = (i0(T− I) + u)Tk = d0T
k

d0 = i0(T− I) + u.
(6)

Removing the initial and final iterations, a recurrence chain
will be separated into disjoint monotonic chains. WHILE
loops are constructed to sequentially execute these mono-
tonic chains. If initially i0 ∈ Rpred, the WHILE loop

changes index byRpred: i.e. I = (I − u)T−1, otherwise
the WHILE loop changes index byRsucci.e. I = IT + u.
Each WHILE loop starts at an iteration that depends on an
initial iteration inP1. The starting iterations are in the fol-
lowing set: W = {j | (i → j) ∈ Rd, i ∈ P1, j ∈ P2}
and the WHILE loop stops when the successor becomes a
final iteration. Thus the condition for the WHILE loop to
continue isi ∈ (Φ \ final) = i ∈ (Φ ∩ domRd).
Only ∩,∪, \, dom, ran operations are applied to the union
of convex setsΦ and Rd to obtain the fully parallel sets
P1,W, P3. Therefore each of them can be specified by a
union of convex sets which is the logical conjunctive nor-
mal form where each logical operand is a linear inequality.
Although Fourier-Motzkin elimination can be used to gen-
erate a DO loop nest for each convex set, it is first necessary
to make the convex sets disjoint. An algorithm exists [13]
to generate loops from a lexicographically ordered union of
convex sets. The lexicographical order of the convex sets is
not necessary here because they are fully independent.

3.3. Extending the iteration space to statement-level
To reveal statement-level parallelism in case of imperfectly
nested loops or multiple statements in a loop body, each in-
stance of a statementS(I) with loop index vectorI = i
needs to be associated with a unique index vectorsi such
that 1) the lexicographical ordering ofsi reflects the state-
ment instances execution order; 2) the set of statement index
vectors forms a union of convex sets.
An example of such extension has been proposed by the
affine mapping framework in [12]. Assume there arel sur-
rounding loops for a statementS(I). For any instanceS(i),
a statement indexsk is inserted after each loop indexik for
k = 1, · · · , l ands0 is given before the outermost loop in-
dexi1 to indicate the position of the whole loop nest in the
program. A unique index vectorsi = (s0, i1, s1, · · · , il, sl)
is thus formed. In order to apply lexicographical ordering
on the statement index vectors, dummy zeroes are appended

to the unique index vectors for statements outsides the in-
nermost loop. To make sure the set of statement index vec-
tors forms a union of convex sets, the statements in the same
loop are associated with a sequence of numbers with unit
increment. The first statement in the loopLk is associated
with sk = 1 for convenience. Both the unified iteration
space with statement instances and the iteration space with
loop body instances are a union of convex sets. Thus the
partitioning method for them are inherently the same, the
only difference is that we calculate statement-level depen-
dences from the following relations for any two instances of
statementsS1(I; I1) andS2(I; I2) with unique index vec-
torssi andtj:

Rd = {tj → si | iA + a = j B + b, tj ≺ si}
∪{si → tj | iA + a = j B + b, si ≺ tj}

(7)

3.4. The recurrence partitioning algorithm
Algorithm 1 summarizes the recurrence chains partitioning
scheme. Initially the unified iteration spaceΦ and the de-
pendence relationRd are calculated. If there is a single pair
of coupled subscripts with full rank coefficient matricesA
andB, the recurrence chain partitioning is applied to the
intermediate set after a three-set dataflow partitioning ac-
cording toΦ andRd. WHILE loops are generated for each
monotonic chain in the intermediate set. Otherwise, if the
loop bounds are known at compile-time, the dataflow parti-
tioning is successively done to the iteration spaceΦ and the
dependence sub-relationRd until Φ is empty.

Algorithm 1. The recurrence partitioning scheme
Input: A sequential loop nest with a single pair of coupled
linear array subscripts or with compile-time known loop
bounds. The loop body is denoted asS(I).
Output: A sequence of DOALL loop nests.

let Φ be the unified iteration space, calculate dependences as:

Rd =
⋃
{si → tj |

(iA + a = jB + b ∨ iA + a
= jB + b) ∧ si ≺ tj ∧ si, tj ∈ Φ

}

if X(IA + a), X(IB + b) are the single reference pair inS(I)
andA,B are full rankthen

P1 = Φ \ (ran Rd); P2 = (ran Rd) ∩ (domRd);
P3 = (ran Rd) \ (domRd);
W = {j | (i → j) ∈ Rd ∧ i ∈ P1 ∧ j ∈ P2};
call DOALLCodeGeneration(P1, S(I));
call DOALLCodeGeneration(W , S′(I))

whereS′(I) ≡

if (I ∈ Rpred) then

T = AB−1;u = (a− b)B−1

else

T = BA−1;u = (b− a)A−1

end if

do while (I ∈ (Φ ∩ domRd))

S(I); I = IT + u;

end do while
call DOALLCodeGeneration(P3, S(I));

else ifthe loop bounds are constantthen

do while (Φ is not empty)
P1 = Φ \ (ran Rd); Φ = Φ \ P1;
Rd = {i → j | (i → j) ∈ Rd ∧ i, j ∈ Φ};
call DOALLCodeGeneration(P1, S(I))

enddo while
endif
subroutine DOALLCodeGeneration(Set, Body)

separateSetinto N disjoint convex setsCH1, · · · , CHN [13];
do i=1, N

generate a DOALL loop nest with the bodyBody
bounded byCHi [3];

enddo
return

2

If there are multiple coupled subscripts and the loop bounds
are unknown at compile-time, the recurrence partitioning
can not apply. In that case, the pseudo distance partitioning
in [27] is used instead.
The theoretical speedup of the partitioning is determined by
the execution time of the critical path in proportion to the
number of iterations on the critical path. The following the-
orem states the lower bound of the speedup when the mono-
tonic chains do not bifurcate. Consequently the theoretical
parallel speedup is at least|Φ|

l on O(|Φ|) parallel proces-
sors, where|Φ| denotes the number of iterations in iteration
spaceΦ.

Theorem 1. Given a recurrence equationik+1 = ikT + u
with non-singular matrixT, leta = max(|det(T)|, |det(T−1)|).
In the iteration spaceΦ, the critical path found by algorithm 1
contains at mostl = bloga(L) + 1c iterations, whereL is the
maximum Euclid distance between any two iterations:L =
maxi1,i2∈Φ ||i2 − i1||.
Proof. For each distance vectord = i2 − i1, the Euclid distance
is ||d|| =

√
d2
1 + · · ·+ d2

m. Supposen is the length of a re-
currence chain by (eq.6),||dn|| = ||d0||an or an = ||dn||

||d0||
≤

||dn|| ≤ L. Since a > 1, the length of the critical path is
n + 1 ≤ bloga (L) + 1c .

4. Results
This section applies the recurrence partitioning on several
examples and compares their speedups with other schemes.

Example 1 The example in figure 1 after our recurrence
chain partitioning is:

1 C initial partition
2 DOALL i1=1,min(N1,3)
3 DOALL i2=1,N2
4 s(i1,i2)
5 ENDDOALL
6 ENDDOALL
7 DOALL i1=4,N1
8 DOALL i2=1,min((2*i1)/3,N2)
9 s(i1,i2)

10 ENDDOALL
11 DOALL i2=(2*i1+3)/3,N2
12 IF (i1-3.le.3*((i1-2)/3)) THEN
13 s(i1,i2)

14 ENDIF
15 ENDDOALL
16 ENDDOALL
17 C intermediate partition and while start
18 DOALL i1=4,min((3*N2+5)/8,min((N1+2)/3,7)),3
19 DOALL i2=(2*i1+3)/3,N2-2*i1+2
20 chain(i1,i2)
21 ENDDOALL
22 ENDDOALL
23 DOALL i1=10,min((3*N2+5)/8,(N1+2)/3),3
24 DOALL i2=(2*i1+3)/3,min(N2-2*i1+2,(8*i1-2)/9)
25 chain(i1,i2)
26 ENDDOALL
27 DOALL i2=(8*i1+9)/9,N2-2*i1+2
28 IF (i1-7.le.9*((i1-4)/9)) THEN
29 chain(i1,i2)
30 ENDIF
31 ENDDOALL
32 ENDDOALL
33 C final partition
34 DOALL i1=4,min((N1+2)/3,(3*N2-1)/2),3
35 DOALL i2=max(N2-2*i1+3,(2*i1+3)/3),N2
36 s(i1,i2)
37 ENDDOALL
38 ENDDOALL
39 DOALL i1=3*(((N1+5)/3+1)/3)+1,
40 * min(N1,(3*N2-1)/2),3
41 DOALL i2=(2*i1+3)/3,N2
42 s(i1,i2)
43 ENDDOALL
44 ENDDOALL
45 ...
46 SUBROUTINE chain(i,j)
47 DO WHILE (2.le.i.and.3*i.le.2+N1
48 * .and.1.le.j.and.2*i+j.le.2+N2)
49 s(i,j);
50 IF (i.mod.3.ne.1) RETURN;
51 ip = 3*i-2
52 jp = 2*i+j-2
53 i = ip
54 j= jp
55 ENDDO
56 END

The original loop body is represented as an inlined func-
tion s(i, j). The first partition index set splits as a union of
convex sets without dependences. Similarly no dependence
is within the intermediate set and the final set. The mono-
tonic recurrence chains in the intermediate set are executed
by a WHILE loop in the subroutine “chain” that can be in-
lined. Sincedet(T) = 3, the largest partition has at most
b1 + log3(

√
N2

1 + N2
2)c iterations by theorem 1.

Example 2 Consider another non-uniform dependence
example used by Ju et al [11].

DO I=1,N
DO J=1,N

a(2*I+3,J+1) = a(I+2*J+1,I+J+3)
ENDDO

ENDDO

The PDM partitioning can only find a parallelism of two in
the innermost loop, thus the recurrence chain partitioning is
applied using algorithm 1:

1 DOALL i=1,12
2 IF(mod(i,2).eq.1)THEN
3 DOALL j=1,min(-i+10,(i-1)/2)

4 a(2*i+3,j+1)=a(i+2*j+1,i+j+3)
5 ENDDOALL
6 ENDIF
7 DOALL j=(i+2)/2,min(i+3,-i+10)
8 a(2*i+3,j+1)=a(i+2*j+1,i+j+3)
9 ENDDOALL

10 DOALL j=max(-i+11,1),min(i+3,12)
11 a(2*i+3,j+1)=a(i+2*j+1,i+j+3)
12 ENDDOALL
13 DOALL j=(3*i+8)/2,12
14 a(2*i+3,j+1)=a(i+2*j+1,i+j+3)
15 ENDDOALL
16 ENDDOALL
17 i=2
18 j=6
19 a(2*i+3,j+1)=a(i+2*j+1,i+j+3)
20 DOALL i=2,8
21 IF(mod(i,2).eq.0)THEN
22 DOALL j=1,min(-i+10,i/2)
23 a(2*i+3,j+1)=a(i+2*j+1,i+j+3)
24 ENDDOALL
25 ENDIF
26 IF(i.eq.3)a(2*i+j,i+1)=a(i+2*j+1,i+j+3)
27 IF(i.ge.4)THEN
28 DOALL j=i+4,min((3*i+6)/2,12)
29 a(2*i+3,j+1)=a(i+2*j+1,i+j+3)
30 ENDDOALL
31 ENDIF
32 ENDDOALL

For this N=12 case, there is only a single iteration in the
intermediate set, particularly iteration(2, 6). Therefore the
WHILE loop is simplified away. For general N the WHILE
loop can not be removed. Whenn > 1, the maximum dis-
tance between any two iterations in the iteration space is
L =

√
2n. Let a = |det(T)| = 2, thus the longest critical

path has at mostbloga(L)+1c = blog2(n)+0.5c iterations
by theorem 1.

Example 3 Consider the previous imperfect nested loop
example from Chen et al [6]:

DO I=1,N
DO J=1,I

DO K=J,I
... = a(I+2*K+5,4*K-J)

ENDDO
a(I-J,I+J)= ...

ENDDO
ENDDO

Our recurrence chain partitioning is applied to find an empty
intermediate setP2, the result code is generated as follows
(a visualization can be seen in [28]).

1 DOALL I=1,N
2 DOALL J=1,I
3 DOALL K=J,I
4 ... = a(I+2*K+5,4*K-J)
5 ENDDOALL
6 IF (I-J-7.LE.3*((I+J)/4)) THEN
7 a(I-J,I+J)=...
8 ENDIF
9 ENDDOALL

10 ENDDOALL
11 DOALL I=30,N
12 DOALL J=1,(I-23)/7
13 IF (I+J+1.LE.4*((I-J-5)/3)) THEN
14 a(I-J,I+J)=...

15 ENDIF
16 ENDDOALL
17 ENDDOALL

Lines 1-10 areP1 and 11-17 areP3. Compare with the
DOACROSS loop generated in [6], this code has only
DOALL loops and theoretically can finish in two iteration
time.

Example 4 Cholesky is a kernel in the NASA bench-
marks, in which two imperfectly nested loops contain non-
uniform dependences.

DO 1 J=0, N
I0=MAX(-M, -J)
DO 2 I=I0, -1

DO 3 JJ=I0-I, -1
DO 3 L=0, NMAT

3 a(L,I,J)=a(L,I,J)-a(L,JJ,I+J)*a(L,I+JJ,J)
DO 2 L=0, NMAT

2 a(L,I,J)=a(L,I,J)*a(L,0,I+J)
DO 4 L=0, NMAT

4 epss(L)=EPS*a(L,0,J)
DO 5 JJ=I0, -1

DO 5 L=0, NMAT
5 a(L,0,J)=a(L,0,J)-a(L,JJ,J)**2

DO 1 L=0, NMAT
1 a(L,0,J)=1./SQRT(ABS(epss(L)+a(L,0,J)))

DO 6 I=0, NRHS
DO 7 K=0, N

DO 8 L=0, NMAT
8 b(I,L,K)=b(I,L,K)*a(L,0,K)

DO 7 JJ=1, MIN(M, N-K)
DO 7 L=0, NMAT

7 b(I,L,K+JJ)=b(I,L,K+JJ)
* -a(L,-JJ,K+JJ)*b(I,L,K)
DO 6 K=N, 0, -1

DO 9 L=0, NMAT
9 b(I,L,K)=b(I,L,K)*a(L,0,K)

DO 6 JJ=1, MIN(M, K)
DO 6 L=0, NMAT

6 b(I,L,K-JJ)=b(I,L,K-JJ)
* -a(L,-JJ,K)*b(I,L,K)

When parametersNMAT=250, M=4, N=40, NHRS=3 ,
it takes 238 partitioning steps for the compiler to finish
the recurrence dataflow partitioning (the result code is not
shown here to save space). Because there are multiple cou-
pled subscripts and generally compile-time unknown pa-
rametersNMAT, M, N, NHRS, the PDM partitioning is
applied:

1 DOALL 6 L=0, NMAT
2 DO 1 J=0, N
3 I0=MAX(-M,-J)
4 DO 2 I=I0, -1
5 DO 3 JJ=I0-I, -1
6 3 A(L,I,J)=A(L,I,J)-A(L,JJ,I+J)*A(L,I+JJ,J)
7 2 A(L,I,J)=A(L,I,J)*A(L,0,I+J)
8 4 EPSS(L)=EPS*A(L,0,J)
9 DO 5 JJ=I0, -1

10 5 A(L,0,J)=A(L,0,J)-A(L,JJ,J)**2
11 1 A(L,0,J)=1./SQRT(ABS(EPSS(L)+A(L,0,J)))
12 DOALL 6 I=0, NRHS
13 DO 7 K=0, N
14 8 B(I,L,K)=B(I,L,K)*A(L,0,K)
15 DOALL 7 JJ=1, MIN(M, N-K)
16 7 B(I,L,K+JJ)=B(I,L,K+JJ)
17 * -A(L,-JJ,K+JJ)*B(I,L,K)

18 DO 6 K=N, 0, -1
19 9 B(I,L,K)=B(I,L,K)*A(L,0,K)
20 DOALL 6 JJ=1, MIN(M, K)
21 6 B(I,L,K-JJ)=B(I,L,K-JJ)
22 * -A(L,-JJ,K)*B(I,L,K)

Experiments To observe the performance results, one has
to take the parallel loop overhead and loop granularity into
considerations. The experiments have been performed on
a SMP Linux system with 4 identical Itanium CPU’s. The
back-end Intel compiler accepts OpenMP directives [7] to
generate light-weighted threads. A code region is indi-
cated as parallel by a directive pair:c$omp parallel
andc$omp end parallel . Nested outermost DOALL
loops are coalesced into a single parallel loop. Barrier syn-
chronization is only necessary at the borders of the par-
tition sets P1/P2 and P2/P3, directivec$omp end do
nowait is used between the DOALL nests that are gen-
erated from a fully parallel set. The speedup is given as the
ratio between the original sequential execution time and the
multi-threads execution time where environment variable
OMPNUMTHREADSspecifies the number of CPU used.
The four examples are subjected to the partitioning meth-
ods are shown in figure 3. For Example 1 with parame-
ters N1=300, N2=1000, the PL [9], PDM [27] and REC
speedups are compared. The REC speedup is better than
linear when the number of threads is smaller than 3 because
array subscripts calculations are simplified in the recurrence
WHILE loop. However, it drops below linear when number
of threads is larger than 3 because the loop bounds calcu-
lation gets more overhead. For Example 2 with parameter
N=300, the UNIQUE [11] and REC speedups are compared.
They both outperforms linear speed when executed on sin-
gle CPU because the convex loop index calculations are op-
timized by Omega calculator. REC outperforms UNIQUE
because it generates shorter sequence of fully parallel re-
gions. For Example 3 with parameterN=300, speedups of
the REC partitioning, inner loop J, K parallelization [25],
and the DOACROSS parallelization [6] are compared. REC
performs the best because it has least synchronizations. For
Example 4 with parametersNMAT=250, M=4, N=40 and
NRHS=3, PDM [27] and REC dataflow partitioning speedup
results are shown. REC partitioning outperforms PDM and
even linear program when nthread is smaller than three be-
cause of the loop bounds optimization by Omega calcula-
tor. When the number of threads is larger than 3, however,
the simpler PDM partitioning performs better because it has
better load balance.

5. Related work
To test loop parallelism for non-uniform dependences, the
range test[5] is based on intersection of the value range of
non-linear expressions to mark a loop parallel for an empty
range. Since the dependence range is less exact, our recur-
rence chain partitioning uses theOmegatest [17] to solve

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4

 speedup

nthreads

linear
REC
PDM
PL

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4

 speedup

nthreads

linear
REC
UNIQUE

Example 1 Example 2

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4

 speedup

nthreads

linear
REC
PAR
DOACROSS

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4

 speedup

nthreads

linear
PDM
REC

Example 3 Example 4

Figure 3. Measured speedups.
the dependence relation based on exact integer program-
ming. The zero columns of pseudo distance matrix (PDM)
are first used to test for parallel loops, then the Omega test
is used for those loops with non-zero columns in the PDM.
Wolf et al [24] extend the uniform distance vectors tode-
pendence vectors, i.e., each element of the dependence vec-
tor is either a constant or a direction sign. Both distance and
direction vectors are treated in the same framework of de-
pendence vectors. This leads to outermost loop paralleliza-
tion as well as innermost loop parallelization by unimodular
transformations. For non-uniform dependences, however,
the direction vector representation introduces more artifi-
cial distance vectors than dependence uniformization: it is
equivalent to use the basis of the vector space as pseudo dis-
tance vectors which may have a higher rank and a smaller
determinant than the PDM derived from distance vectors.
An algorithm in [24] can find a legal unimodular transfor-
mation that reduces the outermost columns of a distance
matrix to zero. However, this algorithm can not be used for
the pseudo distance matrix because the unimodular trans-
formation found are not always legal when there are non-
uniform dependences.
Shang et al [26] represent the non-uniform distances as an
affine (non-negativelinear) combination of the basic de-
pendence vectors (BDV), which are not lexicographically
positive. The Basic Ideas I and III generate a set of full-rank
BDV which inhibits parallelizing the outermost loops by a
unimodular transformation, while the Basic Idea II searches
for a set ofcone-optimalBDV, i.e., the BDV are minimal in
rank. Because the lexicographical positiveness is not car-
ried by the BDV, an additionallinear scheduling[10] is
needed to maintain the lexicographical order.
Tzen et al [23] and Chen et al [6] implement the BDV

linear scheduling by DO-ACROSS loops synchroniza-
tion. DOACROSS loops allow the iterations to be asyn-
chronously executed within a delay, which is enforced by
P/V synchronization on the loop index. DOACROSS syn-
chronization is more complex than the barrier synchroniza-
tion of DOALL loops. Though no parallelism is obtained
using PDM partitioning for their example shown in exam-
ple 3, two perfectly nested DOALL loops can be obtained
using recurrence chain partitioning.
Punyamurtula et al [19] propose the minimum distance
tiling that runs the adjacent iterations in parallel as long
as their distance is smaller than the minimum dependence
distances. After making the minimum distances tiling of
the iteration space, Tzen or Chen’s method is used for the
inter-tile dependences. This method creates innermost par-
allelism whereas PDM partitioning creates outermost paral-
lelism. Theoretically, it speedups Example 2 by 4 times.
Ju et al [11] propose unique-set oriented partitioning to ex-
ploit exact non-uniform dependences: The dependence con-
vex hulls are separated into head or tail sets by lexicograph-
ical order. The first recurrence equation is called “flow”
and the second is called “anti”, which split the head or tail
sets. The intersections among the (head, tail)× (flow,anti)
sets yield 5 individual cases. The method also applies
only to one pair of subscripts with non-singularA,B ma-
trices, otherwise their coefficients calculation will divide by
zero. Using their approach on Example 2, 5 perfectly nested
DOALL loops were obtained in sequence [11]p.334. The
number of iterations is not 144 due to apparent errors in the
loop bounds of the 3rd and 4th loop nests. We recalculated
the example with their method and found that two of the
5 unique sets can not be written as perfectly nested loops
because they are not convex sets. Among the five unique
sets, the third one is sequential. Whereas applying the re-
currence chain partitioning, only 3 fully parallel partitions
are obtained, resulting in more parallelism.
6. Conclusion
This paper presents a partitioning schemes, based on recur-
rence chains, to find outermost parallelism for loops with
non-uniform dependences. Comparing to the previously
discovered pseudo distance matrix (PDM) method [27], re-
currence chains partitioning is an enhancement when the
loops has a single pair of coupled subscripts or with sym-
bolic affine bounds. When the loop has non-linear bounds
and multiple pairs of coupled subscripts, PDM can still be
applied. The advantage of REC lies in the dataflow parti-
tioning for non-uniform dependences.
References

[1] R. Allen and K. Kennedy. Automatic translation of Fortran pro-
grams to vector form.TOPLAS, 9(4):491–542, Oct 1987.

[2] U. Banerjee. Unimodular transformations of double loops. InAd-
vances in Languages and Compilers for Parallel Computing, 1990
Workshop, pages 192–219, Aug. 1990.

[3] U. Banerjee.Loop transformations for restructuring compilers: the
foundations. Kluwer Academic, 1993. 305 p.

[4] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. Auto-
matic program parallelization.Proc. of the IEEE, 81(2):211–243,
Feb 1993.

[5] W. Blume and R. Eigenmann. The Range test: a dependence test for
symbolic, non-linear expressions. InProceedings, Supercomputing
’94, pages 528–537. IEEE, 1994.

[6] D. Chen and P. Yew. On the effective execution of nonuniform
DOACROSS loops.TPDS, 7(5):463–476, May 1996.

[7] D. Clark. OpenMP: A parallel standard for the masses.IEEE Con-
currency, 6(1):10–12, JAN-MAR 1998.

[8] E. D’Hollander, F. Zhang, and Q. Wang. The Fortran parallel trans-
former and its programming environment.Journal of Information
Sciences, 106:293–317, 1998.

[9] E. H. D’Hollander. Partitioning and labeling of loops by unimodular
transformations.TPDS, 3(4):465–476, Jul 1992.

[10] P. Feautrier. Some efficient solutions to the affine scheduling prob-
lem. I. One-dimensional time.International Journal of Parallel Pro-
gramming, 21(5):313–347, Oct 1992.

[11] J. Ju and V. Chaudhary. Unique sets oriented parallelization of loops
with non-uniform dependences.The Computer Journal, 40(6):322–
339, 1997.

[12] W. Kelly and W. Pugh. Minimizing communication while preserv-
ing parallelism. InSupercomputing’96, pages 52–60. ACM, 1996.

[13] W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple
mappings. InThe 5th Symposium on the Frontiers of Massively
Parallel Computation, 1995.

[14] X. Kong, D. Klappholz, and K. Psarris. The I-test - an improved de-
pendence test for automatic parallelization and vectorization.TPDS,
2(3):342–349, jul 1991.

[15] A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing
synchronization with affine partitions.Parallel Computing, 24(3-
4):445–475, May 1998.

[16] D. A. Padua and M. J. Wolfe. Advanced compilers optimizations
for supercomputers.CACM, 29(12):1184–1201, Dec 1986.

[17] P. M. Petersen and D. A. Padua. Static and dynamic evaluation
of data dependence analysis techniques:.TPDS, 7(11):1121–1132,
Nov 1996.

[18] W. Pugh. A practical algorithm for exact array dependence analysis.
CACM, 35(8):102–114, Aug 1992.

[19] S. Punyamurtula, V. Chaudhary, J. Ju, and S. Roy. Compile
time partitioning of nested loop iteration spaces with non-uniform
dependences.Journal of Parallel Algorithms and Applications,
13(1):113–141, Jan. 1999.

[20] L. Rauchwerger, N. M. Amato, and D. A. Padua. A scalable method
for run-time loop parallelization.International Journal of Parallel
Programming, 23(6):537–576, 1995.

[21] Z. Shen, Z. Li, and P.-C. Yew. An empirical study of Fortran pro-
grams for parallelizing compilers.TPDS, 1(3):356–364, July 1990.

[22] J. Subhlok and K. Kennedy. Integer programming for array sub-
script analysis.TPDS, 6(6):662–668, June 1995.

[23] T. Tzen and L. Ni. Dependence uniformization: A loop paralleliza-
tion technique.TPDS, 4:547–558, May 1993.

[24] M. E. Wolf and M. S. Lam. A loop transformation theory and an
algorithm to maximize parallelism.TPDS, 2(4):452–471, Oct 1991.

[25] M. Wolfe and C. Tseng. The POWER test for data dependence.
TPDS, 3(5):591–601, sep 1992.

[26] W.Shang, E.Hodzic, and Z.Chen. On uniformization of affine de-
pendence algorithms.IEEE Trans. Computers, 45(7):827–40, 1996.

[27] Y. Yu and E. D’Hollander. Partitioning loops with variable depen-
dence distances. InICPP’00, pages 209–218. IEEE, Aug 2000.

[28] Y. Yu and E. D’Hollander. Loop parallelization using the 3D itera-
tion space visualizer.Journal of Visual Languages and Computing,
12(2):163–181, April 2001.

[29] C.-Q. Zhu and P.-C. Yew. A scheme to enforce data dependence on
large multiprocessor systems.TSE, 13(6):726–739, Jun 1987.

[30] H. Zima, H. Bast, and M. Gerndt. SUPERB - a tool for semi-
automatic MIMD SIMD parallelization. Parallel Computing,
6(1):1–18, Jan 1988.

