
Open Research Online
The Open University’s repository of research publications
and other research outputs

Web service search: who, when, what, and how
Conference or Workshop Item
How to cite:

Lu, Jianguo and Yu, Yijun (2007). Web service search: who, when, what, and how. In: 8th International
Conference on Web Information Systems Engineering (WISE 2007) 2007, 3-7 Dec 2007, Nancy, France.

For guidance on citations see FAQs.

c© 2007 Springer-Verlag

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1007/978-3-540-77010-727

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82922083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1007/978-3-540-77010-7_27
http://oro.open.ac.uk/policies.html

 - 1 -

Web Service Search: Who, When, What, and How

Jianguo Lu1, Yijun Yu2

1School of Computer Science, University of Windsor

jlu@cs.uwindsor.ca

2 Computing Department, The Open University
 y.yu@open.ac.uk

Abstract: Web service search is an important problem in service oriented
architecture that has attracted widespread attention from academia as well as
industry. Web service searching can be performed by various stakeholders, in
different situations, using different forms of queries. All those combinations
result in radically different ways of implementation. Using a real world web
service composition example, this paper describes when, what, and how to
search web services from service assemblers’ point of view, where the
semantics of web services are not explicitly described. This example outlines
the approach to implement a web service broker that can recommend useful
services to service assemblers.

Keywords: Web service searching, web service composition, signature
matching, XML Schema matching

1. Introduction

Web service reuse is the number one drive for service oriented architecture. To
reuse web services, it is paramount to develop web service repository architectures
and searching methods. There have been tremendous researches on web service
searching [2, 4, 7, 16]. However, in many cases, web service searching means
different things for different people. Before implementing web service searching
platforms and methods, we need to discuss who needs to search web services, when
searches happen exactly, what are the queries to be sent out, and, once the queries are
formulated, how to execute the queries.

This paper delineates various stakeholders in web service searching, and tries to
give answers to the above questions using a real world web service composition
example, where the semantics of web services are not explicitly described. In this
example, we constructed a real web service from five atomic services. During the
integration process, various searches are carried out in order to find relevant and
reusable services in this scenario.

This paper details web service searching from a web service assembler’s
perspective. An assembler starts from an abstract description for the composite web
service. From the description, an initial query is constructed in the form of service
signature, i.e., the name of the operation and its input and output types. Based on the

 - 2 -

search results and the current service signature, subsequent queries are derived. As
service signatures are well-structured in XML, such queries can be found using
approximate XML Schema matching [8].

2. Cube of web service searching

Unlike web pages that are presented for humans to read, web services are meant to
be invoked by programs. Hence web services are usually searched by programmers,
or sometimes by software agents that can automatically adapt their behavior by using
new services. Either way, web services are consumed by programs.

Different stakeholders search for web services for different purposes, using
different resources, and in different ways. Main stakeholders in web service searching
can be categorized as follows:

1) Web service end users: End users are programmers who search for web
services in order write a program to invoke them directly as is.

2) Web service assemblers: web service assemblers search for web services in
order to compose them to perform some tasks that cannot be fulfilled by a
single service. Once reusable atomic services are found, assemblers can use
conventional programming languages to compose the services, either manually
or supported by service composition tools.

3) Web service brokers: web service brokers are programs that assist web service
assemblers by recommending relevant web services during the assembly
process. Just the same as various code recommendation systems for
conventional programming languages [24], web service brokers can watch
over the shoulders of assemblers and are able to recommend services
proactively according to existing code that has been written by service
assembler.

4) Web service agents: They are intelligent programs that are able to
automatically find relevant web services to use at system run time, when a new
task occurs or when existing web services is not functioning properly and a
replacement is called for.

The classification of various web service searches can be depicted in Figure 1. In

addition to the main stakeholders in web service searching, there are a variety of
forms of queries to search web services, including:

1) A set of keywords [5, 17];
2) Signature or part of the signature of the service [25, 17];
3) Context of the service to be used [24, 22, 23];
4) Semantic description of the service [16, 17].

These different kinds of queries form the Y axis in Figure 1.
Another dimension is when the searches are carried out. Roughly speaking, web

services searching can happen at development time or run time. For web service end
users and assemblers, web service searching happens at development time and is
initiated by humans. Service brokers can recommend the services proactively while a

 - 3 -

web service is being developed. Service agents will search and consume the services
dynamically at run time. In this case the service agent needs to have the complete
semantic description of the service in order to conduct the correct search without
human intervention.

Forms of queries

Semantics

Context

Signature

keywords

Serv
ice

bro
ke

r

Se
rvi

ce

As
se

mble
r

End

pro
gra

mmer

Serv
ice

ag
en

t

Dev timeRun timeTime of search

Fig. 1. Varieties of web service searches

Combinations of the three parameters (i.e., who, what, and when) constitute the
variety of the searches. However, not every combination makes sense. For example,
for end-user programmers or service assemblers, searches should happen in
development time instead of run time, and usually keyword based search is more
convenient (search type). If the number of returns is large, maybe signature search
can be performed to narrow down the results. Although semantic description is
essential in determining equivalent web services automatically, for end user
programmers it is neither necessary nor practical to write semantics such as ontology
or functional specification to search for services.

On the other hand, if an intelligent agent wants to replace an existing service,
semantics for the services must to provided in order to decide whether they are
performing the same task (search type in Figure 1). In this case, search happens at
run time instead of development time.

For service assemblers, keywords or signatures may be enough since programmers
can judge whether the search results are good. Besides, it would be too cumbersome
for programmers to spell out the semantics or the context of the web services in
details. Hence the search type could be and .

 - 4 -

For a service broker, the program has the knowledge of the current code that
service assembler has written, hence it has the context the service will be used (type

 search). This context, including other services already used and even the
documentation, can be utilized to recommend the next service to be used [24, 1, 22].

Each combination determines how the search should be implemented. For
example, search type is usually implemented by information retrieval methods such
as vector space model. Type includes inferences on ontology and functional
specifications [17, 16].

3. When do we need to search for web service

Since web service searching can happen in many different situations, it is not
possible in this paper to discuss all of them in details. In the following anatomy of
web service searching, we will focus on search type in Figure 1, i.e., we suppose
that web service assemblers will search for the services. We will discuss exactly when
we need to search the services, and what the queries will be.

As a running example, let us start with the following task for service assemblers:
Given a zipcode, find its closest airport name. (1)

Given the large number of web services that are available on the web, it is
reasonable to assume that there should be a solution for such a problem. But how to
solve the problem is by no means obvious. Before starting to write the program,
service assemblers should first formalize the problem. Following the conventional
program specification methods, the task could be formalized as follows by defining
the concepts zipcode, airport and “closest”:

Description 1 for all Zipcode, find Airport, such that

1) isAirport(Airport) ∧ distance(Zipcode?, Airport ?, Distance),
and for any other airport Airport’,
2) isAirport(Airport’) ∧ distance(Zipcode?, Airport’?, Distance’)

 →Distance’ ≥ Distance. (2)

Here distance and isAirport are two predicates that need to be refined so that they

can correspond to some web services. There are arguments in the predicates. For
example, in distance(X?, Y?, Z), X, Y, and Z are arguments in the predicate. An
argument with a question mark adornment such as X? denote that the value of
argument X needs to be provided. Arguments without a question mark such as Z
denote the returned value after the service is executed.

If there is an existing service that implements (2), then the task has been fulfilled.
Otherwise, which is true in this case, we need to refine (2) into subtasks (2.1) and
(2.2) that may be implemented by existing Web services.

isAirport(Airport) (2 . 1)
 distance(Zipcode?, Airport?, Distance) (2 . 2)

 - 5 -

The task isAirport(Airport) returns a set of airports without any input. The other
task distance(Zipcode?, Airport?, Distance) accepts a zipcode and an airport code,
and returns the distance between them.

At this stage, web service assembler needs to search for those two services.
Searching for a service for the isAirport(Airport) specification using signature

isAirport: Airports

doesn’t return an exact match. However, a similar service
(http://www.farequest.com/ FASTwebservice.asmx?WSDL 1) can be found, whose
signature (i.e., the name of the operation and its input and output types) is

stateAirport: stateAbbr Airports,

where Airports is the Schema for airport(code, city, state, country, name)*. The

predicate representation of the service is
stateAirport(StateAbbr?, Airports) (2.1’)

As a service assembler, what is the next service to search for? Next section will

give more cases as for when searches are carried out as development of the composite
web service unfolds. Searching for this kind of similar services is also not a trivial
task. Section 5 will discuss in more details regarding how to find this kind of related
services.

4. What are the queries to search for the relevant web services

Even though now we are assuming using type 3 search and the queries are in the
form of signatures, it is not always clear what the queries are exactly. In the running
example, once we have the problem description, service assemblers know that we
need to search for the predicates referred in the specification, such as isAirport. The
query in the form of signature is isAirport: Airports. In other cases queries to be
issued may not be straightforward, as we will see in the next section.

4.1 Query formulation

By issuing the query isAirport: Airports, we can find the service
stateAirpor(StateAbbr?, Airports). At this stage we cannot invoke the stateAirport
service yet in our composite service since it needs to use a StateAbbr as input in order
to return the airport data. In order to obtain the state name, we need a service in the
following signature:

→ <stateAbbr/> (S1)

Or, we can utilize some known values from our existing input list. Currently, the only

1 All the web services listed in this paper are active during the month of April 2007. As web
services are volatile, some of them may not be functioning now.

 - 6 -

input is ZipCode. Hence we can search for a service of the following signature as an
alternative:

<ZipCode/> → <stateAbbr/>* (S2)

From here and hereafter, we omit the service name in signature when it is not
important.

Now using these two signatures S1 and S2 to search for web services, we found
the following web service(http://www.farequest.com/FASTwebservice.asmx?WSDL):

 zipState(ZipCode?, State),

Whose signature is <ZipCode/> → <State/>*
Up to this stage, isAirport(AirportCode) is refined into

 zipcodeState(ZipCode?, StateAbbr)
∧ stateAirport(State?, AirportCode)

Generalizing from this example, the service assembler can use the following rule

to form the query:

Σ∈→
→
→ ACB

C
BA (Rule 1)

The meaning of the rule is that to derive a service of signature C, suppose that

we already have a service of signature B C, and suppose we have A in the known
list, we need to find a service of signature A B.

Now Description 1 is refined as the following:

Description 2 for all Zipcode, find Airport, such that
2) zipcodeState(Zipcode?, State) ∧ stateAirport(State?, AirportCode) ∧

distance(Zipcode?, AirportCode?, D), and
3) for any other AirportCode’,
 zipcodeState(Zipcode?, State)
 ∧ stateAirport(State?, AirportCode’)
 ∧ distance(Zipcode?, AirportCode’?, D’)
 → D’ ≥ D. (3)

In Description 2, predicates zipcodeSate and stateAirport correspond to two real

web services. Before Description 2 can be implemented, the predicate distance needs
to be refined further into a real service. Similar to the previous steps, first we search
for distance(Zipcode?, Airport?, Distance). There is no exact match again. The
closest match is the following service (http://ws.cdyne.com/psaddress/
addresslookup.asmx?wsdl):

calculateDistanceMiles(latitute1?,longitude1?, latitude2?, longitude2?,

 DistanceInMiles)

Whose signature is

 - 7 -

calculateDistanceMiles: (latitute1,longitude1, latitude2, longitude2)
 DistanceInMiles

Since the inputs latitude and longitude in this service are not in the known list, we

need to find a service that provides those parameters, i.e., we need to find a service
that is compatible to the following signature:

 <Zipcode | State/> <latitude/><longitude/>

And

<AirportCode | State/> <latitude/><longitude/>

We add <AirportCode>, <Zipcode> and <State> in the input type because those

values are already available at this stage.
To formalize the process of generating the above query, we need Rule 2 as below:

CB
CA
BA

→
→
→ (Rule 2)

The meaning of the rule is that to derive a service of type A C, suppose that we

already have a service of type B C, then we need to find a service of type A B so
that A B and B C can be composed into a service which is of type A C.

In general, Rule 2 can seldom be applied directly. A general form would be the
following:

Σ∈→
→

→→
i

nn DCBB
CAA

BDDABDDA
),(

),(
|...|||...||

21
21

212111 (Rule 3)

Rule 3 means that to find a service of type (A1, A2) C, and if we already have

found a service of type (B1, B2) C, what we need is to find a service of type
A1|D1|…|Dn B1, and A2|D1|…|Dn B2, where Di is the type of available values.

Corresponding to Rule 3, we need to find a service of type

 (Zipcode, Airport) Distance.

And suppose that we have already found a service of type

(latitute1, longitude1, latitude2, longitude2) Distance

Hence the services we need to search for should be compatible to the following

types:

<Zipcode | State/> <latitude/><longitude/>

 - 8 -

And
<AirportCode | State/> <latitude/><longitude/>

Using those two queries, the following two web services are found:

airportCoordinate(AirportCode?,

LatitudeDegree,LatidudeMinute, LongitudeDegree, LatitudeMinute)

zipCodeCoordinate(ZipCode?, LatDegrees, LonDegrees).

Using those two web services, the distance predicate is refined into the following

three services (predicates):

airportCoordinate(AirportCodeCode? LatitudeDegree, LatitudeMinute,

 LongitudeDegree, LongitudeMinute)
∧ zipCodeCoordinate(ZipCode?, LatDegrees, LonDegrees).

∧ calculateDistanceMiles(latitute1?,longitude1?, latitude2?,
 longitude2?, Distance)

Using the above three web services found, Description 2 is derived into the

following:

Description 3 for all ZipCode, find Airport, such that
1) zipcodeState(Zipcode?, State) ∧ stateAirport(State?, AirportCode)

∧ airportCoordinate(AirportCode?LatitudeDegree, LatitudeMinute,
 LongitudeDegree, LongitudeMinute)
 ∧ zipCodeCoordinate(ZipCode?, LatDegrees, LonDegrees)
 ∧ calculateDistanceMiles(latitute1?, longitude1?, latitude2?,

longitude2?, Distance)
and for any other AirportCode’,

2) zipcodeState(Zipcode?, State) ∧ stateAirport(State?, AirportCode’)
 ∧ airportCoordinate(AirportCode’?LatitudeDegree, LatitudeMinute,

 LongitudeDegree, LongitudeMinute)
 ∧ zipCodeCoordinate(ZipCode?, LatDegrees, LonDegrees)
 ∧ calculateDistanceMiles(latitute1?,longitude1?, latitude2?,
 longitude2?, Distance’)
 Distance’ ≥ Distance (4)

Now that all the predicates in the composite web service definition refer to

existing web services, we can generate the program to glue those web services. The
integration program can be written in existing general purpose programming
languages such as Java, or in languages for web service composition such as BPEL.
The overall picture of the composition is depicted in Figure 2.

 - 9 -

Airport

ZipCode WS1 WS2

WS3WS3WS3

WS4WS4WS4

Dist. 1 Dist. 2 Dist. n

. . .

. . .

. . .

Nearest
Airport

. . .

state

coordinate

WS5
Airport Airport

Coordinate Coordinate Coordinate

. . .

Fig. 2. The composite web service

5. How to search for relevant services

Now that we have described the ways to formulate the queries, the next task is to
construct a query to locate relevant services. Given our first query for example, it is
not a trivial task to run the query “isAirport: Airport” in order to find the
approximate matching

stateAirport: stateAbbr airport(code, city, state, country, name)*

Note that there are at least two issues need to be tackled. One is the matching

between tag names in XML Schema. For example, <state/> should be matched with
<stateAbbr/>. The other is the matching between the structures of the schemas. For
example, Airport in Description 1 needs to be matched with the structure
(airport(code, city, state, country, name))*.

In order to find approximate signature matchings, we need to construct a matching
algorithm between XML Schemas, since input/output types in web services are
described in XML Schema. Because XML Schemas are trees, we reduced schema
matching problem to the classic tree matching problem [8], and developed Common
Substructure algorithm to find the matching effectively. Instead of giving rigorous
definitions for such matching problem, we use the following example to illustrate the
problem and the solution.

 - 10 -

Figure 2. Car-Driver Schemas

Figure 3. A common substructure (left) and two similar substructures (middle and right

figures)

Figure 2 shows two similar schemas. In order to find the matches, we locate the
largest common substructures as described in Figure 3. In the system, we use Wordnet
to capture the synonyms. In addition, composite tag names such as StateAbbr is
broken into a word list (State, Abbr).

6. Conclusions

There have been tremendous researches on web service searching. The notion of
web service searching varies greatly. We classify various searches in terms of the
stakeholder who will initiate the search. In the case of web service assembler, we
described in detail as for when the searches are needed, what are the queries should be
issued, and how the queries should be executed, by locating five real world web
services that are needed in creating a new web service. In particular, we give the
formal rules to derive the service queries in the process of service composition. This
formalism can be used to implement a service broker that can recommend the services
to programmers, i.e., the search type in Figure 1. If context information is included,
the service broker can be expanded to search type .

This paper outlines the plan for implementing a web service broker, illustrated
using a concrete real word web service composition example. While service
assembler refines the definition of a composite web service, service broker
recommend the relevant atomic services that could be used, mainly rely on
approximate signature matching between atomic web services and the tasks at hand.
We have already implemented the XML Schema matching system [8] as our first step
in implementing such a system. The query will be automatically generated using the
rules outlined in this paper. In addition, context information will be used to increase
the precision of recommendation.

Our early work on a generic matching system encompasses all kinds of queries
ranging from keywords to signatures and ontology in the form of description logic
[17]. While it is a comprehensive matching system involving various matching

One substructure in Schema 1

driver
first
last

license
driver

firstName
lastName
license

One substructure in Schema 2

car

make
model
year
color

Schema 1, from car a rental company Schema 2, from an insurance company

driver

firstName
lastName
license

make

car
model
year
color

car

make
model
year
color

driver
first
last

license

 - 11 -

algorithms, yet we need to answer the questions such as who will use the system, and
how the queries are formed. This paper is a step towards answering those questions in
one particular scenario.

Acknowledgements We would like to thank Debashis Roy and Deepa Saha for
implementing the composite web service, and the anonymous reviewers for their
helpful comments.

References

1. Agarwal, V., Dasgupta, K., Karnik, N., Kumar, A., Kundu, A., Mittal, S., and Srivastava,
B. 2005. A service creation environment based on end to end composition of Web
services. In Proceedings of the 14th international Conference on World Wide Web (Chiba,
Japan, May 10 - 14, 2005). WWW '05. ACM Press, New York, NY, 128-137.

2. Benatallah, B., Hacid, M., Leger, A., Rey, C., and Toumani, F. 2005. On automating Web
services discovery. The VLDB Journal 14, 1 (Mar. 2005), 84-96.

3. Tevfik Bultan, Jianwen Su, Xiang Fu: Analyzing Conversations of Web Services. IEEE
Internet Computing 10(1): 18-25 (2006)

4. Caverlee, J., Liu, L., and Rocco, D. 2004. Discovering and ranking web services with
BASIL: a personalized approach with biased focus. In Proceedings of the 2nd international
Conference on Service Oriented Computing (New York, NY, USA, November 15 - 19,
2004). ICSOC '04. ACM Press, New York, NY, 153-162.

5. X. Dong, A. Halevy, J. Madhavan, E. Nemes, J. Zhang. Similarity Search for Web
Services. Proc. of VLDB, 2004.

6. Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web and Grid
Services 1 (2005) 1-30

7. Elgedawy, I., Tari, Z., and Winikoff, M. 2004. Exact functional context matching for web
services. In Proceedings of the 2nd international Conference on Service Oriented
Computing (New York, NY, USA, November 15 - 19, 2004). ICSOC '04. ACM Press,
New York, NY, 143-152.

8. Jianguo Lu, Ju Wang, Shengrui Wang, XML Schema Matching, IJSEKE, International
Journal of Software Engineering and Knowledge Engineering, in Press.

9. Jianguo Lu, Yijun Yu, John Mylopoulos, A Lightweight Approach to Semantic Web
Service Synthesis, ICDE Workshop, International Workshop on Challenges in Web
Information Retrieval and Integration, Tokyo, 2005.

10. Matskin, M. and Rao, J. 2002. Value-Added Web Services Composition Using Automatic
Program Synthesis. In Revised Papers From the international Workshop on Web Services,
E-Business, and the Semantic Web (May 27 - 28, 2002). C. Bussler, R. Hull, S. A.
McIlraith, M. E. Orlowska, B. Pernici, and J. Yang, Eds. Lecture Notes In Computer
Science, vol. 2512. Springer-Verlag, London, 213-224.

11. McIlraith, S.A., Son, T.C.: Adapting golog for composition of semantic web services. In:
Proc. of the 8th Int. Conf. on Principles and Knowledge Representation and Reasoning
(KR-02), Toulouse, France. (2002)

12. Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Composing web services on the
semantic web. The VLDB Journal 12 (2003) 333-351.

13. ProgrammableWeb, http://www.programmableweb.com.
14. Ponnekanti, S.R., Fox, A.: SWORD: A developer toolkit for web service composition. In:

Proc. of the 11th Int. WWW Conf. (WWW2002), Honolulu, HI, USA. (2002)

 - 12 -

15. Rao, J., Su, X.: A survey of automated web service composition methods. In: Proc. of the
1st Int. Workshop on Semantic Web Services and Web Process Composition,
SWSWPC2004, LNCS, San Diego, USA. (2004)

16. E. Sirin, B. Parsia, and J. Hendler, Composition-driven filtering and selection of semantic
web services, AAAI Spring Symposium on Semantic Web Services, 2004.

17. K. Sycara, J. Lu, M. Klusch, Interoperability among Heterogeneous Software Agents on
the Internet, Technical Report CMU-RI-TR-98-22, CMU, Pittsburgh, USA.

18. Wong, J. and Hong, J. I. 2007. Making mashups with marmite: towards end-user
programming for the web. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (San Jose, California, USA, April 28 - May 03, 2007). CHI '07. ACM
Press, New York, NY, 1435-1444.

19. Wu, D., Parsia, B., Sirin, E., Hendler, J.A., Nau, D.S.: Automating DAML-S web services
composition using SHOP2. In: Proc.of the 2nd Int. Semantic Web Conf.(ISWC2003),
Sanibel Island, FL, USA. (2003)

20. Yijun Yu, Jianguo Lu, Juan Fernandez-Ramil, Phil Yuan, Comparing Web Services with
Other Software Components, International Conference on Web Services, ICWS 2007.

21. Zhang, L., Chao, T., Chang, H., and Chung, J. 2003. XML-Based Advanced UDDI Search
Mechanism for B2B Integration. Electronic Commerce Research 3, 1-2 (Jan. 2003), 25-42.

22. Mandelin, D., Xu, L., Bodík, R., and Kimelman, D. 2005. Jungloid mining: helping to
navigate the API jungle. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation (Chicago, IL, USA, June 12 - 15,
2005). PLDI '05. ACM Press, New York, NY, 48-61.

23. Wong, J. and Hong, J. I. 2007. Making mashups with marmite: towards end-user
programming for the web. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (San Jose, California, USA, April 28 - May 03, 2007). CHI '07. ACM
Press, New York, NY, 1435-1444.

24. Yunwen Ye and Gerhard Fischer, "Supporting Reuse by Delivering Task-Relevant and
Personalized Information," Proceedings of 2002 International Conference on Software
Engineering (ICSE'02), Buenos Aires, Argentina, (to appear), May 19-25, 2002

25. Amy Moormann Zaremski , Jeannette M. Wing, Specification matching of software
components, ACM Transactions on Software Engineering and Methodology (TOSEM),
v.6 n.4, p.333-369, Oct. 1997.

