
Open Research Online
The Open University’s repository of research publications
and other research outputs

SOA4All: enabling Web-scale service economies
Conference or Workshop Item
How to cite:

Krummenacher, Reto; Norton, Barry; Simperl, Elena and Pedrinaci, Carlos (2009). SOA4All: enabling Web-
scale service economies. In: Proceedings of the 2009 IEEE International Conference on Semantic Computing, IEEE,
pp. 535–542.

For guidance on citations see FAQs.

c© 2009 IEEE

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/ICSC.2009.46

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/82921449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/ICSC.2009.46
http://oro.open.ac.uk/policies.html

SOA4All: Enabling Web-scale Service Economies

Reto Krummenacher, Barry Norton, Elena Simperl
Semantic Technology Institute STI

University of Innsbruck
Innsbruck, Austria

firstname.lastname@sti-innsbruck.at

Carlos Pedrinaci
Knowledge Media Institute KMi

The Open University
Milton Keynes, UK

c.pedrinaci@open.ac.uk

Abstract—Establishing Web services as resources on the Web
opens up highly productive but challenging new possibilities for
service economies. In addition, lifting services to the semantic
level enables more sophisticated means for automating the
service-related management processes and the composition of
arbitrary functionality into new services and businesses. In
this paper we present the SOA4All approach to a global service
delivery platform. By means of semantic technologies, SOA4All
facilitates the creation of service infrastructures and increases
the interoperability between large numbers of distributed and
heterogeneous functionalities on the Web.

Keywords-Global Service Delivery Platform, Semantically-
enhanced SOA, Semantic Web services

I. INTRODUCTION

Research and development on service-oriented architec-
ture (SOA) and Web services in general has been particularly
productive during the last decade with a wide-range of stan-
dards and tools produced and supported by major vendors.
However, despite its success, SOA’s evolution and uptake
seems to be slowing down recently. SOA remains mostly an
enterprise-specific solution and its adoption for supporting
the creation of distributed systems on the Web has largely
fallen behind the initial estimates. SOA is somehow a
victim of its own success. The number of services that
need to be discovered, integrated, orchestrated, analyzed
and maintained, causes considerable problems which are
hampering the scaling up of service-oriented architectures to
the dimensions of the Web. Furthermore, the technological
landscape surrounding Web services is characterized by a
heavyweight and ever-growing stack of standards and tech-
nologies, be that communication protocols, infrastructures
or languages, which hardly contributes to enhancing the
adoption of service-oriented solutions in the large.

We argue consequently that SOA needs to be rethought in
the light of a number of principles that can be distilled from
work in other areas such as the Web, Web 2.0, and Pervasive
Computing. In this paper we present an architecture and lan-
guage stack for a global service delivery platform that fosters
the Web-scale adoption of service technologies. The archi-
tecture extends SOA with essential principles that made the
Web a success, such as its openness, decentralization, and
the fact that communication is mostly based on persistent

publication rather than messaging. Additionally, we adopt
Semantic Web languages as a means to lift services and their
descriptions to a level of abstraction that deals with machine-
understandable conceptualizations. This increases the level
of automation that can be achieved while carrying out
common tasks during the life-cycle of services, such as their
discovery, composition or invocation. Further ingredients
to the service platform come from the application of Web
2.0 principles, notably to emphasize the human as service
prosumers (consumers become producers and vice versa in
a community of service workers [1]) and RESTful services
as a complementary technology to traditional WS-* stack-
based Web services. Finally, automated context adaptation
capabilities are embedded within the architecture in order
to support the use of services in unforeseen contexts, thus
increasing the versatility of the services provided while
retaining their manageability. As a whole, this delivers a
comprehensive framework that enables large enterprizes,
SMEs and end-users to get engaged within a Web-scale
service-oriented infrastructure.

In the next section we introduce in more details the
architecture and principles of the SOA4All service deliv-
ery platform. Section III goes further into details about
the role of semantics as means towards automation and
interoperability. We concentrate in Section III-A on the
semantic models and languages for annotating services, and
exploit similar techniques in Section III-B for goal-driven
service invocation. Section IV offers conclusion from our
examination.

II. SOA4ALL SERVICE DELIVERY PLATFORM

The global service delivery platform (GSDP) is a Web-
scale service-oriented architecture that is under investiga-
tion across various recently established European research
projects. The GSDP is an open platform with domain inde-
pendent services that can be used to build domain specific
service solutions. SOA4All concentrates on the establish-
ment of an instance of a service delivery platform that is
optimized and tailored to the needs of Web services (both
traditional WS-* stack-based services, as much as REST
APIs), while the ultimate goal is to realize a platform for all
types of exposable functionalities, such as mobile services,

Figure 1. SOA4All overall architecture

sensors and aggregators, or hardware resources. As such the
GSDP will provide the core provisioning and consumption
functionalities for the emerging XaaS (’Everything as a
Service’) infrastructures.

In the remainder of this section we present the SOA4All
overall architecture. It is built around the following main
components: SOA4All Studio, as user front-end, Distributed
Service Bus, Platform Services, and Business Services (3rd
party Web services and light-weight processes). Figure 1
shows a high-level depiction of these core elements and their
relationships.

A. Service Bus

The Distributed Service Bus lies at the center of the
service delivery platform, as the core communication and
integration infrastructure. The DSB augments traditional
enterprize service bus technology (ESB, [2]) towards large-
scale, open, distributed, and hence Web-scale, computing en-
vironments. The extensions to the service bus infrastructure
include for this purpose the implementation of distributed
service registries, the integration of the bus realization
with established Grid-aware middleware for decentralized
deployments, and the enhancement of the communication
and coordination protocols by means of semantic spaces.
From a deployment perspective, the problems to be solved
become of similar nature to those raised when programming,
deploying, securing, monitoring, adapting a distributed ap-
plication on a computing grid infrastructure.

The enterprize service bus core is based on PEtALS,1 an
open-source JBI compliant implementation that is hosted by
the OW2 Consortium.2 In terms of Grid-aware middleware,
the DSB currently profits from the ProActive Parallel Suite
that is also hosted by OW2.3 The Web-style publish and
read infrastructure at last, is provided by so-called semantic
spaces that significantly increase the scalability of the bus
in terms of communication and coordination of distributed
and autonomous services [3].

Semantic spaces are a novel type of communication plat-
form that has recently gained momentum in the middleware
community, as a response to the raising challenges of data
sharing and service coordination in large-scale, distributed,
open and highly dynamic Web environments. Semantic
spaces fuse tuple space computing [4], known from parallel
processing; blackboard-style problem solving [5], known
from artificial intelligence; and semantic technology to a
distributed (semantic) data management platform.

In SOA4All, semantic spaces are realized as a virtual-
ization layer on top of distributed but tightly coordinated
semantic repositories. The semantic spaces offer a simple but
powerful set of operations for publishing RDF statements,
querying SPARQL end-points, and coordinating actions via

1PEtALS is an open source ESB: http://petals.ow2.org/.
2OW2 is a global open-source software community for distributed

middleware solutions: http://www.ow2.org/.
3ProActive is a middleware for parallel, distributed, multi-core comput-

ing: http://proactive.ow2.org/.

pattern-based notification services. More pragmatically spo-
ken, service prosumers can subscribe to particular patterns
that they would like to match within the wealth of semantic
data (RDF graphs). Semantic patterns are triple patterns or
graph patterns, as they are supported by most RDF query
languages (cf. for example SPARQL as defacto standard
[6]). Upon publication of matching sets of statements, the
subscriber is notified and can proceed with its own workflow.
In terms of data management, semantic spaces moreover
provide means for creating virtual containers in form of so-
called subspaces or federations. The latter are temporary
read-only views over multiple subspaces, comparable to
views in relational databases across different tables. Sub-
spaces and federations are used to create dedicated inter-
action channels that increase at least local scalability by
naturally grouping collaborating services and related data.

The implementation of the semantic space infrastructure
is based on well-established P2P technology4 and is de-
ployed on the same Grid-aware middleware as the service
bus nodes. In that way the space nodes and bus nodes
are co-existent and coordinated resources in the same grid
infrastructure.

From a usage point of view, semantic spaces are exploited
to realize many of the large-scale data sharing scenarios
for which the volumes of semantic data that has to be
processed is likely to exceed the numbers that semantic
repositories can currently handle. SOA4All relies on se-
mantic spaces to incorporate various types of repositories
for service annotations, goals or process descriptions, as
memory infrastructure for shared access to semantically-
described monitoring data and user profiles, and most of
all as alternative communication channel that enhances the
traditionally message-oriented service bus with features for
anonymous and asynchronous service coordination based on
RDF statements; this aspect will be visited in more details
in the part about processes below, in particular in the context
of mash-ups.

It is important to note that the complementary com-
munication facilities of the semantic spaces are offered
to all services and users as an integrated service of the
DSB, without requiring the maintenance of additional access
points. In other words, the DSB is conceptualized to provide
the core infrastructure services (integration, communication
and storage) of SOA4All in an all-in-one solution. This
is an important principle for a scalable service delivery
platform, as it allows any type of communication efficiently
and transparently by means of sharing or exchanging any
type of data in between any type and number of distributed
parties.

4A Chord-ring [7] is used to index the subspaces, while a 3-dimensional
CAN overlay [8] offers a natural solution to the storing of RDF statements.

B. SOA4All Studio

The SOA4All Studio delivers a fully Web-based user
front-end that enables the creation, provisioning, consump-
tion and analysis of services that are published to SOA4All
(Figure 2). It consists of three subcomponents that target
the three different service management tasks: provisioning
at design time, consumption, and analysis at runtime. Each
of them is shortly described in the following:

• The Provisioning Platform has two main purposes.
First, it provides the tools to annotate services, either
WSDL services via WSMO-Lite, or REST APIs via
MicroWSMO (cf. Section III for more details). Second,
it incorporates a Process Editor that allows users to
create, modify, share, and annotate executable pro-
cess models based on a light-weight process modeling
language. SOA4All provides such a language as a
considerably simplified subset of the Business Process
Modeling Notation (BPMN1.2, [9]) for the abstract
parts, and a subset of the Business Process Execution
Language (WS-BPEL2.0, [10]) for executable parts. In
this way, SOA4All hides much of the service compo-
sition complexity whilst providing sufficient notational
semantics to understand the interactions between ser-
vices being composed, and sufficient expressive power
for the users to construct useful compositions.

• The Consumption Platform is the gateway for users
to the service world when they act as consumers.
The platform allows them to formalize their desires in
several ways, defining and refining goals that can be
used to discover and invoke the services that fulfil their
needs. The platform stresses personalization by making
use of contextual factors to offer a more suitable service
consumption to the users, and to adapt the services and
the platform based on past use; e.g., by recommending
goals for different users in varying situations.

• The Analysis Platform obtains information (monitor-
ing events) from the monitoring subsystem of the bus
and performs processing in order to extract meaning-
ful information. Monitoring events should come from
data collectors that perform basic aggregation from
distributed sources in the service delivery platform.
Data collectors are installed at the level of the bus
(message exchange monitoring), the grid middleware
(node monitoring in terms of storage or processing
load), and the execution engine (service access and
process invocation monitoring).

C. Platform Services

The platform services deliver discovery, ranking and se-
lection, composition and invocation functionality, respec-
tively. These components are exposed via the SOA4All Dis-
tributed Service Bus as Web services and hence consumable
as any other published service. The distinguishing factor

Figure 2. SOA4All Studio: WSMO-Lite Editor (Provisioning Platform)

between platform services and other Web services is the fact
that they provide the core functionality required to realize the
service platform. A priori, the set of platform services and
their roles and interfaces is aligned with recent research in
the area of Semantic Execution Environments and Semantic
Web services (e.g., the OASIS SEE Technical Committee).5

Platform services are mostly used by the SOA4All Studio
to offer clients the best possible functionality, while their
combined activities (i.e., discovery, selection, composition
and invocation) are coordinated via the Distributed Service
Bus. The ensemble of DSB, SOA4All Studio and platform
services delivers the fully Web-based and Web-enabled
service experience of SOA4All: global service delivery at
the level of the bus, Web-style service access via studio, and
advanced service processing, management and maintenance
via platform services.

D. Business Services (Web Services) and Processes

In the corners of Figure 1, semantic service descriptions
and processes (composed services) are depicted. They are
created and processed by means of the SOA4All infrastruc-
ture. First, SOA4All enables available Web services that are
exposed either as RESTful services, or as traditional WS-
* stack-based services in form of WSDL endpoints [11]
(marked with (3) and (4) in Figure 1). Such services are
referred to as invocable third-party business services, and
are enhanced by SOA4All in terms of automation, compo-

5OASIS SEE TC: http://www.oasis-open.org/committees/semantic-ex.

sition and invocation via the lifting to the semantic level
(cf. Section III). Second, Figure 1(1) depicts the semantic
annotations of the business services, so-called Semantic Web
services. The semantic descriptions are published in the
service registry that is shipped as a platform service, and
used for reasoning with service capabilities (functionality),
interfaces and non-functional properties, as well as context
data. These semantic descriptions are the main enablers of
the automation processes related to Semantic Web services.
Third, marked as (2), light-weight processes and mash-
ups are shown. They are the basis for the realization and
execution of composed services. Processes in SOA4All are
orderings of Semantic Web services, goal descriptions with
associated constraints, and data respectively control flow
information. As stated earlier in this paper, a goal is a
formal specification of the objective that a user would like to
have performed and as such it yields an implicit abstraction
over the Web services (REST or WS-* stack-based) that
need to be executed. Semantic descriptions of processes are
published in form of RDF graphs in the shared semantic
space infrastructure and, as such, become a public common
and building block for service computing.

In contrast to fully-fledged processes, a mash-up is a data-
centric specification over a collection of REST services.
A further characteristic of mash-ups is the fact that they
are almost entirely executable in semantic spaces. By being
data-driven, their composition is enabled by the coordinated
access to shared data in semantic spaces. Although being

comparably simple, mash-ups thus provide a very promising
approach to Web-style service computing, a pre-requisite for
large-scale service economies.

III. INTEROPERABILITY THROUGH SEMANTICS

Semantics, and semantic technologies, is the name given
to the general use for computing of Semantic Web tech-
nologies, particularly: the consistent and principled use
of Uniform Resource Identifiers (URIs) for identification
of resources; the underlying use of Resource Description
Framework (RDF) triples for knowledge representation; and
the use of ontologies to model knowledge in terms of iden-
tified resources. The ability to reason over ontology-based
representations, and the ability to exchange information in
a standardization fashion are built upon in SOA4All with
other technologies forming the bottom four layers of the
‘Semantic Web layer cake’, shown in Figure 3.

In this section we explore the use of semantic descriptions
for Web services, an approach called Semantic Web services,
and the reasoning-based application of these descriptions to
achieve automation in service consumption as goal-driven
invocation.

A. Semantic Web Services

In the Semantic Web services approach an ontological
description of service functionality, access means, non-
functional properties, and often composition, is added to
whatever description otherwise exists of these, which usually
focusses mainly on access. In the early days of Seman-
tic Web services it was frequently assumed that the so-
called WS-* Stack was being extended. In particular it was
assumed that services are described in the Web Service
Description Language (WSDL) and that they communicate
in terms of the SOAP protocol with XML messages. Fur-
thermore Web service description ontologies such as OWL-
S and WSMO have used a top-down approach to modeling
Web services in which attachment to the actual access means
for the underlying service is almost an after-thought through
the abstraction of WSDL.

While the potential advantages of reasoning to achieve
automation in service tasks has been clearly demonstrated

Figure 3. Four layers of the Semantic Web cake

Figure 4. Lightweight service modeling overview

by such models, such a specific and top-down model has
been more recently challenged by two developments. First
the W3C’s standardization approach to the combination of
Semantic technologies with Web services has been to chal-
lenge the top-down approach and instead provide a recom-
mendation, Semantic Annotations for WSDL (SAWSDL),
wherein a bottom up approach of linking WSDL artifacts to
semantic descriptions is facilitated. This is seen as a more
engineer-friendly approach.

Secondly much of the industry has jettisoned entirely
the perceived overheads of the WS-* stack in favor of
services which simply communicate using the verbs-and-
identifiers view of resources implicit in the Web’s HyperText
Transfer Protocol (HTTP), over which SOAP is somewhat
artificially built. Although reinstating HTTP principles was
the original purpose of this so-called RESTful approach,
the freedom from need to produce WSDL descriptions and
SOAP-compliant messages is often the motivation for its
general adoption. At the same time Semantic technology
will only reach a wide audience in services if it responds.

The approach of SOA4All to these two challenges is
illustrated in Figure 4, respectively as WSMO-Lite and
MicroWSMO. In both cases an RDFS-based lightweight
service description ontology, the basis of which is shown in
Table I, is used as the basis of semantics-based description
of services.

In the first case SAWSDL’s extensions are used to attach
descriptions to these, as shown in Table II where the schema
(exemplified by the ReservationRequest element), in-
terface and operations (exemplified by searchForRooms)
of a WSDL-based service description are linked to instances
over the lightweight service ontology.

In the second micro-formats are used to attach these
descriptions to HTTP documents transferred by RESTful
services, as shown in Figure 5. As a first stage hRESTS is
used to mark the parts of a document which describe artifacts

Table I
LIGHTWEIGHT SERVICE DESCRIPTION ONTOLOGY USED IN

WSMO-LITE AND MICROWSMO

Service a rdfs:Class .
hasOperation a rdf:Property .

Operation a rdfs:Class .
hasInputMessage a rdf:Property .
hasOutputMessage a rdf:Property .
hasInputFault a rdf:Property .
hasOutputFault a rdf:Property .

Message a rdfs:Class .

of services and then SAWSDL-style model references are
used to attach to semantic descriptions of these in the
WSMO-Lite lightweight service modeling ontology.

B. Goal-Driven Invocation

One of the main objectives of a service delivery platform
is to make service end-points transparent. In the particular
case of SOA4All this implies that services disappear be-
hind the interfaces of the bus, or more generally spoken
become integrated elements of the Web as the platform.
This emphasizes the fact that the value of the end-point
is replaced by the value of the invocable functionality. It
is no longer the physical nature of a service that is the
determining factor, but rather the deliverable functionality
and quality of service. User interaction is no more guided
by addressing services, but by specifying objectives through
goal descriptions. Goals are hence a means to describe a
user’s objectives, and as such provide an implicit description
of the services that are needed to fulfil the user goal. The
service delivery platform then takes care of discovering the
necessary services, of potentially composing new processes,
and finally of invoking the service(s) on behalf of the user.
This procedure is referred to as goal-driven invocation, as
the processing of the user request is directly controlled by
the information derived from the desired task [12].

All the SOA4All service processing tasks are done at
the semantic level (cf. Section III). Analogously to the
lightweight semantic description of services, SOA4All thus
specifies an ontological model for goals (Table III). Any
goal becomes an instance of the class ’Goal’ for which a
user can indicate the desired input and output information of
the service(s) and additional requirements and preferences in
terms of functional classifications, non-functional properties,
preconditions and effects.

With the exception of the functional classification, the
requirements and preferences all point to axiomatic expres-
sions; those are given in SOA4All by logical expression in
WSML, or any other language that allows both ontology and
rules definition. As we do not intend to enter into WSML
reasoning with this paper, we concentrate in the remainder of
this section on the use of functional classifications, or as they

Table III
SIMPLE GOAL DESCRIPTION SCHEMA

Goal a rdfs:Class .
hasInput a rdf:Property.
hasOutput a rdf:Property.
hasPreference a rdf:Property.
hasRequirement a rdf:Property.

FunctionalCategorisation a rdfs:Class.
hasCategory a rdf:Property.
hasMatchType a rdf:Property.

MatchType rdf:Alt Strict, Relaxed,
Subcategory, Super-category.

are termed in the goal ontology, functional categorization.
The difference between the WSMO-Lite classification and
the goal categorization lies in the possibility to indicate
matching types:

• Strict: the service is associated with exactly the same
set of categories as the goal (nothing less, nothing
more); e.g., the user wants exactly a “travel booking
service” or a “reliable service”.

• Relaxed: the service is associated with all the categories
of the goal and some others (nothing less); e.g., the user
desires at least a service that is tagged as “secure”.

• Subcategory: the service is associated with a subcate-
gory (simple or composite) of that of the goal; i.e., the
service classification is more specific.

• Super-category: the service is associated with a super-
category of that of the goal and the functionality of the
service is more general than the one of the goal; e.g.,
the users wants a “train booking service” but is happy
with a general purpose “travel booking service”.

Once a goal is given by a user, the required or desired
functional classifications can be extracted, and can be used
as basis for SPARQL queries on top of the RDF-based ser-
vice descriptions in the service registry. In a very primitive
sense, this provides a first light-weight discovery approach
that we term goal filtering. The goal categorization thus
helps to select potentially interesting services by means of
their classification. The examples in Table IV showcase such
a transformation into SPARQL. The first example seeks a
service that is described as “travel service”, while the latter
searches a services that matches the intersection ofthe tags
“travel service”, “England”, and “hotel service”.

Efficient service discovery is the most fundamental com-
ponent for goal-driven invocation, as first of all, user requests
must be matched against available services. By means of
our light-weight goal descriptions, we provide the basis
for multi-level service discovery – from simple SPARQL
querying up to full-fledged reasoning with WSML – and as
such are able to meet the different needs of users in large-
scale SOA4All scenarios.

Table II
WSMO-LITE EXAMPLE

<wsdl:description>
<wsdl:types>

<xs:schema>
<xs:element name="ReservationRequest"

sawsdl:modelReference="&ex;Reservation"
sawsdl:loweringSchemaMapping="&ex;ResMapping.xsparql" .../>

</xs:schema>
</wsdl:types>
<wsdl:interface name="HotelReservations"

sawsdl:modelReference="&ex;AccommodationReservationService">
<wsdl:operation name="searchForRooms"

sawsdl:modelReference="&wsdlx;SafeInteraction">
...

</wsdl:operation>
...

</wsdl:interface>
<wsdl:service name="RomaHotels" interface="HotelReservations"

sawsdl:modelReference="&ex;RomaHotelReservationPrecondition
&ex;ReservationFee"../>

</wsdl:description>

Figure 5. MicroWSMO example

Table IV
GOAL FILTERING WITH SPARQL QUERY

@prefix sawsdl: <http://www.w3.org/ns/sawsdl#>.
SELECT DISTINCT ?s WHERE {
?s a wsl:Service;

sawsdl:modelReference :TravelService. }

--

@prefix sawsdl: <http://www.w3.org/ns/sawsdl#>.
SELECT DISTINCT ?s WHERE {
?s a wsl:Service;

sawsdl:modelReference
:TravelService,
:England,
:HotelService. }

IV. CONCLUSION

In this paper, we presented the concepts and architecture
of SOA4All. SOA4All produces a first instance of a global
service delivery platform, and as such aims at offering
billions of services to billions of users in a Web-scale service
economy. Through semantic technologies SOA4All helps
new business ideas and services to be more easily realized
and integrated with others.

In the context of the envisaged global service delivery
platform, it becomes evident that automation is required,
as otherwise, it would be impossible to handle the wealth
of service and process descriptions, the users and their
context, and even worse, all the monitoring data that is
gathered under the life-time of billions of services. In view
of the fact that there is no automation on the Web without
semantics, not at last due to the eminent heterogeneity and
dynamics of resources, SOA4All has to investigate novel
techniques, languages and tools for annotating services, and
for processing services at the semantic level. WSMO-Lite,
MicroWSMO, WSMO and SAWSDL are some of the recent
achievements of the Semantic Web services community that
are exploited by SOA4All to do so.

Semantic technologies are a core building block for the
realization of a global service delivery platform, however,
we also recognize that they only offer the tools for increased
automation and interoperability. In order to realize service
economies at Web scale and to fully exploit the possibilities
and business values of the Service Web, there is more work
waiting. In SOA4All we expect to find further benefits in
exploring established Web and recent Web2.0 technology to
foster increased community involvement, a pre-requisite for
reaching the billion services challenge.

ACKNOWLEDGMENT

The work presented in this paper is funded by the EC
FP7 IP SOA4All (www.soa4all.eu). The authors would like
to thank their colleagues from the consortium for all the
active and more passive contributions to this paper.

REFERENCES

[1] D. Tapscott, The Digital Economy: Promise and Peril In The
Age of Networked Intelligence. McGraw-Hill, 1997.

[2] G. Hohpe and B. Woolf, Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions.
Addison-Wesley Longman, 2003.

[3] L. Nixon, E. Simperl, R. Krummenacher, and F. Martin-
Recuerda, “Tuplespace-based computing for the Semantic
Web: A survey of the state of the art,” Knowledge Engineering
Review, vol. 23, no. 1, pp. 181–212, March 2008.

[4] D. Gelernter, “Generative Communication in Linda,” ACM
Transactions on Programming Languages and Systems, vol. 7,
no. 1, pp. 80–112, January 1985.

[5] R. Engelmore, Blackboard Systems, T. Morgan, Ed. Addison-
Wesley Publishers, November 1988.

[6] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Lan-
guage for RDF,” W3C Recommendation, January 2008.

[7] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan, “Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications,” in ACM SIGCOMM Conf. on
Applications, Technologies, Architectures, and Protocols for
Computer Communication, August 2001, pp. 149–160.

[8] S. Ratsanamy, P. Francis, M. Handley, and R. Karp, “A
Scalable Content-Addressable Network,” in ACM SIGCOMM
Conf. on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication, August 2001, pp. 161–
172.

[9] S. White, “Business Process Modeling Notation,” OMG Stan-
dard, January 2009.

[10] D. Jordan and J. Evdemon, “Web Services Business Process
Execution Language Version 2.0 ,” OASIS Standard, April
2007.

[11] R. Chinnici, H. Haas, A. Lewis, J.-J. Moreau, D. Orchard,
and S. Weerawarana, “Web Services Description Language
(WSDL) Version 2.0 Part 2: Adjuncts,” W3C Recommenda-
tion, June 2007.

[12] D. Nau, “Expert Computer Systems,” IEEE Computer,
vol. 16, no. 2, pp. 63–85, February 1983.

