
Adaptive Service Binding with Lightweight
Semantic Web Services

Carlos Pedrinaci, Dave Lambert, Maria Maleshkova, Dong Liu, John Domingue,
and Reto Krummenacher

Abstract Adaptive service selection is acknowledged to provide a certain number of
advantages to optimize the service provisioning process orto cater for advanced ser-
vice brokering. Semantic Web Services, that is services that have been enriched with
semantic annotations have often been used for providing adaptive service selection
by deferring the binding of services until runtime. Thus far, however, research on
Semantic Web Services has mainly been dominated by rich conceptual frameworks
such asWSMO andOWL-S which require a significant effort towards the annotation
of services and rely on complex reasoning for which there areno efficient solutions
that can scale to the Web yet. In this chapter, inline with current trends on the Se-
mantic Web that sacrifice expressivity in favour of performance, we present a novel
approach to providing adaptive service selection that relies on simple conceptual
models for services and less expressive formalisms for which there currently exist
mature and performant implementations. In particular, we present a set of concep-

Carlos Pedrinaci
Knowledge Media Institute, The Open University, Milton Keynes, UK, e-mail:
c.pedrinaci@open.ac.uk

Dave Lambert
Knowledge Media Institute, The Open University, Milton Keynes, UK, e-mail:
d.j.lambert@open.ac.uk

Maria Maleshkova
Knowledge Media Institute, The Open University, Milton Keynes, UK, e-mail:
m.maleshkova@open.ac.uk

Dong Liu
Knowledge Media Institute, The Open University, Milton Keynes, UK, e-mail: d.liu.open.ac.uk

John Domingue
Knowledge Media Institute, The Open University, Milton Keynes, UK, e-mail:
j.b.domingue@open.ac.uk

Reto Krummenacher
Semantic Technology Institute, University of Innsbruck, Austria, e-mail:
reto.krummenacher@sti2.at

1

2 Pedrinaci, Lambert, Maleshkova, Liu, Domingue, Krummenacher

tual models defined inRDF(S) that support both Web services and Web APIs and
we show how simple templates abstracting user requirementscan be automatically
transformed intoSPARQLto enable service selection in a scalable manner.

1 Introduction

Web services provide means for encapsulating software functionality as remotely
accessible components, independent of programming language and platform. Con-
siderable effort has been devoted to defining architectures, developing communi-
cation middleware, and creating languages and process execution engines that can
support the creation of complex distributed systems by seamlessly combining Web
services. Service-oriented architectures (SOAs) advocate the development of solu-
tions whereby service providers advertise the services they offer in a shared and
publicly accessible repository. Software developers or intelligent applications can
then access this repository in order to find suitable services for a given purpose and
subsequently invoke them.

Web services have increasingly been used within and in some cases between
enterprises. However, despite the essential advantages brought by service-oriented
technologies, their use in enterprise settings is not without problems. For instance,
the execution of business processes defined in this manner typically relies on rigid
process models which interact with a fixed and predefined set of partner services.
This rigidity impedes or at least complicates to a large extent very desirable features
like the dynamic replacement of services based on their current state, the selection
of those that better fit a certain context, etc. Conventionalsolutions to such problems
are brute-force: for example, modifying the process modelswith somewhat artificial
branches. This approach results in models that are more complex, and adapting as
well as maintaining them in the light of changing conditionsturns out to be a hard
task [36]. These limitations are even more important in openenvironments like the
Web, where additional difficulties appear such as the heterogeneity of data formats
or the unreliability of servers. Recent trends indicate that other technologies, such
as HTTP-based Web APIs, are preferred in these cases [10].

In this chapter we address the rigidity of business processes by providing adaptive
service selection. This kind of technique, also known as late-binding, relies on defer-
ring the selection and binding to the service to be executed until runtime so that up
to date detailed information concerning the state of the business process and other
contextual factors such as the previously monitored performance of services can
help to adapt the selection to the (presumably) most optimalor appropriate solution.
Adaptive service selection has often been based on exploiting semantic annotations
of services. Research in this area has thus far b een mainly driven by rich Semantic
Web Services (SWS) conceptual models such as the Web Service Modeling Ontology
(WSMO) [17] andOWL-S [29], which rely on expressive knowledge representation
formalisms such as Web Service Modeling Language (WSML) [11] andOWL [35]
complemented by some rule language. On the basis of these technologies, rich SWS

Adaptive Service Binding with Lightweight Semantic Web Services 3

can be defined on top of which refined service discovery algorithms and techniques
can be implemented. However, creating these descriptions represents a significant
knowledge acquisition bottleneck, and reasoning over themcarries a considerable
computational overhead that has limited the scalability ofthese approaches.

The issue of scalability is one that has always been central in the Semantic Web
community, where recent practices, best exemplified by the linked data initiative [5],
are disregarding expressivity in favour of performance andscalability. Consider-
able effort has gone into developing systems that can efficiently support storing, up-
dating, and reasoning overRDFS [30] – a simple ontology representation language
for the Web. Additionally, a standardised language and protocol for querying these
repositories calledSPARQL[38] has been devised which nowadays supports the sys-
tematic development of applications on top of large RDF(S) knowledge bases.

The work in this chapter has been conducted in theSOA4All project, anEU funded
research programme which aims to harness the scalability ofthe Web, and to use
lightweight Web technologies to begin an incremental approach to reaching its ob-
jective of ‘enabling a Web of billions of services’. Based onthe service portability
scenario [REF Use Case Chapter] we present a novel approach to providing adap-
tive service selection based on lightweight semantic technologies, notablyRDFSand
SPARQL, so as to provide an efficient and scalable solution that can be applied on a
Web scale. In particular, we provide adaptive service selection within workflows by
defining processes based on service templates that specify abstract objectives rather
than by directly naming concrete services. At runtime, service templates can be di-
rectly transformed intoSPARQLqueries that can be used to retrieve suitable services
from existing repositories of service annotations informed by the current conditions
and contextual knowledge which includes external information such as the location
of a customer, monitoring data, and so forth.

The chapter is organised as follows. We first introduce the case study that is
used to explain the technologies and methods described herein (Section 2). We then
present background knowledge about Semantic Web Services and introduce related
work in the area of service adaptability (Section 3). We thenpresent our overall
approach (Section4) and cover each of the main technical aspects implementing it,
including the formal model for describing services (Section 4.1), the kinds of service
descriptions produced (Section 4.2), the service repository (Section 4.3), and service
matchmaking techniques based onSPARQL(Section 4.4). Throughout, we illustrate
our approach with examples based on the case study. Finally,in Section 5 we present
our main conclusions and introduce lines for future research.

2 A Case Study in Added-Value Services and Service Portability

Chapter [REF Use case Chapter] defines a common use-case to beused throughout
the book for illustration, clarity, and coherence purposes. The chapter identifies a
number of scenarios and business goals that need to be tackled by mobile operators.

4 Pedrinaci, Lambert, Maleshkova, Liu, Domingue, Krummenacher

In this chapter we focus on two of these business goals: the provisioning of added-
value services (TELCO-BG-05), and supporting service-portability (TELCO-BG-04).

The first business goal—providing added-value services—iscurrently attracting
more interest from telecom operators since they otherwise run the risk of becoming
“dumb pipe providers” [10]. This business goal is largely aligned with current Web
trends where WebAPIs andRESTful services are increasingly being offered, and
where an appropriate combination and integration of the data these services provide
enables the provisioning of a wealth of useful low-cost added-value services. The
second business goal is also related to existing trends, in this case on customers
mobility, and on the fact that currently client terminals are increasingly powerful
and can give access to all sorts of services offered by operators as well as openly
on the Web. Both business goals come hand-in-hand as strategically important for
telecom operators that aim to provide added-value servicesto give themselves a
competitive advantage and additional revenues. Both business goals are at the core
of a use-case lead byBT in SOA4All, and in general are strongly aligned with the
overall goal pursued by the project which seeks to support the creation of a Web
where billions of services are offered and consumed by billions of providers and
customers [10].

Given that both business goals are highly generic, we use a more concrete sce-
nario for illustration purposes. The reader should note, however, that the models,
techniques and systems introduced in this chapter could be applied in a wide range
of scenarios. The scenario that we have chosen is one where the Cell Phone Operator
offers a simple added-value service for frequent travelersallowing them to receive
timely notification of traffic reports, or delays in flights and trains so that they can
rearrange their trip if necessary. This information is madeavailable via subscription
throughSMSmessages, or on demand using a Web-based interface.

Let us imagine a frequent traveller that has to spend a few days in Vienna to
attend a meeting, and then returns to London. While in Vienna, she wants to be
aware of the local traffic, so as to reach her various meetingsacross the city on
time. The traffic reports are naturally location specific, soit is necessary to know
the desired location for obtaining the reports which in turndetermines which of the
publicly available services is to be contacted. In this case, the selection of the service
to invoke to obtain traffic information is based on the physical location of the phone
and the Cell Phone Operator of Austria can directly deal withthis request.

After a few days of meeting in Vienna she has to return to London. She therefore
wants to know if the flight and tube line have any delays or planned disruptions.
In this case the necessary information concerning her journey is stored within an
online travel management system like TripIt.com that only authorised systems can
access. In this specific case, the Cell Phone Operator she is using in Austria needs to
redirect the invocation at the expense of a small roaming fee. Indeed the Cell Phone
Operator wants to offer a service that is able to deal with a wide-range of locations
(virtually anywhere) and it is of utmost importance that this service is available for
the customers at anytime in a completely transparent manner.

Achieving these goals presents a number of technical requirements that are worth
highlighting and are schematically depicted in Figure 1. First and foremost, offering

Adaptive Service Binding with Lightweight Semantic Web Services 5

access to such a wide-range of services offered by third parties requires a means for
appropriately brokering services by dealing with data heterogeneity and supporting
the selection of the most appropriate services to invoke given the location and kind
of transportation used. This also highlights the need for supporting the use of di-
verse kinds of service technologies includingWSDL but also WebAPIS andRESTful
ones offered directly viaHTTP. Additionally, because of the need to have access to
a very large amount of services it is not appropriate to embedthe service selection
within the process definition extensionally through a direct hard-wired inclusion of
the service. Instead, an intensional definition using declarative statements regarding
the suitability of services is a more appropriate solution.It is only through this man-
ner that the process model for carrying out these activitiescan remain simple and
that new information providers can easily be added or removed as the need arises
or based on their current state, performance, etc. Finally,in order to support the
portability of services it is necessary that Cell Phone Operators of remote countries
can transparently redirect the request of customers of other operators or can directly
deal with the request if no privately owned information is involved.

Fig. 1 Service portability through adaptive search.
On the left is the Vienna locale, service provider, and our user. On the right, the users and providers
in London. At the bottom is a service repository.

In the remainder of this chapter we describe how, by means of simple seman-
tic annotations, it is possible to achieve these two business goals. For the sake of
clarity and simplicity, we shall refer throughout the chapter to traffic report services
that take as input a geographical locationlocation and a human language identi-
fier language, and supply a textual summary inlanguageof the traffic situation in
location. Similarly, we shall use several ontologies to describe theservices. These

6 Pedrinaci, Lambert, Maleshkova, Liu, Domingue, Krummenacher

include the ontologies for standard parts of the semantic web, our framework, and
domain specific vocabularies for traffic reporting. In particular, we use an ontology
of human languages1, and use aW3C ontology for discussing geographical location.

3 Background and Related Work

Web Services are software systems that offer their functionality over the Internet via
platform and programming-language independent interfaces defined on the basis of
a set of open standards such asWSDL, SOAP and furtherWS-* specifications [13].
Constructing distributed systems out of Web services is a matter of identifying suit-
able Web services and orchestrating them (through control and dataflow) in such
a way that they achieve the desired goal. However, there exist situations, as faced
in the case study that we address in this chapter, where the service to be used for
execution within a concrete workflow depends on conditions that are knowable only
at runtime (e.g., location of the requester), or where optimisations can be achieved
by tracking certain aspects such as the overall performanceexhibited by equivalent
services. In the remainder of this section we shall review some of the main proposals
for improving flexibility in SOAs, focusing on research in Semantic Web Services,
since that area is the basis for our work.

3.1 Adaptive Service Binding

Since the advent of Service-Oriented Computing, much research has been devoted
to discovering means for applications to take into account changing environments in
order to adapt to the situation at hand [34]. Research in thisarea spans a wide range
of topics including compensation handling, self-configuration, self-management,
self-adaptation, and self-healing. One often pursued lineof work on providing a
certain level of adaptability within workflows is based on Quality of Service QoS
aware binding mechanisms [2,22,50]. The approaches suggested differ significantly
in the means for obtaining relevant data, how the QoS is measured and computed,
as well as the techniques for bringing a certain level of adaptability within pro-
cesses. [2] highlights the importance of including QoS information while selecting
services. [50] proposes middleware that is able to compute local and global optimi-
sations in order to obtain the best composition at runtime. [22] focusses on outlining
how processes defined inBPEL can be enhanced with adaptive capabilities by com-
bining it with Aspect-Oriented Programming.

The aforementioned approaches rely to a certain extent on well-known and con-
trolled environments whereby the services that can be used are known in advance. A
different point in the services space is characterised by the use of Semantic Web Ser-

1 One such vocabulary is at http://www.lingvoj.org/lang/, but it does not quite fit our purpose. Since
its use here is pedagogical, we take some liberties with respect to its actual content.

Adaptive Service Binding with Lightweight Semantic Web Services 7

vices and related execution engines and machinery which aimto cater also for open
environments like the Web where assumptions about data homogeneity or service
availability for example cannot be made a priori. In this respect it is worth mention-
ing the work carried out in theMETEOR-Sproject through the use ofWSDL-S and
the notion of service templates as a means to provide late-binding facilities [47].
This work is indeed closely related to ours in that we share the notion of a ser-
vice template as a placeholder for describing intensionally a family of services that
are suitable, and which must be retrieved and ranked at runtime. Similarly, work
aroundWSMO [17] has proposed the use of goals within orchestrations thus al-
lowing the process activities to be resolved and the best oneinvoked at runtime
based on the functionality provide and other arbitrary concerns such as QoS, cost,
or trust [19,32,33].

Finally, we consider context-aware systems. Although research in this field of-
ten concentrates on the distribution of sensors for gathering contextual information,
its representation and processing mechanisms, their aim isto provide adaptive sys-
tems that can better tackle the situations at hand by being aware of the surrounding
contextual conditions. Research in this area has thereforeproduced a number of ar-
chitectures, conceptual models and approaches that are of particular relevance to our
endeavour. The reader is referred to [4] for a survey on thesematters and to [41] for
a selection of methods, architectures and technologies bringing context-awareness
to Web service technologies.

3.2 Semantic Web Services

Although service-oriented systems are highly appealing from an engineering per-
spective, developing them requires substantial manual effort to locate, interpret and
integrate services. Consequently, Web services are mostlyused within controlled
environments such as large enterprises rather than on the (public) Web [10]. This
is illustrated by the fact that currently there are only 28,000 Web services on the
Web2, whereas organizations like Verizon are estimated to have around 1,500 Web
services deployed internally [10]. It has been argued that one possible reason for
this lack of take up is thatWS-* Web Services do not fully embrace the principles of
the Web [10,48].

Recently, the world of Web services has changed significantly with the prolif-
eration of WebAPIS, also calledRESTful services [39] when they conform to the
architectural style [18]. This kind of service is characterized by simplicity (at least
compared toWS-*) and is typically used in conjunction with Web 2.0 technologies
and social networking applications. These services are usually described in natural
language, on unstructuredHTML pages. Attempts to introduceWSDL-style machine
readable descriptions [20] have not been popular with developers. As a consequence,
and despite their popularity, the development of Web applications that integrate dis-

2 http://webservices.seekda.com/

8 Pedrinaci, Lambert, Maleshkova, Liu, Domingue, Krummenacher

parate services in this manner suffers from a number of limitations similar to those
we previously outlined for (standard) Web services with an increased complexity
due to the fact that most often no machine-processable description is available. Dis-
covering services, handling heterogeneous data, and creating service compositions
are largely manual, tedious tasks which result in the development of custom tailored
solutions that use these services.

Semantic Web Services were proposed as an extension of Web services with se-
mantic descriptions in order to provide formal declarativedefinitions of their inter-
faces, and what the services do [31]. The essential characteristic of SWSis therefore
the use of knowledge representation languages with well-defined semantics, e.g.,
RDFS[30], OWL [35] andWSML [11] to name a few, that are amenable to automated
reasoning. On the basis of these semantic descriptions,SWS technologies seek to
increase the level of automation that can be achieved throughout the life-cycle of
service-oriented applications which include the discovery and selection of services,
their composition, their execution and their monitoring among others. Part of the
research onSWShas been devoted precisely to identifying the requirementsfor SWS

systems, and defining conceptual frameworks and architectures that cover the entire
life-cycle of SWS[7,12,15,17,31,33,44].

The main approaches devised so far can roughly be divided into top-down and
bottom-up. Top-down approaches to the development of semantic Web services like
WSMO [17] and OWL-S [29] are based on the definition of high-level ontologies
providing expressive frameworks for describing Web services. On the other hand,
bottom-up models such asWSDL-S [1] and the Semantic Annotations forWSDL and
XML Schema (SAWSDL) [14] adopt an incremental approach to adding semantics to
existing Web services standards, adding toWSDL specific extensions that connect
the syntactic definitions to their semantic annotations.

The landscape of Semantic Web Services is thus characterized by a number of
conceptual models that, despite a few common characteristics, remain essentially in-
compatible due to the different representation languages and expressivity utilized as
well as because of conceptual differences. For example,WSMO contains the notions
of goal (to represent the client/user perspective) and mediator (to resolve hetero-
geneities), which have no equivalent inOWL-S. SAWSDL differs significantly from
both OWL-S and WSMO, leaving aside the definition of processes and the provi-
sioning of a high-level conceptual model, focusing insteadof providing a minimal
yet extensible syntactic extension on top of existing standards for describing Web
services (WSDL) and their data model (XML Schema). Regardless of the concrete
approach followed, the vast majority of the Semantic Web Services initiatives were
based upon adding semantics toWSDL Web services. It is only recently that re-
searchers have started focusing on WebAPIs andRESTful services, the main exam-
ples beingSA-REST[42] and MicroWSMO [28].

Service selection, also referred to as matching or matchmaking in several pa-
pers, has been a core research topic of the SWS community. Thegoal of service
matchmaking is to, given a request for retrieving somekind of Web service, i.e.,
that is a family of services that meet certain criteria, identify all those Web service
advertisements that match to a certain degree the request. Perhaps the best known

Adaptive Service Binding with Lightweight Semantic Web Services 9

matchmaker is Sycara et al.’sSEMANTIC MATCHMAKER [44]. It was one of several
matchmakers proposed forOWL-S which matched requests according to input and
output types [27, 45]. Each request’s input and output typesare compared pairwise
with the corresponding inputs and outputs of a service description, with the compar-
isons resulting in per-variable matches namedexact(the requested and offered types
are the same),plugin (the offer is a subclass of the request),subsumes(the offer is
a superclass of the request), andfail (there is no relationship). These matches are
assigned numerical scores, and a service’s degree of match to the original query is
determined by the product of the scores for each variable.

In WSMO, the concept of a goal is used to specify problems from a client’s per-
spective. The goals are defined using preconditions and effects, in the manner of
planning operators, and through processing by heavyweightreasoners, they can be
resolved with a service or orchestration of services. Examples of WSMO-based dis-
covery engines are for instanceIRS-III [12], Glue [46] or the template-based system
described in [43]. The latter is quite relevant to the work presented here since it
also uses the notion of templates although in this case the templates have to be
structured in a hierarchy that can be exploited to speed up the search process, and
therefore achieves performance improvements in controlled environments restricted
to a particular domain where deep hierarchies can be defined.

Computing subsumption relations in a description logic is not a reliably fast op-
eration, and working with the more abstract relation between goals and services is
harder still. There have been some recent attempts to improve performance. TheMX

matchmaker treatsOWL classes as keywords, trading subsumption for a vector-space
similarity measure akin to information retrieval. Qualityof matching is claimed to
be as good as subsumption, while performing ten times faster[23].

Independently from the concrete conceptual framework usedthe aforementioned
approaches rely on rich models that have significantly limited their uptake for two
main reasons. First, they require considerable human labour for annotating the ser-
vices. Secondly, these models being based on expressive knowledge representation
formalisms, their complexity is such that reasoning over services descriptions is
computationally demanding which in turn limits their scalability. The reader is re-
ferred to [11], [35], and [21] for details on the computational complexity of WSML,
OWL, SWRL – the rule language often used in OWL-S descriptions – respectively).

In this chapter, as opposed to the research described above,we present a novel
approach to providing adaptive service selection based on semantic annotations of
services. The novelty lies on the use of lightweight semantic technologies which
limit the expressivity of service annotations and hence thereduce the potential for
carrying out highly complex service matching, in order to simplify the creation of
these annotations for developers as well as to support theirefficient and scalable
manipulation.

10 Pedrinaci, Lambert, Maleshkova, Liu, Domingue, Krummenacher

4 Scalable Late-binding of Services based on Lightweight
Semantic Annotations

In traditional workflows and business processes the execution relies on syntactically
specified and rigid process models which interact with a fixedand predefined set
of partner services. This rigidity impedes the provision ofdesirable features like the
replacement of services based on their current state, the selection of those that better
fit a certain context, etc. A typical approach is to modify theprocess models with
artificial branches which exist only to work around implementation-level difficul-
ties. Unfortunately with this approach, the resulting models are more complex, and
maintaining or extending them to adapt to changing conditions becomes a harder
task [36].

Our approach to this problem is based on the use of Semantic Web Services, that
is of semantic annotations of services that support the application of automated ma-
chinery in order to reason about the functional and nonfunctional characteristics of
services. In particular, we advocate that workflow definitions use service templates
as internal activities instead of concrete and prefixed services whenever flexibility
in service selection is desired. At runtime, these service templates can be bound to
specific services selected on the basis of the existing conditions and informed by
contextual knowledge which may include monitoring data, user location or other
aspects that may affect which service is the most appropriate. Since service tem-
plates are described semantically, both the required functional and nonfunctional
properties have clear semantics. This enhances the interpretation of services by hu-
mans, and more importantly, it allows service selection anddata mismatches to be
resolved at runtime, hence the term late-binding, as supported by Semantic Web Ser-
vices middleware such as the so-called Semantic Execution Environments [16,33].

Replacing services by service templates that define intensionally ‘families of ser-
vices’ brings a number of benefits from a process execution perspective:

• Process models are relatively independent of the services used. If a particular ser-
vice is not available the middleware can choose another functionally equivalent
service without needing to change the process model. Similarly, and of particu-
lar relevance for the case study used within this chapter, should a service not be
suitable due to the location of service client (e.g., the user is currently abroad),
the middleware can automatically redirect the client request to the right service
in a way that is completely transparent for the customer and that requires no
adaptation of the client terminal (i.e., the mobile phone inour case).

• Process models are independent of the services’ internal data model. The process
model has its own semantically annotated data model. If the partner’s data model
differs from that, semantic models help to bridge the gap.

• Partner services can be selected based on business aspects.Nonfunctional infor-
mation about cost, quality of service, trust and legal constraints to name a few,
can be taken into account so that the selected service is the most suitable from a
business perspective.

Adaptive Service Binding with Lightweight Semantic Web Services 11

Adaptive TemplatesTraditional Prefixed Models

Service A ?

Service B

Service C

Service D

X

X

X

Service A
Service

Template
X

Services Repository

matching
query

concrete
service

location = X

location = Z

Fig. 2 Illustration of changes brought by our approach.

The overall approach, depicted in Figure 2, therefore relies on the provisioning
of semantic annotations for services and the correspondingstorage and querying
system, on the replacement of workflow activities by servicetemplates, and on the
adaptation of execution environments in order to take service templates into ac-
count and trigger the selection of appropriate services automatically. The research
presented herein builds upon our previous experience [36] of usingWSMOgoals [17]
for defining service templates withinBPEL processes based on theBPEL4SWSexten-
sions [32, 33]. The focus of this research, however, lies in an attempt to bring our
technologies closer to the Web by:

• embracing current trends on services on the Web such as RESTful services and
WebAPIs;

• building upon existing Web standards and technologies to better support the up-
take of these technologies in a Web-scale; and

• reducing the complexity of the semantic descriptions in order to support faster
and more scalable service matchmaking while reducing the knowledge acquisi-
tion bottleneck faced when using rich Semantic Web Servicesdescriptions such
asWSMO [10].

In this chapter we will therefore present the technologies and methods used to
achieve the goals above, leaving aside aspects such as the internals of Semantic Ex-
ecution Environments, or negotiation steps [9] for the sakeof clarity and space. The
interested reader is referred to [16,17,32,33,36] for further details. In the remainder
of this chapter we shall cover how we support the adaptive binding of services at
runtime in a scalable manner by using service templates which can be automatically
transformed into SPARQL queries that can interpreted by state of the art RDF stores
to select suitable services efficiently. We first cover in Section 4.1 the formalisms
used for describing services semantically usingRDFS. We then show in Section 4.2
and Section 4.3 how one can use state of the art technologies from the Semantic
Web to support the seamless publishing of services in a way that enables and sim-
plifies their discovery by interested parties in a scalable manner. Finally, in Section
4.4 we introduce a model for describing service templates and we present a sim-
ple algorithm that can translate these intoSPARQLqueries to support the selection

12 Pedrinaci, Lambert, Maleshkova, Liu, Domingue, Krummenacher

of services at runtime, based on functional and nonfunctional parameters such as
contextual information.

4.1 Lightweight Semantic Descriptions for Services on the Web

Currently, there are two main communities, which define competing frameworks
for describing semantics for services. These efforts areWSMO [17] andOWL-S [?],
and they follow a top-down approach for enhancing Web service technology with
semantics. In particular, they assume that the service semantic model and the actual
service invocation and communication mechanisms are defined in parallel or jointly
at design time. As a result, the description of a newly engineered service already
comprises semantic information. Even thoughWSMO andOWL-S have been used in
some application areas, this approach is not well suited to incrementally enhanc-
ing existing systems based on the service-oriented architecture, where thousands of
WSDL-described services or Web APIs are already available on theWeb or in in-
tranets. Therefore, it is problematical to use these semantic frameworks to extend
existing services.

To better address the problem of incremental or ad-hoc semantic annotation of
services, we base our approach onWSMO-Lite [49], a minimal extension toSAWSDL.
WSMO-Lite provides a means to create lightweight semantic service descriptions in
RDFS [6] by annotating variousWSDL elements in accordance withSAWSDL [14]
annotation mechanism. In parallel, we use MicroWSMO [28] to annotate services
that are not described inWSDL. MicroWSMO is a microformat-based language based
on the same kinds of annotations asWSMO-Lite, adapted to support the annotation
of HTML-based descriptions of WebAPIs. Finally, we provide the minimal service
model, a simpleRDFSmodel that provides an overarching conceptual model able to
capture the semantics for both Web services and WebAPIs, thus allowing both kinds
of services to be treated homogeneously when at selection time.

4.1.1 WSMO-Lite

To date,SAWSDL is the only Semantic Web Services specification that is aW3C

Recommendation. It defines a set of extensions toWSDL, as well as rules for link-
ing WSDL elements to semantic information. In particular,SAWSDL supports three
kinds of annotations overWSDL and XML Schema, namelymodelReference, lift-
ingSchemaMappingand loweringSchemaMapping. These three annotation types
enable links to be made from parts of aWSDL document to associated semantic
elements, or to the specifications of data transformations from a syntactic represen-
tation to its semantic counterpart and vice versa. In this way, it enables the incre-
mental addition of semantics on top of existingWSDL descriptions, providing a basis
for extending results from a well-established approach. However,SAWSDLonly pro-
vides simple means for connecting service elements to semantic entities and does

Adaptive Service Binding with Lightweight Semantic Web Services 13

not define any concrete service semantics such as types, formats or model for the
semantic descriptions.

WSMO-Lite builds uponSAWSDL, overcoming some ofSAWSDL’s limitations
while remaining lightweight.WSMO-Lite makes explicit the intended meaning for
modelReferenceannotations without modifyingSAWSDLbut rather informing users
on how they should structure the models their annotations point to. For instance, if
the annotation is a functional categorisation, theURI themodelReferencepoints to
should be that of a sub-class of an instance ofwsl:FunctionalClassificationRoot(see
Listing 4)3. Similarly, should themodelReferencepoint to the effect of a service,
theURI should be that of an instance ofwsl:Effect. TheWSMO-Lite ontology can be
used to capture four aspects of service semantics:

• The Information Modeldefines the data model. In particular, it describes the
model for input and output messages and is represented by using a domain on-
tology, along with associated data lifting and lowering transformations.

• The Functional Semanticsdefine what the service does by using functionality
classification or preconditions and effects. It describes what the service can offer
to its clients when it is invoked by assigning it to a particular class of service
functionality, defined in a classification ontology.

• TheBehavioral Semanticsdefine the sequencing of operation invocations when
invoking the service. The behavior of a service can be described through a chore-
ography or a workflow definition. However, behavioral semantics are not repre-
sented explicitly inWSMO-Lite.

• TheNonfunctional Semanticsdefine any service-specific implementation or op-
erational details such as service policies, implementation information or running
environment requirements. Nonfunctional properties can include the price of a
service or the Quality of Service (QoS) aspects such as performance and relia-
bility. These are defined by using ontologies for nonfunctional properties, which
should in this case be grounded onwsl:NonFunctionalParameter

4.1.2 MicroWSMO

In addition to the lightweight description ofWSDL-based services, our approach sup-
ports also the adaptive use of WebAPIs in business processes. MicroWSMO forms
the basis for our work on semantically describing WebAPIs. MicroWSMO uses mi-
croformats for adding semantic information on top of existingHTML Web API docu-
mentation, by relying on hRESTS(HTML for RESTful services) [26] for marking ser-
vice properties and making the descriptions machine-processable. hRESTSprovides
a number ofHTML classes that enable the marking of service operations, inputs
and outputs,HTTP methods and labels, by insertingHTML tags within theHTML .
It therefore enables, through simple injections ofHTML code into Web pages, the

3 Throughout the chapter we assume a set of namespaces are declared for clarity and space reasons.
The namespaces used can be found in the Appendix.

14 Pedrinaci, Lambert, Maleshkova, Liu, Domingue, Krummenacher

transformation of unstructuredHTML-based descriptions of WebAPIs into struc-
tured services descriptions similar to those provided byWSDL.

With the hRESTSstructure in place,HTML service descriptions can be annotated
further by including pointers to the semantics of the service, operations and data
manipulated. Similarly toWSMO-Lite, MicroWSMO adopts theSAWSDL annotation
mechanisms and uses three main types of link relations: 1) model, which can be
used on any service property to point to appropriate semantic concepts identified by
URIs; 2) lifting and 3) lowering, which associate messages withappropriate trans-
formations (also identified byURIs) between the underlying technical format such
asXML and a semantic knowledge representation format such asRDF. Therefore,
MicroWSMO, based on hRESTS, enables the semantic annotation of WebAPIs in
the same way in whichSAWSDL, based onWSDL, supports the annotation of Web
services. MicroWSMO also adopts theWSMO-Lite ontology as the reference ontol-
ogy for annotating WebAPIs semantically. By doing so, bothWSDL services and
RESTful services, annotated withWSMO-Lite and MicroWSMO respectively, can be
treated homogeneously.

4.1.3 Minimal Service Model

The Minimal Service Model, depicted in Figure3, provides a minimal and com-
mon conceptual model inRDFSfor capturing the semantics of services may they be
WSDL-based or Web APIs. It therefore provides the ground fortreating them ho-
mogeneously when carrying out tasks such as the discovery ofservices. The Mini-
mal Service Model given in Listing 4 builds upon a number of modules, including
SAWSDL’s syntactic properties,WSMO-Lite as a minimal extension toSAWSDL, and
hRESTS’s support for WebAPIs. The Minimal Service Model defines services as
having a number ofoperations, each of which haveinput andoutput messagesand
faults. WebAPIs are supported through the addition of two hRESTSproperties, in-
cluding theaddressas aURI template, and theHTTP method. Finally, the Minimal
Service Model is completed by theSAWSDL elements for linking semantic infor-
mation through themodelReferenceand for providing lifting and lowering mecha-
nisms.

The Minimal Service Model captures the essence of services in a way that can
support service discovery, matchmaking and invocation by directly operating on the
model properties. However, despite its simplicity, it is still broadly compatible with
WSMO andOWL-S service models, as well as with services annotated according to
WSMO-Lite and MicroWSMO principles. Although providing a formal mapping for
each of these languages is out of the scope of this work, we note that the elements
captured in the minimal service model are common to existingmodels, with the
exception of the hRESTSextensions specific toRESTful services. Therefore, we base
our approach for adaptive device discovery, described in the following sections, on
this minimal service model.

Adaptive Service Binding with Lightweight Semantic Web Services 15

msm:Service msm:Operation msm:Messagemsm:hasOperation
msm:hasInputMessage

msm:hasOutputMessage

msm:hasInputFault

msm:hasOutputFault

rest:URITemplate rest:Method

rest:hasAddress rest:hasMethod

http:Method

Namespace Abbreviations

xsd: http://www.w3.org/2001/XMLSchema
owl: http://www.w3.org/2002/07/owl#
sawsdl: http://www.w3.org/ns/sawsdl#
msm: http://cms-wg.sti2.org/ns/minimal-service-model#
rest: http://www.wsmo.org/ns/hrests#
http: http://www.w3.org/2008/http-methods
wl: http://www.wsmo.org/ns/wsmo-lite#

wl:FunctionalClassificationRoot

wl:NonFunctionalParameter

wl:Condition wl:Effect

rdf:Resource
sawsdl:liftingSchemaMapping

owl:Ontology

wl:Ontology

wl:usesOntology
sawsdl:loweringSchemaMapping

sawsdl:modelReferencesawsdl:modelReference

rdf:Resource

rdf:isDefinedBy

rdf:seeAlso

Fig. 3 Service models used. See Appendix for the corresponding N3 serialisation.

4.2 Services and Annotations

In this section, we show the kinds ofWSMO-Lite descriptions that might be available
for the kinds of traffic report services we imagine in our use-case. In listings 1
and 2, we seeN3 represenations of theRDF resulting from processing MicroWSMO

descriptions. The reader is referred to [28] for more details on how annotations
can be created and how RDF can be extracted from these annotations. Common
input parameters are the latitude, longitude, and languageof the user, while common
output parameters include the number of traffic incidents, incident names, times,
resulting delays, and textual descriptions.

Listing 1 Traffic information service in the UK
1

2 service1 rdf :type msm:Service ;
3 rdfs : isDefinedBy <http://myTrafficInformation .co.uk/descriptionxmlapi.asp# trafficinfo > ;
4 sawsdl:modelReference <http://www.service−finder.eu/ontologies/ServiceCategories#Travel> ,
5 <http ://www.service−finder.eu/ontologies/ServiceOntology#AuthenticationModel> ,
6 <http ://example.com/classification/onto# trafficInformation > ,
7 <http ://example.com/mimetype/onto#xmlSupport> .
8 operation1 rdf : type msm:Operation ;
9 rdfs : label ”UK Traffic Information” ;

10 hr:hasMethod ”GET” ;
11 hr:hasAddress ”http://myTrafficInformation.co.uk/ xmlgettrafficinfo .aspx” .
12 inputmsg rdf:type msm:Message ;
13 sawsdl:loweringSchemaMapping <http://example.com/UKTraffic−Info−lowering.xsparql> ;
14 sawsdl:modelReference <http://example.com/onto#User> ,
15 geo:long , geo:lat ,
16 <http ://www.geonames.org/ontology#Map> ,
17 <http ://example.com/geoontology/onto#Range> ,
18 <http ://example.com/imagesontology/onto#relatedImageWidth> ,
19 <http ://example.com/textontology/onto#Language> .
20 operation1 msm:hasInputMessage :inputmsg .
21 outputmsg rdf:type msm:Message ;
22 sawsdl:liftingSchemaMapping <http://example.com/UKtraffic−Info−lifting.xsparql> ;

16 Pedrinaci, Lambert, Maleshkova, Liu, Domingue, Krummenacher

23 sawsdl:modelReference <http://example.com/trafficontology/onto#Number> ,
24 <http ://example.com/trafficontology/onto#IncidentName> ,
25 <http ://example.com/trafficontology/onto#Created> ,
26 <http ://example.com/trafficontology/onto#Delay> ,
27 <http ://example.com/trafficontology/onto#Duration> ,
28 <http ://example.com/trafficontology/onto#Description> ,
29 <http ://example.com/trafficontology/onto#Updated> ,
30 <http ://example.com/trafficontology/onto#TrafficArea> .
31 operation1 msm:hasOutputMessage :outputmsg .
32 service1 msm:hasOperation :operation1 .

Listing 2 Service for Traffic Information in Austria
1

2 service2 rdf :type msm:Service ;
3 rdfs :isDefinedBy <http:// traffic .de/web−services.html#trafficinfo> ;
4 sawsdl:modelReference <http://www.service−finder.eu/ontologies/ServiceCategories#Travel> ,
5 <http://example.com/payment/onto#Free> ,
6 <http://example.com/classification/onto# trafficInformation > ,
7 <http://example.com/mimetype/onto#json> .
8 operation1 rdf : type msm:Operation ;
9 rdfs : label ”Staumeldungen fuer Oestereich” ;

10 hr:hasMethod ”GET” ;
11 hr:hasAddress ”http:// traffic .de/trafficinfoJSON” .
12 inputmsg rdf:type msm:Message ;
13 sawsdl:loweringSchemaMapping <http://example.com/DETraffic−Info−lowering.xsparql> ;
14 sawsdl:modelReference geo:long , geo:lat ,
15 <http://example.com/onto#CurrentTime> ,
16 <http://example.com/textontology/onto#Language> .
17 operation1 msm:hasInputMessage :inputmsg .
18 outputmsg rdf:type msm:Message ;
19 sawsdl:liftingSchemaMapping <http://example.com/DETraffic−Info−lowering.xsparql> ;
20 sawsdl:modelReference <http://example.com/trafficontology/onto#Number> ,
21 <http://example.com/trafficontology/onto#IncidentName> ,
22 <http://example.com/trafficontology/onto#Priority> ,
23 <http://example.com/trafficontology/onto#Created> ,
24 <http://example.com/trafficontology/onto#Delay> ,
25 <http://example.com/trafficontology/onto#Description> ,
26 <http://example.com/trafficontology/onto#Diversion> .
27 operation1 msm:hasOutputMessage :outputmsg .
28 service2 msm:hasOperation :operation1 .

4.3 Services Publication

The object of syntactic and semantic descriptions of Web services is to provide in-
formation about services in a way that can automatically be processed by machines.
However, at present, these descriptions can only be retrieved through the Web of
documents, which is essentially designed for human beings,or through specific in-
terfaces to silos of services such asUDDI [8] that have failed to see significant up-
take. This is particularly true for syntactic descriptionsof services (although there is
anRDFmapping forWSDL), but also for semantic descriptions, which have remained
somewhat disconnected from current practices in the Web of Data [5].

A fundamental step for bringing services closer to the Web, thus better enabling
their discovery and supporting their use, is publishing them based on current best
practices on the Web. A key component within our approach is therefore a service

Adaptive Service Binding with Lightweight Semantic Web Services 17

publishing platform that plays a role similar toUDDI registries but which is based
on a set of fundamentally different principles and technologies. In particular, we
advocate the publishing of service annotations as Linked Data. The term Linked
Data refers to a set of best practices for publishing structured data on the Web which
is based on four main principles [5]:

1. UseURIs for naming things;
2. UseHTTP URIs so that also people can look up those names using Web browsers;
3. Provide information using the standards (RDF, SPARQL); and
4. Include links to otherURIs, so that people and machines can discover more

things.

Linked Data principles have already been adopted by a growing number of data
providers, leading to an exponential growth of a Web of Data containing billions
of assertions across diverse domain such as governmental data, music, and ency-
clopaedia knowledge. Adopting these very simple principles leads to the creation of
a global data space that can be queried, browsed and combinedon the fly both by
machines and humans thanks to the use of standards likeHTTP, RDFS, andSPARQL.

Our notion of a service repository is built around the notionof service registry
always present in Service-Oriented Architectures, as wellas on the Linked Data
principles highlighted above. In particular, we view the service repository as a plat-
form that facilitates the publication of semantic annotations of services on the Web
as linked data, allowing humans and machines to publish, browse and discover pub-
licly available services, using the models described earlier as thelingua franca. It
is worth noting in this respect that we here distinguish between the actual syntactic
service descriptions inWSDL, WADL or HTML , from the semantic annotations ex-
pressed according to the formalisms described previously.It is therefore possible to
provide a common view over services of differents kinds in a simple an convenient
manner that can serve as a basis for discoverying, querying and using services.

iServe4 is our implementation of a service repository [37]. iServe provides both
an interactive user interface as well as aRESTful API and aSPARQL endpoint that
expose services as linked data. It uses as its core conceptual model the Minimal
Service Model described previously and it currently includes a number of import
mechanisms able to deal withWSDL files includingSAWSDL annotations, with de-
scriptions adopting theWSMO-Lite specific extensions, and also with MicroWSMO

annotations of Web APIs. This import mechanism, illustrated in Figure 4, trans-
forms the service descriptions into the appropriate terms within the Minimal Service
Model and automatically generatesrdfs:definedBy, rdfs:seeAlso, andowl:sameAs
relations allowing humans and machines to discover additional information. The
first relationship is established between the service annotation and the actual docu-
ment describing the service (e.g., aWSDL file). It therefore allows systems to find
the actual interface description definition needed for invocation after it has been
determined that the service is the appropriate one to use. The rdfs:seeAlsorelation-
ship points to documentation and additional information about the service in case

4 See http://iserve.kmi.open.ac.uk

18 Pedrinaci, Lambert, Maleshkova, Liu, Domingue, Krummenacher

developers need it. Finally,owl:sameAsallows us to assert that one particular ser-
vice annotation is actually the same as another one published by a third party in
some other repository. In this respect it is worth noting that although currently there
are no other repositories publishing services in a similar way, owl:sameAs relations
are automatically generated linking to theRDF mapping ofWSDL [25] so that any
application already using this approach internally can directly interact with iServe.

SAWSDL

WSMO-Lite

MicroWSMO

http://iServe/services#s1

http://server1.com/s1.wsdl
or

http://server1.com/s1.html

http://other.net/services#s5

owl:sameAs

rdfs:isDefinedBy

other.netiServe

asdfaksjdhalskdjfhksdfhasdfh
asdfkjahsdlfkjhasdf
aasdflkajhsdfkjahsdf
asdfka l jshdflka jh lk j laks jdh la jkhw l fk jh la
lasdfhalweiouha
a ; a o w e i h d o a i w d h a w o i d h a s
dcas;oiehfoaiwehfoaiefasdknc
asdlkajsbdclausiuowencaweca
sdf
asdgasdgasdf

asdfasdf

a s d f a s ; d l f h ; a l o w i e h c f a ; o i h
ac;soiehf;aew;nac ;secioaew f

asdfaksjdhalskdjfhksdfhasdfh
asdfkjahsdlfkjhasdf
aasdflkajhsdfkjahsdf
asdfka l jshdflka jh lk j laks jdh la jkhw l fk jh la
lasdfhalweiouha
a ; a o w e i h d o a i w d h a w o i d h a s
dcas;oiehfoaiwehfoaiefasdknc
asdlkajsbdclausiuowencaweca
sdf
asdgasdgasdf

asdfasdf

a s d f a s ; d l f h ; a l o w i e h c f a ; o i h
ac;soiehf;aew;nac ;secioaew f

Documentation

http://server1.com/help.html

rdfs:seeAlso

Web

Services Definition

exposed as exposed as

Fig. 4 iServe publishing process.

Currently the data in iServe comes mostly from theSAWSDL Test Collection5,
OWL-STest Collection6 and the use cases of theEU projectSOA4All. The current im-
plementation already highlights how Web services and WebAPIs can be described
by means of an homogeneous (but extensible) conceptual model—the Minimal Ser-
vice Model—and how they can be published as linked data, therefore better promot-
ing their discovery based on the use of well established and adopted principles from
the Web of Data. Additionally and by virtue of using existinglightweight semantic
technologies such asRDFSandSPARQL, the service repository benefits from a grow-

5 See http://www.semwebcentral.org/projects/sawsdl-tc/
6 See http://projects.semwebcentral.org/projects/owls-tc/

Adaptive Service Binding with Lightweight Semantic Web Services 19

ing body of performant and mature tools able to cater for the required scalability for
dealing with large numbers of services on the Web.

4.4 Template-based Service Selection

The objective of creating service descriptions is so that wecan later find the ser-
vices, and reason about them. In this section, we are concerned with the problem of
connecting a client requiring a service with a service provider. This task is known
as matchmaking (in multi-agent systems) or service selection (a more recent term,
common in Web services). The basic approach is for the clientto create a formal
description of their requirement, and for the matchmaker tocompare this against
the stored service descriptions to find the most appropriatematches [24].

Since our approach is centred on achieving scalability and ease of use by build-
ing on Linked Data standards, we introduce simple notions ofservice requests, using
RDF andSPARQL. In our approach, a service request comprises a set of inputsand
outputs, as well as the functional classification of a service7. We defineRDF service
templateswhich capture service requests in a similar way to the service descriptions,
and transform those templates toSPARQLqueries, trading expressivity for scalabil-
ity. Such templates can be used operationally in workflows, acting as place-holders
for late binding services; in workflow composers, enabling automated suggestion
of next steps in a pipeline based on type, and enabling partial verification of cor-
rectness; in discovery engines, to find suitable services; in ranking and selection
engines, to order them by suitability; and in execution engines, to supply values to
service invocations.

Despite our caveat that a template is strictly less appropriate than a goal with
pre- and post-conditions, the use of input and output types is actually well suited to
searching for stateless services (alternatively, information processing services which
are defined reasonably well in terms of a mapping from input tooutput), since in
those cases any preconditions and effects would be only be a refinement of the
typing of those inputs and outputs. Our chosen scenario of finding a traffic reporting
service is one such case.

In designing these templates, we intended that they straightforwardly map into
SPARQLqueries over a repository of service descriptions usingWSMO-Lite and the
Minimal Service Model. Our templates take the following form:

ServiceTemplate a rdfs:Class.
hasFunctionalClassification a rdf:Property;
hasInput a rdf:Property;
hasOutput a rdf:Property;
hasPreference a rdf:Property;
hasRequirement a rdf:Property;

7 A similar functionality is present in OWL-S [29] through theserviceCategoryproperty, but we
are not aware of any matchmaker that uses it.

20 Pedrinaci, Lambert, Maleshkova, Liu, Domingue, Krummenacher

The hasFunctionalClassification property shadows the use of a service’s
model reference to an object that is a subclass ofFunctionalClassificationRoot .
These functional classifications might be written to theUNSPSCcode. For traffic in-
formation reporting, no suchUNSPSCcode currently exists, so services might instead
use the appropriate DBPedia (structured information extracted out of wikipedia) [3]
page to create a functional classification:

<http://dbpedia.org/resource/Category:Transportatio n_by_mode>
rdf:type wsl:FunctionalClassificationRoot .

TheRequirementandPreferenceproperties are specified such that:

Requirement: Service→ Bool

Preference: Service→ Value

The intent with these is to allow the user to specify further constraints in a language
of their choice, includingSPARQL [38] andWSML [11]. We do not use these con-
straints in this chapter, but they are analagous to the pre-conditions and effects of
services. In section 4.4.3 we will illustrate how they can beused by service providers
to specify the geographical limits to the usefulness of their services.

Following our use-case, the service offered is based on a unique service tem-
plate that captures a family of services that can provide traffic reports. At runtime,
the service template needs only be instantiated with concrete data corresponding to
the users location and the language required in order to provide all the necessary
information for querying the service repository:

viennaTrafficRequest rdf:type st:ServiceTemplate ;
st:hasFunctionalClassfication

<http://dbpedia.org/page/Category:Road_traffic_mana gement> ;
st:hasInput [rdf:type geo:lat; rdf:value "48.033"ˆˆxsd: long] ;
st:hasInput [rdf:type geo:long ; rdf:value "16.366"ˆˆxsd :long] ;
st:hasInput [rdf:type lang:Language ; rdf:value lang:Eng lish] .

The reader should note thatRoad Traffic Managementis a sub category of
Transportation by Modein the categorisation chosen and that Vienna is located at
48◦12′31.5′′N,16◦22′21.3′′E.

4.4.1 Automatic Transformation of Service Templates to SPARQL

Services can be found by creating aSPARQLquery, and in particular, queries can be
derived from a service template. Since there is no explicit mediation in the model,
finding exact matches for input and output types is important. We can connect these
inputs to the model references from theSAWSDL and MicroWSMO.

Given our template, we want to transform it to aSPARQL query. The simplest
such query (because it is the most specific) is this:

SELECT ?service ?operation
WHERE {

?service rdf:type msm:Service ;

Adaptive Service Binding with Lightweight Semantic Web Services 21

msm:hasOperation ?operation ;
sawsdl:modelReference

<http://dbpedia.org/page/Category:Road_traffic_mana gement> .
?operation msm:hasInputMessage ?input ;

msm:hasOutputMessage ?output .
?input sawsdl:modelReference geo:lat ;

sawsdl:modelReference geo:long ;
sawsdl:modelReference lang:Language .

This provides for services which match exactly the functional classification, and
the input types. Had our original service template contained hasOutput constraints,
those would have appeared in a similar way to the input types.The algorithm for
constructing such queries is shown in figure 4.4.1.

EXACT-MATCH-SELECT(template,repository)

1 query← "SELECT ?service ?operation WHERE {"
2 query← query+ "?service rdf:type msm:Service ;"
3 query← query+ "?service msm:hasOperation ?operation ;"
4 query← query+ "sawsdl:modelReference" + template.hasFunctionalClassfication
5 query← query+ "?operation msm:hasInputMessage ?input"
6 query← query+ "?operation msm:hasOutputMessage ?output"
7 for input∈ template.hasInput
8 do query← query+ "?input sawsdl:modelReference" + input
9 for output∈ template.hasOutput

10 do query← query+ "?output sawsdl:modelReference" + output
11 return EXECTUTE-SPARQL(query,repository)

Fig. 5 Algorithm for converting service templates to SPARQLSELECTqueries

We can also write various forms of this to account for theexact, plugin, subsumes,
and fail match degrees common in the literature. This is done by the addition of
subclass relations in theSPARQL queries. For instance, the following would find
services which offered apluginalternative to our request:

SELECT ?service ?operation
WHERE {

?service rdf:type msm:Service ;
msm:hasOperation ?operation ;
sawsdl:modelReference ?fcr .

?fcr rdfs:subClassOf
<http://dbpedia.org/page/Category:Road_traffic_mana gement> .

?operation msm:hasInputMessage ?input ;
msm:hasOutputMessage ?output .

?input sawsdl:modelReference ?i1 ;
sawsdl:modelReference ?i2 ;
sawsdl:modelReference ?i3 .

?i1 rdfs:subClassOf geo:long ;
?i2 rdfs:subClassOf geo:lat ;
?i3 rdfs:subClassOf lang:Language ;

22 Pedrinaci, Lambert, Maleshkova, Liu, Domingue, Krummenacher

4.4.2 Match Reports

We now have a means for creating queries to discover servicesthat match. To return
the results, the natural solution is to use anotherRDF vocabulary which enables the
labelling of each matching service with the match degree of the inputs, outputs, and
functional classification.

st:MatchmakingResults a rdfs:Class .

st:hasServiceTemplate a rdf:Property ;
rdfs:domain st:MatchmakingResults ;
rdfs:range st:ServiceTemplate .

st:hasMatch a rdf:Property ;
rdfs:domain st:MatchmakingResults ;
rdfs:range st:Match .

st:Match a rdfs:Class .

st:MatchDegree a rdfs:Class .
st:ExactMatch a st:MatchDegree .
st:PluginMatch a st:MatchDegree .
st:SubsumesMatch a st:MatchDegree .

st:hasMatchDegree a rdf:Property ;
rdfs:domain st:Match ;
rdfs:range st:MatchDegree .

st:hasMatchingElement a rdf:Property ;
rdfs:domain st:Match .

ThematchDegree property can be attached to each appropriatemodelReference

in the service description. Computing the match degree requires access to the class
hierarchy for all the referenced types, and so can only feasibly be done at the service
repository.

4.4.3 Checking Preconditions

The service requestor now has a set of services and operations that have matched to
some degree the input and output types, and the functional classification. The client
is now in a position to check that the preconditions of the services hold. Service
preconditions are written asSPARQLASKqueries against the requestor’s knowledge
base. Essentially the same approach was applied in toOWL-S services [40].

For the purpose of evaluating the preconditions, the requestor’s knowledge base
will have in it only the active service template. This can be identified with the
?template rdf:type st:ServiceTemplate pattern. The rest of the precondition
for the Austrian travel service is thus:

ASK WHERE {
?template rdf:type st:ServiceTemplate ;

st:hasInputMessage ?lattitute ;
st:hasInputMessage ?longitude ;
st:hasInputMessage ?language ;

?latitude rdf:type geo:lat .
?longitude rdf:type geo:long .

Adaptive Service Binding with Lightweight Semantic Web Services 23

FILTER (?latitude < 48.5 && ?latitude > 46.5) .
FILTER (?longitude < 16.6 && ?longitude > 9.6) .

The twoFILTER expressions place a bounding rectangle around Austria’s geograph-
ical extremities. Only a request for a traffic within that boxshould be matched.

5 Conclusions and Future Work

Service-Oriented Computing prescribes the development ofsystems on the basis
of reusable distributed components offered as services in alanguage and platform
independent manner. Key to the development of these kinds ofsystems is the dis-
covery and selection of services, and there has therefore been a wealth of research
focusing on these matters. Semantic Web Services research advocates using seman-
tic annotations of services in order to support advanced discovery and selection
techniques based on formal descriptions of both functionaland nonfunctional as-
pects of services. On the basis of these techniques, prototypes have been developed
that showcase their potential. However, Semantic Web Services technologies have
been up to date based essentially on complex, high-level service ontologies and on
highly expressive logics. As a consequence Semantic Web Services technologies
have faced an important knowledge acquisition bottleneck and Web-scale solutions
have yet to be provided.

SOA4All aims to pave the way for a Web of billions of services, overcoming
the drawbacks of current Semantic Web Services technologies by using lightweight
semantic annotations, existing Web standards and harnessing Web 2.0 principles. In
this chapter we have focussed on the annotation of services usingRDFSand a simple
conceptual model. We have proposed the publication of services following a number
of principles from the Semantic Web which enable easier discovery, selection and
use of service annotations, and do so in a scalable manner. Wehave also presented
the notion of service templates as declarative specifications of families of services
based on restrictions over their functional or nonfunctional aspects and we have
proposed their use within workflows to support the late binding of services. Finally,
we have illustrated how these service templates can automatically be transformed
into SPARQLqueries that can be sent directly to service repositories for automatically
selecting suitable services.

The work presented in this chapter are a snapshot of ongoing research that are
being evaluated within three use-cases, but the results obtained thus far show al-
ready that a considerable amount of limitations currently exhibited by Web services
and Semantic Web Services technologies can be mitigated to acertain extent. Fur-
ther progress with respect to the generation of service annotations is expected to
be achieved through the development of a fully-fledged Web-based interface for the
annotation, composition and invocation of services known as theSOA4All Studio.
Additionally, in the future we aim to use the benchmarking platform and test cases
under development within theEU projectSEALS, to carry out a comparative analysis

24 Pedrinaci, Lambert, Maleshkova, Liu, Domingue, Krummenacher

with current service selection solutions to better accountfor the tradeoff between
expressivity and scalability in the context of concrete domains and test-cases.

Acknowledgements This research was funded by the SOA4All project, under European Union
grant FP7-215219.

6 Appendix

Listing 3 Namespaces used throughout the chapter.
Standard semantic web namespaces
@prefix xsd: <http://www.w3.org/2001/XMLSchema> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax -ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .

Minimal Service Model, WSMO-Lite, hRESTS namespaces
@prefix wsl: <http://www.wsmo.org/ns/wsmo-lite#> .
@prefix hr: <http://www.wsmo.org/ns/hrests#> .
@prefix msm: <http://cms-wg.sti2.org/ns/minimal-servi ce-model#> .

Service Templates
@prefix st: <http://cms-wg.sti2.org/ns/service-templa te#> .

Scenario specific
@prefix lang: <http://http://www.lingvoj.org/lingvoj# > .
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos #> .

Listing 4 Service models used in RDF(S) including Minimal Service Model, WSMO-Lite,
hRESTS, and SAWSDL
1 msm:Service a rdfs:Class .
2 msm:hasOperation a rdf:Property ;
3 rdfs:domain msm:Service ;
4 rdfs:range msm:Operation .
5 msm:Operation a rdfs:Class .
6 msm:hasInputMessage a rdf:Property ;
7 rdfs:domain msm:Operation ;
8 rdfs:range msm:Message .
9 msm:hasOutputMessage a rdf:Property ;

10 rdfs:domain msm:Operation ;
11 rdfs:range msm:Message .
12 msm:hasInputFault a rdf:Property ;
13 rdfs:domain msm:Operation ;
14 rdfs:range msm:Message .
15 msm:hasOutputFault a rdf:Property ;
16 rdfs:domain msm:Operation ;
17 rdfs:range msm:Message .
18 msm:Message a rdfs:Class .
19 msm:usesOntology a rdfs:Property ;
20 rdfs:domain msm:Service ;
21 rdfs:subPropertyOf rdfs:seeAlso .
22 msm:hasFunctionalClassification a rdfs:Property ;
23 rdfs:subPropertyOf sawsdl:modelReference .
24 msm:hasNonfunctionalProperty a rdfs:Property ;
25 rdfs:subPropertyOf sawsdl:modelReference .
26 msm:hasCondition a rdfs:Property ;

Adaptive Service Binding with Lightweight Semantic Web Services 25

27 rdfs:subPropertyOf sawsdl:modelReference .
28 msm:hasEffect a rdfs:Property ;
29 rdfs:subPropertyOf sawsdl:modelReference .
30

31 # WSMO-Lite
32 wsl:Ontology rdfs:subClassOf owl:Ontology.
33 wsl:FunctionalClassificationRoot rdfs:subClassOf rdfs :Class.
34 wsl:NonFunctionalParameter a rdfs:Class.
35 wsl:Condition a rdfs:Class.
36 wsl:Effect a rdfs:Class.
37

38 # hRESTS properties added to the above model
39 hr:Method a rdfs:Class .
40 hr:hasAddress a rdf:Property ;
41 rdfs:domain msm:Operation ;
42 rdfs:range hr:URITemplate .
43 hr:hasMethod a rdf:Property ;
44 rdfs:domain msm:Operation ;
45 rdfs:range hr:Method .
46 # a datatype for URI templates
47 hr:URITemplate a rdfs:Datatype .
48 # HTTP Methods possible methods for RESTful services
49 http:Method rdfs:subClassOf hr:Method .
50

51 # SAWSDL properties
52 sawsdl:modelReference a rdf:Property .
53 sawsdl:liftingSchemaMapping a rdf:Property .
54 sawsdl:loweringSchemaMapping a rdf:Property .

References

1. Rama Akkiraju, Joel Farrell, John Miller, Meenakshi Nagarajan, Marc-Thomas Schmidt, Amit
Sheth, and Kunal Verma. Web service semantics - wsdl-s, Nov 2005. W3C Member Submis-
sion.

2. Eyhab Al-Masri and Qusay Mahmoud. Web service discovery and client goals.Computer,
42(1):104 – 107, Jan 2009.

3. Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary Ives. DBpedia: A Nucleus for a Web of Open Data. InIn proceedings of 6th In-
ternational Semantic Web Conference, 2nd Asian Semantic Web Conference, pages 722–735,
November 2008.

4. Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on context-aware
systems. International Journal of Ad Hoc and Ubiquitous Computing, pages 263–277, Jun
2007.

5. Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far.International
Journal on Semantic Web and Information Systems (IJSWIS), 2009.

6. Dan Brickley and Ramanathan V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema, 2002. http://www.w3.org/TR/rdf-schema.

7. Mark Burstein, Christoph Bussler, Michal Zaremba, Tim Finin, Michael N Huhns, Massimo
Paolucci, Amit P Sheth, and Stuart Williams. A semantic web services architecture.IEEE
Internet Computing, 9(5):72–81, 2005.

8. Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers. UDDI Specification Ver-
sion 3.0.2. Technical report, OASIS, 2004.

9. Marco Comuzzi, Kyriakos Kritikos, and Pierluigi Plebani. Semantic-aware service quality
negotiation. InServiceWave ’08: Proceedings of the 1st European Conference on Towards a
Service-Based Internet, pages 312–323, Berlin, Heidelberg, 2008. Springer-Verlag.

10. John Davies, John Domingue, Carlos Pedrinaci, Dieter Fensel, Rafael Gonzalez-Cabero, Mor-
gan Potter, Marc Richardson, and Sandra Stincic. Towards the open service web.BT Technol-
ogy Journal, 26(2), 2009.

11. Jos de Bruijn. D16.1v0.21 the web service modeling language wsml, Oct 2005.

26 Pedrinaci, Lambert, Maleshkova, Liu, Domingue, Krummenacher

12. John Domingue, Liliana Cabral, Stefania Galizia, Vlad Tanasescu, Alessio Gugliotta, Barry
Norton, and Carlos Pedrinaci. Irs-iii: A broker-based approach to semantic web services.Web
Semantics: Science, Services and Agents on the World Wide Web, 6(2):109–132, 2008.

13. Thomas Erl.SOA Principles of Service Design. Jul 2007.
14. Joel Farrell and Holger Lausen. Semantic Annotations for WSDL and XML Schema

(SAWSDL). Recommendation, W3C, August 2007.
15. Dieter Fensel and Chris Bussler. The Web Service Modeling Framework WSMF.Electronic

Commerce Research and Applications, 1(2):113–137, 2002.
16. Dieter Fensel, Mick Kerrigan, and Michal Zaremba.Implementing Semantic Web Services:

The SESA Framework. 2008.
17. Dieter Fensel, Holger Lausen, Axel Polleres, Jos de Bruijn, Michael Stollberg, Dumitru Ro-

man, and John Domingue.Enabling Semantic Web Services: The Web Service Modeling On-
tology. 2007.

18. Roy T Fielding.Architectural Styles and the Design of Network-based Software Architectures.
PhD thesis, 2000.

19. Stefania Galizia, Alessio Gugliotta, and Carlos Pedrinaci. A formal model for classify-
ing trusted semantic web services. In3rd Asian Semantic Web Conference (ASWC 2008),
Bangkok, Thailand, 2008.

20. Marc Hadley. Web application description language. Technical report, Aug 2009.
21. Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and Mike

Dean. SWRL: A Semantic Web Rule Language Combining OWL and RuleML, May 2004.
Last Visited: April 2005.

22. Dimka Karastoyanova and Frank Leymann. BPEL’n’Aspects: Adapting Service Orchestration
Logic. IEEE International Conference on Web Services, 2009. ICWS 2009., pages 222 – 229,
Jul 2009.

23. Matthias Klusch, Benedikt Fries, and Katia Sycara. Automated semantic web service discov-
ery with OWLS-MX. pages 915–922, 2006.

24. Matthias Klusch and Katia Sycara. Brokering and matchmaking for coordination of agent
societies: a survey. InCoordination of Internet agents: models, technologies, and applications,
pages 197–224. Springer-Verlag, 2001.

25. Jacek Kopecký. Web services description language (wsdl) version 2.0: Rdf mapping. Techni-
cal report, Jun 2007.

26. Jacek Kopecky, Karthik Gomadam, and Tomas Vitvar. hrests: an html microformat for de-
scribing restful web services. InIEEE/WIC/ACM International Conference on Web Intelli-
gence and Intelligent Agent Technology, Nov 2008.

27. Lei Li and Ian Horrocks. A software framework for matchmaking based on semantic web
technology.International Journal of Electronic Commerce, 8(4):39, 2004.

28. Maria Maleshkova, Jacek Kopecký, and Carlos Pedrinaci. Adapting sawsdl for semantic an-
notations of restful services. InWorkshop: Beyond SAWSDL at OnTheMove Federated Con-
ferences & Workshops, 2009.

29. David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDermott, Sheila McIlraith,
Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry Payne, Evren Sirin, Naveen Srini-
vasan, and Katia Sycara. OWL-S: Semantic Markup for Web Services. Member submission,
W3C, 2004. W3C Member Submission 22 November 2004.

30. Brian McBride.The Resource Description Framework (RDF) and its Vocabulary Description
Language RDFS, chapter 3, pages 51–66. 2004.

31. Sheila McIlraith, Tran Son, and Honglei Zeng. Semantic web services.Intelligent Systems,
IEEE, 16(2):46 – 53, Jan 2001.

32. Jorg Nitzsche, Tammo van Lessen, Dimka Karastoyanova, and Frank Leymann. Bpel for
semantic web services (bpel4sws).On the Move to Meaningful Internet Systems 2007: OTM
2007 Workshops, pages 179–188, 2007.

33. Barry Norton, Carlos Pedrinaci, John Domingue, and Michal Zaremba. Semantic execution
environments for semantics-enabled soa.IT-Methods and Applications of Informatics and
Information Technology, Special Issue in Service-Oriented Architectures:118–121, 2008.

Adaptive Service Binding with Lightweight Semantic Web Services 27

34. Michael P Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-
oriented computing: State of the art and research challenges. Computer, 40(11):38–45, 2007.

35. Peter Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL Web Ontology Language Se-
mantics and Abstract Syntax, Feb 2004. Last Visited: March 2005.

36. Carlos Pedrinaci, Christian Brelage, Tammo van Lessen,John Domingue, Dimka Karastoy-
anova, and Frank Leymann. Semantic business process management: Scaling up the man-
agement of business processes. InProceedings of the 2nd IEEE International Conference
on Semantic Computing (ICSC) 2008, Santa Clara, CA, USA, August 2008. IEEE Computer
Society.

37. Carlos Pedrinaci, Dong Liu, Maria Maleshkova, Dave Lambert, Jacek Kopecký, and John
Domingue. iServe: a Linked Services Publishing Platform. In Ontology Repositories and
Editors for the Semantic Web at 7th Extended Semantic Web Conference, 2010.

38. Eric Prud’hommeaux and Andy Seaborne. Sparql query language for rdf. Recommendation,
W3C, January 2008.

39. Leonard Richardson and Sam Ruby.RESTful Web Services. May 2007.
40. Marco Luca Sbodio and Claude Moulin. SPARQL as an expression language for OWL-S. In

OWL-S: Experiences and Directions, a workshop at the 4th European Semantic Web Confer-
ence (ESWC 2007), June 2007.

41. Quan Sheng, Jian Yu, and Schahram Dustdar.Enabling Context-Aware Web Services: Meth-
ods, Architectures, and Technologies. Chapman and Hall/CRC, 2010.

42. Amit Sheth, Karthik Gomadam, and Jon Lathem. SA-REST: Semantically Interoperable and
Easier-to-Use Services and Mashups.Internet Computing, IEEE, 11(6):91 – 94, Nov 2007.

43. Michael Stollberg, Martin Hepp, and Jörg Hoffmann. A Caching Mechanism for Semantic
Web Service Discovery. InProceedings of the International Semantic Web Conference 2007.
Springer, 2007.

44. Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen Srinivasan. Automated
discovery, interaction and composition of semantic web services. Web Semantics: Science,
Services and Agents on the World Wide Web, 1(1):27 – 46, 2003.

45. David Trastour, Claudio Bartolini, and Javier Gonzalez-Castillo. A Semantic Web Approach
to Service Description for Matchmaking of Services. In Isabel F. Cruz, Stefan Decker, Jérôme
Euzenat, and Deborah L. McGuinness, editors,Proceedings of SWWS’01, The first Semantic
Web Working Symposium, pages 447–461, 2001.

46. Andrea Turati, Emanuele Della Valle, Dario Cerizza, andFederico M Facca.Using Glue to
Solve the Discovery Scenarios of the SWS-Challenge, pages 185–197. 2009.

47. Kunal Verma, Kaarthik Sivashanmugam, Amit Sheth, Abhijit Patil, Swapna Oundhakar, and
John Miller. Meteor-s wsdi: A scalable p2p infrastructure of registries for semantic publica-
tion and discovery of web services.International Journal of Information Technologies and
Management, 6(1):17–39, 2005.

48. Steve Vinoski. Putting the ”web” into web services: Interaction models, part 2.IEEE Internet
Computing, 6(4):90–92, 2002.

49. Tomas Vitvar, Jacek Kopecky, Jana Viskova, and Dieter Fensel. Wsmo-lite annotations for
web services. In Manfred Hauswirth, Manolis Koubarakis, and Sean Bechhofer, editors,
Proceedings of the 5th European Semantic Web Conference, LNCS, Berlin, Heidelberg, June
2008. Springer Verlag.

50. Liangzhao Zeng, Boualem Benatallah, Anne Ngu, Marlon Dumas, Jayant Kalagnanam, and
Henry Chang. Qos-aware middleware for web services composition. Software Engineering,
IEEE Transactions on, 30(5):311 – 327, May 2004.

